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Executive summary 

The ICES Working Group on Methods of Fish Stock Assessment (WGMG) met in 
Vigo, Spain during 10–19 October 2011.  

ToR 1a: Data screening techniques prior to the selection of stock assessment models 
are useful for exploring and demonstrating data features, checking for consistency 
within and between data sources, providing ball-park trends to be expected from 
assessment model, and understanding behaviour of assessment models. It was felt 
that these techniques are not used enough, and it was recommended that showing 
outputs from data pre-screening techniques that proved informative should be a 
standard requirement in ICES stock assessment WG reports. 

ToR 1b: Retrospective indices (based on e.g. Mohn’s ρ) were shown to have potential 
for developing threshold levels beyond which inaccuracy of assessment methods 
would be unacceptably large. Furthermore, the potential for using estimates of sur-
vey sampling variability as inputs to XSA to weight individual survey data points (by 
year and age) as a means to improve retrospective patterns was also explored. It is 
recommended that estimates of survey sampling variance always be calculated, and 
where appropriate, the inverse of survey estimates of sampling variance should be 
incorporated as a maximum weighting for corresponding survey data points.  

ToR 1c: The move from simple to more complex assessment models is often moti-
vated by the fuller use of available data/more biological realism (e.g. southern angler-
fish), the fact that simpler models can give deceptively small confidence intervals, 
and the availability of more flexibility, for example to investigate the impact of 
changing the selection pattern (e.g. Celtic Sea and southern megrim), and more ap-
propriate modelling of landings and discards (e.g. North Sea cod). However, moving 
to more complex assessment models has the danger of over-parameterization. There-
fore, there is an overarching concern that “acceptable” model choice approaches are 
followed and model-fitting diagnostics are obtained (e.g. residuals are broadly ran-
dom). Furthermore, although residual patterns may not be corrected for (e.g. autocor-
relation), it is important to be aware of them, particularly in the context of MSE, to 
ensure that pseudo-data have the same properties as actual historic data. The Ecok-
nows perspective is that model specification should be driven by realistic biological 
and population dynamics assumptions and not data availability alone. It is recom-
mended that consideration be given to using AIC in a frequentist or DIC in a Bayes-
ian setting, for example, to guard against over-parameterization; and that when 
introducing random effects terms, the statistical properties assumed should be 
checked to the extent possible, e.g. when appropriate through a runs test to check for 
randomness.  

A hind-cast/forecast simulation approach demonstrated (for North Sea plaice and 
sole) that harvest control rules which use fewer data (e.g. only survey indices of 
abundance) can outperform what actually happened in the past in terms of actual 
removals (based on a complex assessment) in almost every respect, particularly inter-
annual variability in catch and fishing mortality. Furthermore, this MP testing 
framework could be used to evaluate the loss (in terms of more conservative catch 
limits) of reducing the amount of data collected. It is recommended that the approach 
used to evaluate simple management procedures, described in the report, be devel-
oped further as a possible framework for investigating the value of information. 
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ToR 1d: The investigations focused on year effects in surveys and estimating stock 
recruit relationships taking autocorrelation in recruitment into account by consider-
ing AR processes for residuals. The main conclusion for the two stocks investigated 
(3PS cod and American plaice) were that it was important to account for correlated 
errors to better reflect the information content of data; that better modelling of survey 
data should be carried out before asking assessment model to “figure it out”; that 
trying to estimate the 1st and 2nd order parameters of an auto-regressive process can 
lead to strange behaviour, requiring the imposition of a penalty to ensure residuals 
sum to zero; that there is a big difference in SR models estimated using the AR(1) or 
AR(2) formulations; and that there is potential that an autocorrelated recruitment 
error structure can confound the stock–recruit signal.  

ToR 1e: No work presented explicitly addressing the topic of integrating uncertainty 
(although there are links to work elsewhere). 

ToR 2: A review approaches for standardizing commercial cpue was provided, and 
an example GLM application based on the Tweedie distribution given. 

ToR 3: Other ICES WGs have dealt with the topic of MSY reference points (e.g. 
WKFRAME, WKFRAME2, SGMAS). The study presented was limited to use of 
SURBA+ as the assessment model, and to 3PS cod and American plaice. Simulation 
analyses showed that measurement error in SSB, if substantial, could have a large 
impact on MSY reference points, and parameters such as S50% (SSB value at half 
asymptotic recruitment), and calculated from the estimated stock–recruit relation-
ship. There is potential for providing guidelines for the use of more robust reference 
points, but further work is needed. With regard to the estimation of MSY when re-
cruitment productivity varies, Bousquet et al. (2008) concluded that their study “rein-
forced the conviction shared by numerous researchers that biological reference points 
calculated in a deterministic framework can be far from optimal in stochastic set-
tings”. The study presented during the meeting found that the amount of process 
error had little effect on mean MSY reference points, which differs from the conclu-
sions of Bousquet et al.; however upper and lower percentiles were affected. Fur-
thermore, constraining multiplicative process errors to have a geometric mean of one 
makes a difference to results, but further work is need to draw firm conclusions. 

ToR4: The WG commented on the categorization scheme proposed by SISAM, sug-
gesting an additional subcategory reflecting possible management advice (e.g. types 
of reference points) under typical data for a given assessment category, and more 
detail on model assumptions. Concern was expressed that multispecies models were 
missing from the proposed 2013 symposium topics, but it was explained that multis-
pecies models are not a main focus of SISAM, but that a session on such models 
would be included in the symposium. Suggestions were also put forward about data-
sets that could be considered for the symposium. 
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1 Introduction 

1.1 Terms of Reference (ToRs) 

The Working Group on Methods in Fish Stock Assessment (WGMG) chaired by José 
A. A. De Oliveira, met in Vigo, Spain from 10–19 October 2011 to: 

1) In support of the ICES initiative on stock assessment methods, use simulation 
and case-study examples to help draw up guidelines for best practice when con-
ducting stock assessments in the following areas: 

a ) Data screening techniques prior to the selection of stock assessment mod-
els; 

b ) Diagnostics to evaluate model fit (including measures of retrospective 
bias), and how these can be used to help refine models where appropriate;  

c ) Guidance for deciding how complex a stock assessment model needs to be 
(e.g. how much to process/aggregate inputs; utility for advice); 

d ) Implications and treatment of correlated errors; 
e ) Integration of uncertainty (including accounting for retrospective patterns) 

in advice; 

2) Review approaches for standardizing commercial cpue (available techniques and 
pitfalls). 

3) Provide guidelines for calculating MSY reference points in a varying and stochas-
tic environment. 

4) Comment on the proposed SISAM scheme for the categorization of assessment 
models. 

The ToRs were developed following during the WKADSAM meeting in September 
2010 and subsequently agreed by SCICOM in October 2010. 

1.2 Report Structure 

A total of eight working documents (WDs) were presented to the meeting, and these 
are given, in full, in Annex 5. The report sections follow the ToR in order, with each 
section generally providing a summary of the presentations (referring to the WDs 
where appropriate), followed by a summary of plenary discussions. Where subse-
quent work was carried out, the plenary discussion summary is followed by the new 
material.  

Southern horse mackerel data were made available to the group (see Section 1.3, and 
data folder of ICES SharePoint site), if a dataset was needed to help answer any of the 
ToR – it was subsequently only used under ToR 1a. 

No work was presented under ToR 1e, apart from a presentation on the EU ECOK-
NOWS project, so the approach was to reflect discussions on how each of the presen-
tations dealt with uncertainty, and how the ECOKNOWS project related to the 
various ToR. 

The difficulty of estimating recruitment variability 𝜎𝑅 in an MLE setting, arose as a 
topic of interest, and Annex 6 describes the problem and presents some possible solu-
tions. 
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1.3 Southern horse mackerel data 

The Southern Horse Mackerel data were presented to WGMG as a possible dataset to 
be used, if one was needed, to help cover the various ToR for the workshop. Gersom 
Costas presented the data and assessment model applied, to help understand prob-
lems related to the data. Discards were not included in the assessment because they 
were considered low. The Spanish and Portuguese bottom-trawl surveys are com-
bined and treated as a single index of abundance, with the Portuguese survey effec-
tively receiving more weight because of the greater number of hauls. This is thought 
to be the only stock for which these two surveys are combined, on the basis of calibra-
tion studies that justified this – for other stocks, the two surveys are fitted separately, 
raising the question of why the surveys are treated differently for this stock. 
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2 Data Screening (ToR 1a) 

2.1 Data screening techniques prior to the selection of stock assessment 
models 

The presentation (Annex 5, WD 1) covered a review of existing plots used for data 
screening within and outside ICES. For catch data, bar charts and bubble plots are 
commonly used to display catch-at-age data, with bubble plots having the advantage 
of displaying cohort strength clearly. For cpue data, inter-age correlations (for the 
same cohort) provide information about the consistency of a survey with the same 
survey in other years. The index trends provide a guide to the biomass trends that 
can be expected from an assessment method. To examine mortality trends in an as-
sessment-independent manner, catch curves can be plotted, and the negative gradi-
ent over a suitable age range gives the total mortality. Plotting spatial distributions of 
catch and survey data can indicate whether the survey design is appropriate. 

Discussion: 

When plotting cpue point estimates along with error bars, what exactly do the error 
bars mean (e.g. reflects sampling variation), and how is this accounted for in assess-
ments when the survey only covers a portion of the stock distribution area? For the 
purpose of stock assessments, the estimates of uncertainty need to relate to stock 
abundance, and inclusion of additional variance over-and-above sampling variance, 
could help in this regard. It was also pointed out that the level of aggregation (by 
haul, by day, etc) is important when deriving estimates of uncertainty, because more 
aggregation can help with removing the problem of occasional large values, which 
can be difficult to handle from a statistical point of view (e.g. problem of distributions 
with heavy tails). Exploratory plots are meant as aids to decide on appropriate stock 
assessment model structure, and could help explain residual patterns in model diag-
nostic plots. It was suggested that consideration be given to mean-standardized plots 
(e.g. log-survey indices, where one subtracts the mean and divides by the standard 
deviation) over time to help see year and cohort effects. 

Subsequent work: 

Two case studies of preliminary data screening relating to southern horse mackerel 
and Celtic Sea cod are presented as an example of the kind of issues that can be raised 
at this point in the assessment process. Key plots from the working document are 
applied to these two stocks to illustrate the following aspects of the data: 

• Age structure in the catch data 
• Age structure in the index data 
• Internal consistency of the index data 
• Consistency between indices where more than one is available 

Neither stock provided the opportunity to examine spatial trends in index or catch 
with the data available at this working group. 

Southern Horse Mackerel 

Data on southern horse mackerel includes catch-at-age from 1992–2010, for ages 0–
11+, and a survey for the same years covering ages 1–11+. Figure 2.1.1 and Figure 
2.1.2 show the catch data by age. In Figure 2.1.1, the bubbles indicate proportion of 
the catch-at-age in each year. In Figure 2.1.2, the catch is normalized on a log scale so 
that each age has mean zero, and standard deviation 1. This normalization is per-
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formed so that all ages are clearly visible, and the high variability typically present in 
recruits does not dominate the data. Both plots highlight the strength of the 1996 co-
hort, and the red bubbles in Figure 2.1.2 indicate that catches have generally been 
lower in recent years than the long-term average except at the lowest and oldest ages. 

Figure 2.1.3 and Figure 2.1.4 show different ways of plotting the age structure of the 
survey data. Figure 2.1.3 is analogous to Figure 2.1.2, except that cpue is plotted 
rather than catch. The 1996 cohort that was clearly visible in the catch data are not 
prominent in the survey data, but there are clear year effects such as the high catch in 
2005 across all ages. The strength of year effects is shown in Figure 2.1.4 by the degree 
to which the lines in the top left plot align. In contrast, if the top right plot shows a 
high degree of alignment, the survey would have strong cohort effects. The catch 
curves and gradient of the curves, shown in the bottom two plots, may indicate a 
slight decrease in total mortality over time. 

Figure 2.1.5 shows the ability of the survey to track cohorts. In this case there are very 
few significant increasing correlations, so it can be concluded that the survey does 
not have a strong signal to noise ratio. 

In this case study, the preliminary data analysis highlights the high level of year ef-
fects in the survey, and so any assessment will have to take account of the inconsis-
tent catchability of the survey from year to year. 

 

 

Figure 2.1.1. Landings by weight (top) and proportions of the catch numbers at each age (bottom) 
in the southern horse mackerel catch-at-age data. 
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Figure 2.1.2. Log catch-at-age data normalized so that each age has mean 0 and standard deviation 
1. Black circles indicate positive values (log catch above average), red circles indicate negative 
values. 

 

 

Figure 2.1.3. Log survey data normalized so that each age has mean 0 and standard deviation 1. 
Black circles indicate positive values, red circles indicate negative values. 
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Figure 2.1.4. Southern horse mackerel survey showing index by age (top left), index by cohort (top 
right), catch curves (bottom left) and their average slope (bottom right). 
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Figure 2.1.5. Internal consistency of the southern horse mackerel survey. Bold plots indicate sig-
nificant relationships. 

Celtic Sea Cod 

Celtic Sea cod landing at age data are available for ages 1–10+ during the period 
1971–2010. Eleven fleets area available for tuning, comprised of six series of commer-
cial LPUE data, and 5 survey indices. This analysis focuses on one LPUE series (UK 
Otter trawlers in VIIe) and one survey (French EVHOE Groundfish Oct–Nov survey) 
as these have the longest time periods in common. 

The landings in Figure 2.1.6 show that the majority of the catch is at age 2, accounting 
for at least 50% of the landings in many years. There are some strong cohorts such as 
the 1986 cohort visible from the proportions at age. 

Figure 2.1.7, Figure 2.1.8 and Figure 2.1.9 illustrate LPUE data from the UK otter 
trawl fleet. Figure 2.1.7 shows strong cohort effects, and this is corroborated by the 
internal consistency of the LPUE shown in Figure 2.1.8. Figure 2.1.9 shows a decrease 
in LPUE, with no other strong year effects, but strong cohort effects. The catch curves 
do not indicate an increasing or decreasing trend in mortality. At present, the com-
mercial indices do not include estimates of discards, but it may be more informative 
to plot cpue (i.e. landings and discards) than LPUE if these data are available. 
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Figure 2.1.10 and Figure 2.1.11 show data from the French EVHOE groundfish sur-
vey. Figure 2.1.10 suggests that there are no obvious year effects, but that there are 
clear cohort effects. In contrast to the data from the LPUE, the survey catch curves 
indicate a decrease in total mortality over time. The internal consistency, shown in 
Figure 2.1.11, of the survey is low, with only one significant correlation between 
years. 

A comparison of the trends from LPUE and survey data are shown in Figure 2.1.12, 
which shows a strong correlation between the Survey and commercial LPUE for ages 
1 and 3. For other ages, the correlation is weaker. 

The pre-screening indicates that the survey may be useful for younger ages, but may 
not have sufficient data at older ages. It may be worth considering whether the dif-
ferent trends in mortality shown by the survey and LPUE can be investigated by 
looking at additional sources of data, to see whether catchability is changing over 
time for either index. 

 

 

Figure 2.1.6. Landings by weight (top) and proportions of the catch numbers at each age (bottom) 
in the Celtic Sea cod catch-at-age data. 
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Figure 2.1.7. Log LPUE data normalized so that each age has mean 0 and standard deviation 1. 
Black circles indicate positive values, red circles indicate negative values 
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Figure 2.1.8. Internal consistency of LPUE data. 
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Figure 2.1.9. Celtic Sea cod LPUE showing index by age (top left), index by cohort (top right), 
catch curves (bottom left) and their average slope (bottom right). 

 



14  | ICES WGMG REPORT 2011 

 

 

Figure 2.1.10. Celtic Sea cod survey showing index by age (top left), index by cohort (top right), 
catch curves (bottom left) and their average slope (bottom right). 
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Figure 2.1.11. Internal consistency of the survey index. 
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Figure 2.1.12. Consistency between the survey and LPUE data. 
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2.2 Assessment of Celtic Sea cod 

The assessment of the Celtic Sea cod (VIIe-k), currently includes both commercial 
cpues and annual surveys indices. Surveys indices have always been based on a 
small number of cods (a few dozen to over a hundred individuals) because surveys in 
contrast to commercial fleets are not targeting cod and because they take place at the 
end of the year where fish are present on grounds that are not easily trawled. The use 
of those survey datasets has often been questioned at assessment or review groups 
because of the small number of fish.  

However, exploratory assessments using SURBA show some relatively good cohort 
tracking and highlight the fact that survey data, as opposed to commercial cpues, are 
able to capture trends on recruitment; therefore their inclusion in assessments has 
been maintained over the years. The scaled weights of the different indices show that 
most of the information comes from surveys indices for young age classes and from 
commercial fleets for older age classes. Due to the design and period of the surveys, 
the probability of catching small cod is naturally higher than for commercial fleets 
which are catching bigger individuals with or without targeting that species.  

Some exploratory assessments were carried out by combining or not surveys and 
commercial fleets. Estimates of recruitments are highly dependent on survey indices. 
Estimates of SSB are higher when both indices are used compared to using only 
commercial cpues. Trends on Fbar on ages 2 to 5 are more influenced by fleets than 
survey data, but fishing mortality is higher in recent years when using only survey 
data. Investigations suggest applying different weights and age ranges to indices 
whether they are from commercial fleets or from surveys. 

Discussion: 

There is the possibility of different selectivity between survey and commercial gears. 
Moreover the standardization of commercial indices and the use of commercial and 
survey indices for different ages in the model should be considered. The analysis of 
retrospective patterns was suggested. It was also suggested that pre-screening diag-
nostics (ToR 1a) would be useful as a means to check consistency within and between 
various data sources (see Section 2.1). 
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3 Diagnostics (ToR 1b) 

3.1 Retrospective indices as a measure of bias in fish stock assessment. 

Several indices were considered to measure disagreement among results of a retro-
spective analysis (Annex 5, WD 2). They were analysed by Monte Carlo simulation in 
response to random variability in partial recruitment, catch-at-age numbers and sur-
vey indices. The simulation also allows comparing VPA results with the original 
simulated values: several indices, called bias indices, are proposed to measure this 
inaccuracy in VPA results. 

Properties of the retrospective and bias indices are analysed and, in particular, the 
relationship among them. Having noticed that some relationship exist between retro-
spective and bias indices, the potential use of the first index to infer a level of the 
second one was explored. 

The relationship between each retrospective-bias index pair is not close: low retro-
spective indices do not imply low bias indices. Low retrospective indices are not a 
guarantee of goodness-of-fit. However some limits in retrospective indices could be 
established indicating unacceptable levels for some bias index. 

As a case study, the best strategy for otoliths sampling was tested with the same 
Monte Carlo simulation. Catch-at-age and survey indices at age were calculated with 
the corresponding age–length keys made by simulated random sampling. It was con-
cluded that a stratified sampling strategy is preferable to a random one. The effect of 
random error in age determination was also analysed. It was concluded that ageing 
error cannot be compensated by increasing sample size. 

Discussion: 

When pseudo-data were derived from the underlying simulation model, to be used 
when comparing fits to alternative assessment models, observed catches and survey 
indices were assumed to follow a lognormal distribution with fixed mean equal to the 
“true” values and varying CV in the range 0.0001 to 1.0. This lognormal assumption 
with fixed mean but varying CV implies that the median is not fixed, becoming 
smaller and further removed from the mean (and, hence, from the “true” value) as 
the CV increases. This inadvertently introduces a one side deviation in the observed 
data with respect to “true” values, which means that the metric used to measure ret-
rospective bias is always positive. It was suggested that that either a normal distribu-
tion be used instead (but this potentially introduces the further problem of negative 
values for quantities that must necessarily be positive) or alternatively that the me-
dian instead of the mean be fixed at the “true” value (although the varying degrees of 
skewness of the lognormal distribution as its CV changes might still have an impact 
on the retrospective bias results). Another issue raised was that the lack of a retro-
spective bias does not guarantee that the model is any closer to the “truth”. Further-
more, the results are valid to the restricted case considered, and would need to span a 
much broader range of simulated population vs. assessment model combinations 
(including model misspecification options) to be able to draw meaningful conclu-
sions. Other sources of retrospective bias could be tested for (e.g. due to changes in 
M). 
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3.2 Some reasons for retrospective bias in the stock assessment models 

In a separate study (Annex 5, WD 3); consideration is given to one of the possible 
problems resulting in the retrospective bias seen in some stock assessments. The main 
idea is based on the use of statistical characteristics of abundance indices in the stock 
assessment model. The traditional approach assumes that for abundance indices, 
variance of the age groups is constant by years (XSA, ICA and others). But it is 
known (Heinmuth, Sparholt, Horbowy and others) this variance depends on the in-
dex value (dependence of log standard deviation as function of log index for age 
group). Results show that the relationship between abundance indices standard de-
viation and indices value is intrinsic to the abundance indices obtained on the basis of 
both bottom and acoustic surveys results, since they reflect the pattern of the Baltic 
fish spatial distribution (sprat, herring and cod).  

This work shows, using as example the herring and sprat stocks in the Baltic Sea, the 
importance of the variance in the stock assessment. The Baltic international acoustic 
surveys data were used to calculate indices and their variances for these species. 
Quantifying and summarizing the main components of the overall uncertainty in 
sampling surveys was simulated using bootstrap re-sampling techniques and Monte 
Carlo simulation. We also developed a new version of XSA with weighted regression 
in the model and compared results with the traditional version. Application of the 
new XSA version considering the variability of abundance indices variance by years 
resulted not only in new estimates of fish stocks and population parameters (recruit-
ment, total and spawning biomasses, mean fishing mortality rate), but also may 
change the temporal trends in fish stocks dynamics. The most important result from 
this work is that the values of retrospective bias are lesser in the modified approach 
as compared with the traditional approach. 

Discussion: 

A new version of XSA was presented that uses input variances that varied by year 
and age, which were derived from acoustic surveys using statistical and simulation 
methods. Questions were raised about whether an appropriate formulation of these 
input variances was used in the objective function of the new version of XSA. In par-
ticular, the CV of the untransformed survey indices, which typically is independent 
of the size of the survey index itself, would approximate the standard deviation of 
the log-transformed indices, so it is more common to use this CV (or a function of 
this: ln[CV2+1]) to represent the standard deviation of the log-indices in the objective 
function. This should be investigated further. It was suggested that the ability to 
weight survey observations individually already exists in some implementations of 
XSA, but this is rarely used in practice. It also exists in other stock assessment meth-
ods such as Stock Synthesis. The model has been tested with existing assessment 
data, rather than simulated data. 
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4 Model Complexity (ToR 1c) 

4.1 Preliminary assessment of white anglerfish southern stock using Stock 
Synthesis (SS3) 

A first attempt of assessment of white anglerfish southern stock using Stock Synthesis 
(SS3) is presented (Annex 5, WD 4) in order to evaluate its potential use as an alterna-
tive assessment model to the current surplus production model (ASPIC). Model 
structure, input data and provisional model settings are described in the work. Al-
though more effort is required for tuning the model, the fit and the preliminary re-
sults seem to indicate that the Stock Synthesis can be an appropriate model to assess 
this stock. 

Discussion: 

Although the model needs annual total landings, any missing landings can be han-
dled through specification of a prior with mean level based on expert opinion and 
large CV. The Beverton–Holt steepness parameter h is fixed at 0.999 and annual re-
cruitment deviations estimated with high input CV (around 50–70%) for the corre-
sponding priors. Since there is rarely enough information in the data to estimate h, 
and since the assumption of high h (close to 1) is a strong one, it was suggested that 
sensitivity to alternative values for h (say from 0.6 to 0.999), and its effect on model-
fitting diagnostics, be explored. Selectivity functions have a 6-parameter double nor-
mal formulations, a form suggested as a starting point in the SS3 manual, but it was 
queried whether there was enough information in the data to estimate all six parame-
ters, or whether a 3-paremeter logistic form (with the third parameter specifying a 
dome shape at the oldest ages) could do the job just as well. Verifying the type of 
selectivity may be difficult because the selection pattern is a combination of gear se-
lectivity and the location of fishing activity. 

It was pointed out that in SS3, it is easy to develop an over-parameterized model 
relative to the available data, because of the amount of flexibility allowed, so care is 
needed to strike the right balance between the amount of data added and the number 
of parameters estimated. Comparison between ASPIC (a production model) and SS3 
(an integrated model using considerably more data) revealed different stock trends, 
but the SS3 model is still under development for this stock and needs fine-tuning. SS3 
is due to be extended to allow weighting of length distributions by quarterly catches 
in order to allow the fitting of length data that are only available at the annual level - 
this would allow the SS3 model to be extended further back in time, making use of 
earlier data, thereby permitting greater contrast in trends. The move from ASPIC to 
SS3 for this stock was motivated by the unsatisfactory performance of the ASPIC 
model (e.g. biomass trends from ASPIC resemble trends in landings), and the desire 
to make better use of a greater range of data available for the stock (not possible un-
der ASPIC; e.g. SS3 permits a retention ogive that allows discard data to be fitted and 
the incorporation of length structured data). 

Subsequent work: 

In an attempt to provide guidance for deciding how complex a stock assessment 
model needs to be, the process of migrating from a simple to more complex model 
was investigated. The idea was to analyse if a more complex model could provide a 
more realistic view of the population dynamic.  
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The particular example used to perform the comparison between a simple and a 
complex model was the white anglerfish southern stock (ICES Division 8c9a; Annex 
5, WD 4). This stock is currently assessed by a non-equilibrium production model 
(ASPIC software) using as input data annual landings and two commercial LPUEs as 
abundance indices. Some concerns about the fit, especially due to its high depend-
ence on landings information, seem to indicate that this model is not totally able to 
catch the reality of the population dynamic.  

The decision to try a more complex model was also based on the possibility of incor-
porating more of the available biological information for this stock: length composi-
tion of landings, length composition of abundance indices (commercial LPUEs and 
survey), growth model and maturity ogive. Stock Synthesis v.3 (SS3; Methot, 2005) is 
an integrated assessment model whose main characteristics are its flexibility and its 
capacity to incorporate different types and sources of data. Also, it accounts for varia-
tion in fishing behaviour and the biological characteristics of an exploited stock over 
the history of the fishery. SS3 is a length-based integrated and statistical approach. 
Other advantages to apply integrated models instead of traditional assessment mod-
els are the possibility to introduce prior information.  

The SS3 model specifications were adopted according to previous stock information 
(based on literature and scientific work) and data availability. The adopted time-step 
for the SS3 configuration was quarter. Although an annual time-step could be em-
ployed, the quarterly time-step allows the model to represent potential seasonal 
processes such as recruitment. 

The population dynamics was spatially aggregated: only one area was considered, 
but gear and geographical area have been used to define fleets with consistent char-
acteristics (landings, size composition and selectivity). Based on these considerations, 
landings split into four fleets were defined, two fleets per country (Spain and Portu-
gal). 

The size composition data (for fleets and survey indices) were included in the model 
to potentially extract additional information about recruitment variability and fishing 
mortality. However, this implies additional assumptions about selectivity and repre-
sentativeness of size sampling. Size-based models are an appropriate approach for 
stocks for which individual animals cannot be aged. 

SS3 supports length-based selectivity with numerous functional forms. Different 
size-based double-normal selectivity curves by fleet were used. Each commercial 
LPUE, SPCORUTR8C and SPCEDGN8c, were introduce as four abundance indices 
(one by quarter) with a common selectivity curve. Erroneous assumptions about se-
lectivity or poor selectivity estimates can result in incorrect estimates of stock abun-
dance. 

A Beverton–Holt stock recruitment relationship was assumed, with a fixed steepness 
of 0.99. In SS3 there is a single annual spawning biomass calculation, but the recruit-
ment can be partitioned in various ways. For this case the recruitment was assumed 
to occur in the second (77%) and third quarter (22%), and recruitment in the second 
quarter is allowed to be time-varying. 
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Figure 4.1.1. Comparison of relative estimates of fishing mortality (above) and total biomass (be-
low) based on different assessment methods and data sources.  

The cross-comparison of results from alternative models allows one to identify coin-
cidences and patterns, being a guide for the detection of possible bias in data or erro-
neous assumptions. In Figure 4.1.1 a comparison of stock status outputs from ASPIC 
and SS3 are presented. Fishing mortality shows a similar pattern from both models at 
the beginning of the time-series; between 1985 and 1995, SS3 estimated higher values 
of F, with a maximum peak in 1988. The low values of F time-series were recorded in 
2001 and 2002 by both models. Since 2005 F showed a decreasing trend in both model 
outcomes. 

Total biomass for the non-equilibrium production and stock-synthesis models shows 
similar trends over the whole studied period. A decreasing period was observed at 
the beginning of the series (1980–1995) for both models. After reaching an absolute 
minimum values in 2000 (ASPIC) and a relative minimum value in 2001 (SS3), the 
biomass showed a very slight increase or stability in the last four years. 

The analysis of the SS3 model fit and the residuals indicated that further investigation 
is needed to properly estimate the selectivity parameters of all fleets, and time varia-
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tion in selection pattern for the Spanish artisanal fleet should be reviewed. However, 
the over-parameterization should be taken into account when using any complex 
stock assessment. The provided data may not be enough to estimate all the poten-
tially important processes and the reduction of model bias can result in an increase of 
parameter estimation variance. 

Although the SS3 model presented is still preliminary, the fit and results obtained 
indicate that SS3 provides an appropriate framework for integrating a diverse range 
of structural features and biological information for the assessment of the white an-
glerfish southern stock. 

4.2 Applying a Bayesian model incorporating discards in the assessment 
of four-spot megrim (Lepidorhombus boscii) Southern stock 

Since 2003 when the Data Collection Regulation started in the European Union, dis-
cards estimates have become more regularly available for an increasing number of 
stocks and fisheries. However, discards estimates tend to be patchy and are very of-
ten missing for earlier years. This has made their incorporation in stock assessments 
difficult. A Bayesian model incorporating the available discards estimates (while 
allowing for missing discards data for some years and/or fleets) was developed for 
the hake stock in ICES Divisions VIIIc and IXa by Fernández et al. (2010; Annex 5, 
WD 5). This age-based model estimates jointly the usual stock assessment quantities 
(population abundances, fishing mortality, etc) and missing discards. The presenta-
tion reviewed general aspects of this model and then showed a preliminary adapta-
tion of it to the four-spot megrim stock in ICES Divisions VIIIc and IXa. This megrim 
stock is currently assessed by ICES with XSA (extended survivors analysis) without 
incorporating discards. However, discards are very significant, constituting around 
60% of the total catch in numbers. Preliminary results from the Bayesian model were 
presented and compared with the XSA results from the ICES 2010 assessment. The 
main differences were that both recruitment and fishing mortality estimates for 
younger ages (the ages that are mostly discarded) were higher when using the model 
that incorporates discards. The megrim results were intended only as preliminary, 
and final tuning of the model for this specific stock is required before proposing it as 
a potential alternative to the current XSA assessment. 

Discussion: 

From a comparison between XSA and the Bayesian model, it was unclear why SSB 
trends were different, since the main difference is expected to be in recruitment and F 
for younger ages, given that the former model ignores discards, while the latter uses 
available discard information in an attempt to estimate missing discards. Further-
more, big differences were found for older ages belonging to the beginning of time-
series. Apart from the use or not of discard information, these differences could be 
caused by differences in model formulation, such as differences in the treatment of 
the plus-group, and the fact that XSA uses tri-cubic weighting over 20 years (effec-
tively down-weighting early data). It was suggested the Bayes model be run without 
discarding in order to compare with XSA results to understand which part of the 
difference in results was caused by difference in model configurations. In terms of 
whether or not to account for the effects of discarding, it was argued that it was im-
portant to consider discarding in the context of evaluating management plans in or-
der to demonstrate the benefits of improving the selection pattern (e.g. to avoid 
discarding). 

 



24  | ICES WGMG REPORT 2011 

 

Subsequent work: 

Summary of incorporating discards in assessments and why it is relevant in the 
content of management advice: 

Discarding is a widely acknowledged problem in many fisheries. Although landings 
data have been collected for many decades, discard data in Europe generally have 
only been collected in the past 8 to 10 years. Discards estimates tend to be noisier 
than landings estimates, because they are based on fewer samples. The short discards 
time-series and their noise have hampered the incorporation of discards in stock as-
sessments, which often implicitly assume that discards are zero. The impact that ig-
noring discards may have on assessment output and ensuing management advice is a 
source of concern and has been investigated by several authors (Casey, 1996; Wil-
liams, 2002; Punt et al., 2006; Dickey-Collas et al., 2007; Jardim et al., 2010). 

In a paper by Fernández et al. (2010) a Bayesian age-structured model was developed 
to take into account available information on discards and to handle gaps in the time-
series of discard estimates. The model incorporates mortality attributable to discard-
ing and appropriate assumptions about how this mortality may change over time are 
made. The result is a stock assessment that accounts for information on discards 
while, at the same time, producing a complete time-series of discard estimates. An 
earlier version of this model was presented at WGMG in 2008 (ICES, 2008a). The pa-
per by Aarts and Poos (2009), a version of which was also presented at WGMG in 
2008, deals with this same issue, albeit using different modelling assumptions and 
statistical fitting techniques. In the Fernández et al. (2010) paper, the Bayesian model 
was applied to the hake stock in ICES Divisions VIIIc and IXa, for which the available 
data indicate that some 60% of the individuals caught are discarded. Two runs of the 
model were performed; one assuming zero discards and another incorporating dis-
cards. When discards were incorporated, estimated recruitment and fishing mortality 
for young (discarded) ages increased, resulting in lower values of the biological refer-
ence points 𝐹𝑚𝑎𝑥 and 𝐹0.1, and generally, more optimistic future stock trajectories 
under F-reduction scenarios. It must be noted that this model is not currently used by 
ICES to assess the hake stock, due to the lack of an accepted age-reading criterion, so 
that a model that can use length-structured data (GADGET) is currently used by ICES 
for the assessment of this hake stock. In the current WGMG meeting, an adaptation of 
this model for a stock of megrim in ICES Divisions VIIIc and IXa was presented as a 
working document (Annex 5, WD 5) and during the meeting the model was applied 
to the megrim stock in ICES Divisions VIIb-k and VIIIabd, since age-structured data 
are available for these megrim stocks and both of them have substantial discards with 
many gaps in the discards time-series. The results obtained during the meeting are 
too preliminary for presentation in this report but the following general remarks 
(mostly extracted from the more detailed work in Fernández et al. (2010)) about the 
relevance of incorporating discards in assessments and their impact for management 
advice can be made. 

The results obtained by Fernández et al. (2010) for the hake stock show that the main 
impacts of accounting for discards in the assessment are higher estimates of recruit-
ment and F for the young ages (those that generate most discards), whereas the effect 
on estimates of SSB and 𝐹� (the average of F over ages 2–5) is minor. The shift in ex-
ploitation pattern towards younger ages estimated when discards are accounted for 
leads to changes in the yield-per-recruit curve and lower estimates for the biological 
reference points 𝐹𝑚𝑎𝑥 and 𝐹0.1. This is in accord with the findings of other authors 
(Casey, 1996; Jardim et al., 2010). The yield-per-recruit computations took into ac-
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count the fact that yield consists only of the landed component of the catch. Chen et 
al. (2007) found that ignoring this (i.e. treating yield as the total catch even if part of 
the catch is discarded) may lead to overestimation of 𝐹𝑚𝑎𝑥 and 𝐹0.1. If a stock–
recruitment relationship is fitted, including or ignoring discards in the assessment 
can also alter estimates of 𝐹𝑀𝑆𝑌. Williams (2002) found that ignoring discards led to 
overestimating the percentage of unfished SSB that would be retained under an MSY 
exploitation strategy (i.e. overestimation of 𝐵𝑀𝑆𝑌/𝐵0), a consequence of underestimat-
ing stock productivity in that case. No similar analysis was performed by Fernández 
et al. (2010), so no comparison can be offered. 

A projection exercise under different hypotheses about recruitment and F was per-
formed by Fernández et al. (2010) to explore the impact that including or ignoring 
discards in the assessment can have on short- and long-term stock prognosis. Three 
projection scenarios were considered regarding F: 

1 ) F equal to the average over the final three assessment years in all projec-
tion years.  

2 ) Starting from the values in the final assessment year, F decreasing by 10% 
every projection year, with the same reduction applied to all ages. 

3 ) Starting from the values in the final assessment year, F decreasing every 
projection year by 30% for ages 0 and 1, and by 10% for older ages. This 
may reflect a situation where measures aimed specifically at reducing 
young fish mortality, e.g. closed seasons or areas, or gear modifications, 
are applied. 

In all three scenarios, the probability that a fish is discarded when it is caught is age-
dependent and was assumed to remain constant during the projection years, equal to 
that estimated by the assessment for recent years. Detailed results comparing the 
impact of including or not discards in the assessment can be found in Fernández et al. 
(2010), but their essence can be summarized as follows: 

When no stock–recruitment relationship was considered (recruitment in projection 
years was drawn randomly from the posterior distributions of recruitment during a 
subset of the assessment years): Scenario 1 showed no differences in landings or SSB 
whether discards were incorporated or ignored in the assessment. Scenario 2 showed 
differences in long-term projections: incorporating discards in the assessment led to 
higher projected landings and SSB in the long-term. When discards were incorpo-
rated in the assessment, larger recruitment and F values were estimated for the 
young ages, so the benefits of reducing F became more apparent in the projections 
when discards were taken into account. Scenario 3 again showed that incorporating 
discards in the assessment led to higher projected landings and SSB in the long-term. 
In addition, when discards were incorporated, both landings and SSB were projected 
to be larger in the long-term under Scenario 3 than under Scenario 2, but no appre-
ciable difference between Scenarios 2 and 3 could be noticed if discards were not 
incorporated in the assessment. Hence, comparison of Scenarios 2 and 3 also showed 
that when discards were incorporated in the assessment, it was possible to assess the 
effect of improving the fishery selection pattern (shifting it towards older fish), 
whereas this went undetected when discards were not considered in the assessment. 

The consequences of changing recruitment assumptions are also of interest. Bever-
ton–Holt and Ricker stock–recruitment models with lognormal recruitment devia-
tions were also considered by Fernández et al. (2010) and fitted within the assessment 
model. Incorporating discards in the assessment again led to higher estimates of re-
cruitment. Recruitment values in the projection years were then drawn from the 
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stock–recruitment relationship including the lognormal departures. However, 
whereas for the range of estimated past values of SSB, the stock–recruitment relation-
ships forecasted larger recruitment when discards were incorporated in the assess-
ment, predicted recruitment from the stock–recruit relationship turned out to be 
smaller for the assessment that incorporated discards if SSB increased above that 
range of estimated past values. This had an impact on projections. As an illustration, 
long-term projections under Scenario 2 became more optimistic when discards were 
excluded from the assessment, in contrast to the result obtained under no stock–
recruitment relationship. Fernández et al. (2010) concluded that great caution must be 
exercised when interpreting these results, given that the range of values of SSB and 
recruitment estimated for the assessment years does not permit inference of the mag-
nitude of recruitment when SSB is considerably larger than what has been estimated 
for the past. The difficulty in estimating stock–recruitment models based on short 
time-series is widely acknowledged in the literature (see Brodziak and Legault, 2005). 
Hence, these projection results were regarded as speculative and shown only to illus-
trate that different conclusions can be reached depending on whether or not stock–
recruitment relationships are assumed. 

To summarize, coherently accounting for discarding in the assessment process is an 
important step for improving management advice. Having the discard mortality of 
the various fleets included as part of the model gives a wider range of scenarios that 
can be tried in projections. For example, the effect of reducing specifically the discard 
fishing mortality (achieved through, e.g. closed areas or seasons, or gear modifica-
tions), either for all fleets combined or for particular fleets, could be examined. This 
would permit a more detailed evaluation of the likely impact of a wider range of 
management options, provided that knowledge of the effect that a particular measure 
has on discard rates is available. As an example, the effect of gear modifications using 
results from scientific surveys designed to evaluate the difference in catchability be-
tween unmodified and modified gears could be explored. 

Finally, as Aarts and Poos (2009) indicate in their discussion, if assumptions made 
about natural mortality are incorrect, part of the natural mortality may be incorrectly 
allocated to discards in the years with missing discard data, or vice versa. In such 
cases, discard estimates will most likely be incorrect, although it is possible that esti-
mates of population abundance-at-age will still be correct if reliable relative indices of 
abundance-at-age exist. However, incorrect estimation of discard mortality may lead 
to incorrect conclusions being reached from the projections, for example when sce-
narios with an element of discard mortality reduction is considered. 

4.3 Separating catches into landing and discards in the state-space 
assessment model used for North Sea Cod 

The model currently used for North Sea Cod is summarized with special emphasis on 
the issue of estimating the so-called "unallocated mortality" in the last part of the data 
period (Annex 5, WD 6). The model is a state-space model, where the logarithm of 
the fishing mortalities are assumed to follow age-specific random walks. In the cur-
rent model the unallocated mortalities enters the model via an estimated scaling ap-
plied to the catch in the relevant years, but in recent years it is believed that the 
discard estimates are the most likely origin for the mismatch between the signal from 
catches and survey information. The model is extended to use landing and discard as 
two separate data sources, such that the unallocated part can be assigned more cor-
rectly. 
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Discussion: 

Diagnostics for model selection: Comparing the random effects model fits to fully 
parameterized statistical models: 

• Number of free parameters in the model fit: There was the unresolved question 
about how many estimable parameters there were in such a model – this can be 
important in, for example, the use of AIC to compare different models. On the one 
hand, it could be argued that there was one only, namely sigma, as the others 
were integrated out. Alternatively, it could be argued that if sigma is prespecified, 
the count for a random effect as a parameter lies between 0 and 1, with those ex-
tremes corresponding to the limits of zero or infinite variance. However, the ques-
tion arises in the situation where sigma is estimated within the model fit. 

• Need to run checks for model-misspecification: It was agreed that runs tests on 
the outputs from the estimator for the random effects, if done correctly, would be 
a weak but reasonable test of whether they were indeed random. It was suggested 
that it is problematic to use maximum likelihood estimate of the variance when 
there are almost as many residuals as there are data points; perhaps need to use 
the bias-corrected REML estimate of variance instead. However REML is difficult 
to implement for non-linear models. A suggestion made was that the Laplace ap-
proximation frequently used to integrate out the random effects was essentially 
replacing the model by its localized linear approximation, and this might in turn 
allow for implementation of REML. This should be checked further - Justin Cooke 
and Hans Skaug might be able to advise. 

Dealing with “unallocated mortality”: black landings and discards 

• It was suggested that it may be better to have separate equations for the landings 
and discards. This is because the scaling parameter φ which acts as the correction 
between landings and catch essentially sees catch playing a role as both a depend-
ent and an independent variable (i.e. appearing implicitly on both sides of the re-
gression equation).  

Random effects models compared to Bayesian models: 

• Difficult to distinguish between priors, likelihood and random effects. 

• Are these models that different: It was suggested that Bayesian models to deal 
with discards in assessments (e.g. Annex 5, WD 5) are very similar to the random 
effects models presented here from a practical point of view (depending on the 
priors). 

From a philosophical point of view, it was suggested that these were very different 
approaches: taken to the extreme, Bayesian analyses don’t need any data to provide 
estimates as some statistic of posterior distributions, while random effects approaches 
use only data/observations and avoid any need for priors on fixed effect parameters. 
Therefore, the difference in approach depends on how “harmless” the priors are: one 
suggestion was that sensible priors are derived from the data, so why not rather in-
clude the data in the model fitting directly? 

Stock–recruit relationship: 

• It was noted that problems could occur when attempting to estimate the 𝜎𝑅 of the 
stock–recruit residuals because the maximum likelihood estimate often tends to 
zero with the fit to the S/R relationship dominating the likelihood. It was unclear 
whether the use of REML might resolve this problem. However it was reported 
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that this had not been experienced in the random effects models implemented 
(Annex 5, WD 6), which estimated variance separately for recruitment. The prob-
lem is explored further in Annex 6. 

Discussion following further updates (included in Annex 5, WD 6): 

Two approaches were presented, the first a crude approximation that applies scaling 
to either the landings or discards instead of to the total catch, and the second a split 
model modelling landings and discards directly. Because of the difficulty of finding 
an appropriate way to handle zeros in the tight time constraint, the split model con-
siders discard data at ages 1 and 2 only, and treats the relatively few zeros that still 
occur as missing data. The author was encouraged to further explore appropriate 
methods for handling zero data so that discard data for other ages could also be in-
corporated, since these discards have increased dramatically in recent years. 

The difference in estimates of recruitment between the existing and split models, and 
the fact that the split model recruitment is often at the upper edge of the confidence 
limits for the existing model recruitment was noted. It was pointed out that recruit-
ment is poorly determined and would be affected most by splitting the data. Re-
cruitment is very sensitive to discards at the young ages. 

The author was encouraged to provide good graphical diagnostic output, as this 
would help to understand what is going on, and to judge appropriateness of model 
fit. For example, it was speculated that discards have a high level of noise, and diag-
nostic output would help confirm this.  

The fact that the crude approximation and split models are consistent in terms of SSB 
and average F(2–4) trends implies the former is a reasonable approximation. Never-
theless, the split model provides higher estimates of recruitment prior to the mid-
1990s, which, given the consistency in SSB and average F(2–4) trends must imply 
higher Fs at the youngest ages for this approach. 

The issue of the statistical appropriateness of the crude approximation, which came 
up in initial discussions above, was raised again. It was argued that applying the 
scaler to the discards in the simple way, as is done for the crude approximation, is 
much simpler than treating landings and discards as two separate data sources, and 
that the extra complexity doesn’t seem to add much to the modelling approach. 
However, the crude approximation is conditioned on the landings fraction being 
“true”, and given doubts about the reliability of landings and discards data, this as-
sumption may not be appropriate. The author was encouraged to investigate alterna-
tive approximations (e.g. using a Taylor expansion) that dealt with this statistical 
issue. 

The results presented applied the scaler over the whole period (i.e. since 1993), 
whereas applying the scaler to different periods and for different combinations 
(catch, landings only, discards only, etc.) could be investigated. However it was ar-
gued that any choice of how the scaler is applied should be done on a likelihood ratio 
test basis, and should rely on prior knowledge to justify the assumption that the 
source of bias had changed. It was suggested that one could also consider looking at 
separate multipliers on younger ages (dominated by discards) and older ages, but it 
was pointed out that this has been tried, and the capability already exists in the 
model, but that the approach was to develop the model in the direction indicated by 
this work. 

WGMG supports the continued developments of the SAM model to deal with differ-
ences in scaling between landings and discards for North Sea cod. 
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4.4 An initial comparison of the performances of simple management 
procedures compared to complex assessments for some ICES stocks 

These analyses (Annex 5, WD 7) aim to compare the fishery and resource conse-
quences of management recommendations based on complex annual resource as-
sessments to those based on simple empirical management procedures (MPs), which 
in the cases considered use only the annual abundance estimates from a single sur-
vey. The 2010 ICES assessments of the stocks of North Sea plaice and sole in Subarea 
IV are used for the investigation. The MPs are selected from the results of simulations 
based only on the resource information available in 1990. Their performances are 
then compared to what actually transpired over the 1990 to 2009 period under advice 
arising from the regular ICES assessments. For plaice, almost without exception the 
MPs’ performances dominate what actually eventuated for every performance statis-
tic: higher catches, greater final spawning biomass, lesser lowest spawning biomass 
during the 20 years, lower average fishing mortalities, and lesser interannual varia-
tion in both catch and fishing mortality. For sole these results are qualitatively dupli-
cated, except for marginally smaller catches in some cases. In circumstances for ICES 
stocks where there may be difficulties in sustaining the level of sampling required for 
complex annual assessments, such as annual ageing of the catch, because of diminish-
ing resources, these results are sufficiently promising to suggest that they be ex-
tended, in particular to further stocks, to confirm whether they might indeed provide 
a defensible alternative approach to the provision of scientific management advice. 

Discussion: 

The deterministic hindsight MPs for plaice are sensitive to the first two years, because 
XSA SSB and recruitment happened to decrease appreciably immediately after the 
start of projection period, causing projections to be sensitive to the high catch at that 
time. This results in the constant catch MP substantially outperforming what actually 
happened in terms of SSB, despite having only the initial two catches lower than the 
observed catches. 

• The reasons for this behaviour need to be better explained in the document to help 
with understanding. 

• As a check to test behaviour of the projections, it was confirmed that if the con-
stant catch MP is replaced with realized catches in the hindsight deterministic pro-
jections, then the “XSA” estimates of SSB are matched exactly. 

Robustness in biomass index assumption (i.e. a linear relationship with biomass, 0.2 
SD lognormal error). 

• Becomes relevant when checking if MPs based on such biomass indices can be 
implemented. 

• For southern bluefin tuna assessments, based primarily on cpue (in contrast to 
survey) data, linear and power relationships between cpue and stock size are 
used; these are worth considering, but only if there is empirical evidence that is 
suggestive of them. 

• What about systematic error? If plausible, there may be a need to include robust-
ness trials that consider alternative relationships between the index and stock size, 
a breakdown in relationship (where the index has no relationship with stock size) 
or changes in the relationship over time. This would be the next step for this work, 
but where does one draw the line when it comes to potential sources of error to 
include (to a large degree some such suggestions could be pure speculation – 
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there needs to be some rule requiring some basis in data for suggestions made)? 
Standard practice has become to select from a larger set of plausible operating 
models (in this example, alternative hypotheses about the index vs. stock-size rela-
tionship) a subset of the most plausible ones, and to derive a weighted average of 
performance statistics across this subset, with the operating models within the 
subset typically being given equal weight. 

Are projections realistic? 

• For the two-line stock–recruit model the feeling was that projections were realistic 
(essentially based on the mean of past recruitment). It is merely the size of catches 
that have prevented this plaice stock from achieving its potential growth. 

• Beverton and Holt with a steepness of 0.9 seems inappropriate for plaice. 

How does performance relate to the quantity of data being used? 

Here it is important to clarify that data are used both to condition the operating mod-
els used in testing MPs, and (when simulated into the future) to feed into the MP. 
This question relates primarily to the data input to the MP, which can either be used 
in an assessment model (here, XSA) that provides the parameters needed for the har-
vest control rule (HCR), termed “model-based” MPs, or it can be used directly in the 
HCR (in the study, the slope and target MPs), termed “empirical” MPs. 

Previous papers (e.g. Punt 1993) have shown model-based MPs that attempt to take 
age-structure information into account (e.g. via VPA) when recommending catch 
limits led to greater variability in these limits than simpler age-aggregated produc-
tion model MPs without any corresponding improvement in performance with re-
spect to resource conservation. Further, for South African hake, the difference 
between model-based and empirical MPs has proved minimal in terms of resource 
conservation, and the simpler empirical MPs are more transparent, easier to check, 
and easier for stake-holders to understand, increasing the chance of buy-in. However, 
because model-based MPs were not explicitly considered in the study, the WG con-
sidered that the particular results of this simulation study are not sufficient to bring 
out this point clearly. Rather, what the study showed was that performance of the 
simple empirical MPs outperformed the combination of using a complex assessments 
AND meeting management objectives that changed over time. 

Although MPs undergo a full review (including full testing) every 3–5 years and op-
erate in “auto-pilot” in the interim, this does not mean that the pilot is missing, and 
“exceptional circumstances” provisions can be built in to dictate when to “switch off” 
the auto-pilot and call for an earlier review – this would happen when, for example, 
data fall outside the range over which the MP had been simulation tested. This ap-
proach would require the collection of enough data not just to service the MP itself on 
an ongoing basis, but also to be able to properly condition a reference set of operating 
models at least every 3–5 years, or when a full review of the MP is required. 

The MP approach described above could potentially suffer if one were to stop gather-
ing the data it requires. In order to evaluate the consequences of reduced data gather-
ing (e.g. biannual ageing of catch-at-age data), both for conditioning operating 
models and for developing model-based MPs, the WG considered that a statistical 
catch-at-age model was needed, because it allows for missing data in a way that 
VPA-based models don’t (e.g. missing catch-at-age data). Such an evaluation could 
already be performed using existing data by simply using a subset of these data for 
the MP testing, and comparing how the resulting increase in uncertainty would affect 
resource utilization for the same biological risk. 
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5 Correlated errors (ToR 1d) 

5.1 Implication and treatment of correlated errors 

This is a broad term of reference. Correlated errors in a general sense indicate sys-
tematic discrepancies between data and model predictions. Such discrepancies often 
indicate model mis-specification – transient or otherwise. The implications of corre-
lated errors will depend on the magnitude of the correlations, where the correlation 
occurs, and the objectives of the modelling exercise. In particular, the implications of 
correlated errors will depend on the objectives of the stock assessment. 

In the standard ICES assessment model (XSA) and in other traditional VPA-type as-
sessment models (e.g. ADAPT), surveys and other tuning indices are assumed to be 
the primary source of errors. Errors in catch statistics and other biological data (e.g. 
weights, maturities, etc.) are assumed to be negligible compared to the errors in tun-
ing indices. In this case, correlated errors will be evidenced by clusters of positive or 
negative survey residuals. The clusters will be defined in age and or time, and within 
or across tuning indices. Such correlations usually indicate that the model is over-
simplified and that the resulting statistical inferences may be imprecise. Of particular 
concern is the potential for biased estimates of stock size and trends, and fishing mor-
tality rates.  

If the correlated errors are such that there is a trend in survey residuals over time 
then another implication of such errors is a retrospective pattern. Such patterns are 
usually associated with a trend in residuals. 

In more modern stock assessment models that consider errors in other assessment 
inputs, primarily catches but possibly also weights at age etc, correlated errors may 
occur in these other data in addition to tuning indices. However, the basic implica-
tions are similar to the XSA case, and that is potentially biased estimates of stock size 
and trends, and fishing mortality rates. 

Two common examples of correlated errors involve survey year effects and autocor-
relation in residuals from a stock–recruit analysis. These are illustrated using a stock 
assessment model for cod and American plaice in NAFO Subdivision 3Ps. The as-
sessment model is “developmental” and is described in Annex 5, WD 8. It is an ex-
tension of the SURBA model (called SURBA+) that provides estimates of total 
mortality rates and trends in stock size based only on tuning indices and other bio-
logical information. It is a catch-free assessment model. These correlated errors issues 
are generic, and not specific to the SURBA+ model. 

Survey year effects 

These refer to large increases or decreases in survey catch rates for all or most ages. 
This could also apply to cpue tuning indices. The magnitude of the changes is well 
beyond what is possible in the stock. Year effects are indicated by correlated survey 
residuals in which the residuals for a tuning index have the same sign for all or most 
ages in a year. Year effects are common in many stock surveys, and in particular for 
cod in NAFO Subdivision 3Ps. 

The most recent assessment for this stock was based on SURBA+ (see Annex 5, WD 
8). A modification currently explored is to split total mortality into a user supplied M 
component and an estimated fishing mortality (F) component. A separable F model is 
used. Survey residuals (Figure 5.1.1) indicate substantial year effects. Such year ef-
fects have also been noted in VPA-type assessments of this stock. These year effects 
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create problems when modelling the between-year variation in the F year effects in 
SURBA+ and modelling recruitment residuals when a stock–recruit model is incorpo-
rated into the SURBA+ model. 

Myers and Cadigan (1995) proposed a simple approach to accommodate year effects. 
The basic survey observation equation is modified as  

),exp()(
yay

f
ayaay NqI τε +=  

Where Iay is the survey index for age a in year y, )( f
ayN  is population numbers at the 

time of the survey in fraction of year (f), qa are survey catchability coefficients, τy are 

independent ),0( 2
QN σ  random year effects, and ayε  are additional independent 

),0( 2
εσN  observation error terms. We use this approach with the 3Ps cod SURBA+ 

model. Parameters were estimated via marginal maximum likelihood. AD Model 
Builder (ADMB Project 2009) is used to implement the model and estimation. 

Random year effects resulted in a substantially better fit. The negative log-likelihood 
(nll) decreased by 54.7 which is large decrease for one additional parameter ( 2

Qσ ). 

Residuals look well-behaved (Figure 5.1.2) and the F random walk standard devia-
tion decreased from 0.74 to 0.38 with a smoother trend in F over time. However, the 
estimate of σQ was 0.5, which seems too large. The predicted random year effects (τy) 
displayed some unexpected behaviour (Figure 5.1.3). The large year effects in 1990 
and 1991 were unexpected because residuals for these years did not indicate strong 
year effects (Figure 5.1.1). The large year effects in 2009 and 2010 will be controversial 
because they indicate that the recent increases in survey catch rates are not propor-
tional to the same increases in stock size. Really surprising was the trend in year ef-
fects throughout the 1980’s and early 1990’s. These year effects may be masking a real 
trend in the stock. 

The large estimate for σQ suggests that the survey has limited utility for tracking the 
population. If there is no change in stock size between two years then year effects 
with σQ = 0.5 mean that the standard deviation of the log difference between two sur-
veys is 2-1/2 = 0.71, and that only large changes in catch rates can be interpreted with 
confidence to indicate the same changes in stock size. For example, the probability of 
getting greater than a 50% increase in catch rates due to year effects when stock size 
is constant is 0.28 (i.e. N(0, 2-1/2) probability of exceeding log(1.5)). The probability of 
getting greater than a 100% increase in catch rates is 0.16. These are controversial 
results. The value of σQ was therefore fixed at 0.25, which is still a large value but 
indicates the survey is still useful for tracking trends in the stock. For example, if σQ = 
0.25 then the probability of getting greater than a 100% increase in catch rates is only 
0.025. 

When σQ = 0.25 the reduction in nll (compared to the SURBA+ with no year effects) 
was 43.9 which is still large. The predicted τy’s (Figure 5.1.4) were not as controversial 
compared to Figure 5.1.3 and residuals (Figure 5.1.5) did not indicate substantial year 
effects. 

The treatment of year effects had some impact on estimates of SSB, particularly prior 
to 1990 (Figure 5.1.6). Estimates of F and recruitment (Figure 5.1.7) were also sensitive 
in some years to the treatment of year effects. 
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Summary 

The 3Ps cod case study illustrates that year effects can be difficult to accommodate. 
Modelled random year effects may have trends for subsets of years, and there is a 
possibility that including year effects in a stock assessment model may mask real 
changes in the stock. We should treat trends in predicted year effects with scepticism, 
and require that a good explanation be provided for such trends before deciding that 
a trend in survey catch rates is not related to a trend in stock size. 

There may be within-survey signals for year effects (e.g. temperatures, survey timing 
issues, coverage problems, other species, etc). These might shed some light on what 
are really year effects vs. true stock-signals. There is also potential that better model-
ling of the survey data could produce better survey indices with less year effects. It is 
recommended that these survey analysis issues be fully explored before asking an 
assessment model to sort it all out! 

Autocorrelated stock–recruit residuals 

This is a common phenomenon that indicates systematic discrepancies over time in 
stock recruitment productivity compared to that predicted by the stock–recruit 
model. Such discrepancies could be driven by persistent environmental or predator 
fluctuations, among other reasons. 

American plaice in NAFO Subdivision 3Ps provides an illustration of this problem. A 
SURBA+ model is being developed for this stock, in part because age-composition 
information for commercial catches has not been available for recent years. A Bever-
ton–Holt stock–recruit model can be fitted internally within the SURBA+ model, 

RME

SME
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where εSME is the measurement error (ME) in SSB and εRPE is the process error in the 
stock–recruit model. Note that the ME in SSB includes errors due to, for example, 
changes in sex ratios, changes in fecundity related to changes in the age-distribution 
of the SSB, etc. Both errors are assumed to be normally distributed with standard 
errors σSME and σRPE. These parameters are highly confounded (Annex 5, WD 8), so for 
illustration purposes σSME was fixed at 0.25 and σRPE was freely estimated. Note that 
although SSB ME can affect stock–recruit parameter estimates, it has negligible effect 
on stock–recruit residuals. AD Model Builder (ADMB Project 2009) provides empiri-
cal Bayes predictions of the ε‘s. 

There is some indication of autocorrelation in the SURBA+ predictions of εRPE ‘s (Fig-
ure 5.1.8), with short periods of positive and negative residuals. The ar() R function 
was used to diagnose the autocorrelation structure in these residuals. The results 
indicated an AR(2) model with coefficients 0.56 and -0.32 providing the best descrip-
tion of these errors. Note that the same procedure was used then σSME = 0, and the 
results were nearly identical. 

The recruitment residual likelihood component of the SURBA+ model was adjusted 
to be an AR(2) model, with the first two residuals assumed to be independent and 
identically distributed. The AR(2) coefficients and variance parameters were esti-
mated via marginal maximum likelihood. The results were unexpected. The AR(2) 
recruitment residuals were poorly behaved and were not centered about zero. To fix 
this problem a penalty term was added to the nll fit function to penalize against this 
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behaviour. The penalty function strongly encouraged the recruitment residuals to 
add to zero. The resulting recruitment residuals were much better behaved. Stock 
size estimates did not change much (Figures 5.1.9 and 5.1.10), but the estimates of the 
AR(2) coefficients (i.e. 0.90, -0.54) were considerably different from the external re-
sults above (i.e. 0.56, -0.32). 

An AR(1) recruitment residual model was also explored. The AR(1) model resulted in 
only a slightly worse fit, but the stock recruit fit looked poor. The model was essen-
tially flat, and the stock–recruit trend appeared in the residuals. 

Summary 

Accounting for autocorrelation in stock–recruit residuals internally within the 
SURBA+ model had little effect on assessment model output, with the potential ex-
ception of recent recruitment estimates. 

Autocorrelation in stock–recruit residuals may be important to account for in short 
and medium term stock forecasts, and also in long-term forecasts and when deriving 
MSY reference points. 

There is potential that an autocorrelated recruitment error structure can confound the 
stock–recruit signal. How to model the autocorrelation error structure in recruitment 
residuals requires further investigation 

 

 

Figure 5.1.1. Standard residuals vs. year. 3Ps cod SURBA+ without year effects. The dashed line 
indicates the average residual each year. Plotting symbols indicate age. 

 

 

Figure 5.1.2. Standard residuals vs. year. 3Ps cod SURBA+ with year effects. The dashed line indi-
cates the average residual each year. Plotting symbols indicate age. 
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Figure 5.1.3. 3Ps cod SURBA+ year effects when σQ is estimated. 

 

 

Figure 5.1.4. 3Ps cod SURBA+ year effects when σQ is fixed at 0.25. 

 

Figure 5.1.5. Standard residuals vs. year. 3Ps cod SURBA+ with year effects σQ fixed at 0.25. The 
dashed line indicates the average residual each year. Plotting symbols indicate age. 
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Figure 5.1.6. Trends in SSB relative to Blim (Brecovery – SSB in 1994) for 3Ps cod. Results are from 
the SURBA+ models with no year effects (black line), year effects variance estimated (red line), 
and year effects standard error equal to 0.25 (green line). 

 

 

Figure 5.1.7. Average F with 95% confidence intervals (left) and recruitment (right) from three 
SURBA+ models. See Figure 5.1.6 for other details. 
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Figure 5.1.8. 3Ps American plaice stock–recruit results. Top panel: estimated Beverton–Holt model 

(red line) and predicted recruitment (arrows), connected by year with some years indicated. Bot‐

tom panel: time‐series of recruitment process errors, ε
RPE
. 

 

 

Figure 5.1.9. Trends in SSB relative to 1994 for 3Ps American plaice. Results are from the SURBA+ 

models with no SSB measurement error (σ
SME
 = 0; green line), with SSB measurement error (σ

SME
 = 
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Figure 5.1.10. Average F with 95% confidence intervals (left) and recruitment (right) from three 
SURBA+ models. See Figure 5.1.9 for other details. 

Discussion: 

The fishing mortality separability assumptions of SURBA were questioned. These 
assumptions are been tested, and may not hold, but there is no strong evidence that 
selectivity has changed. 

Why aren’t the year effects in the controversial years zero? What other data are being 
used? The magnitude of the year effect is caused by larger catches in 2009 compared 
to 2008 for the same cohort (for fully recruited ages), violating fixed catchability as-
sumption. Given no evidence for change in gear, this seems to be a year effect. 

Can you see year effects across the multispecies survey in other surveys? This has not 
been looked at due to different people looking at the different species. In American 
plaice, there is some similarity in the year effects. The cod was known to aggregate 
quiet strongly, so hitting these aggregations may cause year effects. Having fished 
these aggregations down, this probably doesn’t happen anymore.  

Better modelling of survey data could produce better indices, instead of getting the 
assessment model to “sort it out”. 

Why not put autocorrelation into the estimates of year effects? Not sure that there is 
autocorrelation, and this may be removing information about trends in stock size by 
attributing them to trends in catchability. Generally, the survey is highly standard-
ized, but trends in time may be possible. 

The reason for year effects may be spatial distribution changes, or change in depth, 
driven by environmental conditions. If there is positive autocorrelation, the confi-
dence intervals on the stock will be underestimated. It would be interesting to fit to 
residuals after removal of first order autocorrelation, rather than directly to survey. 

The importance of being careful when fitting time-series to recruitment residuals was 
emphasized– similar fixes have been used before to fix average residuals to zero. 
AR(1) and AR(2) parameters may be correlated strongly. 

The effect of autocorrelation in recruitment residuals is that management needs to be 
more conservative as the probability of multiple years of low recruitment is higher 
than for IID residuals. 
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Are the AR parameters well defined given the requirement for a long dataset? The 
time-series is relatively short, but that is all that is available. Given these data, the 
options are to either ignore the autocorrelation in SR residuals, or take this approach. 
Given the short datasets one ought to investigate the effect of misspecifying the AR 
parameters. 

Were function other than AR(1) and AR(2) tried, e.g. Gaussian Bell? No, since that’d 
normally require more data. The AR(1) is causing longer deviations. It’s not clear 
what the autocorrelation structure should be, but the AR(2) seems to work quite well. 
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6 Integration of uncertainty (ToR 1e) 

6.1 Applicability of various presentations to ToR 1e 

In the absence of a contribution specifically tackling this ToR, a discussion was in-
stead held (coordinated by David Miller) on the applicability of various presentations 
to ToR 1e. All WD referenced are in Annex 5. 

Four aspects were considered: 

1 ) Input uncertainty. Uncertainty going into the assessments – identifying it, 
treating it etc. 

2 ) Handling uncertainty. Treatment of uncertainty by models – can we use 
outputs to identify excessive uncertainty? Can we design better models 
that address uncertainty before getting to the point where advice is 
drafted? 

3 ) Output uncertainty. How certain are we about our uncertainty? Are mod-
els masking uncertainty? Can we improve our estimation of it, or do we 
instead focus on designing management procedures that are robust to it? 

4 ) Management aims uncertainty. Uncertainty in the targets/reference points. 
Can we improve this? 

ToR 1a: Data screening to see if inputs (e.g. survey data) are appropriate 

This does not apply directly to the advice, but does apply indirectly via consideration 
of uncertainty in the inputs. 

For the purpose of stock assessments, estimates of uncertainty for cpue measure-
ments need to relate to stock abundance, and inclusion of addition variance over-
and-above sampling variance, could help in this regard. The level of aggregation (by 
haul, by day, etc) is important when deriving estimates of uncertainty.  

ToR 1b: Diagnostics to evaluate model fit 

Properties of the retrospective and bias indices were analysed and, in particular, the 
relationship among them (WD 2). Having noticed that some relationship exist be-
tween retrospective and bias indices, the potential use of the first index to infer a 
level of the second one was explored. 

Retrospective indices are not a guaranteed way of determining goodness-of-fit (i.e. 
the lack of a retrospective bias does not guarantee that the model is any closer to the 
“truth”), yet some limits in retrospective indices could be established indicating un-
acceptable levels for some bias index. 

Potentially, the use of statistical characteristics of abundance indices (in particular 
varying CV over years) in the stock assessment model, could reduce the retrospective 
pattern (WD 3) – mainly about reducing uncertainty in outputs, rather than dealing 
with it for advice. 

ToR 1c: Guidance for deciding how complex a stock assessment model needs to be 

The move from ASPIC to SS3 for this stock was motivated by the unsatisfactory per-
formance of the ASPIC model, and the desire to make better use of a greater range of 
data available for the stock (WD 4). How would this impact the uncertainty? 

The Bayesian model incorporating the incomplete discard information may be a use-
ful approach with regards to incorporating uncertainty (WD 5). This example essen-
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tially removes the assumption that there is no uncertainty by trying to incorporate 
the discards data. But through the modelling required to incorporate discards, it 
could increase uncertainty in outputs. This would be an improvement though (better 
the devil you know than the devil you don’t…). 

WD 6 considers models that react less to the noise through a statistically relevant 
handling of the data, thereby reducing the fluctuations in advice. 

Here there is a balance between complexity of the model and understanding of 
trends. Do we need to use all our data every year? Does increasing complexity im-
prove our estimation of the underlying uncertainties? 

Simple index based MP 

WD 7 considers incorporating uncertainty in the testing of HCRs (developing robust 
MPs), and simplifying the basis for advice by using simpler methods that allow a 
more transparent consideration of signals in the data, thereby relying less on predic-
tion and more on observation. Ground test through MSE on a regular but less fre-
quent basis than annual assessments.  

ECOKNOWS 

An important objective in pooling and handling the knowledge from different 
sources is to take uncertainty honestly into account. The models suggested will in-
clude important knowledge of biological processes and the applied statistical infer-
ence methods allow this knowledge to be integrated and updated in stock 
assessment. 

Bayesian inference will form the methodological backbone of the project and will 
enable realistic estimations of uncertainty. The project aims to improve ways to find 
generic and understandable biological reference points, and to apply decision analy-
sis and bioeconomic methods to evaluate the validity and utility of improved infor-
mation. 

From ToR 3: guidelines for calculating MSY reference points 

Through understanding how uncertainty impacts on our reference points, can we 
move towards reference points that are more robust to this uncertainty and therefore 
provide more fixed guidance towards the objectives we aim to achieve? For example 
(WD 8), if S50 is more sensitive than say Bmsy, would it be more appropriate to use 
the latter in some way for guidance? 

6.2 EU ECOKNOWS project 

There has been a request from the EU ECOKNOWS project to present to WGMG 
what they are doing. The project basically aims to more effectively utilize existing 
databases and publications, in addition to existing stock-specific knowledge, in order 
to improve biological knowledge in fish stock assessments (see 
http://www.ecoknows.eu/). This is an initial introduction to the project, prepared by 
Samu Mäntyniemi. 

Much of the knowledge of biological experts in stock assessment WGs is not reflected 
in assessment models. The knowledge is probably utilized in an ad hoc manner to 
evaluate whether the results obtained from assessment models are sensible and in 
trying to understand why the assessment results are what they are. The purpose of 
ECOKNOWS is to reverse the order so that the assessment models are built from the 
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biological knowledge of the WG members and thereby already include their assess-
ment of what makes biological sense and what does not. 

Knowledge from other stocks of related species is not typically formally taken into 
account in assessments. ECOKNOWS tries to provide conceptual and technical tools 
to overcome this problem. 

The EU 7th framework funded project includes 14 partners and lasts 48 months dur-
ing 2010–2014. More information can be found from the project webpage: 
www.ecoknows.eu 

ECOKNOWS seeks to develop a generic framework for size-based population dy-
namics with a biologically plausible life cycle based on ecological knowledge of ani-
mal population dynamics. The population dynamics is going to be formulated as a 
stochastic state-space model with a latent biological structure. The latent model is 
then linked to observable data by explicitly modelling the processes of collecting the 
datasets that are going to be available.  

This framework should allow for formal ways to account for existing biological 
knowledge as expert judgement, information accumulated in biological databases 
and/or estimates from assessments of other stocks of the same or related fish species. 
Learning from multiple populations and datasets is going to be achieved using hier-
archical meta-analysis techniques.  

An important objective in pooling and handling the knowledge from different 
sources is to take uncertainty honestly into account. While this is admittedly going to 
be difficult, it should lead to more credible assessments. For example, it is highly 
incredible that anyone could know the rate of natural mortality exactly. It is also un-
believable that a fishery biologist would have absolutely no idea about the values 
that the natural mortality rate could take. Consistent handling of this type of knowl-
edge can be achieved by using the Bayesian approach to scientific reasoning, where 
knowledge is measured with probability statements, and probability theory is then 
used to make updates of the knowledge in the light of new data.  

The modelling framework will be used to evaluate the effects of adding new informa-
tion. The implications of using different types of information on the management 
reference points will be evaluated and the value of collecting completely new infor-
mation will be evaluated from the management point of view. The Value of Informa-
tion (VoI) can be evaluated within the Bayesian decision analysis framework, where 
the management actions and management objectives are coupled with the system 
model. Expected utilities of management actions can then be evaluated under uncer-
tainty. The VoI analysis is then the task of assessing the changes in expected utilities 
and decision rankings under potential new datasets to be collected. This requires that 
observation models must be built for any new datasets for which the VoI is going to 
be estimated. 

The software development takes place on the R platform, which is used to process 
modelling inputs and outputs and to act as an interface to JAGS (Just Another Gibbs 
Sampler) which serves as an engine for Markov chain Monte Carlo (MCMC) simula-
tion. JAGS is a general-purpose MCMC program, which enables fast model devel-
opment but cannot be expected to deliver optimal efficiency in computation. New 
MCMC algorithms are going to be developed within ECOKNOWS to speed up the 
inference in state-space population dynamic models. This development is currently 
going on in the Matlab environment, but the R interface would eventually be used for 
the new methods. 
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At the end of the project a generic model structure should be available with a selec-
tion of pre-made submodels for biological processes and fishery and survey observa-
tions. These submodels are going to be developed in case studies that are soon going 
to start applying the current version of the generic model which has been under de-
velopment for the first year of the project. The case study fisheries include northern 
hake, northern shrimp, Bothnian sea herring, Atlantic and Baltic salmon and mixed 
coastal fisheries in Finland and Greece.  

The current version of the generic model tracks the binned length distribution over 
time and treats growth, stock–recruitment and mortality parameters as uncertain 
variables. The demographic stochasticity is modelled by assuming correlation be-
tween survival events of individuals, which leads to an over-dispersed multinomial 
process for the numbers of fish that survive and get caught by the fishery. The model 
can take total catches in numbers and length distributions in catch as input data by 
which the prior distributions put on the model parameters can be updated. 

ECOKNOWS relevance to ToR 

Data screening -> model choice (ToR 1a): 

One of the cornerstones of Bayesian inference is that models by which data are going 
to be interpreted should not be based on the same data that is going to be interpreted. 
Instead, the models that are used to interpret data should be made based on prior 
understanding about the processes that give rise to the data. The purpose is to avoid 
double use of information. Indeed, in the ideal situation models for data are con-
structed before any data has been observed. This would make it possible to use VoI 
analysis to decide what type of data should be collected.  

In the context of ECOKNOWS, the assessment models should come from biological 
knowledge of the stock, and particularly knowledge that is available without looking 
at the assessment data that is going to be used. This might lead to a situation where 
multiple models seem possible a priori, and the parameters of each model are highly 
uncertain. Thus, uncertainty is highest when no data are used, and decreases as the 
model set becomes conditioned to larger amounts of data.  

At least at a first glance this seems to be almost exactly opposite to what is considered 
in this ToR. Thus, ECOKNOWS is unlikely to help in this area except for providing 
an alternative way of looking at the necessity and justification of model building 
based on data exploration. Using the dimension of the data as a guideline for the 
complexity of the assessment model may force the analyst to imply more knowledge 
than is actually possessed by the expert WG. A common example is the practice to 
assume known natural mortality for the sake of identifiability of other parameters. 
Thus, the uncertainty arising from not knowing M exactly and not being able to esti-
mate it based on assessment data becomes omitted from the analysis and results will 
look overly precise. Once more data becomes available, the analyst may decide to 
change assumptions by freeing up a parameter that was previously assumed fixed. 
This results in an increase of uncertainty compared to adding data and keeping the 
parameter fixed. Consequently, accumulation of data slowly makes the model more 
plausible but the uncertainty may seem to stay at about the same level, while one 
would expect a decrease of uncertainty when more data becomes available. 
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Model diagnostics (ToR 1b): 

ECOKNOWS will develop predictive model checking procedures to examine the 
predictive goodness-of-fit of Bayesian state-space models. For example, graphical 
methods to examine the model’s ability to predict the length distribution of future 
catches. The purpose is to be able to qualitatively assess the performance of the 
model. If uncertainty exists about model structures, ECOKNOWS will try to use 
Bayesian model averaging to weight the models based on their prior probabilities 
and their ability to predict data not previously seen by the model.  

Information criteria (DIC, BIC, AIC) are not of primary interest in ECOKNOWS. 
These are suitable methods for statistical data analysis and data compression, where 
the purpose is to be able to make copies of observed data with as small number of 
parameters as possible. In ECOKNOWS the primary interest is to make inference 
about the underlying biological process by using the observed data and prior infor-
mation. Because the latent process can never be observed, the validity of inference 
can only evaluated by evaluating the validity of assumptions that are behind the 
model structure. Being able to predict the future data before using it in the model is 
still a desirable property, but of secondary importance to the quality of the assump-
tions made. 

Data aggregation (ToR 1c): 

ECOKNOWS develops methods to estimate the Value of Information for different 
kinds of datasets. For example, in the herring case study the value of acoustic surveys 
and EU data collection catch sampling procedures are going to be evaluated. The 
same methods can be in principle used to evaluate the VoI of different data aggrega-
tion levels. However, in order to do this, it is necessary to build an observation model 
for the disaggregated data to be able to evaluate the loss of information due to aggre-
gation. But if the observation model for the disaggregated data exists, it might be best 
to use that one anyway, provided that there are no significant computational costs. 

Correlated errors (ToR 1d): 

ECOKNOWS case studies will build case specific observation models. Modelling the 
observation process must include any correlations known to exist in the data collec-
tion process. For example, in the herring case the spatial correlation of acoustic sur-
vey observations needs to be taken into account. Once the observation model 
includes the correlation the uncertainty arising from the correlation becomes auto-
matically accounted for. 

Integration of uncertainty (ToR 1e): 

As discussed above, this is one of the main objectives of ECOKNOWS. Choosing to 
use the Bayesian approach guarantees theoretical consistency in the integration of 
uncertainty. However, the Bayesian approach also brings difficult practical chal-
lenges to be solved. The main challenges are the derivation of prior probability dis-
tributions in practice and the difficult computation of the posterior distributions. 
ECOKNOWS tackles these issues by developing state-space model structures that 
would be biologically realistic but yet easily handled in MCMC simulation. This in-
cludes reparameterization and development of approximations for the state-space 
transition equations. New kinds of MCMC samplers that are specific to the state-
space models are also under development in the project. Hierarchical meta-analysis 
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tools are going to be built to be usable in an online database environment. FishBase is 
being used as the test bench for the prototyping. ECOKNOWS case studies will face 
the problems of deriving prior distributions for the population dynamic parameters. 
Lessons learned in this process will be summarized in a “Best practices” manual. 

Cpue standardization (ToR 2): 

Not directly in ECOKNOWS task list, some case studies may need to do this. 

MSY reference points (ToR 3): 

ECOKNOWS aims to explore how to estimate posterior distributions of MSY refer-
ence points. In many of the case studies MSY may appear to be a moving target that 
fluctuates with environmental variation. Depending on the model structures in case 
studies, analytical solutions for MSY reference points as a function of population 
dynamics parameters may or may not be available. However, if the time span for 
sustainability can be clearly defined, MSY targets can be found out by Monte Carlo 
integration. 

Discussion: 

A question was raised regarding the fact that the approach put forward by ECOK-
NOWS aims to build realistic models, without data availability being a prime consid-
eration. However, such realistic models can be overparameterized with respect to the 
available data and computationally challenging, requiring in some cases making ap-
proximations to the original model structure. Hence, the question was posed as to 
whether the intended model realism might not be lost due to the required computa-
tional approximations. The presenter replied that a key aspect to handle overparame-
terization is to construct informative and realistic prior distributions. If data are 
gathered, then the resulting posterior distributions will be even more informative. 
Additionally, the presenter indicated that computational difficulties should be con-
sidered as technical problems, which are expected to lessen in time, and that these 
challenges should not change the philosophy of building realistic models. 

The potential to use Bayesian model averaging to handle uncertainty in model struc-
ture was mentioned in the presentation. Bayesian model averaging requires assigning 
prior probabilities to each model considered and estimating posterior model prob-
abilities, which are then used as weights for the model averaging. Again, the question 
of whether this might not be computationally too challenging (requiring very com-
plex MCMC algorithms) was raised. The presenter replied that certain simplified 
forms of model uncertainty could be handled reasonably easily. For example, when 
considering two different possibilities for a stock–recruitment relationship (such as 
Beverton–Holt and Ricker) one could simply introduce an auxiliary variable with 
Bernoulli prior distribution, giving equal prior probability to each of the two forms of 
stock–recruitment relationship. The posterior distribution of this auxiliary variable 
gives the posterior probability of each of the two stock–recruitment relationships and 
model averaging is directly incorporated in the model results. 
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7 Commercial cpue standardization (ToR 2) 

7.1 Cpue standardization— methodologies and practices 

(compiled by Sam Subbey) 

Background 

Fisheries-dependent data (e.g. scientific surveys) provide a basis for calculating indi-
ces of abundance. However, collecting fisheries independent data are usually costly, 
in financial terms, and with respect to time and human and material resources re-
quired. 

On the other hand, Fisheries-dependent data (e.g. catch and effort data from com-
mercial and/or recreational fishers) can be summarized into catch rates and/or catch-
per-unit-effort (cpue). 

A common definition of cpue is a ratio of the total catch and the corresponding fish-
ing effort over a specific spatial scale and time. The cpue is commonly used as an 
index of fish stock abundance, implying that a proportional change in cpue is ex-
pected to represent a matching proportionate change in the stock size. A usual under-
lying assumption is that within a defined spatial scale, the distribution of fishing 
effort with respect to targeted fish is random. 

The resolution of the spatial scale however, will have an influence on estimates of 
cpue. Further, nominal cpue values seldom reflect changes in abundance over the 
whole exploitation history of spatial range of the stock. This is because cpue indices 
can be affected by exogenous factors which bear no relationship with changes in 
stock abundance, e.g. the vagaries of the weather, fuel prices, etc. 

The aim of the standardization process is to remove the effects of spatial and temporal changes 
in extraneous factors on catch rates so that changes in the standardized index reflect changes 
in abundance only (Maunder and Punt, 2004).  

Standardization – models 

The accepted approach is to model the expected value of the cpue (or a function of 
the expected value) as dependent on area, seasonal, and other interactive factors. In 
quite a general way:  
 

Expectations of [function of cpue] = (Intercept) + (Year) + (Area) + (Season) + (envi-
ronmental factors, fishing gears, operating devices, etc.) + … + (Interactions), 
 

where (Year): effect of year, (Area): effect of area; (Season): effect of month/quarter; 
(environmental factors, fishing gears, operating devices, etc.): effect of environmental 
factors such as sea surface temperature, fishing gears, operating devices, etc. (Interac-
tions): two way interactions. 

The most common methods for cpue standardization involve fitting statistical models 
to catch and effort data. These models include Generalized Linear Models (GLMs), 
Generalized Additive Models (GAMs) and Generalized Linear Mixed Models 
(GLMMs). Of the three, GLMs are the most common methods in use for CPU stan-
dardization. A brief description of the models is presented below. 
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GLMs 

The relationship between some function of the expected value of the response vari-
able and the explanatory variable is linear: g�µi� = xiTβ, where g is a monotonic and 
differentiable link function, xi and β are vectors of explanatory variables and parame-
ters, respectively, and µi = E(Yi), where Y represents random variables. 

The GLM modelling approach requires the choice of: 

i. Response variable and its sampling distribution from an exponential family of 
distributions (normal, exponential, Poisson, binomial or gamma). 

ii. Appropriate link function, consistent with choice of distribution. For example, 
the Logit function g(k) = ln � k

1−k
� is appropriate for a binomial distribution. 

iii. Explanatory variables (e.g. Year). 

GAMs 

GAMs are extensions of GLMs where the linear predictor in GLMs are replaced by an 
additive predictor by defining g�µi� = µ +  ∑ fj

p
j=1 (xi), where f is a smooth function, 

such as a spline or loess smoother. 

GLMMs 

GLMMs are based on extending GLMs to include random effects, random coefficients 
and covariance patterns. The link function in GLM, g(µ) = Xβ is redefined for 
GLMMs as g(𝛍) = 𝐗𝛃 + 𝐙𝛂, where 𝐗 is the design matrix for fixed effects, 𝐙 defines 
the design matrix for random effects, 𝛃 is a vector of fixed effect parameters and 𝛂 is 
a vector of random effect parameters, assumed to follow a normal distribution. 

Challenges 

The main challenges include selecting explanatory variables, model choice and as-
sumptions of error structure, data selection and dealing with zero catches. 

Selecting explanatory variables 

In the literature, the explanatory variables include those of time (year, month, time of 
the day), area, type of trawl gear, vessel characteristics (size, length, etc). Cross vali-
dation – determination of optimal model parameters, using a subset of the data 
(training set) and prediction of the rest of the data (test set) using the optimized 
model—is an approach for selecting explanatory variables. 

Caveats: Collinear variables and risk of over/under-parameterization. 

Model choice and assumptions 

Standard hypothesis testing methods (F-tests, likelihood ratio test, etc) are directly 
applicable to nested models. Information-theoretic methods (e.g. AIC and BIC) are 
applicable to non-nested models.  

Caveats: The modelling is based on voluminous datasets, hence the best model may 
still be a highly parameterized model chosen based on AIC or BIC. Testing for valid-
ity of model assumptions is largely neglected (e.g. residuals from log-linear regres-
sion are normally distributed).  

Data quality 

One important issue not addressed in the literature is the effect of data aggregation. 
Whether cpue data are aggregated on hauls/monthly or daily, will have effect on 
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accuracy and precision. For instance, monthly averages will minimize variability 
while individual haul cpues will have larger variability and hence variance. The lit-
erature, however, deals with issues of zero catches under positive effort data scenar-
ios.  

Dealing with zero catches 

Quite generally, cpue data are non-negative and severely skewed right, suggesting 
gamma or lognormal models. However, often no fish are caught, which produces 
exact zeros in the data. Zero catches are common for less abundant and bycatch spe-
cies, where non-zero effort is registered to correspond to zero catch. These exact zeros 
cannot be ignored and contain important information. However, zero catches present 
computational difficulties, e.g. for log-linear (and gamma) models, since the natural 
logarithm of zero is undefined. 

Appropriate methods for handling zero catches in the literature include adopting: 

1 ) Ad hoc approach where a small constant is added to all response variables 
(such as cpue), e.g. E[log(CPUE + constant)] = (Intercept) + (Year) + (Area) 
+(Season) + (EMT) + … + (Interactions). 

2 ) Use of the Catch-Poisson or Catch-Negative-Binomial (NB) regression 
models (i.e. Catch model with Poisson/negative binomial error, GLM-type) 
and extensions using the Tweedie distribution. 

3 ) Zero-inflated models. 
4 ) Use of the delta-type two-step model (e.g. Delta-lognormal model). 

The Tweedie, zero-inflated and delta-type models are described briefly below. 

The Tweedie distribution model 

The Tweedie distribution model, 𝑓(𝑦|𝜇, 𝜎2, 𝑝), is a 3-parameter model defined by: 

𝑓(𝑦|𝜇, 𝜎2, 𝑝) = 𝑎(𝑦|𝜎2, 𝑝)e�−
1
2𝜎2d(𝑦|𝜇,𝑝)� 

Where 𝜎2 and 𝜇 are location and diffusion parameters, respectively, p is the power 
parameter, and d(𝑦|𝜇, 𝑝) is referred to as the unit deviance. This power-parameter (p) 
can be defined as an arbitrary real number except for 0 < p < 1. The Tweedie model 
can express the Poisson, Gamma and inverse Gaussian distributions if the power-
parameter (p) is 1, 2, and 3, respectively. 

In the literature, application of the Tweedie model involves a 2-step approach: 

i ) Estimate the power parameter (p) by maximizing the profile log-
likelihood across the grid values of (p) in the range of 1 < p < 2. 

ii ) Estimate the regression coefficients (in e.g. GLMs) fixing the value of p in 
the estimate obtained in the step i. 

Zero-inflated models 

Zero-inflated count models provide a way of modelling the excess zeros in addition 
to allowing for over-dispersion. In particular, for each observation, there are two 
possible data generation processes; the result of a Bernoulli trial determines which 
process is used. For observation i, Process 1 is chosen with probability 𝑤𝑖  and Process 
2 with probability(1 − 𝑤𝑖). Process 1 generates only zero counts, whereas Process 2, 
𝑓(𝑦), generates counts from either a Poisson or a negative binomial model. 

The general expression is 
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𝑃𝑟(𝑌 = 𝑦) = �𝑤 + (1 − 𝑤)𝑓(0), 𝑦 = 0,
(1 − 𝑤)𝑓(𝑦), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

� 

where w is the probability that an observation comes from the degenerate compo-
nent. The parameters to be modelled as functions of the explanatory variables are the 
probability of a zero observation, w, and the mean of the second distribution defined 
by f(y). The two commonly used zero-inflated distributions are the zero-inflated Pois-
son (ZIP) and the zero-inflated negative binomial (ZINB). 

The proportion of zeros in the Poisson and negative binomial distribution is related 
to the distribution for the non-zero values (i.e. for a given distribution of non-zero 
observations there is only a single possible proportion of zeros). However, if the 
processes that lead to zero observations are not the same as those that lead to non-
zero catches (e.g. gear malfunction, whether the species under consideration is being 
targeted), zero-inflated distributions may be more appropriate.  

Delta approaches 

The delta approach models the probability of obtaining a zero catch and the catch 
rate, given that the catch is non-zero, separately. 

The general expression is  

𝑃𝑟(𝑌 = 𝑦) = �
𝑤, 𝑦 = 0,

(1 − 𝑤)𝑓(𝑦), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
� 

Where w is the probability of a zero observation (not the probability of an extra zero, 
as in the zero-inflated approach). The probability of obtaining a zero observation is 
usually modelled using the binomial distribution, while the lognormal distribution 
has often been used to model the catch rate given that it is non-zero. 

This section contains extracts and summaries from several papers. Key among these 
papers are Maunder and Punt (2004), Shono (2008a, b), Tweedie (1984), and Venables 
and Dichmont (2004). 

7.2 GLM standardization using the Tweedie distribution 

The techniques applied for cpue standardization are based mainly on the regression 
model, and contemporary approaches use Generalized Linear Models (GLM). GLM 
models are based on exponential family of distribution that includes the Normal, 
Poisson, Binomial, Gamma and Inverse Gaussian distributions. Each of these distri-
butions is completely specified by its mean and variance. The variance of the re-
sponse variable is a function of its mean. 

The Tweedie distribution also belongs to the exponential family but requires three 
parameters: the variance function is proportional to the power of the mean. This 
power parameter (p) determines the family of different distributions: normal (p=0). 
Poisson (p=1), Gamma (p=2), Inverse Gaussian (p=3), compound Poisson-Gamma 
(1<p<2). The main properties of the Tweedie distribution are the ability to handle 
very high variability, highly skewed distributions and exact zero values. 

The GLM with the Tweedie distribution can be used in the same way as other GLM 
models but it is necessary to do a set of runs with different values of parameter p to 
find the minimum value of the extended deviance profile. 

GLM models with mixed effects contain not only fixed effects coefficients but also 
coefficients describing random effects. Diagnostics of the models include ANOVA 
estimates, Pearson residuals as functions of fitted values, deviance residuals as func-
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tions of fitted values, and Q-Q plots. Results can be presented using plots with fixed 
effects time-series and random effects accompanied by estimates of bias.  

S-Plus and R software packages have appropriate functions (reglm, tweedie) for these 
type of models. 

Examples contain results of the calculation with both GLM and GLMM models, in-
cluding calls to the function, diagnostic results and time-series of the cpue estimates. 
Applications of GLMM models to obtain cpue time-series that describe indices of 
abundance in different parts of the fishing area, important for fitting spatially struc-
tured stock assessment models, was also shown (presentation only – no WD pro-
vided). 

Discussion: 

Generalized linear models (GLM) have become quite common tools for cpue stan-
dardization. The presentation reviewed GLMs, which are based on distributions from 
the exponential family. Distributions from the exponential family have 2 parameters, 
one of which determines the mean whereas the second one controls dispersion. Each 
distribution in the exponential family is characterized by a function that relates the 
variance of the distribution to its mean. The presentation highlighted the fact that 
Tweedie distributions, which are 3-parameter distributions, belong to the exponential 
family for each given value of the so-called variance power parameter “p”. When 
p=0, the Normal distribution is obtained, p=1 corresponds to Poisson distribution, 
p=2 to the Gamma distribution and p=3 to the Inverse Gaussian distribution. For each 
value of p between 1 and 2, the Tweedie distribution is a mixture of a point mass at 
zero and a continuous distribution on the positive real line. This can be useful for 
modelling cpue data, which may contain a substantial amount of zeros. To select an 
appropriate value of p, a separate GLM may be fitted over a grid of different values 
of p and then examine the likelihood profile for p, selecting the value of p for which 
the likelihood profile is minimized. Random effects via Generalized Linear Mixed 
Models were also considered in the presentation as well as possible interactions be-
tween factors, possibly also involving “year”. 

It was agreed that the assumption of a random effects model together with fixed ef-
fects is more realistic, particularly if interactions are considered. Results were ex-
pected to be differ depending on whether interactions are considered or not, but both 
solutions should be explored. The no interactions model will allow one to know the 
deviation distribution and to check if it is the same for any classification criterion. 
Year, month and area are primary candidates when searching for interactions. 

Interaction terms with month can be handled through averaging over months, with 
area by multiplying by the size of the area, but what to use as an index of abundance 
when there are significant interaction terms that include year, when an annual index 
is required?  

GLMs give unrealistically low estimates of CVs on, for example, the standardized 
cpue, because they assume (incorrectly) that the input data are independent. Random 
effects models (treating interactions with year as the random effects) is one way to 
deal with this, though there are issues that warrant further investigation. A simple 
approach would be to do a jackknife with year as the sampling unit as a way of tak-
ing the non-independence into account. 

The problem of many zeros can be reduced through aggregation. In that context of 
aggregation, it is more robust and less variable to use sum of catch divided by the 
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sum of effort over the entire aggregation period as opposed to e.g. calculating daily 
cpue and averaging over the aggregation period (e.g. a month). 

The method presented allows using haul by haul catch data, or grouping them by 
day or by month. Haul by haul catch data are quite skew in their distribution, having 
lots of zeros in some cases, but the Tweedie distribution fits adequately such situa-
tions. Grouping data by month would result in a less skew distribution but will still 
be well explained by a Tweedie distribution with a different value of the variance 
power parameter p. In the work presented, the interannual dynamics of standardized 
cpue based on data aggregated by month was very similar to that for haul-by-haul 
data or other scales of fishery data aggregations. The aggregation of data allows an 
improvement in diagnostics and results from cpue standardization based on GLMM 
with Tweedie’s distribution. 
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8 MSY in a stochastic environment (ToR 3) 

To some extent, this ToR has been explored by other groups within ICES. For exam-
ple, WKFRAME-2010 (ICES, 2010a) provides comprehensive guidelines for calculat-
ing MSY reference points, which was subsequently updated in the WKFRAME-2 
report in 2011 (ICES, 2011). Furthermore, the WKFRAME-2010 report points to guide-
lines in the SGMAS 2008 report (chapter 5.2 of ICES 2008b) with recommendations 
for how to use a stochastic simulation model that could be used for estimation of 
MSY reference points, taking risk to recruitment impairment into consideration and 
incorporating density-dependent process into analyses. Nevertheless, this topic was 
also explored during this meeting. 

8.1 Correcting for measurement error bias when fitting stock–recruit 
models and estimating MSY reference points 

Dealing with stock size measurement errors when fitting stock–recruit models, and in 
particular how these affects MSY reference points, can be challenging. This was a 
particular concern for WGs in 2010 that were expected to provide MSY reference 
points, but were faced with how to account for sometimes poor fitting stock–recruit 
relationships. 

Consideration is given to the development of a purely statistical approach to address 
the problem of the impact of varying productivity on MSY reference points (Annex 5, 
WD 8). The few papers in the literature that have addressed the problem in some way 
have taken a more multispecies/ecosystem approach in which they try to account for 
global warming and other such issues. However, the "state-of-art" for many stocks in 
regions including Europe are not at the stage where these multispecies approaches 
can be used. Nevertheless, there is a demand to address the problem, and the pro-
posed development of the statistical approach is seen as an interim solution. 

Discussion: 

This study demonstrates that in case of substantial error in the spawning-stock bio-
mass, the approach involving the estimation of reference points (RPs) based on the 
S50% parameter derived from the Beverton–Holt model may be seriously biased. It 
should be decided if such a sensitive parameter could be used as a basis for RP esti-
mation. The use of local influence diagnostics did not help with the estimation of 
measurement error, and additional information is needed. Further to the results re-
ported, it would be useful to check how assumptions about error structures in the 
data may influence the results obtained.  

The assumption that an autocorrelated SSB implies that the errors associated with it 
are also autocorrelated is not always valid. If the SSB is for instance, estimated from 
indices of abundance, it may well be correlated although the errors (linked to the 
abundance indices) may be random. 

Subsequent work: 

Guidelines for calculating MSY reference points in a varying and stochastic envi-
ronment 

Conceptually, calculation of MSY reference points (RPs) involves evaluating long-
term stock projections in which fishing mortality is varied to find the level (Fmsy) 
that maximizes long-term yield. MSY is the maximized yield and Bmsy is the equilib-
rium stock size that gives MSY. If the projection is deterministic then the calculation 
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of MSY RPs is also deterministic. In this context some theory has been developed to 
simplify MSY calculations (Sissenwine and Shepherd, 1987). In the traditional MSY 
calculations, all population processes are assumed to be constant; that is, the age-
based values of natural mortality, maturity, weight, and fishery selectivity in the 
spawner-per-recruit relationship are held constant in the long-term stock projections, 
as is the recruit-per-spawner functional relationship with SSB. Estimation error in 
these population processes contributes to uncertainty, and some bias, in MSY RPs. 

If the population processes themselves are variable, then MSY RPs will also vary. For 
example, if natural mortality (M) changes in future, as a function of predators or other 
factors, then this will affect MSY RPs. If the population processes that vary have, or are 
expected to achieve, a stationary distribution then there may also be stationary distribu-
tions for MSY RPs that are useful for fisheries management, although the RPs will be 
random and this should be accounted for in management decisions. 

In a stochastic environment, harvesting according to the deterministic MSY rule is an 
under-optimized strategy and can lead to strong decreases in stock size (Bousquet et 
al., 2008). These authors showed for the Schaefer surplus production model with a 
particular type of bounded process error that the stochastic mean values for MSY, 
Bmsy and Fmsy, were less than the deterministic results. They concluded that the 
deterministic Fmsy is incompatible with the assumption of equilibrium: on average, 
one cannot hope to harvest more than the stochastic MSY. Constant harvesting at the 
deterministic Fmsy would eventually lead to stock extinction. 

Some preliminary investigations are presented on the impact of process error in the 
stock–recruit relationship and measurement error in SSB on MSY RP’s. Analyses are 
based on the SURBA+ model results for 3Ps American plaice (Annex 5, WD 8); how-
ever, the choice of assessment model is not relevant beyond providing the stock–
recruit relationship and values for process error variances. Stochastic simulations are 
used to find the fishing mortality rate (Fmsy) that optimizes long-term equilibrium 
expected catch and produce equilibrium distributions for biomass and catch at F = 
Fmsy. 

Independent recruitment process error 

Equilibrium distributions for MSY RP’s were derived using stochastic projections in 
which recruitment was derived using 

 
The stock–recruit parameters and σRPE were estimated using SURBA+, with the same 
assumption for recruitment process errors (RPE’s). The estimates are 27.832ˆ =α , 

698.1ˆ =β , and 315.0ˆ =RPEσ . The stock size estimates are in kg/tow, and recruits are in 
number per tow. Ten thousand projections, each for a 100 years, were conducted. The 
process errors were bias corrected so that E{exp(εRPE)} = 1. The multiplicative errors 
were )2/exp( 2

RPERPE σε − . 

Equilibrium mean yield as a function of F was similar to the deterministic results 
(Figure 8.1.1), which were derived using the same stock–recruit parameters but with 
σRPE = 0. Contrary to the conclusions in (Bousquet et al., 2008), the stochastic Fmsy was 
slightly greater than the deterministic result. The resulting equilibrium biomass and 
catch when Fmsy = 0.232 are shown in Figure 8.1.2. The mean equilibrium SSB (16.5 
kg/tow) is slightly lower than the deterministic result (17.08 kg/tow). Stochastic and 
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deterministic MSY catches were nearly identical. Note that the means and percentiles 
are stable after about 30 years, indicating that an equilibrium distribution is achieved 
when F = 0.232.  

Independent recruitment process error and SSB measurement error 

Equilibrium distributions for MSY RP’s were derived using stochastic projections in 
which recruitment was derived using 
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The stock–recruit parameters and σRPE were estimated using SURBA+, with the same 
assumption for recruitment process errors (RPE’s). Because σRPE and σSME are con-
founded, σSME was fixed at 0.25 for illustration purposes. The estimates are 28.661ˆ =α

, 960.1ˆ =β , and 309.0ˆ =RPEσ . Both the lognormal recruitment process errors and SSB 
measurement errors were bias corrected (so that E(ε)=1) in the projections. 

Equilibrium mean yield as a function of F was similar to the deterministic results 
(Figure 8.1.3). The stochastic Fmsy was slightly greater than the deterministic result. 
The resulting equilibrium biomass and catch when Fmsy = 0.226 are shown in Figure 
8.1.4. The mean equilibrium SSB (17.2 kg/tow) and catch (4.67 kg/tow) are slightly 
lower than the deterministic results (17.79 kg/tow, 4.71 kg/tow respectively).  

Autocorrelated AR(2) stock–recruit residuals 

This is an extension of the model in the previous section in which the εRPE ‘s are AR(2) 
autocorrelated. The Beverton–Holt parameter estimates are 28.596ˆ =α , 828.1ˆ =β . 
The estimated AR(2) autocorrelation parameters are 0.902 (lag 1) and -0.541 (lag 2) 
with 238.0ˆ =RPEσ . Both the recruitment process errors and SSB measurement errors 
were bias corrected in the projections. 

Equilibrium mean yield as a function of F was similar to the deterministic results 
(Figure 8.1.5). The stochastic Fmsy was slightly greater than the deterministic result. 
The resulting equilibrium biomass and catch when Fmsy = 0.228 are shown in Figure 
8.1.6. The mean equilibrium SSB (17.0 kg/tow) and catch (4.70 kg/tow) are slightly 
lower than the deterministic results (17.63 kg/tow, 4.74 kg/tow respectively). 

Sensitivity runs 

The lognormal process and measurement errors were rescaled to have means of one. 
If the errors are not rescaled then the stochastic mean MSY catch and Bmsy can be 
greater than the deterministic results. This is because the means of the process and 
measurement errors are greater than one. This was observed for the AR(2) analysis. 
However, the Fmsy values changed little. When errors were not rescaled to have 
mean one, Fmsy = 0.229 whereas when the errors were rescaled Fmsy=0.228. 

The effect of doubling the recruitment process error variance was also investigated. 
The changes in mean Fmsy were negligible for the scenario with independent re-
cruitment process errors and SSB measurement errors. Mean SSBmsy and MSY catch 
decreased slightly, from 17.2 kg/tow and 4.67 kg/tow to 17.1 kg/tow and 4.65 kg/tow, 
respectively. The largest differences were in the quantiles of the stochastic distribu-
tions for SSBmsy and MSY. They were wider when the recruitment process error 
variance was doubled, as expected. A similar pattern was observed for the AR(2) 
recruitment process error scenario. 
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Summary 

Stochastic Fmsy’s were usually slightly greater than deterministic Fmsy’s. This is not 
consistent with Bousquet et al., 2008. Stochastic mean MSY catches were similar to the 
deterministic results, which is also not consistent with Bousquet et al., 2008. However, 
Stochastic mean SSBmsy was usually slightly lower than the deterministic SSBmsy.  

This is consistent with Bousquet et al. (2008), but the differences in stochastic and 
deterministic results were usually small. 

The amount of process error had little effect on mean MSY reference points, but did 
affect quantiles. Also, constraining process errors to have mean one made a differ-
ence. 

These results are preliminary and more research is required. 

 

 

Figure 8.1.1. Equilibrium mean yield as a function of F, when there is independent process error 
in the recruitment derived from a Beverton–Holt stock–recruit model (solid line), and when there 
is no process error (dashed line). 
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Figure 8.1.2. Equilibrium results for SSB (top panel), total biomass (middle panel), and catch 
(bottom panel), for projections based on Fmsy = 0.232 (see Figure 8.1.1). The solid lines indicate 
the means of the stochastic distributions, the dashed lines indicate the 25th and 75th percentiles, 
and the dotted lines indicate the 5th and 95th percentiles. Light grey lines are simulation results, 
and the black lines are results from a loess smoother. They are virtually identical after about 30 
years. The deterministic SSBmsy is 17.08, and the deterministic MSY catch is 4.63. All results are 
in kg/tow. 

 

 

Figure 8.1.3. Equilibrium mean yield as a function of F, when there is independent process error 
in the recruitment derived from a Beverton–Holt stock–recruit model with SSB measurement 
error (solid line), and when there is no process or measurement error (dashed line). 
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Figure 8.1.4. Equilibrium results for SSB (top panel), total biomass (middle panel), and catch 
(bottom panel), for projections based on Fmsy = 0.226 (see Figure 8.1.3). The solid lines indicate 
the means of the stochastic distributions, the dashed lines indicate the 25th and 75th percentiles, 
and the dotted lines indicate the 5th and 95th percentiles. Light grey lines are simulation results, 
and the black lines are results from a loess smoother. They are virtually identical after about 30 
years. The deterministic SSBmsy is 17.79, and the deterministic MSY catch is 4.71. All results are 
in kg/tow. 

 

 

Figure 8.1.5. Equilibrium mean yield as a function of F, when there is AR(2) process error in the 
recruitment derived from a Beverton–Holt stock–recruit model with SSB measurement error 
(solid line), and when there is no process or measurement error (dashed line). 
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Figure 8.1.6. Equilibrium results for SSB (top panel), total biomass (middle panel), and catch 
(bottom panel), for projections based on Fmsy = 0.228 (see Figure 8.1.5). The solid lines indicate 
the means of the stochastic distributions, the dashed lines indicate the 25th and 75th percentiles, 
and the dotted lines indicate the 5th and 95th percentiles. Light grey lines are simulation results, 
and the black lines are results from a loess smoother. They are virtually identical after about 30 
years. The deterministic SSBmsy is 17.63, and the deterministic MSY catch is 4.74. All results are 
in kg/tow. 

Discussion following subsequent work 

Bousquet et al. (2008) were critical of people who ignore process error, but the results 
of this work don’t seem to indicate that it’s important. However, in a model that in-
corporates process error, the number of individuals in the population may simply 
mean that process error CVs are very small – could this be what is leading to the re-
sult of this study? Although Surba+ is based on numbers-at-age, it is only used for 
deriving stock–recruit pairs, and is not used in the projections; furthermore, Bousquet 
et al. used biomass, so process error may well have had a greater impact. 

Although the ICES WKFRAME and WKFRAME-2 working groups considered uncer-
tainty in stock–recruit models, they did not make progress in handling environ-
mental variability such as regime changes, and their effect on the estimation of 
reference points. There may also be other sources of process error to consider. 
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9 The SISAM Initiative (ToR 4) 

9.1 The Strategic Initiative for Stock Assessment Methods 

The ICES Strategic Initiative for Stock Assessment Methods (SISAM – chaired by 
Steve Cadrin and Mark Dickey-Collas) is designed to assure that ICES scientists can 
apply the best methods when developing management advice. Other Regional Fish-
eries Management Organizations (RFMOs) and national fishery organizations have a 
similar goal, so success of SISAM will have benefits for the entire international fish-
ery science community. SISAM will contribute to the improved application of as-
sessment methods, but it must be recognized that “best methods” is not a static 
definition. Rather, the set of available methods will continue to evolve and improve 
in response to lessons learned in their current applications. SISAM needs to do more 
than define the current state-of-the-science; it should help chart the future course of 
this scientific enterprise. Long-term success in application of the best methods is an 
iterative, multi-step process. These steps should involve: 

1 ) identification of the current set of available methods; 
2 ) guidance in the selection of the most appropriate methods for a particular 

application; 
3 ) education and access to expert information regarding method usage; 
4 ) encouragement for further testing and development of methods to more 

closely align with particular management needs and to take advantage of 
advances in statistical theory, computing power, and new knowledge. 

SISAM can contribute to this process by directly advancing steps 1 and 2 and serving 
as a valuable catalyst for steps 3 and 4. SISAM proposes to accomplish this by pro-
ducing a technical report (details below), sponsoring an international symposium on 
fishery assessment methods (to be held towards the beginning of 2013), and publish-
ing key papers from the symposium in a scientific journal. SISAM will seek to en-
compass approaches that range from quantitative procedures applicable in data-poor 
situations, through tactical assessment approaches that typify assessment advice to-
day, to multispecies and environmentally linked models that are at the forefront of 
research today. Within this range, the principal focus will be on the tactical assess-
ment approaches, with briefer consideration to the data-poor and advanced model 
categories. 

Technical Report 
The proposed technical report will combine the developed model categorization 
scheme (the current draft on which WGMG was requested to comment is presented 
below) and an overview of recent model usage by a wide range of RFMOs and na-
tional organizations. It will provide a structured organization of these models to 
guide ICES Working Groups in their search for appropriate models for each situation. 
This will be prepared prior to the 2013 symposium, to act as a resource to guide dis-
cussion and stimulate the workshops that shall take place during the symposium. It 
is proposed that later, the report will be published as an ICES Cooperative Research 
Report (CRR), which will also include the results from the symposium workshops.  

The ICES WKADSAM workshop in 2010 started the process of identification of avail-
able methods by bringing together ICES and international assessment experts to de-
scribe state-of-the-science assessment models. The SISAM effort will build upon this 
foundation of model descriptions provided by WKADSAM and through further dis-
cussions with the ICES WGMG. SISAM proposes to reach out to RFMOs and national 
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fishery organizations to request information on the methods used to conduct assess-
ments over the past 5 years. This request will need to involve some degree of infor-
mation about data used because today’s generalized integrated analysis models can 
be applied across a wide range of data types, so information on data used is valuable 
to refine the information on model usage. Because many methods are essentially 
similar and differ only in name and details of the particular application, SISAM with 
WGMG will also develop a categorization system for fishery assessment models. This 
system will allow for clear delineation of major categories of models, and identifica-
tion of the models available within each category. The draft report with the summary 
of model usage and the categorization system would be prepared for availability by 
the time of the proposed symposium. The final categorization scheme will be agreed 
by the end of 2011. 

Initial work on the categories for classification of models along the “age” axis (pre-
sented to WGMG for comment) 

0. Techniques for when the only available information is catch data – this will not be a main 
focus of SISAM but a summary of available techniques will be provided 

a. Structure – some use basic biomass dynamics 
b. Min data – catch 
c. Typical data – catch, some expert opinion on stock depletion or F 
d. Example –Depletion Based-Stock Reduction Analysis (DB-SRA; Dick and 

MacCall)  
1. Time-series models 

a. Structure – none or minimal assumptions, just examining catch and/or index as 
time-series 

b. Min data – catch or abundance index time-series 
c. Typical data – catch and abundance index 
d. Example – AIM (US Toolbox), empirical management procedures 

2. Dynamic Surplus production models 
a. Structure – aggregate biomass dynamics controlled by a small number of pa-

rameters: typically just K (carrying capacity), r (intrinsic growth rate), initial 
population biomass and a catchability coefficient related to fishing mortality. 

b. Min data - catch and one relative abundance index. 
c. Typical data – catch and one or several abundance indices 
d. Example – Dynamic Schaefer model, ASPIC 

3. Delay-difference models:  
a. Structure similar to surplus production but with at least two life stages, one 

typically for fish before recruitment to the fishable pool of the stock, and with 
some somatic growth relationship and fishing mortality included in the popula-
tion dynamics 

b. Min data – catch, abundance index, inputs for body growth function and M 
c. Typical data – catch, recruitment index, recruited (adult) index  
d. Examples – Deriso model, CSA, various others involve approaches to dealing 

with process error and/or state-space formulations 
4. Age-structured production models 

a. Structure – full age structure, use a deterministic spawner-recruitment relation-
ship (which replaces the r and K of the dynamic surplus production models);  

b. Min data – catch, fishery selection-at-age, abundance index with specified selec-
tion pattern at age, M and body wt-at-age, and maturity-at-age.  

c. Typical data – min data plus additional abundance indices 
d. Examples – Age-Structured Production Model (ASPM) 
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5. Stochastic stock production models  
a. Structure – Same dynamics as age-structured production model but allowing for 

recruitment to be stochastic rather than deterministic.  
b. Min data – as for the age-structured production model,  
c. Typical data – catch, abundance index, recruitment index 
d. Examples – Walters and Martell model; Porch’s Catch-Free model, DB-SRA 

(Dick and MacCall) 
6. Integrated analysis models used with length data but no age data:  

a. Structure – Population dynamics are age and/or length structured, and incorpo-
rate natural mortality, growth, recruitment (which may or not be based on a 
stock–recruitment relationship with or without deviations), and fishing mortal-
ity-at-age and/or length. Some implementations allow treatment of landings and 
discards. 

b. Min data – catch, abundance index, length composition data (some missing data 
allowed).  

c. Typical data – catch, abundance index, length composition data. Some imple-
mentations allow the catch data to be separated into landings and discards. 

d. Examples – MULTIFAN, simplified configurations of SS and CASAL, SCALE 
7. Statistical catch-at-age models:  

a. Structure – Age-structured population dynamics incorporating natural mortal-
ity, recruitment deviations (but most models do not employ internal spawner-
recruitment relationships and treat recruitments as free parameters), and fishing 
mortality (the fishery selection-at-age may be constant or change over time ac-
cording to some constraints,) ; some implementations have a specialized ap-
proach to deal with discarded catch separately from landings. 

b. Min data – catch, statistical sample of catch age composition, abundance index 
(some missing data allowed). Some implementations allow the catch data to be 
separated into landings and discards. 

c. Typical data – catch, statistical sample of catch and abundance index age compo-
sitions, abundance index 

d. Examples – ASAP, AMAK, many custom ADMB coded applications 
8. VPA-based approaches: 

a. Structure – Population abundance at age directly calculated from catch-at-age 
(treated as known and without error in every time-step) and M, starting from 
the latest year and oldest true age for each cohort. Often incorporate fits to age-
specific abundance indices. 

b. Min data – complete, high quality catch-at-age for every time-step and one 
abundance index for tuning 

c. Typical data – min data and several age-specific tuning indices 
d. Examples – XSA, ADAPT, VPA2BOX 

9. Integrated analysis models: 
a. Structure – Basically same population dynamics structure as for integrated 

models in Category 6 and statistical catch-at-age models. They may allow for 
multiple areas and multiple growth patterns, environmental covariates for vari-
ous processes, internal estimation of natural mortality and growth (e.g. possibly 
by using age–length keys and length distribution data as inputs, rather than 
merging these earlier to input as catch-at-age data), and time-varying processes. 
With high age data quality, they can approach a VPA configuration. In weak 
data situations, use of fixed parameters or priors mimics a simple age-structured 
production model.  
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b. Min data – catch and an abundance index (some missing data allowed). Some 
implementations allow the catch data to be separated into landings and discards.  

c. Typical data – catch, multiple abundance indices, age and/or length data. May 
also include tag-recapture data to assist estimate F, M and its age dependence 
and movement, and also stock structure (including genetics) data to estimate 
proportions of different stocks present. 

d. Examples – Stock Synthesis, CASAL, IWC minke whale multistock models  

Note that some of the features used in differentiating these model categories will 
occur at multiple levels. For example, multi-area configurations with stock-structure 
data might be used in a surplus production model. In other cases, fully integrated 
analysis models can be configured to operate with limited data and be configured to 
perform as biomass dynamics models. 

Discussion: 

Categorization Scheme: 

• It would help to add a part “e.” under each of the model categories, with 
the aim of crossing assessment categories with possible management ad-
vice under typical data for that model category (in particular, reference 
points that can be calculated for management) 

• Multispecies models were considered to be missing from the symposium 
topics. The presenters explained that multispecies models are not a main 
focus of SISAM, but that a session on such models would be included in 
the 2013 symposium. 

• Underlying model assumptions should be stated in a little more detail un-
der part “a. Structure” 

Selection of datasets 

In order to facilitate comparison studies at the 2013 symposium workshops, SISAM 
plans to assemble 10 to 12 datasets during 2012. One of the SISAM ToRs proposes 
that WGMG in 2012 helps with this task. SISAM considered it useful already to start a 
discussion with WGMG regarding these datasets this year, in order to gather the 
views of the scientists present at this year WGMG meeting. The datasets should be 
representative of the whole range of situations covered by the SISAM initiative. It 
was also felt that no more than 10 to 12 datasets should be considered, as the aim is to 
apply different models and techniques to the same datasets in order to try to under-
stand the properties and consequences of applying different methodologies, and to 
get a feeling for what might be considered as best practice. The following range of 
features was deemed to be relevant in the selection of datasets: 

• Data rich vs. poor  
• Landings vs. discards uncertainty 
• Short vs. long lived species 
• Low vs. high recruitment variability (e.g. sudden recruitment outbursts as 

can be seen in horse mackerel) 
• Stocks that have dropped to very low abundance and then recovered (e.g. 

Norwegian spring-spawning herring) 
• Stocks with multiple components (e.g. North Sea herring) 
• Stocks currently under ICES WGNEW 
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It was also considered very important for the success of the work to be conducted 
with the selected datasets that scientists knowledgeable about those stocks and data, 
and interested in collaborating in this work, be identified. 
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10 Conclusions and Recommendations 

ToR 1a 

Data screening techniques prior to the selection of stock assessment models 

Background 

Useful for: 

• Exploring and demonstrating data features. 
• Checking for consistency within and between data sources. 
• Providing ball-park trends to be expected from assessment model. 
• Understanding behaviour of assessment models. 

Not used enough in assessment reports. 

Recommendations 

It is recommended that showing outputs from data pre-screening techniques that 
proved informative should be a standard requirement in ICES stock assessment re-
ports. 

ToR 1b 

Diagnostics to evaluate model fit (including measures of retrospective bias), and 
how these can be used to help refine models where appropriate 

Background 

Retrospective indices: 

• Potential for developing threshold levels in retrospective indices beyond 
which inaccuracy would be unacceptably large. 

• Needs further work: 
• Checking behaviour of retrospective index under alternative assump-

tions for generating simulated data. 
• Testing under a variety of simulated population vs. assessment model 

combinations. 

Incorporating estimates of sampling variability in assessments: 

• Potential for using estimates of survey sampling variability as inputs to 
XSA to weight individual survey data points (by year and age). 

• Needs further work to check statistical assumptions. 

Recommendations 

It is recommended that estimates of survey sampling variance always be calculated. 
Where appropriate, the inverse of survey estimates of sampling variance should be 
incorporated as a maximum weighting for corresponding survey data points.  
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ToR 1c 

Guidance for deciding how complex a stock assessment model needs to be (e.g. 
how much to process/aggregate inputs; utility for advice) 

Simple to more Complex 

Background 

Pros: 

• Fuller use of available data/more biological realism (anglerfish example). 
• Simpler models give deceptively small confidence intervals. 
• Allows more flexibility, for example: 

• Can investigate impact of changing the selection pattern (megrim ex-
ample). 

• More appropriate modelling of landings and discards (North Sea cod 
example). 

Cons: 

• Danger of over-parameterization. 

There is an overarching concern that “acceptable” model choice approaches are fol-
lowed and model-fitting diagnostics are obtained (e.g. residuals are broadly random). 

• The Ecoknows perspective is that model specification should be driven by 
realistic biological and population dynamics assumptions, and not data 
availability alone. 

• Although residual patterns may not be corrected for (e.g. autocorrelation), 
it is important to be aware of them, particularly in the context of MSE, to 
ensure that pseudo-data have the same properties as actual historic data. 

Recommendations 
• Consider using AIC in a frequentist or DIC in a Bayesian setting, for ex-

ample, to guard against over-parameterization. Take care however to con-
sider whether the data concerned are independent, as these approaches 
assume. 

• When introducing random effects terms, the statistical properties assumed 
should be checked to the extent possible, e.g. when appropriate through a 
runs test to check for randomness. 

Harvest control rules that use fewer data 

Background 
• Harvest control rules which use fewer data (e.g. only survey indices of 

abundance) have been found for certain stocks that outperform what actu-
ally happened in the past in terms of actual removals (based on a complex 
assessment) in almost every respect, particularly interannual variability in 
catch and fishing mortality. 

• The MP testing framework could be used to evaluate the loss (in terms of 
more conservative catch limits) of reducing the amount of data collected. 
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Recommendation 
• It is recommended that the approach used to evaluate simple management 

procedures, described in Annex 5, WD 7 be developed further as a possible 
framework for investigating the value of information. 

ToR 1d 

Implications and treatment of correlated errors 

Background 

The investigations focused on year effect in surveys and estimating stock recruit rela-
tionships taking autocorrelation in recruitment into account by considering AR proc-
esses for residuals. The main conclusions were: 

• Important to account for correlated errors to better reflect the information 
content of data. 

• Better modelling of survey data before asking assessment model to “figure 
it out”. 

• Trying to estimate the 1st and 2nd order parameters of an auto-regressive 
process can lead to strange behaviour, requiring the imposition of a pen-
alty to ensure residuals sum to zero. 

• There is a big difference in SR models estimated using the AR(1) or AR(2) 
formulations. 

• There is potential that an autocorrelated recruitment error structure can 
confound the stock–recruit signal. 

• Work in progress, so no firm recommendation can be made at this stage. 

ToR 1e 

Integration of uncertainty (including accounting for retrospective patterns) in ad-
vice 

No work presented explicitly addressing this topic (although there are links to work 
presented elsewhere in this report – e.g. see Section 6). 

Review approaches for standardizing commercial cpue (available techniques and 
pitfalls) 

Background 
• A review is provided. 
• Example GLM application based on the Tweedie distribution given. 

ToR 3 

Provide guidelines for calculating MSY reference points in a varying and stochas-
tic environment 

Background 

Other ICES WGs have dealt with this (WKFRAME, WKFRAME2, SGMAS). The study 
presented was limited to use of SURBA+ as the assessment model, and to 3PS cod 
and American plaice. 

• Measurement error bias in fish stock spawner-recruitment models: 
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• Simulation analyses showed that measurement error in SSB, if substan-
tial, could have a large impact on MSY reference points, and parame-
ters such as S50% (SSB value at half asymptotic recruitment), 
calculated from the estimated stock–recruit relationship. 

• Could provide guidelines for use of more robust reference points. 
• Needs further work. 

• Maximum sustainable yield when recruitment productivity varies: 
• Bousquet et al. (2008) concluded that their study “reinforced the con-

viction shared by numerous researchers that biological reference 
points calculated in a deterministic framework can be far from optimal 
in stochastic settings”. 

• The study presented during the meeting found that: 
 The amount of process error had little effect on mean MSY refer-

ence points, which differs from the conclusions of Bousquet et al. 
(2008); however upper and lower percentiles were affected. 

 Constraining multiplicative process errors to have a geometric 
mean of one (i.e. average of the log-process errors is zero) makes a 
difference. 

 Needs further work. 

Work in progress, so no firm recommendation can be made at this stage. 
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11 Future of WGMG and ToRs for 2012 

Background 

Discussion on the future direction of WGMG came up during the 2009 WGMG meet-
ing (Section 10.2 in ICES, 2009). This discussion arose from a change in approach to 
setting ToRs that was tried for the 2009 WGMG, where the ToRs were developed 
intersessionally by the WGMG chair in consultation with benchmark and assessment 
Working Group chairs. Although the intention of the new approach was reasonable 
(ensuring the relevance of WGMG output to the direct requirements of forthcoming 
benchmark and assessment meetings), it was felt by WGMG at the time to have failed 
for several reasons: 

• there was considerably less buy-in from benchmark and assessment chairs 
than had been anticipated, with three out of the five individuals submit-
ting requests being themselves WGMG members; 

• the consultation process meant that ToRs were finalized only during 
summer immediately preceding the WGMG meeting in autumn, allowing 
a very short period for decisions to be made about attendance – this is 
problematic for institutions that plan their travel budgets at the start of the 
year, and it was clear from this experience (only 6 members attended, 1 
part-time) that a WGMG meeting without defined ToRs received a low 
priority for many who may have otherwise attended. 

The role of WGMG in 2010 was largely in support of preparations for WKADSAM, a 
workshop on reviews of recent advances in stock assessment models worldwide 
(ICES, 2010b) – this workshop effectively launched the ICES Strategic Initiative on 
Stock Assessment Methods (SISAM). The support given by WGMG to the workshop 
was by correspondence, so WGMG did not physically meet as a working group dur-
ing 2010. However, during the WKADSAM meeting, the members of WGMG present 
met informally to agree a set of ToRs for 2011, based on supporting the ICES SISAM, 
and on topics that needed further work, derived from an analysis of benchmark re-
ports presented to this WKADSAM meeting. The venue (Vigo) and length of meeting 
(10 days) was also agreed. In order to deal with the concern about ToRs being devel-
oped and released well in advance, these ToRs were agreed by SCICOM and released 
before the start of 2011. It was hoped that developing the ToRs in this manner would 
keep the interest of WGMG members and maintain relevance to ICES needs. 

In the event, only a small number of experienced members indicated they would 
attend the 2011 meeting after the release of the ToRs, and it was felt that it would be 
useful to reopen the discussion on the future direction of WGMG. An attempt was 
made, through e-mail circulation, to get feedback on the topic from members not 
involved with or attending the 2011 meeting in order to contribute ideas to the dis-
cussion to be held during the meeting, but only a single response was received prior 
to the meeting. Nevertheless, some time was spent during the 2011 meeting on this 
topic, and a summary of the discussion follows. 

Discussions during the meeting 

In order to attract a greater number of people to attend and contribute to the ToRs of 
the meeting, it was felt that a number of factors needed to be considered, including 
(not in order of priority): 
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• a re-assessment of the length of the meeting (many considered 10 days too 
long) 

• finding ways of improving attendance and ensuring participation of a 
critical mass of experts 

• better advertising of the existence of the group and its activities 
• enhancing the potential for publication 
• enhancing the potential for networking and collaboration 
• enhancing student participation to assist develop their expertise in the 

field 
• ToRs being made available well in advance of the meeting (at least at the 

beginning of the year) 
• the format of future meetings should address benefits to ICES as well as 

benefits to participants. 

In order to address benefits to ICES, it was felt that a stronger direction from bench-
mark and assessment WG chairs was needed in developing ToRs, but that these ToRs 
should not be addressing short-term quick-fixes to assessment problems (more ap-
propriate to benchmark meetings), but rather problems of methodology that may 
need a longer period of time to address, and quite possibly also be common across a 
number of WGs. This avoids the problem of ToRs being made available only shortly 
before a meeting. It was also felt that, along with developing ToRs, experts or particu-
lar groups of people should also be identified that would be able to work on these 
ToRs – in this way, the probability of WGMG being able to address its ToRs would be 
greatly enhanced. Both the identification of ToRs and the selection of groups to ad-
dress each of these could take place at the ICES WG Chairs meeting at the start of the 
year. 

In order to address benefits to participants, several ideas were put forward.  

• Fewer, more focused ToRs would encourage the participation of several 
people/groups of people working on the same ToR, but addressing it from 
different angles, fostering both collaboration and a cross-pollination of 
ideas. A particular problem during the meeting in 2011 was that, on the 
whole, the ToRs were addressed from a single viewpoint. In contrast one 
would want to see a greater fraction of the WG time spent in separate 
meetings with such smaller groups using the opportunity of meeting to-
gether to advance on their problem. 

• A “PhD day” that forms part of the meeting, where several students pre-
sent work that could help address the ToR, would liven up debate and 
benefit both the students and experts. A pre-circulation of abstracts would 
ensure that a close link to the ToRs is maintained, and their availability 
through a SharePoint site (along with contributions from other partici-
pants) would encourage collaboration.  

Methodological issues are not unique to ICES, and it was felt that ICES may benefit 
from collaboration with other groups within ICES and with other organizations. For 
example, it was suggested that: 

• WGMG could team up with WGSAM (the multispecies WG) as a means of 
pooling expertise through either back-to-back meetings (but this would not 
help with the length of the meeting for some people), or through meetings 
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held in parallel, but with some shared sessions. The idea of being closer to 
WGSAM was favoured by some WG members. 

• WGMG could team up with methods groups from other organizations 
(e.g. ICCAT has shown interest) and hold a joint meeting every second 
year dealing with shared problems, with interim years dealing only with 
ICES issues. 

• WGMG could attach itself to a major meeting every four years (such as the 
World Fisheries Congress) as a means to involve experts attending these 
meetings. For example, in addition to the MSE session at the WFC meeting 
in Edinburgh in 2012 being an opportunity to raise this idea, this discus-
sion could also look at linking other assessment methodology sessions 
held more regularly. 

Proposed way forward for 2012 

It may take some time to develop ToRs aligned to ICES needs and to identify groups 
to address each of these (e.g. through the ICES WG Chairs meeting at the start of 
2012), resulting in these ToRs being approved only well into 2012 and, hence, being 
too late for the 2012 WGMG meeting. It is therefore proposed that for the WGMG 
meeting in 2012, WGMG is more closely aligned to the ICES SISAM initiative. This 
would buy more time for the ToR for 2013 to be developed in a way that would better 
service the needs of ICES assessment Working Groups and Benchmark meetings (on 
methodological issues), allow groups of scientists to be targeted to work on these 
ToRs, and be planned in such a way as to attract the range of experts that could ad-
vance the field. Aligning WGMG with SISAM for 2012 would also help maintain the 
relevance of WGMG to ICES, and could act as a focal point for a strong ICES contri-
bution to the 2013 symposium. 

The following ToRs are therefore proposed for 2012: 

1 ) Assemble 10–12 datasets from ICES that characterize the breadth of life 
history strategy, data quality, population dynamics, and assessment prob-
lems. 

2 ) Prepare a publication (to be presented to the SISAM symposium), using 
these datasets, that explores providing guidelines on simulation testing of 
assessment models. 

3 ) In preparation for the SISAM symposium and building on WKADSAM, 
pre-test/challenge a selection of stock assessment models on the assembled 
datasets. 

4 ) Using these tests, and the newly developed model categorization scheme, 
highlight the weaknesses and strengths of the ICES approach and the cur-
rent portfolio of stock assessment models used by ICES. 

Proposed venue: IPIMAR, Lisbon, Portugal. 

Proposed dates: 5 days in the period 24 September – 12 October 2012 (e.g. 1–5 Octo-
ber). 

 

  



ICES WGMG REPORT 2011 |  71 

 

12 References 

Aarts, G., and Poos, J. J. 2009. Comprehensive discard reconstruction and abundance estima-
tion using flexible selectivity functions. ICES Journal of Marine Science, 66: 763–771. 

ADMB Project. 2009 AD Model Builder: automatic differentiation model builder. Developed by 
David Fournier and freely available from admb-project.org. 

Bousquet, N., Duchesne, T., and Rivest, L.-P. 2008. Redefining the maximum sustainable yield 
for the Schaefer population model including multiplicative environmental noise. J. Theor. 
Biol., 254: 65–75. 

Brodziak, J., and Legault, C. 2005. Model averaging to estimate rebuilding targets for over-
fished stocks. Canadian Journal of Fisheries and Aquatic Sciences, 62: 544–562. 

Casey, J. 1996. Estimating discards using selectivity data: the effects of including discard data 
in assessments of the demersal fisheries in the Irish Sea. Journal of Northwest Atlantic 
Fishery Science, 19: 91–102. 

Chen, Y., Xu, L., Chen, X., and Dai, X. 2007. A simulation study of impacts of at-sea discarding 
and bycatch on the estimation of biological reference points F0.1 and Fmax. Fisheries Re-
search, 85: 14–22. 

Dickey-Collas, M., Pastoors, M. A., and van Keeken, O. A. 2007. Precisely wrong or vaguely 
right: simulations of noisy discard data and trends in fishing effort being included in the 
stock assessment of North Sea plaice. ICES Journal of Marine Science, 64: 1641–1649. 

Fernández, C., Cerviño, S., Pérez, N., and Jardim, E. 2010. Stock assessment and projections 
incorporating discard estimates in some years: an application to the hake stock in ICES 
Divisions VIIIc and IXa. – ICES Journal of Marine Science, 67: 1185–1197.  

ICES. 2008a. Report of the Working Group on Methods of Fish Stock Assessment (WGMG). 
ICES Document CM 2008/RMC:03. 147 pp. 

ICES. 2008b. Report of the Study Group on Management Strategies (SGMAS), 17‐21 November 
2008, Lisbon, Portugal. ICES CM 2008/ACOM:24. 74 pp. 

ICES. 2009. Report of the Working Group on Methods of Fish Stock Assessment (WGMG), 20–
29 October 2009, Nantes, France. ICES CM 2009/RMC:12. 85 pp. 

ICES. 2010a. Report of the Workshop on Implementing the ICES Fmsy framework , 22‐26 
March 2010, Copenhagen, Denmark. ICES CM 2010/ACOM:54. 83 pp. 

ICES. 2010b. Report of the Workshop on Reviews of Recent Advances in Stock Assessment 
Models Worldwide: "Around the World in AD Models" (WKADSAM), 27 September - 1 
October 2010, Nantes, France. ICES CM 2010/SSGSUE:10. 122 pp. 

ICES. 2011. Report of the Workshop on Implementing the ICES Fmsy Framework (WKFRAME-
2), 10–14 January 2011, ICES, Denmark. ICES CM 2011/ACOM:33. 110 pp. 

Jardim, E., Cerviño, S., and Azevedo, M. 2010. Evaluating management strategies to implement 
the recovery plan for Iberian hake (Merluccius merluccius); the impact of censored catch in-
formation. ICES Journal of Marine Science, 67: 258–269. 

Maunder, M. M., Punt, A. E., 2004. Standardizing catch and effort data: a review of recent ap-
proaches. Fisheries Research, 74: 141–159. 

Method, R. D. 2005. Technical description of the stock synthesis II assessment program: Ver-
sion 1.17, 54p. 

Myers, R. A., and Cadigan, N. G. 1995. Statistical analysis of catch-at-age data with correlated 
errors. Can. J. Fish. Aquat. Sci., 52 (6): 1265–1273. 

Punt, A. E., Smith, D. C., Tuck, G. N., and Methot, R. D. 2006. Including discard data in fisher-
ies stock assessments: two case studies from south-eastern Australia. Fisheries Research, 
79: 239–250. 



72  | ICES WGMG REPORT 2011 

 

Shono, H. 2008a. Application of the Tweedie distribution to zero-catch data in CPUE analysis. 
Fisheries Research, 93: (1–2), 154–162. 

Shono, H. 2008b. Confidence interval estimation of CPUE year trend in delta-type two-step 
model. Fisheries Science, 74: (4), 712–717. 

Sissenwine, M. P., Shepherd, J. G. 1987. An Alternative Perspective on Recruitment Overfish-
ing and Biological Reference Points. Can. J. Fish. Aquat. Sci., 44: 913–918. 

Tweedie, M. C. K. 1984. An index which distinguishes between some important exponential 
families. In: Statistics: Applications and New Directions. Ed. By Ghosh, J. K., and Roy, J. 
Proceedings of the Indian Statistical Institute Golden Jubilee International Conference. In-
dian Statistical Institute, Calcutta, pp. 579–604. 

Venables, W. N., Dichmont, C. M., 2004. GLMs, GAMs and GLMMs: an overview of theory for 
applications in fisheries research. Fish. Res., 70 (2004): 319–227. 

Williams, E. H. 2002. The effects of unaccounted discards and misspecified natural mortality on 
harvest policies based on estimates of spawners per recruit. North American Journal of 
Fisheries Management, 22: 311–325. 



ICES WGMG REPORT 2011 |  73 

 

Annex 1: List of participants 

Name Address Telephone/Telefax E-mail 

Esther Abad Instituto Español de 
Oceanografía 
Centro Oceanográfico de 
Vigo 
Cabo Estai - Canido 
PO Box 1552 
36200 Vigo (Pontevedra)  
Spain 

+34 986 492 111 esther.abad@vi.ieo.es 

José De 
Oliveira 
Chair 

Centre for Environment, 
Fisheries and Aquaculture 
Science (Cefas) 
Lowestoft Laboratory 
Pakefield Road 
NR33 0HT Lowestoft Suffolk 
UK 

+44 1502 527727 
+44 1502 524 511 

jose.deoliveira@cefas.co.uk 

Timothy Earl Centre for Environment, 
Fisheries and Aquaculture 
Science (Cefas) 
Pakefield Road 
NR33 0HT Lowestoft Suffolk 
UK 

+44 (0) 1502 521303 
 

timothy.earl@cefas.co.uk 

Carmen 
Fernández 

Instituto Español de 
Oceanografía 
Centro Oceanográfico de 
Vigo 
Cabo Estai - Canido 
PO Box 1552 
36200 Vigo (Pontevedra)  
Spain 

+34 986 492111 
+34 986 498626 

carmen.fernandez@vi.ieo.es 

Pavel 
Gasyukov 

AtlantNIRO 
5 Dmitry Donskogo Street 
RU-236000 Kaliningrad  
Russian Federation 

+7 4012 225 257 
+7 4012 219 997 

pg@atlant.baltnet.ru 

Monica 
Mandado 

Instituto de Investigaciones 
Marinas - CSIC 
Eduardo Cabello 6 
ES-36208 Vigo (Pontevedra)  
Spain 

+34 986 231930 mandado@iim.csic.es 

Andrey 
Mikhailov 

Russian Federal Research 
Institute of Fisheries & 
Oceanography (VNIRO) 
17 Verkhne Krasnoselskaya 
107140 Moscow  
Russian Federation 

+7 849926459091 
+7 84992649078 

mikhailov1984@gmail.com 

Lionel 
Pawlowski 

Ifremer 
Lorient Station 
8, rue François Toullec 
56100 Lorient  
France 

+33 2 97 87 38 46 
+33 2 97 87 38 36 

lionel.pawlowski@ifremer.fr 



74  | ICES WGMG REPORT 2011 

 

Name Address Telephone/Telefax E-mail 

Paz Sampedro Instituto Español de 
Oceanografía 
Centro Oceanográfico de A 
Coruña 
Paseo Marítimo Francisco 
Vázquez, 1 
15001 A Coruña  
Spain 

+34 981 218253 paz.sampedro@co.ieo.es 

Antonio 
Vázquez 

Instituto de Investigaciones 
Marinas - CSIC 
Eduardo Cabello 6 
E-36208 Vigo  
Spain 

+34 986 231930  avazquez@iim.csic.es 

Attending Working Group Meeting as Part-time Participant 

David Miller Wageningen IMARES 
PO Box 68 
1970 AB Ĳmuiden  
Netherlands 

 david.miller@wur.nl 

Doug 
Butterworth 

University of Cape Town 
Dept of Mathematics & 
Applied Mathematics 
7701 Rondebosch  
South Africa 

21 650 2343 doug.butterworth@uct.ac.za 

Helena F. 
Geromont 

University of Cape Town 
Dept of Mathematics & 
Applied Mathematics 
7701 Rondebosch  
South Africa 

+27 21 650 3191 
+27 21 650 2334 

Helena.Geromont@uct.ac.za 

Samuel 
Subbey 

Institute of Marine Research 
Nordnes 
PO Box 1870 
5817 Bergen  
Norway 

+47 5523 5383 
+47 5523 8687 

samuel.subbey@imr.no 

Yuri A. 
Kovalev 

Knipovich Polar Research 
Institute of Marine Fisheries 
and Oceanography(PINRO) 
6 Knipovitch Street 
183763 Murmansk  
Russian Federation 

+7 8152 472 469 
+7 8152 473 331 

kovalev@pinro.ru 

Working by correspondence attending by WebEx/Skype  

Noel Cadigan Fisheries and Oceans Canada 
Northwest Atlantic Fisheries 
Center 
80 East White Hills Road 
PO Box 5667 
A1C 5X1 St John's NL 
Canada 

+1 709 772 5028 
+1 709 772 4188 

noel.cadigan@dfo-
mpo.gc.ca 

Anders 
Nielsen 

DTU-Aqua 
Jægersborg Allé 1  
2920 Charlottenlund  
Denmark 

+45 35 88 33 00  an@aqua.dtu.dk 

 

 



ICES WGMG REPORT 2011 |  75 

 

Annex 2: Agenda 

Monday 10th October: 

10:00  Welcome and introductions 
Brief introduction to Southern horse mackerel data (Gersom Costas) 
Presentation 1: ToR 1a – Timothy Earl (rap: Andrey Mihailov) 

11:00 Coffee 

11:00–13:00: No plenary 

13:00–14:00: Lunch 

14:00 Presentation 2: ToR 1b – Antonio Vázquez (rap: Monica Mandado) 
Presentation 3: ToR 1b –Pavel Gasyukov (rap: Timothy Earl) 

15:30–17:30: No plenary 

15:45 Coffee 

Tuesday 11th October: 

09:00 Presentation 4: ToR 1c – Paz Sampedro (rap: Lionel Pawlowski) 
Presentation 5: ToR 1c – Carmen Fernández (rap: Yuri Kovalev) 

10:30–13:00: No plenary 

10:45 Coffee 

13:00–14:00: Lunch 

14:00 Presentation 9: ToR 2 – Lionel Pawlowski (rap: Paz Sampedro) 

15:00–17:30: No plenary 

15:45: Coffee 

Wednesday 12th October: 

09:00 Presentation 7: ToR 1e (ECOKNOWS) – Samu Mäntyniemi (rap: Carmen 
Fernández) 
Other possible presentations under ToR 1e (to be confirmed) 

10:30–13:00: No plenary 

10:45 Coffee 

13:00–14:00: Lunch 

14:00 Presentation 6a&b: ToR 1d, 3 – Noel Cadigan (rap: Samuel Subbey) 
Presentation 8: ToR 2 – Pavel Gasyukov (rap: Antonio Vázquez) 

15:30–17:30: No plenary 

15:45 Coffee 

 

Thursday 13th October: 

09:00 Presentation 10: ToR 1c – Anders Nielsen (rap: Helena Geromont) 

10:00–13:00: No plenary 



76  | ICES WGMG REPORT 2011 

 

10:45 Coffee 

13:00–14:00: Lunch 

14:00–16:00: No plenary 

15:45 Coffee 

16:00 Presentation 12: ToR 4 – Doug Butterworth/Carmen Fernández (rap: José 
De Oliveira) 
Presentation 11: ToR 1c – Helena Geromont/Doug Butterworth (rap: David 
Miller) 

Evening: Group Dinner 

Friday 14th October: 

09:00 Finish off discussions on Presentation 11 
Finish off discussions on Presentation 12 
ToR 1e – discussion led by David Miller 

10:45 Coffee 

13:00–14:00: Lunch 

14:30 Presentation by Noel Cadigan (rap: Timothy Earl) 
Finish off discussion on Presentation 8 

15:45 Coffee 

Saturday 15th October: 

09:00 Discussion of Recommendations so far 
Discussion of future direction of WGMG 

10:45 Coffee 

12:00 No plenary for remainder of day. 

Sunday 16th October: 

Free Day (optional outing to Cangas and walk, or Cies) 

 

Monday 17th – Wednesday 19th October: 

Consists of: follow-up presentations, work on report, and discussion of recommenda-
tions and suggested ToR for 2012. 
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Annex 3: WGMG terms of reference for the next meeting 

The Working Group on Methods of Fish Stock Assessments (WGMG) chaired by 
José De Oliveira, UK, will meet in Lisbon, Portugal, 1–5 October 2012 to: 

a ) Assemble 10–12 datasets from ICES that characterize the breadth of life 
history strategy, data quality, population dynamics, and assessment prob-
lems. 

b ) Prepare a publication (to be presented to the SISAM symposium), using 
these datasets, that explores providing guidelines on simulation testing of 
assessment models. 

c ) In preparation for the SISAM symposium and building on WKADSAM, 
pre-test/challenge a selection of stock assessment models on the assembled 
datasets. 

d ) Using these tests, and the newly developed model categorization scheme, 
highlight the strengths and weaknesses of the ICES approach and the cur-
rent portfolio of stock assessment models used by ICES. 

WGMG will report by 1 December 2012 (via SSGSUE) for the attention of the SCI-
COM. 

Supporting information 

Priority The work of this group is essential to ICES to progress in the development 
of methods for fish stock assessment and advice. 

Scientific justification The overarching plan of WGMG is to improve service to the needs of ICES 
assessment Working Groups and Benchmark meetings (on methodological 
issues), identifying groups of scientists to work on the ToRs and to plan it 
in such a way as to attract the range of experts that could advance the 
field. It may take some time to develop ToRs aligned to ICES needs and to 
identify groups of scientists to address each of these (e.g. through the ICES 
WG Chairs meeting at the start of 2012), resulting in these ToRs being 
approved only well into 2012 and, hence, being too late for the 2012 
WGMG meeting. It is therefore proposed that the focus of the WGMG 
meeting in 2012 is more closely aligned to the ICES SISAM initiative. This 
would buy more time for the ToRs for 2013 to be developed along the lines 
mentioned at the beginning of this paragraph. 
The ICES SISAM initiative and associated symposium planned for 2013 
are important drivers for advancing the incorporation of relevant 
develpoments in stock assessment methods into the ICES advisory system 
so as to ensure ICES scientists can apply the best methods when 
developing management advice, and can make better use of available 
resources. Aligning WGMG with SISAM for 2012 would help enhance the 
relevance of WGMG to ICES, and could act as a focal point for a strong 
ICES contribution to the 2013 symposium. 
WGMG help with the selection of 10–12 datasets (ToR 1), representative of 
a wide range of situations, is considered a key contribution to the SISAM 
initiative in order to facilitate comparison studies during the 2013 SISAM 
symposium workshops. The aim is to apply different models and 
techniques to the same dats sets in order to try to understand the 
properties and consequences of applying different methodologies and to 
get a sense for what might be considered as best practice. These datasets 
should cover a range of features: data rich vs. data poor, landings vs. 
discard uncertainty, short- vs. long-lived species, low vs. high recruitment 
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variability, etc. 
Another important aspect of the SISAM initiative is the simulation testing 
of assessment models, and ToR 2 aims to develop guidelines, through the 
preparation of a publication, on how such simulation analyses should best 
be conducted. This could be done based on generated datasets. However, 
the approach here would not be to repeat the blind-testing of assessment 
models performed in the past (e.g. NRC study 1998, WGMG 2004); rather 
the approach would be to condition simulation studies on the actual data 
for the stocks under consideration. 
ToR 3 looks both to coordinating a strong ICES contribution to the SISAM 
symposium by pre-testing a selection of models, and to use the experience 
to provide feedback to the SISAM steering group that could be used to 
improve planning for the 2013 symposium workshops. 
Based on these tests and using the model categorization scheme, ToR 4 
aims to highlight the strengths and weaknesses of approaches and models 
currently used by ICES. 

Resource requirements None. 

Participants Research scientists involved in stock assessment methods from the ICES 
area and elsewhere in the world. 

Secretariat facilities None, other than formatting and publishing of the final report. 

Financial None. 

Linkages to advisory 
committees 

ACOM has strongly supported the work of this group. WGMG will report 
to ACOM in 2012. 

Linkages to other 
committees or groups 

WGMG will report to SCICOM in 2012. WGMG involved with the ICES 
Strategic Initiative on Stock Assessment Methods (SISAM). 

Linkages to other 
organizations 

NAFO, ICCAT. 
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Annex 4: Recommendations 

Recommendation Adressed to 

1. It is recommended that showing outputs from data pre-
screening techniques that proved informative should be a 
standard requirement in ICES stock assessment reports 

ICES Assessment WGs 

2. It is recommended that estimates of survey sampling variance 
always be calculated. Where appropriate, the inverse of survey 
estimates of sampling variance should be incorporated as a 
maximum weighting for corresponding survey data points. 

WGISDAA, WGIPS, 
WKTSBLUES, WGISUR, 
SGNEPS, WGBIFS, IBTSWG, 
WKMSPA, WGMEGS, 
WGBEAM, WGNEACS, ICES 
Assessment WGs 

3. Consider using AIC in a frequentist or DIC in a Bayesian 
setting, for example, to guard against over-parameterization. 
Take care however to consider whether the data concerned are 
independent, as these approaches assume. 

ICES Assessment WGs 

4. When introducing random effects terms, the statistical 
properties assumed should be checked to the extent possible, e.g. 
when appropriate through a runs test to check for randomness. 

ICES Assessment WGs 

5. It is recommended that the approach used to evaluate simple 
management procedures, described in Annex 5, WD 7 be 
developed further as a possible framework for investigating the 
value of information. 

ACOM 
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Annex 5: Working Documents 

Working Document 1 

Data Screening Techniques Prior to the Selection of Stock Assessment Models 

T. Earl, J. De Oliveira and C. Darby 

 

To analyse the variety of relevant plots currently in use, a number of the most recent 
reports from ICES working groups1 were checked for data screening plots and a se-
lection of these are shown in this document. To include plots from institutions out-
side ICES, the most recent NOAA GARM report, WCPCF skipjack tuna and ICCAT 
reports were also examined. 

The emphasis of this search was primarily concerned with catch-at-age and length, 
and survey at age data, but some illustrations of spatial data are also shown in the 
final section. 

The majority of data screening plots are motivated by addressing a particular ques-
tion or concern about the stock, whereas the ToR is to investigate plots that may be 
illuminating for a variety of stocks. Some general points that it may be important to 
display in a plot across a wide range of stocks are: 

1 ) Is the level of catch consistent with expectations based on previous years 
or management plans? 

2 ) What is the age structure of the catch; does this change over time? 
3 ) What do the indices indicate about changes in the stock level and structure 

over time? 
4 ) Is each index showing consistent trends across the age-range? 
5 ) If there is more than one index, are the indices showing consistent trends? 
6 ) Do the survey areas reflect the present location of the stock and fishing ef-

fort appropriately? 
7 ) What effect would the new data be expected to have on the assessment? 

Catch 

The simplest displays of catch are time-series of landings/catches by weight or num-
bers such as Figure 1, showing catch numbers by year, with the mean catch and se-
lected percentiles added. Variations on this plot include using stacked bars to 
indicate catches from different regions, different gears or different landing countries, 
such as Figure 2. This plot also shows how the catches compare to the TAC for each 
year.  

Typically, catch data are available as a catch-at-age matrix, and Figures 3, 4 and 5 
illustrate ways of displaying this. Figure 3 shows bar charts of the age distribution 
each year, with a common x- and y-scale across years to aid comparison. Figure 4 
shows the catch-at-age data as a bubble plot. This has the advantage compared to the 
previous plot of allowing individual cohorts to be clearly seen (as diagonal lines), but 

                                                           
1 AFWG, HAWG, WGEAWESS, WGIAB, WGWIDE, WKBALTEEL, WKBENCH, 
WKCOD, WKDEEP, WKFLABA, WKFLAT, WKWIDE 



ICES WGMG REPORT 2011 |  81 

 

this type of plot needs to make clear whether catch is related to area or diameter of 
the bubble. Figure 5 shows a variation on Figure 4, with the bubbles indicating pro-
portion of the catch in that year at each age, while the bars along the top indicate the 
size of the total catch, broken down by landing country. An advantage of separating 
the data in this way is that it reflects the different steps in compiling catch-at-age 
data, i.e. landings weight is based on all fish landed, whereas the age distribution is 
only based on a sample of landings. 

Figure 6 shows a series of boxplots showing the catches at different ages, compiled 
from a number of years. This gives the impression of the age structure of the catch 
without showing any temporal trends. The averaging over a number of years may 
help remove cohort effects, but may also be hiding information about gear selectivity 
changing. 

Figure 7 shows the proportions of catch by gear over time, which may be more useful 
than absolute catches in cases where the magnitude of catch changes so much that it 
would be hard to see the composition of the catch in years where the total catch is 
small. 

In general, catch at length data are used less frequently in ICES assessments, but 
where this is used bar charts of length classes can be plotted in the same way as age 
classes. Bubble plots are less applicable to this type of data, because cohorts are not 
clearly displayed. 

The only single figure that displays both the age structure and total landings is Figure 
5, which would make it a good candidate for including in catch data screening. It 
could be further enhanced by adding the TAC set for each year in a similar manner to 
Figure 2 to indicate the relationship between TAC and landings. 

Catch at length 

Many ICES assessments are based on catch-at-age data, but Figure 8 shows an exam-
ple of cpue at length data from outside ICES. Using an age–length relationship, an 
individual cohort has been highlighted in red, and other cohorts have been added in 
grey. It isn’t clear from the plots whether one should refer to the point where the red 
line crosses the x-axis on each plot, or to the point where it touches the histogram, or 
some other point. The use of the same scale in each subplot makes it easy to spot the 
decrease in cpue in the last year, but makes it harder to see the age structure in the 
years with largest and smallest numbers. 

Figure 9 combines a length and age distribution for the current year, although the 
legend and scale on the length distribution are unclear, the overall distribution is 
clear 

Catch data Frequency 

Figure 10 gives an indication of the amount of length data from a variety of sources 
that are used in an assessment. A similar plot for age based data could show number 
of individual aged. The maximum for each fleet is shown on the right hand side (pos-
sibly this could also be a horizontal bar chart), and within each fleet the number of 
samples taken relative to the maximum year for that fleet is shown as a bar chart. 
This gives a clear visualization of the source of length measurements, but may not be 
useful unless compared to the relative catch contribution of each fleet. 
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Figure 1. Catch numbers per year (WKBENCH 2011). Summary statistics (0, 25, 50, 75, 100%iles 
and mean) refer to 1973–2004, i.e. disregarding the initial 4 years, and last year. 
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Figure 2. Catch tonnage, including TAC (from HAWG 2011). 

 

Figure 3. Catch numbers by age for a selection of years (from WKBENCH 2011). 
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Figure 4. Catch-at-age data with area proportional to catch size. Note age 11 is a plus group 
(WGWIDE 2010). 
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Figure 5. Catch data by landing country, and relative proportions at age. Dotted line indicates 
change in aging method. From Richards (2007). 

 

Figure 6. Boxplot of catch-at-age (from WKBENCH 2011). 
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Figure 7. Proportion of landings from different gear (WKBENCH 2011). 

 

Figure 8. Survey catch at length highlighting a particular cohort (NOAA GARM review). 
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Figure 9. Combining age and length distributions (WGWIDE 2010). 

 

Figure 10. Numbers of length measurements by fishery. Horizontal lines indicate the period of 
operation of fishery. Each row is proportional to the maximum in that fishery, shown on the right 
axis (WCPCF skipjack Tuna 2008). 
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Cpue and surveys 

Cpue and survey data can be plotted in exactly the same ways as any other catch 
data, but there are additional plots that may be useful in examining the data for in-
ternal/between survey consistency. 

Figure 11 is an extension of the plots of catch, such as Figure 1, to include error bars. 
Considering the level of error in indices or catch could inform the choice of assess-
ment methodology. 

To show age composition, Figure 12 shows each age of the survey as a line, normal-
ized so that it has mean zero and unit standard deviation. On the left hand plot, the x-
axis represents years, so that year effects can be seen by consistent patterns in all 
ages. On the right hand plot, the x-axis represents cohorts, so that cohort effects cause 
consistently low/high values across each of the lines. This same normalization can be 
applied to bubble plots to show both age and cohort effects in a single plot. 

To check between year consistencies in the survey, CPUE at an age in each year can 
be compared to the cpue of the same cohort in the following year. An example of this 
is in Figure 13. Possible extensions of this are shown in Figures 14–17 (where the cpue 
values are logged). In Figure 14 and Figure 15, cpue at each age is plotted against 
cpue at each other age in that cohort. Although Figure 15 contains twice as many 
plots as Figure 14, it contains no additional information, as the plots below the di-
agonal are repeats (transposed) of those above the diagonal. An alternative use for 
the below-diagonal space is to display the R2 values of the correlation, as shown in 
Figure 16. Figure 17 adds confidence intervals to the correlation between ages, to give 
an indication of whether the linear trend is statistically significant. Figure 18 shows 
the consistency between two surveys, effectively treating the Q1 and Q3 survey as a 
single survey. The time period was split into two periods to address concerns about 
whether the relative catchability of the two surveys had changed over time. 

To examine the structure of each survey, it could initially be plotted in the same way 
as catch is in Figure 5. Testing for consistent signals across ages from a survey could 
be done using a plot such as Figure 17. This could also be extended to compare sur-
veys in the case of semi-annual surveys covering the same age ranges, in other cases 
it would be more difficult to compare the signals from the surveys at the data prepa-
ration stage, and this may be done by using diagnostics from the assessment. 
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Figure 11. Cpue with error bars from WKDEEP 2010. 

 

Figure 12. Log mean standardized cpue by year (left) and cohort (right), from WKFLAT 2011. 
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Figure 13. Correlation of consecutive ages in cohort, from WKBENCH 2011. 
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Figure 14. All age correlation of survey index (from WKFLABA). 
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Figure 15. Cpue internal consistency, from WKFLAT 2011. 
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Figure 16. Internal survey consistency with r2 values (HAWG 2011). 

 

 

Figure 17. Internal consistency of survey data, with confidence intervals (from WKFLAT 2011). 
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Figure 18. Consistency between Q1 and Q3 surveys. Diamonds indicate most recent years. From 
WKCOD 2011. 
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Comparing survey and catch 

Figure 19 compares the proportions at age in the catch and the survey, and shows 
how this changes over time. In most years, the proportion at age 1 is smaller in the 
catch than the survey, so years where this is not the case, such as 1996 may indicate 
low recruitment. 

Another way to combine survey and catch data are shown in Figure 20, which shows 
catch (split into landings and discards) on the left axis, and survey index on the right 
axis (including a rolling average). This presents a good overview of the stock evolu-
tion over time, but does not display age structure information. 

 

Figure 19. Difference between proportion at age in the catch and in the survey (from WKBENCH 
2011). 
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Figure 20. Combining catch and survey time-series (NOAA GARM 2011). 
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Catch curves and catch ratios 

Catch curves plot the ratio of log cpue (or catch) for consecutive years (or other peri-
ods) in the same cohort, so that the gradient gives a proxy for total mortality z (for 
ages that are fully recruited to the catch). Figure 21 shows catch curves from a combi-
nation of two surveys at six-monthly intervals. The most recent years are coloured 
differently to highlight that they have a shallower slope, and hence lower mortality 
than the earlier part of the time-series. An equivalent plot is shown in Figure 22, ex-
cept that the cohorts have been separated horizontally. The second part of this plot 
shows the average gradient of each cohort, giving an indication of the trends in total 
mortality. Careful thought needs to be given to the age range over which the gradient 
is calculated, so that it represents the fully selected ages as far as is known, so that the 
strength of individual cohorts does not add variability to the gradient. 

Figure 23 shows catch curves based on landings rather than cpue, with each cohort 
shown in a separate plot. The shading in the background of the plot has an angle 
corresponding to z=0.4, but is hard to see as the lines are very fine. Figure 24 shows 
the equivalent of the right hand plot from Figure 22, i.e. the gradient of the catch 
curves, as a bold line. The plot also shows the equivalent gradient for each pair of 
consecutive years. 

 

 

Figure 21. Catch curves by cohort from Survey data (WKCOD 2011). 
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Figure 22. Catch curves and average gradient across cohorts from WKFLAT 2011. 

 

Figure 23. Catch curves for individual cohorts. Diagonal shading indicates Z=0.4 (WKBENCH 
2011). 



ICES WGMG REPORT 2011 |  99 

 

 

Figure 24. Log catch ratios. Black line indicates average of ages 5–10 (WKBENCH 2011). 
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Spatial distribution 

Spatial data are probably not as widely used as total catch-at-age data, but may be 
important to address specific issues, such as stock migration. The most basic ap-
proach to spatial data are to display catches by landing country or port, such as 
shown in Figure 25. This sort of data could equally well be displayed as a bar chart 
without the potential confusion over bubble plot scales mentioned earlier. 

The remaining plots in this section cover the locations of catches rather than landing. 
Figure 26 shows a matrix of maps, one for each combination of age and year. The 
scale shows the square root of abundance to make it easier to perceive differences at 
low abundances than would be the case on a linear scale. 

Figure 27 shows total catches spatially, using bubbles instead of colours. The key 
clearly indicates how the size of bubbles relates to the catch weight. An extension of 
this, shown in Figure 28, is to turn the bubbles into pie charts, in this case indicating 
the type of gear used. 

 

 

Figure 25. Geographic Distribution of Landings from WKBALTEEL 2010. 
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Figure 26. Survey results by age (columns) and year (rows). Plotted values are square root of sur-
vey abundance. From WKBENCH 2011. 

 

 

Figure 27. Geographic distribution of Mackerel Catches from WGWIDE 2010 (quarter 1). 
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Figure 28. Spatial distribution of catches broken down by gear type (WCPCF skipjack Tuna 2008). 

References  

Richards, L. J., Schnute, J. T., and Olsen N. 1997. Visualizing catch-age analysis: a case study. 
Can. J. Fish. Aquat. Sci., 54: 1646–1658. 

 

Skipjack Tuna: 

http://www.wcpfc.int/system/files/stock-assessment-specialist-working-group-
working-papers/SA-WP-4%20%5BSKJ%20Assessment%5D.pdf 

 

  

http://www.wcpfc.int/system/files/stock-assessment-specialist-working-group-working-papers/SA-WP-4%20%5BSKJ%20Assessment%5D.pdf
http://www.wcpfc.int/system/files/stock-assessment-specialist-working-group-working-papers/SA-WP-4%20%5BSKJ%20Assessment%5D.pdf
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Working Document 2 

New runs on Retrospective indices as a measure of input data random error in fish 
stock assessment. 
 

Antonio Vázquez and Mónica Mandado 
Instituto de Investigaciones Marinas, Vigo, Spain 

 

Introduction 

During presentation of the work on retrospective indices by Monte Carlo simulation, 
it was questioned the determining effect of input variability type on the results and 
conclusions. The original simulation was carried out assuming Normal dispersion for 
Partial Recruitment (PR) and lognormal dispersion for catch-at-age data (CA) as well 
survey indices at age (SI; Vázquez and Mandado, 2010). In order to give an explana-
tion to that question, new runs were done assuming Normal dispersion for PR, CA 
and SI. 

One of the objectives of the work is to identify some indices that could be used to 
measure disagreement in retrospective analysis. The desirable properties of a good 
retrospective index, to be useful as indicator of problems in the input data or in the 
whole analysis, are: 

1 ) It should be zero when input data inaccuracy and VPA model disagree-
ment are both null. 

2 ) It should be a positive magnitude. 
3 ) It should increase when input data inaccuracy increased and when VPA 

model disagreement also increased, preferably with a linear relationship. 
4 ) It should have the lowest dispersion for a given error of input data. 
5 ) It should be correlated with some inaccuracy index. 

The first condition was satisfied by all tested indices. It was checked systematically as 
a way to verify the routines.  

The second condition was introduced because the sign of output is irrelevant when 
the effects of random variability were only tested. This condition eliminates ρ indices 
(arithmetic mean deviation) from further consideration, even they remain a useful 
tool to detect retrospective patterns. 

Even the ρ indices are considered inappropriate for these analyses, question was rise 
on the reason why it resulted in a positive mean. It was proposed that it was due to 
the lognormal dispersion used in the simulation. The implications of the lognormal 
assumption in the whole analysis is considered here and compared with results 
based on an alternative Normal dispersion assumption. 

Methods 

Random distribution generators were review: 

The Normal distribution generator was the Marsaglia-Bray algorithm (Marsaglia and 
Bray 1964) modified by Shonkwiler and Mendivil (2009).  

N(0, 1) = {v1 * sqrt (– 2.0 * log(S) / S)} 
S = v12 + v22                     (with the condition: S<1) 
v1 = rand() * 2.0 – 1.0       (rand() = Uniform [0, 1]) 
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v2 = rand() * 2.0 – 1.0 
So:   {x} = N(0, 1)   =>  {x*sd + m} = N(m, sd) 

The lognormal distribution is produced from a Normal one: 

Let it be: {x} = N(0, σ) 
Then {EXP(x)} = logN(median=1, s),    s2 ~ EXP(σ2) – 1 

{m EXP(x)} = logN(median=m, sd=m·s)     
sd2 ~ m2 [EXP(σ2) – 1]  
σ2 ~ ln(1 + sd2/m2) 

So: {x} = N(0, σ2=ln(1+sd2/m2)) => {m·EXP(x)} ~ logN(median=m, sd) 

These random Uniform, random Normal, and random lognormal generators were 
checked, and then used to produce partial recruitment, catch-at-age and survey indi-
ces at age with the following standard deviations:  

 

MAIN SOURCE OF 
VARIABILITY 

CONDITIONING CONSTANTS AND SD USED 
sdPR sdCA sdSI 

Partial recruitment 0.0001, 0.1, 0.2, 0.5, 1.0 0.2 0.3 
Catch-at-age 0.2 0.0001, 0.1, 0.2, 0.5, 1.0 0.3 
Survey indices at age 0.2 0.2 0.0001, 0.1, 0.2, 0.5, 1.0 

Same sd in each constant 0.0001, 0.1, 0.2, 0.5, 1.0 same as sdPR same as sdPR 

 

Catches-at-age and survey indices at age generated under this conditions were VPA 
input data for analyse. Each trial run contained 1000 iterations, with one randomly 
generated input dataset each, being independently analysed with two ADAPT for-
mulations and XSA. Retrospective indices and inaccuracy indices (bias indices in the 
original paper) were calculated from results in each of three analyses.  

Results 

Only results from the above table under “Same sd in each constant” were presented 
in Figures 1 and 2 for illustrating purposes. Each one of the five standard deviation 
test values was applied simultaneously to the three sources of variability in that case. 
These figures show mean retrospective indices calculated with the standard devia-
tions pointed out in the above. Figure 1 was done as the original paper: Normal dis-
persion for PR and lognormal dispersion for catch-at-age data and survey indices at 
age. Figure 2 was done assuming Normal dispersion in all cases. These two figures 
are presented to illustrate the common facts observed in all results, which are: 

• Indices based on ADAPT with 9 or 10 parameters are quite similar, and 
behave as expected, increasing with higher dispersion of input data. 

• Indices based on XSA do not start at (0,0) because shrinkage on final year 
and oldest age survivor were set, and it implies some disagreement in the 
VPA model. It could be avoided, but it was maintained to illustrate that 
source of inaccuracy which is not quantified. 

• No substantial differences were observed in retrospective indices behav-
iour if they were produced with lognormal or Normal dispersion of input 
data. This was one of the points to analyse in this working paper. 

Figures 3 and 4 shows mean inaccuracy indices corresponding to Figures 1 and 2 
respectively. 

• Only ρ inaccuracy indices are affected by the kind of dispersion in input 
data. Mean ρ indices became below zero, particularly with high dispersion. 
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• Mean σ and π inaccuracy indices seems to have quite similar behaviour 
between figures, indicating they are not dependent of the dispersion type 
for input data. This was another main point to analyse in this paper. 

Figure 5 is based on σ1 retrospective index vs σSSB3* inaccuracy index individual 
values, instead of using means values as in previous figures. This figure is the key in 
establishing a relationship between both indices. Distribution of points is quite simi-
lar in both cases, which confirm its independence from the dispersion type for input 
data.  

Points of Figure 5 proceed from the ADAPT with 9 parameters. An analysis is still 
missing on the dependence of this relationship from the VPA method used. As it was 
observed in Figures 1 to 4, ADAPT and XSA do not produce the same retrospective 
and inaccuracy indices. 

Discussion 

The results indicate the minor effect of the type of variability on input data, being 
Normal or lognormal dispersed. The whole VPA analysis behaves as a complex black 
box, where variability of input signal has minor effects on the type of variability of 
outputs. 

Even the meaning of σ1 and σSSB3* indices is not explained here, but only in the 
original document, they are only selected to illustrate the possibility of using a retro-
spective index (σ1) as indicator of inaccuracy (σSSB3*). This selected pair of indices 
requires further review to identify the more efficient one. 
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Figure 1. Retrospective indices under Normal dispersion for PR and lognormal dispersion for 
catch-at-age data and survey indices at age.  
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Figure 2. Retrospective indices under Normal dispersion for the three sources of variability: PR, 
catch-at-age data and survey indices at age. 
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Figure 3. Inaccuracy indices under Normal dispersion for PR and lognormal dispersion for catch-
at-age data and survey indices at age. Same data as in Figure 1. 
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Figure 4. Inaccuracy indices under Normal dispersion for the three sources of variability: PR, 
catch-at-age data and survey indices at age. Same data as in Figure 2. 
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Figure 5. Plot relationship between σ1 retrospective and σSSB3* inaccuracy indices calculated 
with all cited sources of variability, using the ADAPT with 9 parameters. The upper figure was 
based on lognormal deviations. The lower figure was based on Normal deviations. 
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Working Document 3 

Some reasons generated the retrospective bias in the stock assessment models 

Pavel Gasyukov and Svetlana Kasatkina 

At present the Extended Survival Analysis (XSA), developed by Shepherd (1999) is 
the principle method of commercial fish stocks assessment in the Baltic Sea. Abun-
dance indices by years and age groups represent the most important input data for 
this method. However, the objective function of the “classic” XSA version considera-
bly differs from the function used in ICES software and applied by ICES working 
groups in the Baltic commercial fish stocks assessment (Darby, Flatman, 1994). The 
difference is in that in ICES software the variance of abundance indices, as the indica-
tion of these indices accuracy is assumed to be a constant value by years for each age 
group.  

This assumption is not based on any real estimates, but is stipulated by the difficul-
ties in assessment of variance being the function of several influencing factors associ-
ated with the surveys.  

In the recent years, the methods of simulation for determination of abundance indices 
statistical characteristics (mean values, variances, standard errors, variation coeffi-
cients  and confidential intervals) obtained on the basis of data from the Baltic inter-
national surveys have been developed at AtlantNIRO (Kasatkina, Gasyukov, 2006). 
These methods allowed to verify practically the assumption adopted in ICES soft-
ware for XSA implementation that abundance indices dispersion is a constant value 
by years in each age group. 

The method of statistical characteristics assessment for sprat and herring biomass and 
abundance indices obtained from the Baltic International Acoustic Surveys (BIAS) 
data were developed on the basis of simulation using the Monte Carlo method (Ka-
satkina, Gasyukov, 2006, 2009).  

The spatial variability of the acoustic index NASC (m2/n.mile2), the spatial variability 
of fish species composition and length structure in the study area and uncertainty of 
the target strength estimates were considered to constitute the basic sources of uncer-
tainty in BIAS surveys. The4 developed simulation model allows to estimate contri-
bution of each uncertainty source and their total effect. The effect of each uncertainty 
source was simulated using the bootstrap procedure (Efron, 1988; Efron, Tibshirani 
1993): the parametric bootstrap was used in the target strength simulation; the boot-
strap with application of empiric distribution functions was used in simulation of 
variability of the acoustic index NASC, species composition and length structure of 
fish.  

Using the developed simulation method, the statistical characteristics of fish abun-
dance indices were estimated on the basis of BIAS 2004–2006 data, obtained by sur-
veys participants (Poland, Germany, Latvia, Lithuania, Sweden, Estonia and Russia). 
The input data for simulating included the following: 

• Regression equation of the target strength accompanied with statistical 
characteristics of its parameters;  

• NASC estimates (m2/n.mile2); 
• Length frequencies of all fish species, recalculated by the total catch, for 

each trawl station;  
• Age keys for herring and sprat; 
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• Number of replications in simulation (500 replications).  

Some statistics of fish abundance indices are presented on Figure 1. 

 

 

 

  

Figure 1. Coefficients of Variation from BIAS surveys 2004–2006 as example. Estimates of herring 
and sprat abundance and total fish abundance obtained within each stratum (21–32 strata) by 
some countries have different accuracy.  

It was also revealed that abundance indices are characterized by variances which 
dependent on value of abundance indices themselves, therefore variance is not con-
stant value by years for each age groups. 
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Figure 2. Relationship between logarithm of the abundance index standard deviation and loga-
rithm of the mean abundance index 

 

The relationship between abundance indices variance and indices value likely reflects 
the pattern of the Baltic Clupeids spatial distribution. Therefore, it seems that the stock 
assessment model accounting for variability of abundance indices variance will describe 
the Baltic fish dynamics more realistically. 

The task of accounting for accuracy of fish abundance indices in stock assessment 
was solved by the way of elaboration of a new XSA version. The following regression 
equation is one of the principle equations in XSA. 

 

),(,),,(
,

ayVPAfafay
faNqI γ⋅=′  (1) 

 

where ),,( fayI ′  - abundance index in the year y for the age group a, and fishing fleet f, 

recalculated to the year beginning; 

        ),( ayVPAN  -  abundance estimate obtained with VPA, 

         faq , –   catchability coefficient, fa,γ -  exponent. 

 

Indeed the application of equation (1) in XSA gives rise to the idea of the constant 
variance of abundance indices by years, since this equation assumes that all parame-
ters in the left part of the equation are independent and similarly distributed random 
values. This equation (1) is transformed into the regression equation for the young 
age groups, including recruitment:  
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and allows to obtain the abundance estimates ),,( fayNest , used in assessment of 
survived fish abundance at the end of the terminal year, and for the older age group 
by years and by fleets (index f). 

The equation (1) is also transformed into the equation (3) for estimation of the inverse 
value of the catchability coefficient for the rest age groups: 
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where «offset» means that the regression coefficient in front of the abundance index 
logarithm is equal to 1, while the standard error estimation of the inverse value of the 
catchability coefficient is estimated as the standard error of the regression parameter 
(a free term of the equation). 

If the assumption of the constant variance (standard error) by years is invalid, appli-
cation of the above equations will be incorrect. Therefore, in this case the method of 
weighted regression is to be applied instead of the traditional method, where the 
inverse values of standard errors of abundance indices, known from observations, 
can be used. 

Two approaches can be used for direct estimation of standard errors of ),,( fayNest  
values (or their variances), obtained by means of the weighted regression. The first 
approach presumes assessment of variance in the left part of equations (2) and (3) 
using variance or covariance matrix of components from the right part of these equa-
tions. The second approach presumes application of regression relationships between 
the logarithm of the mean abundance index and the logarithm of its standard devia-
tion.  

Apparently, the second approach is simpler and preferable, since it allows reducing 
the effect of sampling errors in estimation of abundance indices standard errors.  

Definition of the weighted regression equations, where the accuracy estimates of the 
abundance indices are used as the weighing factors, is possible if the survey design 
has not been changed during a certain time period, i.e. the observation system re-
mained stable. If this assumption is not valid, e.g. the number of hauls in strata was 
increased or decreased, which, naturally, affected the estimates accuracy, the direct 
estimates of standard errors shall be used for the entire time interval considered. At 
the same time, the variance of abundance estimates in the equations (2) and (3) can be 
calculated from the known “observed” variance values and from variances of pa-
rameters in these regression equations. 

In our case the new version of XSA is presented as XSA with the weighted regression, 
which provides for application of regression relationships between the logarithm of 
the mean abundance index and the logarithm of its standard deviation. These regres-
sion relationships for herring and sprat were obtained from the data of BIAS 2004–
2006 and became the basis of reproduction of abundance indices by age groups 
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within the entire time interval of XSA models tuning, assuming a similar design of 
BIAS surveys during the whole time interval considered (ICES, 2002). 

To investigate XSA method with the weighted regression the authors developed a 
new version of the software package implementing XSA method. The ICES software, 
used in the Baltic fish stocks assessment, the traditional version of XSA is applied 
based on the assumption of the constant variance of abundance indices by years and 
age groups (Darby, Flatman, 1994). The modification of ICES software consisted in 
replacement of the traditional linear regression to the regression with the known 
accuracy of predictors-abundance indices (Gasyukov, 2005).  

The practical assessment of fish stocks by means of the new version of XSA method 
was fulfilled for herring of the Central basin (without the Gulf of Riga) and sprat of 
the Baltic Sea using the data applied by ICES WGBFAS in assessment of these species 
stocks in 2009 (ICES, 2009). These data included the standard quantity of files re-
quired for ICES software in XSA method implementation (Darby, Flatman, 1994): the 
total catch in tones, catch in specimens by age groups and fishing years, natural mor-
tality rates, proportion of mature fish by years, mean fish weight in catches and in the 
stock. The data used in XSA tuning covered age groups 1–8 of sprat within the years 
from 1983 to 2008, and age groups 1–8 of herring within the years from 1982 to 2008. 
The oldest age group was considered as the plus-group. The basic options used in the 
new version of XSA were also similar to the options used by ICES WGBFAS-2009 
(ICES, 2009).  

The comparative analysis of the Baltic commercial fish stocks obtained on the basis of 
the new and traditional versions of XSA with the same input data are presented be-
low.  

Application of two XSA versions results in different estimates of herring and sprat 
stocks:  

• For sprat: Estimates of recruitment by years are characterized with the high 
variability, while in some years (2004, 2006 and 2007) the traditional ver-
sion of XSA gives the higher recruitment values as compared to the new 
version of the method. The similar conclusion may be made concerning the 
dynamics of the total and spawning biomasses. At the same time, the new 
version of XSA gives the higher estimates of fishing mortality. Comparison 
of this with recruitment and biomass estimates allows concluding that the 
traditional XSA method provides for the more optimistic estimate of sprat 
stocks state for the recent years.  

• For herring: The comparison of two assessment versions results even in 
more explicit conclusions: the estimates of all parameters (recruitment, to-
tal and spawning biomass) based on the traditional XSA version exceed 
the respective estimates obtained with the weighted XSA version. In some 
years (2004, 2005 and 2006) the spawning biomass estimates exceeded 
more than twice the respective values obtained with the new XSA version. 
At the same time, the mean fishing mortality rates estimated with the tra-
ditional XSA version were above two times lower than the respective val-
ues obtained with the new XSA version. Like in the case with sprat, the 
conclusion can be made that the estimates for herring obtained by 
WGBFAS are more optimistic than the actual ones.  
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The empiric basis of relationship between the standard error of abundance indices 
and abundance indices value is the important argument in support of these conclu-
sions.  

 

 

 

Figure 3. Sprat stock and population parameters in the Baltic Sea calculated by traditional XSA 
and XSA with weighted regression (wXsa).  
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Figure 4. Herring stock and population parameters in the Baltic Sea calculated by traditional XSA 
and XSA with weighted regression (wXsa). 

 

Figures 5 and 6 show the retrospective analysis for sprat stock estimates. It is possible 
to state that the estimates obtained by XSA with weighted regression produce lesser 
errors in retrospective bias then traditional XSA. Therefore the reasons and possible 
explanations for such type of errors can be found in some misspecification of the 
stock assessment model.  

 



118  | ICES WGMG REPORT 2011 

 

 

Figure 5. Sprat retrospective estimates of total biomass and spawning biomass obtained by tradi-
tional XSA and XSA with weighted regression.  

 

 

 

Figure 6. Sprat retrospective estimates of recruitment and fishing mortality obtained by tradi-
tional XSA and XSA with weighted regression. 
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CONCLUSION 

Application of the new XSA version considering the variability of abundance in-
dices variance by years may result not only in new estimates of fish stock and 
population parameters (recruitment, total and spawning biomasses, mean fishing 
mortality rate), but also may change the temporal trends and retrospective bias in 
fish stock dynamics. 

Estimating uncertainty in abundance indices based on acoustic surveys and sub-
sequent integration of these estimates into the stock assessment models are very 
urgent in view of ICES initiatives to revise stocks assessment methods in compli-
ance with the Strategy Research Plan . 

The software used by the ICES working groups for stock assessment should con-
tain the options which give the possibility to take into account the indices variance 
variability in time  

Acoustically derived indices needed for stock assessment purpose should be ac-
companied with uncertainty estimates. How can be it included in the real prac-
tice of acoustic surveys? 

Possible recommendations from this work are: 

1 ) Scientific surveys (trawl and acoustic) of the fishery stocks should be ac-
companied by the statistical estimates of abundance indices (at least vari-
ance). 

2 ) The software used by the ICES working groups for stock assessment 
should contain the options which give the possibility to take into account 
the variance variability in time 

3 ) In our opinion estimating uncertainty in abundance indices based on the 
Baltic International surveys and subsequent integration of these estimates 
into the stock assessment models are very urgent in view of ICES initia-
tives to revise stocks assessment methods in compliance with the Strategy 
Research Plan. 
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Preliminary assessment of white anglerfish southern stock using Stock 
Synthesis (SS3) 
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1IEO, Centro Oceanográfico de A Coruña, Pº Mº Alcalde Francisco Vázquez Nº 10, 15001 A Coruña, Spain 
2IEO, Centro Oceanográfico de Vigo, Cabo Estay-Canido, 36200 Vigo, Spain 

 

Abstract 

A first attempt of assessment of white anglerfish southern stock 
using Stock Synthesis (SS3) is presented in order to evaluate its 
potential use as an alternative assessment model to the current 
surplus production model (ASPIC). Model structure, input data 
and provisional model settings are described in the work. Al-
though more effort is required for tuning the model, the fit and 
the preliminary results seem to indicate that the Stock Synthesis 
can be an appropriate model to assess this stock. 

 

Introduction 

Over the last four years, the assessment of white anglerfish southern stock has been 
conducted using a surplus production model. This production model has some 
advantages as it is relatively simple, there is few parameters to be estimated and thus 
is relatively quick to run. However its ability to capture particular details of the 
fishery under investigation is limited. The simple structural of the model does not 
allow for observational data such as length and/or age compositions to be employed. 
Consequently, potentially important information regarding individual gear 
selectivity and basic biological information is not able to be integrated directly into 
the model.  

In this document a new model platform was explored to perform the assessment of 
white anglerfish southern stock. The Stock Synthesis (Methot, 2000) is an integrated 
assessment model that is able to handle large amounts and different kinds of data 
and is flexible with respect to the underlying population dynamics and to the number 
of parameters that can be estimated. Stock Synthesis has been widely used and tested 
for stock assessments, especially in the US west coast. The use of the SS3 (Methot, 
2011) for this stock is going to be proposed in the ICES benchmark scheduled in 2012. 
As a previous step, and for its review by the working group, a preliminary 
assessment using this model is presented. 

Material and Methods 

The following model structure, input data and settings were used in the analysis and 
population dynamics calculated from 1989 to 2009. The quarterly based data (land-
ings, LPUE and length–frequency) was used in the SS3 calculation: 

Model structure 

• 1 sex (both sexes combined) 
• 1 area 
• 4 seasons per year (model time-step is quarter) 
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• 1 growth pattern 

Model input data 

The assessment model includes four ‘fleets’ defined on the basis of gear type and 
area: 

- SPTR8C9A: Spanish Otter BottomTrawl in ICES Subdivisions 8c and 9a 
- SPART8C: Spanish Artisanal in ICES Subdivision 8c 
- PTTR9A: Portugal Trawl in ICES Subdivision 9a 
- PTART9A: Portugal Artisanal in ICES Subdivision 9a 

 

Landings in weight (Figure 1) and length frequency distributions were the inputs. 

Three abundance indices were considered: 

- SPCORUTR8C: Spanish Otter BottomTrawl in Subdivisions 8c and 9a 
- SPCEDGN8C: Spanish Artisanal in Subdivision 8c 
- SP-SGF: Spanish Ground Fish Survey 

Model settings 

Stock–recruitment relationship. Recruitment was modelled assuming a Beverton and 
Holt curve and (h, R0) was defined as the parameters instead of (a, b) in the B-H func-
tion. Steepness value (h) was fixed to 0.999 and estimated R0. Annual recruitment 
was distributed by quarter, being first and second quarters the most important sea-
sons in recruitment. 

Growth curve. The von Bertalanffy growth curve was used. The provisional parame-
ters were Linf=140.7 cm (estimated) and K=0.11 (fixed; Figure 2). 

The weight at length relationship was: W=0.0000270*L2.8390  (BIOSDEF 1998)  

The natural mortality is assumed to be age and time independent and equal to 0.20 
yr-1. 

Maturity of white anglerfish is assumed to be logistic in shape and a function of 
length. The parameters, externally estimated, were as follows: length at 50% maturity 
= 55.4 cm and a slope of linearized logistic equation = -0.12; Figure 3).  

Selectivity patterns (relative exploitation patterns). Selectivity is assumed to be 
length-based for all fleets. It was adopted a dome-shaped double-normal selectivity 
with six parameters in all commercial fleets and abundance indices, and estimated 
unknown parameters in each case. Initial values were set up based on the actual size 
frequency in each fishery (Figure 4). 

Results 

The estimated retention curves for the commercial fleets are shown in Figure 4. The 
SS3 estimated high selectivity for the larger length classes for the trawl fisheries from 
Portugal (PTTR9A) probably due to the observation of a very small number of larger 
fish in the landings composition. On the other hand, for Spanish trawl and artisanal 
fisheries the relative selectivity in larger sizes drops to zero. The shape of these 
curves cannot appear totally reasonable and more effort will be needed to tune fish-
ery retention patterns. 
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The model was able to capture the general trend and the interannual variation for the 
survey abundance index and the commercial fleet SPCORUTR8C (Figure 5). The 
model only follows the overall trend in the commercial abundance index 
SPCEDGN8C, the high observed values in 2003, 2005 and 2007 have not been cap-
tured by the model in this fleet. 

The SS3 model estimated that SSB has steadily increased since 1996 to about 12 000 
mt (Figure 6). A very low recruitment period, during five consecutive years (1995–
1999), is detected in the estimated recruitment time-series. Since 2000, alternating 
years of good recruitments (2001, 2004 and 2009) and low recruitments (2003, 2005, 
2007 and 2008) are observed. The pattern of Fbar (40–85 cm) shows fishing mortality 
decreasing to its lowest level on 2001 and, after a small recovery period, Fbar presents 
a declining trend since 2005.  

A comparison of the biomass trajectories from the SS3 model (SSB) and ASPIC results 
(total biomass) revealed different trends on biomass. Since 1996, SS3 biomass esti-
mates are quite higher than the production model estimates, reaching the maximum 
value of its time-series in 2009. The shorter time-series used in SS3 model (1989- 
2009), where the beginning period of the stock fishery is missed, could have an effect 
on the estimates obtained. 

Conclusions 

The analysis of the retention curves indicated that more effort in this subject is neces-
sary to tune the SS3 model. In order to obtained reliable results, the input data time-
series should be update to incorporate information from early years. Although the 
present SS3 model for white anglerfish needs to be improved, its results and diagnos-
tics seem to indicate that this can be an appropriate model to assess this stock. 
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Figure 1. Quarterly landings for the four commercial fleets used in SS3 assessment. 

 

 

Figure 2. Growth curve with ~95% interval (dashed lines) indicating the expectation and individ-
ual variability of length-at-age. 
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Figure 3. Maturity ogive based on length fixed in SS3 assessment. 

 

Figure 4. Estimated size-specific relative exploitation pattern for the four commercial fleets. 
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Figure 5. Fits to the two commercial fleet (top) and survey (bottom) abundance indices. Predicted 
(line) and observed (circles) indices. 
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Figure 6. Stock trends derived from SS3 assessment results. 
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Figure 7. Comparison of biomass trend from ASPIC (ICES, 2010) and SS3 assessments. 
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Working Document 5 

Applying a Bayesian model incorporating discards in the assessment of 
four-spot megrim (Lepidorhombus boscii) Southern stock 

Esther Abad, Carmen Fernández, Nélida Pérez. 

Centro Oceanográfico de Vigo. Instituto Español de Oceanografía (IEO). Apdo. 1552. 
36200 Vigo (Spain). 

Since 2003 when the DCF started at European level by countries, discards data are 
available for many stocks. Four-spot megrim is traditionally assessed with XSA (ex-
tended survivor analysis) which does not include discards. For this species, discards 
in number are very important, being around the 60% of total catch. A Bayesian model 
incorporating discards was realized for the hake stock in ICES Divisions VIIIc and 
IXa by Fernández et al. (2010). This model was also designed to produce a complete 
time-series of discard estimates. Final run of the model is compared with results from 
XSA performed in the working group of 2010, showing that mayor differences are in 
the fishing mortality for younger ages, being higher incorporating discards data. 

MATERIAL AND METHODS 

Data are the same used in the working group for the assessment of the Southern 
stock of L. boscii.  

Landings data are provided by National Government and research institutions of 
Spain and Portugal with data since 1986. Age compositions of landings are based on 
annual Spanish ALKs. Since there is no landing for age 0, landed numbers-at-age are 
presented from age 1 to 7+. 

Discards estimates are available for Spanish since 2003 and before this year, there are 
data only for 1994, 1997, 1999 and 2000. Discard numbers-at-age are presented from 
age 0 to 5. Portuguese discards are assumed to be zero at this moment, but they will 
be able to be incorporated if they are available. 

To tune the model two indices are available, one commercial fleet and one survey 
index. A Coruña trawl fleet (SP-CORUTR8c) contributing with data of effort and 
LPUE till 1999 due to changes in the fishing gears and the Spanish groundfish survey 
(SP-GFS), available since 1983, are the two indices. Numbers-at-age are from 3 to 6 in 
the trawl fleet and from 0 to 6 in the research survey. 

Assessment model 

Model is described in Fernández et al. (2010). It is a Bayesian model computed in the 
free software WinBUGS for simulating the posterior distribution via Markov chain 
Monte Carlo (MCMC). The population dynamics is based on the usual equations for 
closed population and the rate of fishing mortality is disjointed in two terms, one 
related to landings and other related to discards.  

F(y,a)=f(y).(sL(y,a)+sD(y,a)) 

Fishing mortality is the result of the product of fishing effort and the exploitation 
pattern, being the last one age dependant. To obtain landed numbers-at-age, the 
model applies the Baranov catch equation. The two series correspond to the commer-
cial fleet and the research survey, are used to obtain relative indices of abundance-at-
age. All formulations are showed in the paper mentioned above. 
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The unknown parameters of the model are assigned prior distributions. These distri-
butions are set with two values, the median and the precision. As better is our previ-
ous parameter knowledge, setting values have lesser variability. 

The number of iterations used to fit the model was the same as in the hake model. 
The fitting was made using MCMC to simulate the posterior distribution with 112000 
iterations. The first 32000 were not achieved and 5000 iterations from the rest were 
kept. 

RESULTS AND DISCUSSION 

Figure 1 shows results of SSB, Recruits and Fbar from the model comparing with 
those obtained with XSA in the last assessment. Trends are very similar. In SSB, first 
years are more coincident than last years’, where Bayesian model estimates greater 
values of SSB. Including discards, looks to have an effect on the recruitments estima-
tion, resulting in higher values almost all the time-series. Discards contribute with 
important amounts of earlier ages. Fishing mortalities also present the same trend, 
but last years are more similar than the beginning of the series. 
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In figure 2, the evolution of fishery age selectivity is presented comparing with the 
same results from XSA. As it is expected, there are more differences in the two first 
ages when discards are introduced in the model. First of all we have fishing mortali-
ties for age 0, which did not appear in the XSA results because there are not commer-
cial landings for this age. For age 1, values are now higher than in the XSA model and 
a little higher in age 2. In the rest of ages, values are more or less coincident. 
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Figure 3 shows the same as figure 2 but with all ages together. Red line is correspond-
ing to the last assessment year (2009), where the exploitation pattern indicates the 
biggest fishing pressures on ages 3 to 5. 

 

Figure 4 shows the values of fishing mortalities for all years and ages. As in the case 
of de fishery age selectivity, the biggest changes are for age 0 and 1, being a bit higher 
of XSA results for ages2 and 3 and more similar for the rest of the ages. 
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In figure 5 the probability that the fish being caught are discarded for the different 
years and ages is presented. There is no evidence of the effect of the progressive en-
forcement of the MLS for this stock since 2000. Apparently, there is a decrease of the 
probability after this year for ages 2–4, but a high increase is detected following it for 
ages 2 and 3. 
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Figure 6 presents discarded number-at-age as result of the model. Very high variabil-
ity can be observed in the first years of the time-series, when only a few years have 
observed data. Since 2003 model fits better because all years have been sampled. 
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From Figures 7 to 11, standardized residuals are presented. There is nothing relevant 
to discuss about this values, and its evolution during the time-series can be observed 
in next figures. 

Figure 7: 

 

Figure 8: 
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Figure 9: 

 

 

Figure 10 
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Figure 11 

 

 



138  | ICES WGMG REPORT 2011 

 

Figure 12 shows bubble plots for the residuals of numbers-at-age of landings, dis-
cards and the two tuning fleets. Tracking cohorts is not very clear. It looks there is no 
year effect. In landings higher residuals are for ages 0 and 7+ and in Coruña trawl 
since 1994 almost all values are negative, in opposite with medium years where val-
ues are positive. 
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As in the model for southern hake, when discards are incorporated, recruitment and 
fishing mortality for young ages increase. We need to evaluate the influence on bio-
logical reference points and make projections to detect short and long-term effects on 
the assessment. 
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Working Document 6 

Separating catches into landing and discards in the state-space assessment 
model used for North Sea Cod 

Anders Nielsen 

 

Introduction 

For a number of years the North Sea Cod assessment has included the somewhat 
controversial estimation of “unallocated mortality”. The unallocated mortality was 
introduced, because a mismatch was observed between the signal from the survey(s) 
and the signal from the commercial catches. The root cause for this mismatch could 
be black landings, wrong estimates of discards, wrongly specified natural mortality, 
changes in how well the survey(s) covered the stock, or other issues. In the two dif-
ferent assessment models used (Badapt and more recently the State-space Assess-
ment Model SAM) this unallocated mortality has taken the form of separate yearly 
scaling factors 𝑆𝑦 applied to all the total catch- at-age from 1993 and onwards, such 
that the catches used by the assessment model becomes 𝑆𝑦𝐶𝑎,𝑦. In more recent years, 
information from national authorities indicates that the level of misreporting (refer-
ring to landings rather than the whole catch) has been decreasing and is likely to have 
become negligible since about 2006 (ICES 2011). The landings since 2006 could there-
fore be considered unbiased, the landings can be considered unbiased, such that an 
observed mismatch between catches and survey is likely to be caused by wrongly 
estimated discards. 

In this section the currently applied assessment model is summarized, and two ap-
proaches for applying the scaling constant solely to the discards are investigated. 

Summary of the state-space model for North Sea Cod 

The state-space assessment model contains two parts. The first part describes the 
process of underlying unobserved states α, which are the log-transformed stock sizes 
log𝑁1 , … , log𝑁𝐴 and fishing mortalities log 𝐹𝑖1 , … , log 𝐹𝑖𝑛 . The transition equation (be-
low) describes the distribution of the next year’s state from a given state in the cur-
rent year. 

 

𝛼𝑦 = 𝑇�𝛼𝑦−1� + 𝜂𝑦 

 

The transition function T is where the stock equation and assumptions about 
stock–recruitment enters the model. For the stock sizes this becomes: 
 

log𝑁1,𝑦 = log �𝑅�𝑤1,𝑦−1𝑝1,𝑦−1𝑁1,𝑦−1 +  … + 𝑤𝐴,𝑦−1𝑝𝐴,𝑦−1𝑁𝐴,𝑦−1�� + 𝜂1,𝑦 
log𝑁𝑎,𝑦 = log𝑁𝑎−1,𝑦−1 − 𝐹𝑎−1,𝑦−1 − 𝑀𝑎−1,𝑦−1 + 𝜂𝑎,𝑦  ,                     2 ≤ 𝑎 < 𝐴 
log𝑁𝐴,𝑦 = log�𝑁𝐴−1,𝑦−1𝑒−𝐹𝐴−1,𝑦−1−𝑀𝐴−1,𝑦−1 + 𝑁𝐴,𝑦−1𝑒−𝐹𝐴,𝑦−1−𝑀𝐴,𝑦−1� + 𝜂𝐴,𝑦 

 

Here 𝑀𝑎,𝑦 is the year- and age-specific natural mortality parameter, 𝑤𝑎,𝑦 is weight in 
stock, and 𝑝𝑎,𝑦 is proportion mature, all of which are assumed known from outside 
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sources. 𝐹𝑎,𝑦 is the fishing mortality. The function R describes the relationship be-
tween stock and recruitment (for North Sea Cod a Beverton–Holt curve is assumed). 
The parameters of the chosen stock–recruitment function are estimated within the 
model. All noise terms for the logarithm of the stock sizes are assumed independent 
normal distributed. 

The logarithm of the fishing mortalities are assumed to follow random walks. The 
random walks are allowed to be correlated to mimic the parallel time-series often 
observed for fishing mortalities in the different age groups. Define 
𝐹𝑦 = �𝐹1,𝑦, 𝐹2,𝑦, … , 𝐹𝐴,𝑦�

′, then it is assumed that  

 

log 𝐹𝑦 = log𝐹𝑦−1 + 𝜉𝑦 ,      where   𝜉𝑦~𝑁(0, Σ) 

 

where Σ is defined via the standard deviation for the individual processes �Σ𝑖,𝑖 and 
the common correlation coefficient ρ , by 𝛴𝑖,𝑗 = 𝜚�𝛴𝑖,𝑖𝛴𝑗,𝑗. The correlation coefficient ρ 
is estimated within the model, and this structure allows the model to range from 
independent random walks (values of ρ near zero) to a multiplicative F pattern (val-
ues of ρ near one). 

The second part of the state-space assessment model describes the distribution of the 
observations x given the underlying states α. Here x consist of the log-transformed 
catches and survey indices. 

The combined observation equation is: 

 
𝑥𝑦 = 𝑂�𝛼𝑦� + 𝜀𝑦 

 

The observation function O consists of the familiar catch equations for fleets and sur-
veys, and 𝜀𝑦 of independent measurement noise with separate variance parameters 
for certain age groups, catches, and survey indices. For the logarithm of the survey 
catches a separate variance parameter is used for the youngest age group and a 
common one for all older age groups. For the logarithm of the total catches a separate 
variance parameter is used for each of the two youngest age groups, and a common 
one for all older age groups. An expanded view of the observation equation, in the 
case where no accounting for unallocated mortality is done, becomes: 

 

log(𝐶𝑎,𝑦) = log�
𝐹𝑎,𝑦

𝑍𝑎,𝑦
(1 − 𝑒−𝑍𝑎,𝑦)𝑁𝑎,𝑦� + 𝜀𝑎,𝑦

(𝑜) 

log(𝐼𝑎,𝑦
(𝑠)) = log�𝑄𝑎

(𝑠)𝑒−𝑍𝑎,𝑦
𝑑𝑎𝑦(𝑠)

365 𝑁𝑎,𝑦� + 𝜀𝑎,𝑦
(𝑠)  

 

Here Z is the total mortality rate 𝑍𝑎,𝑦 = 𝑀𝑎,𝑦 + 𝐹𝑎,𝑦, 𝑑𝑎𝑦(𝑠) is the number of days into 
the year where the survey s is conducted, and 𝑄𝑎

(𝑠) are model parameters describing 
the catchabilities. Finally 𝜀(𝑜)~ 𝑁(0, 𝜎𝑜,𝑎

2 ) and 𝜀(𝑠)~ 𝑁(0, 𝜎𝑠,𝑎
2 ) are all assumed inde-

pendent and normally distributed. 

The likelihood function for this is set up by first defining the joint likelihood of both 
random effects (here collected in the 𝛼𝑦 states), and the observations (here collected 
in the 𝑥𝑦 vectors). The joint likelihood is: 
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𝐿(𝜃;  𝛼;  𝑥) = ��𝜙�𝛼𝑦 − 𝑇(𝛼𝑦−1), Ση����𝜙�𝑥𝑦 − 𝑂(𝛼𝑦), Σε��
𝑌

𝑦=1

𝑌

𝑦=2

 

 

Here θ is a vector of model parameters, and φ is the density for a Normal distribu-
tion. Since the random effects α are not observed inference should be obtain from the 
marginal likelihood: 

 

𝐿𝑀(𝜃;  𝑥) = �𝐿(𝜃;  𝛼;  𝑥)𝑑𝛼  

 

This integral is difficult to calculate directly, so the Laplace approximation is used 
(via AD Model Builder). The approximation has been verified via two alternative 
methods. An unscented Kalman filter and importance sampling. 

Catch scaling as is currently practiced 

The current way to account for unallocated mortality in the assessment model is to 
apply and estimate a yearly scaling coefficient to the observed catches, from the 
year 1993 and onwards. This changes the catch-equation above to: 

 

log(𝐶𝑎,𝑦𝑆𝑦) = log�
𝐹𝑎,𝑦

𝑍𝑎,𝑦
(1 − 𝑒−𝑍𝑎,𝑦)𝑁𝑎,𝑦� + 𝜀𝑎,𝑦

(𝑜) 

 
where 𝑆𝑦 is fixed to 1 for years prior to 1993, and estimated thereafter. 

 
It is somewhat unusual to have model parameters on the left hand side of the ob-
servation equation like this, but in this case it is unproblematic, as it can easily be 
rearranged as: 
 

log(𝐶𝑎,𝑦) = log�
𝐹𝑎,𝑦

𝑍𝑎,𝑦
(1 − 𝑒−𝑍𝑎,𝑦)𝑁𝑎,𝑦� − log (𝑆𝑦) + 𝜀𝑎,𝑦

(𝑜) 

 
This model is what is currently used for the assessment of North Sea Cod. 

 

Discard scaling, first crude approximation 

The catch-at-age data 𝐶𝑎,𝑦 used for the assessment is the sum of two components The 
landings-at-age 𝐿𝑎,𝑦 and the estimated discards 𝐷𝑎,𝑦. It is plausible that the precision, 
and in this context more interestingly, the bias of these two data sources are different. 

According to national authorities, levels of misreported landings have been negligible 
since around 2006 (ICES 2011), so that the bias in landing could be considered negli-
gible from 2006 onwards, such that an observed mismatch between catches and sur-
vey is likely to be caused by a bias in the estimated discards. A first approach is to 
change the model formulation to: 
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log(𝐿𝑎,𝑦 + 𝐷𝑎,𝑦𝑆𝑦) = log�
𝐹𝑎,𝑦

𝑍𝑎,𝑦
(1 − 𝑒−𝑍𝑎,𝑦)𝑁𝑎,𝑦� + 𝜀𝑎,𝑦

(𝑜) 

 

With the goal of multiplying the scaling 𝑆𝑦 to the different selectivity in the discards, 
instead of the selectivity of the total catch. 

There are however a few things to notice about this approach. Firstly, notice that it is 
not easily possible to collect the model parameters on the right hand side of the ob-
servation equation, and the data on the left. This may not be very important, as it is 
still possible to write down the likelihood, optimize it, and obtain estimates of our 
model parameters. It does imply a correlation between the estimated scaling parame-
ters and the estimated variance of the catch observations, but correlated estimates are 
not unusual in non-linear models. Secondly, notice that the fishing mortality esti-
mated in this model 𝐹𝑎,𝑦 will correspond to the total catch, which is comparable to the 
currently applied model. Finally, notice that if discards estimates are not known with 
the same precision as landings-at-age, then the model should have separate variance 
parameters for the two catch components, and this model cannot. This model is how-
ever presented as a simple alternative to the following. 

Discard scaling, by splitting landings and discards 

Instead of modelling the sum of landings and discards 𝐶𝑎,𝑦 = 𝐿𝑎,𝑦 + 𝐷𝑎,𝑦 it may be 
more reasonable to model the two data sources directly. Such a model requires a 
more substantial change in the model. The observation equation is extended from 
one for catches into one for landings and one for discards: 

 

log(𝐿𝑎,𝑦) = log�
𝐹𝑎,𝑦

(𝐿)

𝑍𝑎,𝑦
(1 − 𝑒−𝑍𝑎,𝑦)𝑁𝑎,𝑦� + 𝜀𝑎,𝑦

(𝐿) 

log(𝐷𝑎,𝑦𝑆𝑦) = log�
𝐹𝑎,𝑦

(𝐷)

𝑍𝑎,𝑦
(1 − 𝑒−𝑍𝑎,𝑦)𝑁𝑎,𝑦� + 𝜀𝑎,𝑦

(𝐷) 

 

with total mortality now redefined as 𝑍𝑎,𝑦 =  𝑀𝑎,𝑦 + 𝐹𝑎,𝑦
(𝐿) + 𝐹𝑎,𝑦

(𝐷). Notice that this 
model has separate fishing mortalities and different noise terms (with separate vari-
ance parameters) for landings and for discards. 

The unobserved random processes of the state-space model also need to be altered. 
Instead of having processes for log𝑁𝑎,𝑦 and log𝐹𝑎,𝑦, we now need to have processes 
log𝑁𝑎,𝑦 and for two sets of fishing mortalities log 𝐹𝑎,𝑦

(𝐿) and log 𝐹𝑎,𝑦
(𝐷). Independent ran-

dom walks are assumed for the logarithm of the fishing mortalities corresponding to 
the discards. This allows the selectivity of the landings and the selectivity of the dis-
cards to develop independently. 

Theoretically this model is well suited to handle the task of applying the unallocated 
mortality to the discards only, but there is one important practical concern. Discard-
ing is mainly done in age classes one and two; at older ages the number of discarded 
fish are frequently zero. This causes a problem for the split-model described here, as 
the logarithm transformation is not possible (log(0) = −∞). Dealing with a few zeroes 
is fairly common in assessment models, and ‘solutions’ often seen are: 

1 ) adding a small constant to all zeros, 
2 ) ignoring those observations, or 
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3 ) setting up a different likelihood that allows for zeros, which could for in-
stance be a negative binomial. 

Here the problem is not a few zeros (Figure 1), but an entire age group or long peri-
ods of zeros. Having long periods of constant zero catch also corresponds poorly 
with the random walk assumption for log 𝐹(𝐷) in the model. To get something opera-
tional within the time limits of WGMG only age groups one and two were included 
for discards in this model. In older age groups, only a very small fraction of the total 
catch is discarded, except for in most recent years (Figure 1). 

 

 

Figure 1. The fraction of the total catch discarded in each age group. 
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Results 

 

 

 

Figure 2. Comparing the catch scaling currently applied (black solid line with shaded confidence 
interval) to results from the split model (solid red line with red dashed confidence intervals) 
where scaling is only applied to the discarded part. 
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Figure 3. Catch scaling currently applied (black solid line with shaded confidence interval), re-
sults from the split model (solid red line with red dashed confidence intervals) where scaling is 
only applied to the discarded part, and results from the simple approximation where data are not 
split, but scaling is applied to the selectivity implied by discards (solid blue line with blue 
dashed confidence intervals). 

 

Table 1. The likelihood values for comparing the different configurations for the two different 
approaches. 

 

Model -logL (split) -logL (simple) Number of parameters 

Scaling on catch 199.260 95.99 36/34 

Scaling on landings 199.212 94.52 36/34 

Scaling on discards 233.336 115.03 36/34 

 

Conclusions 

It would be useful if the assessment working group could pin down more precisely 
where the mismatch between survey and catches comes from. It has been demon-
strated that the state-space assessment framework is flexible enough to allow such 
additions to the model. 
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Two approaches have been developed: a simple approximation, which retains catch 
(the sum of landings and discards) as the observed variable in the model, but applies 
the unallocated mortality to the discarded part only, and a more complex model, 
which separates the observed variables into landings and discards. Both approaches 
showed the same stock trends, and gave the same conclusions w.r.t. the question 
about origin of the unallocated mortality. 

The simple approach seemed to work as well in this study, as the more complex split-
ting approach. The only difference seen in the results is a modestly higher recruit-
ment for the splitting model in the first part of the data period. It is expected that the 
first age class is the most sensitive to splitting the catch into landings and discards, 
since discarding is mainly done for the youngest ages. The higher recruitment in the 
first part of the data period could be due to the splitting, thereby estimating different 
selectivity patterns, or (perhaps more likely) due to the fact that for the splitting 
model, it was necessary to remove discards for ages 3 and older. This restriction was 
not needed in the simple approach. In terms of running time the simple approach is 
also preferable. 

The model for which unallocated mortality over the entire period (from 1993 to 2011) 
is assigned to the discard part only fitted significantly worse than the model where 
the unallocated mortality is assigned to the catch. Notice that this conclusion is for 
the entire period with discard scaling compared to the entire period with catch scal-
ing. 

WGMG focused on the development of the methods to handle these comparisons, 
not on formulating and testing the more specific interesting hypothesis, relating to 
the timing of different regulatory measures. It is recommended that the assessment 
working group use these developed methods to test such hypothesis. 
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Abstract 

These analyses aim to compare the fishery and resource consequences of 
management recommendations based on complex annual resource assess-
ments to those based on simple empirical management procedures (MPs), 
which in the cases considered use only the annual abundance estimates from 
a single survey. The 2010 ICES assessments of the stocks of North Sea Plaice 
and Sole in Subarea IV are used for the investigation. The MPs are selected 
from the results of simulations based only on the resource information avail-
able in 1990. Their performances are then compared to what actually tran-
spired over the 1990 to 2009 period under advice arising from the regular 
ICES assessments. For plaice, almost without exception the MPs’ perform-
ances dominate what actually eventuated for every performance statistic: 
higher catches, greater final spawning biomass, lesser lowest spawning bio-
mass during the 20 years, lower average fishing mortalities, and lesser inter-
annual variation in both catch and fishing mortality. For Sole these results 
are qualitatively duplicated, except for marginally smaller catches in some 
cases. In circumstances for ICES stocks where there may be difficulties in 
sustaining the level of sampling required for complex annual assessments, 
such as annual ageing of the catch, because of diminishing resources, these 
results are sufficiently promising to suggest that they be extended, in par-
ticular to further stocks, to confirm whether they might indeed provide an 
defensible alternative approach to the provision of scientific management 
advice.  
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1 Introduction 

ICES Working Groups have generally based scientific management advice for more 
valuable stocks on regular (often yearly) assessments. These stock assessments using 
age-structured population models such as ADAPT-VPA, XSA and SAM, are often 
very complex and require a substantial amount of expertise, time and effort. The as-
sessment process is further complicated by decisions regarding which data to include 
in the analyses, and how these data are incorporated in the objective function being 
minimized to fit the population model.  

However a detailed annual stock assessment may not be necessary to achieve man-
agement goals and may constitute an inappropriate use of limited resources. Is there 
a simpler, more efficient, way of providing reliable management advice? This ques-
tion is all the more relevant at this time, with diminishing resources raising questions 
in ICES over whether annual ageing of catches required for assessment methods such 
as XSA can be sustained. 

This paper performs initial analyses to investigate whether simple empirical man-
agement procedures (MPs) might perform as well as these complex annual assess-
ments in achieving management goals. This approach, also known as Management 
Strategy Evaluation (MSE), has established itself as a powerful fisheries management 
tool to assist meet multiple management objectives in a manner that checks robust-
ness to uncertainty for compatibility with the Precautionary Approach (De Oliveira et 
al., 2010). The 2010 ICES assessments of the stocks of North Sea Plaice and Sole in 
Subarea IV (ICES WGNSSK Report 2010) are used as the basis to compare these two 
management approaches. The comparison consists of four steps. 

 

I) Deterministic “hindsight” projections  
 

Three simple empirical MPs are each tuned to achieve over the last 20 years (1990 
to 2009) the same final (2009) spawning biomass as estimated by the assessments. 
Since these projections may each follow a different trajectory to that suggested by 
the assessments, some assumptions are needed to be able to effect the computa-
tions.  
i) In allocating the annual catch among the different ages, the same selectiv-

ity-at-age as estimated in the assessment for the year concerned is as-
sumed to apply.  

ii) If spawning biomass differs from that in the assessment, recruitment 
would presumably do so too. A stock–recruitment relationship is fitted to 
the output from the assessment, with an associated multiplicative residual 
calculated for each year to reflect the difference between the actual (as-
sessment) recruitment for that year and the value suggested by the stock–
recruitment relationship fitted. In these “hindsight” projections, for which 
the spawning biomass in a particular year may differ from that in the as-
sessment, the key assumption made is that the same multiplicative resid-
ual will apply to the expected recruitment calculated from the estimated 
stock recruitment relationship. Thus, for example, if the recruitment indi-
cated by the assessment for 1996 was 20% above the value suggested by 
the fitted stock–recruitment relationship, in any other projection this same 
20% will be added to the recruitment predicted by the stock–recruitment 
relationship for that year, given the projected spawning biomass that year. 
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iii) Some of the MPs make use of the annual abundance estimates from a sur-
vey. Those estimates will differ from the results expected from the best fit 
of the assessment model to these data in the assessment process. As in ii) 
above, the assumption made for the projections, for which the underlying 
abundance under an MP may differ from that for the assessment itself, is 
that the multiplicative residual for the assessment applies also to the sur-
vey estimate which would have resulted under the MP for the year con-
cerned. 

These MPs with their associated tunings are referred to as “hindsight” MPs, as they 
have the benefit of hindsight in “knowing” what will happen in the next 20 years in 
terms of uncertainties (residuals related to recruitments and survey sampling errors. 

 

II) Stochastic “forecast” projections of “hindsight” MPs. 
 

If one had been choosing an MP twenty years ago, one would not have had the 
benefit of the “hindsight” above at that time. Rather than knowing exactly what 
recruitment residual will apply each year in future, projections have to assume 
that these will be drawn at random each year from distributions estimated from 
fits of stock–recruitment relationships to the assessment results available at that 
time (which are taken here to be the 2010 assessment results up to 1989). Similar 
assumptions need to be made about the abundance estimates forthcoming from 
future surveys. 
 
When the “hindsight” MPs are applied under these stochastic “forecast” condi-
tions, rather than with exact knowledge of the future, their performance deterio-
rates, in particular in often yielding final biomasses after 20 years which are 
considerably below those which actually eventuated. The purpose of this step is to 
check whether the performance of these “hindsight” MPs would have been con-
sidered sufficiently acceptable to have led to their implementation 20 years ago. 
 
III) Use of stochastic “forecast” projections to tune MPs 
 
This step involves selecting alternative tunings of the three simple empirical MPs 
considered in step I) that might have led to their being considered acceptable 20 
years ago. The stochastic projections are used to select control parameters for 
these MPs that achieve a spawning biomass distribution in 20 years time which at 
the lower 2.5% level is at least as large that which the assessment indicates to have 
actually resulted. These more conservative MPs are termed “forecast” MPs. 
 
IV) Performance of selected “forecast” MPs under “hindsight” projections 

 
In this final step, the “forecast” MPs selected at step III) are applied in conjunction 
with the deterministic “hindsight” projections (the residuals that actually “oc-
curred”) to determine how well those MPs would have managed the fisheries 
considered. The fundamental question to be addressed is how do the resultant av-
erages catches and fishing mortalities, their interannual variability, and the final 
spawning biomass after 20 years compare to what was achieved in practice under 
management based on the use of advice arising from annually updated assess-
ments.  
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2 Technical specifications of projections 

The projection period spans the last twenty years of the 2010 ICES assessments, i.e. 
from 1990 to 2009. Therefore, projections commence in 1990 and are moved forward 
year by year by first obtaining the TAC according to a particular MP based on new 
survey biomass data, from which the corresponding fishing mortality, yF , rate can 

be computed for that year given the selectivity-at-age vector selected. The population 
numbers for the next year can then be computed. The number of recruits (1-year olds) 
for the next year is then calculated using a Beverton–Holt stock–recruit relationship 
(see Appendix A for specifications of assessment data and parameters used in the 
projections).  

 

Population numbers-at-age are projected forward from 1990 to 2009 using the follow-
ing equations which assume continuous fishing throughout year (Baranov equation): 

 

1, min 1y a yN R+ +=  (1) 
, ,( )

1, 1 , ,
a y a y y aM S F Z

y a y a y aN N e N e− + −
+ + = =   for min 2a a m≤ < −  (2) 

1 , 1 ,( ) ( )
1, , 1 ,

m y m y m y m yM S F M S F
y m y m y mN N e N e− −− + − +
+ −= +  (3) 

 

where  

,y aN  is the number of fish of age a at the start of year y, 

aM  denotes the natural mortality rate on fish of age a, which is input, 

,y aS  is the age-specific selectivity for year y, which is input (deterministic) or 

randomly sampled (stochastic), 

yF  is the fishing mortality for year y, which is estimated,  

10m =  is the maximum age considered (taken to be a plus-group), and  

min 1a =  is the minimum age considered. 

Stock–recruitment relationship: 

The “future” number of recruits at the start of year y from 1990 to 2009 is related to 
the spawning stock size by a stock–recruitment relationship. Two forms of such a 
relationship are considered. The first is the Beverton–Holt form 

 

1

1

y

sp
y

y sp
y

B
R e

B
ςα

β
−

−

=
+

 (4) 

 

where 
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α  and β  are the stock–recruitment parameters estimated by minimizing the 
negative of the log likelihood in equation (A.13) of Appendix A, which are 
input, 

yς  are the corresponding recruitment residuals which are either input for 

the deterministic projections, or ( )2)(,0~ R
y N σς  for the stochastic projec-

tions with standard deviation of 0.5Rσ =  for both stocks (this value was 
used because it is close to the estimated standard deviation and for the sake 
of simplicity), and 

1
sp
yB −  is the spawning biomass in year 1y − , given that 
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where  

,y aN
 
is the projected number of fish in year y of age a given by equations (1), 

(2) and (3), and 

,
S
y aw  are the population weights-at-age for each year used in the 2010 ICES 

assessments, and af  is the proportion of fish of age a that are mature, which 
is input. 

 

The second is a two-line (or “hockey stick”) form 
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where B0 is the minimum spawning biomass over the period under consideration, 
and α is estimated as above (which will yield the geometric mean of the recruitment 
estimates over this period).  

Catch equation: 

Once a TAC for year y is generated by the MP, the corresponding fishing mortality 
rate, yF , can be computed. When using the Baranov formulation, the total number of 

fish caught of age a in year y is given by 
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Where 

yF  is computed using the bisection method such that  

10

, ,
1

C
y y a y a

a
C w C

=

=∑  (8) 

 

where 

yC is the total annual catch (TAC) corresponding to a chosen harvesting 

strategy, and 

,
C
y aw  are the catch weights-at-age for each year taken from the 2010 ICES as-

sessment, which are input. 

Survey biomass: 

The future biomass corresponding to survey index i is given by 

10
_ _

, ,
1

sur i sur i S
y a y a y a

a
B S w N

=

=∑  (9) 

where 

,
S
y aw  denote the population weights-at-age for each year used for the 2010 

ICES stock assessment, which are input, and  

 _sur i
aS is the fishing selectivity corresponding to the survey index i. 

 

Projected survey data  

Future survey data are generated assuming the same residuals as inferred from the 
adjusted 2010 XSA assessment 

_ i
yi i sur i

y yI q B eε=  (10) 

where 
_sur i

yB  is the model estimate of projected survey biomass, given by equation 

(9), 

iq  is the constant of proportionality for survey abundance series i estimated 
using equation (A.19) in Appendix A, and 

i
yε are the residuals given by equation (A.20) in Appendix A for the determi-

nistic projections, or ( )2)(,0~ ii
y N σε  for the stochastic projections, where 

iσ are either given by equation (A.21), or input. For these projections the 
standard deviation was fixed to 0.2iσ =  for both stocks for simplicity, the 
value being approximately equal to the estimated standard deviation.  
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Projected commercial selectivity: 

The commercial selectivity-at-age vectors for future years (1990 onwards) are sam-
pled randomly from past (1980 to 1989) XSA estimates. 

 

Projected weights: 

The population, ,
S
y aw , and catch, ,

C
y aw , weights-at-age for future years (1990 on-

wards) are set equal to the average weight for each age over the last three years prior 
to the projection period, i.e. 

1989

, ',
' 1987

1/ 3y a y a
y

w w
=

= ∑ for y>1989. 

 

3 Candidate Management Procedures 

Some very simple empirical management procedures, based on trends in survey in-
dices of abundance, are investigated. These simple MPs are particularly useful in 
data-poor situations where data are limited (Geromont and Butterworth, 2010), ren-
dering a model-based MP unsuitable, or where there is too much variability about the 
data, in which case a more complex model-based MP may well follow noise rather 
than trend. Furthermore, the very simple empirical rules are easy to understand, test 
and apply and have been shown to be as robust to uncertainty as their model-based 
counterparts in a number of cases (for example in the development of MPs for South-
ern Bluefin Tuna – CCSBT, 2010). The main disadvantage of empirical MPS are that 
there are no estimates of resource abundance and other management reference points 
on which to base TACs.  

For example “derivative” or “slope”-based MPs utilize the trend in a limited subset 
of data (typically the most recent 5 years of survey biomass estimates) for input. The 
annual TAC is simply moved up or down from where it was the previous year with-
out knowledge of where the resource might be in relation to maximum sustainable 
yield level or other conventional management reference points. Note that in imple-
mentation for relatively data-rich stocks such as North Sea Plaice and Sole that are 
considered here, a simple MP approach like this would be underpinned by a full 
resource assessment; the former provides ongoing yearly management advice, while 
the latter is re-considered at multiyear intervals to re-check the appropriateness of the 
MP and if necessary to adjust some of its parameters. 

3.1 Constant catch MP 

At the one extreme, this is the simplest of all empirical MPs and requires no data to 
set the annual TAC. The future TAC given by 

arg
1

t et
yTAC TAC+ =  (11) 

where argt etTAC is chosen such that the projected population spawning biomass in 
2009 reaches some target level arg

2009
sp t etB B= . For the “hindsight” projections, the 

target biomass was chosen to be equal to the final spawning biomass estimated in the 
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adjusted 2010 ICES assessment, arg
2009

t et XSAB B= , to facilitate comparison between the 
MP and assessment-based management approaches.  

For the stochastic “forecast” projections, a search routine is used to find the constant 
catch that reaches the target for each simulation, an approach suggested by Bentley 
and Langley (2011). The desired constant level for future catches is selected from the 
resulting distribution as the one that will provide adequately risk adverse perform-
ance under the uncertainty incorporated in the projections (the 2.5%-ile value was 
chosen for these projections).  

Note: A constant catch harvesting strategy is not recommended as there is no feedback-control 
mechanism built into this type of MP. It does however give a ball-park figure of the average 
yield that can be expected during the projection period given a chosen target, which is useful 
for later comparison of the different candidate MPs. 

3.2 Survey slope based MP 

For this type of MP, limited data are used in the MP formula to ascertain recent 
trends in biomass, with the TAC being moved up or down depending on whether the 
perceived trend is positive or negative. The TAC for the next year is given by 

 

1 (1 )y y yTAC TAC sλ+ = +  (12) 

 

Where 

yTAC  is the TAC in year y, 

λ  is a control parameter that reflects how strongly the TAC is adjusted in re-
sponse to the perceived trend in resource biomass, and 

ys  is a measure of the trend in the survey abundance index given by the 

slope of the linear regression of 'ln i
yI  against 'y  for years 

' , 1,...,y y p y p y= − − +  for abundance index iI , and 

p  is the number of years over which the slope is calculated. Note that if p  
is too small the trend estimates would fluctuate too much (tracking noise) 
and if p is too large the MP would not be able to react quickly enough to 
recent trends in resource abundance. A value  

 

For the first year of the projection period an appropriate “starting level”, *TAC , 
must be chosen (not necessarily equal to the actual TAC that year) . This is specified 
as * % nTAC x TAC= , where n is the last year of the assessment period and x is a 
control parameter that reflects how aggressive/conservative the MP should be. The 
choice of this starting point is important for the performance of the MP because a 
starting level that is too low will result in an unrealistically large drop in TAC in the 
first year of management (unrealistic because it would not be accepted in practice), 
while a starting point that is too high necessitates subsequent severe cuts in the TAC. 
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In addition, with the exception of the starting level TAC, 1nTAC + , all subsequent 
TACs are restricted to increase/decrease by at most v% from the previous year, i.e. let 

1( ) /change y y yTAC TAC TAC TAC+= −  (13) 

then 

1 %y y yTAC TAC v TAC+ = +    if %changeTAC v>  

or  

1 %y y yTAC TAC v TAC+ = −    if %changeTAC v< −  

A restriction of 20% interannual variation in catch was chosen for base case runs in 
order to be reasonably consistent with the maximum annual changes in observed 
catches (landings plus discards). 

3.3 Target based MP 

This type of MP is based on moving resource abundance to a chosen target level for 
some abundance index I. The form of the Tier 4 control rule in Wayte (2009) is used 
here. The TAC is adjusted up or down depending whether the most recent abun-
dance index (in these cases survey biomass estimate) is above or below the target 
survey. 

The TAC for the next year is given by 

 
0

arg
1 arg 0[ (1 )( )]

recent
t et

y t et

I ITAC TAC w w
I I+

−
= + −

−
 (14) 

if 0recentI I≥  and 
2

arg
1 0

recent
t et

y
ITAC wTAC

I+

 
=  

 
 (15) 

if 0recentI I<  
 
where 
 recentI is the average survey over the most recent four years, 

 arg %t et aveI x I= is the desired target value for the survey index of abundance,  

0 % aveI y I= is a lower survey abundance index level below which the TAC 
decreases to zero rapidly,  

 
1989

1985
1/ 5ave

y
y

I I
=

= ∑ is an average historic survey abundance index value,  

 argt etTAC  is the catch target (when argrecent t etI I= ), and  

w is a fraction that defines the catch level when 0recentI I= . 
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A simplified, commonly used, form of equation (14) is obtained by setting w=0 
0

arg
1 arg 0( )

recent
t et

y t et

I ITAC TAC
I I+

−
=

−
 (16) 

Here, the catch is set to zero when the abundance index reaches its lower limit, 0I . At 
the other extreme, setting 1w = results in the constant catch harvesting strategy of 
equation (11). 
 
However, the formulation given by equation (14) allows for a non-zero catch of 

argt etwTAC  when 0recentI I= , which has the effect of dampening the interannual 
variation in catches, thereby stabilizing the output from the MP. Setting 0w = would 
necessitate a steeper slope of the linear relationship given by equation (16), leading to 
more variable catches. On the other hand, setting 1w = would result in no interan-
nual fluctuations in catch, but also no adjustment of catch in response to changes in 
survey abundance indices. A suitable trade-off between the level of feedback control 
and interannual catch variation was sought and a value of 0.5w =  was chosen for 
the deterministic retrospective projections considered here, so that equation (14) be-
comes  

0
arg

1 arg 00.5 1 ( )
recent

t et
y t et

I ITAC TAC
I I+

 −
= + − 

 (17) 

 
In addition, a restriction for maximum allowed interannual change in catch is im-
posed as per equation (13). 

 

Figure 1 illustrates these forms of relationship for different values of the control pa-
rameter w. 

4. Results 

The statistics reported for comparison of performance of the MPs over the period 
from 1990 to 2009 are:  

i) average annual catch over the projection period, TAC ,  
ii) average annual variation of catch (variation given by modulus of change in 

catch as a proportion of previous catch) over the projection period, TAC∆ ,  

iii) the average annual fishing mortality rate, F ,  
iv) the average annual variation (given by modulus of change) in fishing mor-

tality, F∆ ,  
v) minimum spawning biomass as a fraction of the target biomass, 

argmin /sp t et
yB B  where argt etB corresponds to the 2009 spawning biomass 

estimated in the adjusted 2010 ICES assessments for North Sea Plaice or 
Sole in Subarea IV, and 

vi) final (2009) spawning biomass expressed in the same way as detailed in v).  

 

Three types of MPs with different harvest control rules are investigated: 

 

• Constant catch MP, i.e. no data used in the TAC setting rule (equation (11)). 
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• Survey slope based MP, using trend information in the survey index of 
abundance to increase/decrease TACs from one year to another in accordance 
to a positive/negative trend (equation (12)). 

• Target based MP, in which a target survey estimate is specified and the fu-
ture TAC is adjusted each year to approach, and eventually maintain, the 
target (equation (14)). 

Two stock–recruit functions are investigated: 

• A Beverton–Holt stock–recruit curve with a steepness fixed at 0.9. 
• A simple 2-line (“hockey-stick”) stock–recruitment relationship. 

For North Sea Plaice and Sole in Subarea IV, the survey data used in the TAC setting 
rules are the BTS-Isis index, aggregated over all ages.  

Results are shown in Tables 1 to 4 and Figures 2 to 6 for North Sea Plaice, and Tables 
5 to 8 and Figures 7 to 11 for Sole in Subarea IV. Deterministic (“hindsight”) and sto-
chastic (“forecast”) projections are performed starting in year 1990 to 2009. One thou-
sand simulations were run for the stochastic analyses. Four sets of results are shown 
for each stock: 

• Deterministic “hindsight” projections with MPs tuned to hit the 2009 target 
spawning biomass exactly (Tables 1a, 1b, 5a and 5b and Figures 2 and 7). 

• Stochastic “forecast” projections of “hindsight” MPs (Tables 2a, 2b, 6a and 
6b). 

• Stochastic “forecast” projections used to tune the MPs: those MPs that 
showed the best performance while at the lower 5%-ile achieving a final 
spawning biomass which was equal to or greater than that actually 
achieved as indicated by the 2010 ICES assessment, were selected and are 
termed “forecast” MPs (Tables 3a, 3b, 7a and 7b and Figures 3, 4, 8 and 9). 

• Deterministic “hindsight” projections, but here under the “forecast” MPs 
(Tables 4a, 4b, 8a and 8b and Figures 5 and 10). 

Throughout, the Tables contrast values of the performance statistics that were actu-
ally achieved to those for the three types of MP. Figure 6 provides a graphical sum-
mary of the performance statistics for the various tuned “forecast” MPs for North Sea 
Plaice from projections over 1990 to 2009: (a) shows results for the stochastic “fore-
cast” projections, while (b) shows these for the “hindsight” projection for which the 
stock–recruitment and survey residuals found in the 2010 ICES assessments are taken 
to apply. Figure 11 shows the corresponding results for Sole in Subarea IV. 

5. Discussion and conclusions 

The “hindsight” MPs for which results are reported in Tables 1 and 5 outperform 
what was achieved in practice for total catch over the 20 year period considered, de-
spite finishing the period with the same spawning biomasses as do the ICES assess-
ments. The constant catch MP performs best in this respect, though the other two 
types of MP are not far behind. The other performance statistics are nearly always 
better for the MPs than was achieved historically. 

The larger catches with the same target biomass arise in part because the Beverton–
Holt stock-relationship with h = 0.9 that is assumed reflects an increase in recruitment 
over the range of spawning biomasses that occur over the 1990–2009 period, so that a 
harvest pattern that leads to that biomass being nearer the upper end of that range 
will result in improved recruitment and hence greater productivity than historically. 
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The actual best estimates of h from the assessment data available up to 1990 are actu-
ally higher than 0.9, and the decision to use 0.9 was taken given conventional reluc-
tance among scientists to buy into a relationship that drops below its pristine level 
only at very low biomass. However, particularly for the North Sea Plaice, this factor 
contributes to the “larger catch” behaviour mentioned above, and the reason for in-
troducing the 2-line (“hockey-stick”) relationship as well was as a form of robustness 
check in circumstances that would not evidence this feature of greater productivity at 
larger spawning biomass (as is more consistent with the data). 

Despite this good performance, these “hindsight” MPs would not have been viable 
candidates for implementation in 1990. The reasons are readily evident from Tables 2 
and 6. For example, under the stochastic “forecast” projections that take account of 
future uncertainty in recruitment levels, the median final spawning biomass for 
North Sea Plaice in 2009 for the “hindsight” constant catch MP is zero. Though for the 
other “hindsight” MPs as well as for Sole the behaviour is a little better, nevertheless 
nearly all the MPs exhibit lower 2.5%-iles for spawning biomass that go very low and 
even to zero. 

However once these MPs are tuned under the stochastic “forecast” projections to 
yield final spawning biomass distributions whose lower 5%-iles are at least as large 
as occurred in reality, this problem is obviated and the associated “forecast” MPs are 
certainly such as might have been accepted for implementation in 1990. In terms of 
medians of performance statistics, these MPs still achieve better performance in 
nearly all respects (i.e. “dominate”) what was achieved in practice for North Sea 
Plaice (Table 3). For Sole (Table 7) virtually the same applies, the exception being that 
the average catch is some 10% less, though this comes with the advantage of a final 
spawning biomass improvement by a factor of about double or more. Tables 4 and 8, 
where these “forecast” MPs are applied under the “hindsight” projections, show the 
same patterns. 

Figures 6 and 11 provide useful summaries of these performance statistics in graphi-
cal form. The domination of the “forecast” MPs performance over actual events for 
North Sea Plaice is readily evident, though for Sole again the MPs’ catch performance 
is slightly weaker. Of the different types of MPs, the constant catch types reflect the 
smallest total catches, and in any case are unlikely candidates in reality because of 
their lack of feedback features to provide robustness to other uncertainties which 
have not been considered here. The catch performance for the slope and target based 
MPs is almost equal to what was achieved historically for Sole, and overall there ap-
pears little to choose between these two MP types in terms of performance.  

In general these results are similar to those obtained in simulation studies by Punt 
(1993), which showed that compared to simpler management approaches based on 
production models, attempts to take age-structure information into account through 
VPA in recommending catch limits led to greater variability in those limits without 
any corresponding enhancement of performance in terms of resource conservation.  

In conclusion, these results seem sufficiently promising to suggest that they be ex-
tended, in particular to further stocks, to confirm whether they might indeed provide 
a defensible alternative approach to the provision of scientific management advice. 
At present for ICES stocks, because of diminishing research resources, there may be 
difficulties in sustaining the level of data input required for complex annual assess-
ments, such as annual ageing of the catch. This raises the question of whether such 
complex assessments can continue to serve as the primary basis to provide scientific 
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advice on catch limits, so that there is a need to explore alternative possibilities as 
done here. 

This is not to suggest that complex assessments can be abandoned. Rather they still 
need to be conducted from time to time to provide the updated representations of the 
underlying resource dynamics that serve as the basis for repetitions of the process of 
re-selecting simple MPs at regular intervals. Though VPA assessments require annual 
ageing, if that cannot be continued, various SCAA/integrated analysis assessment 
approaches which do not require age data for every year could be used instead. 

6. Future Work 

• Due to limited time, only two stocks (North Sea Plaice and Sole in Subarea 
IV) have been investigated thus far (and the parameter choices for the Sole 
MPs could not be optimized to the same extent as those for Plaice). The 
highest priority would seem to be the extension of this work to consider 
more ICES stocks, hopefully to confirm more widespread applicability. 

• In comparing performance above, “forecast” MPs were tuned to achieve 
the same final spawning biomass level at some low percentile (5%) of the 
distribution of this statistic. Trade-off comparisons might be more readily 
made if instead tuning was effected to achieve the same total catch over 
the period.  

• The stochastic projection trial exercise should be extended to incorporate 
more checks of robustness. Aspects to be considered for inclusion in such 
an extension include first estimation and then model structure uncertainty 
in the numbers-at-age vector that commences the projections, variability in 
natural mortality, and a greater number of stock–recruitment relationships.  

• In the calculations above, the TAC specified by the MP was assumed to be 
exactly equal to total removals for the year concerned. Realistic levels of 
implementation error need to be incorporated into projections. 

• At a later stage, if this approach finds wide favour, rather than demonstra-
tions of adequacy based on history, the analyses will need to move on to 
consider simulations projecting forward from the present time, so as to de-
velop MPs that can be seriously considered for implementation. This could 
involve extension beyond the simple types of MPs considered here, as well 
as a wider range of robustness testing. 

Acknowledgements 

We thank José De Oliveira, Charlie Edwards and Laurie Kell for assistance in provid-
ing the assessment data we have used. Financial support of the National Research 
Foundation (NRF) of South Africa is gratefully acknowledged.  

References 

Bentley, N., and A. Langley. 2011. Feasible stock trajectories: a flexible and efficient sequential 
estimator for use in fisheries management procedures. Canadian Journal of Fisheries and 
Aquatic Sciences. 2011–0259.R1 In press. 

Commission for the Conservation of Southern Bluefin Tuna. 2010. Report of the Scientific 
Committee: 119p. 

De Oliveira, J. A. A., Kell, L. T., Punt, A. E., Roel, B. A., and Butterworth, D. S. 2008. In Manag-
ing without best predictions: the Management Strategy Evaluation framework. In Ad-



ICES WGMG REPORT 2011 |  161 

 

vances in Fisheries Science. 50 years on from Beverton and Holt. Payne, A.I.L., Cotter, J.R. 
and Potter, E.C.E., pp. 104–134. Blackwell Publishing, Oxford. xxi + 547 pp. 

Geromont, H. F., and D. S. Butterworth 2010. Initial investigation of generic management pro-
cedures for data-poor fisheries. MARAM IWS/DEC10/DPA/P2: 1–41. 
www.mth.uct.ac.za/maram/pub/2010/MARAM_IWS_DEC10_DPA_P2.pdfICES WGNSSK 
Report 2010. Report of the Working Group on the Assessment of Demersal Stocks in the 
North Sea and Skagerrak (WGNSSK). International Council for the Exploration of the. 
ICES CM 2010/ACOM:13: p 422–491. 

Punt, A. E. 1993. The comparative performance of production-model and ad hoc tuned VPA 
based feedback-control management procedures for the stock of Cape hake off the west 
coast of South Africa. In Risk Evaluation and Biological Reference Points for Fisheries 
Management, pp. 283–299. Ed. by S. J. Smith, J. J. Hunt, and D. Rivard. Canadian Special 
Publication of Fisheries and Aquatic Sciences, 120. 

Wayte, S. E. (ed.) 2009 Evaluation of new harvest strategies for SESSF species. CSIRO Marine 
and Atmospheric Research, Hobart and Australian Fisheries Management Authority, 
Canberra. 137 p. 

  



162  | ICES WGMG REPORT 2011 

 

 
PLAICE: SUBAREA IV 

 
BEVERTON–HOLT STOCK RECRUIT RELATIONSHIP WITH H=0.9 

  MP1 MP2 MP3 

 Observed 
catches 

Constant 
catch 

MP slope: BTS-Isis  

80%, 0.556x λ= =  
4p =  

(max 20% TAC∆ ) 

MP target: BTS-Isis 
0 arg0.2 , 1.1ave t et aveI I I I= =  

arg 206700t etTAC =  
0.5w =  

(max 20% TAC∆ ) 

TAC  
145702 185989 152206 156460 

TAC∆  
0.166 0.016 0.076 0.051 

F  
0.735 0.709 0.738 0.726 

F∆  
0.202 0.186 0.212 0.170 

arg
2009 /sp t etB B

 
1.000 1.000 1.013 1.047 

argmin /sp t et
yB B

 
0.491 0.610 0.429 0.451 

 

Table 1a. Comparison of North Sea Plaice results for deterministic “hindsight” projections under 
a Beverton–Holt stock–recruit relationship when using only the BTS-Isis aggregated index in 
“hindsight” MPs (see text for details of the MP control parameters). Units are tons where applica-
ble.  
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PLAICE: SUBAREA IV 

 
2-LINE STOCK RECRUIT RELATIONSHIP 

  MP1 MP2 MP3 

 Observed 
catches 

Constant 
catch 

MP slope: BTS-Isis  

80%, 0.562x λ= =  
4p =  

(max 20% TAC∆ ) 

MP target: BTS-Isis 
0 arg0.2 , 1.1ave t et aveI I I I= =  

arg 206700t etTAC =  
0.49w =  

(max 20% TAC∆ ) 

TAC  
145702 178293 151582 154935 

TAC∆  
0.166 0.018 0.075 0.051 

F  
0.735 0.634 0.737 0.722 

F∆  
0.202 0.198 0.217 0.172 

arg
2009 /sp t etB B

 
1.000 1.000 1.023 0.997 

argmin /sp t et
yB B

 
0.491 0.680 0.422 0.445 

 

Table 1b. As for Table 1a, but here when projecting with a 2-line stock–recruit relationship. 
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PLAICE: SUBAREA IV 

 
BEVERTON–HOLT STOCK RECRUIT RELATIONSHIP WITH H=0.9 

 Observe
d catches 

Constant catch 
arg 185989t etTAC =

 
 

MP slope: BTS-Isis  

80%, 0.556x λ= =  
4p =  

(max 20% TAC∆ ) 

MP target: BTS-Isis 
0 0.2 aveI I=  
arg 1.1t et aveI I=  

arg 206700t etTAC =  
0.5w =  

(max 20% TAC∆ ) 

TAC  
145702 185989 

(185989, 185989) 
174343 
(107374, 214871) 

169445 
(91831, 218102) 

TAC∆  
0.166 0.016 

(0.016, 0.016) 
0.078 
(0.057, 0.118) 

0.067 
(0.048, 0.143) 

F  
0.735 3.146 

(0.197, 7.270) 
0.317 
(0.225, 3.220) 

0.351 
(0.227, 6.398) 

F∆  
0.202 0.283 

(0.142, 0.471) 
0.186 
(0.126, 0.341) 

0.196 
(0.124, 0.442) 

arg
2009 /sp t etB B

 
1.000 0.000 

(0.000, 12.315) 
5.468 
(0.000, 10.792) 

4.604 
(0.000, 10.134) 

argmin /sp t et
yB B

 
0.491 0.000 

(0.000, 1.013) 
0.853 
(0.000, 0.950) 

0.798 
(0.000, 0.955) 

 

Table 2a. Comparison of results for stochastic “forecast” projections for North Sea Plaice under a 
Beverton–Holt stock–recruit relationship when using only the BTS-Isis aggregated index in the 
slope and target type “hindsight” MPs. Management quantities shown are medians with associ-
ated 95% probability intervals in parentheses. 1000 simulations were performed. Units are tons 
where applicable. 
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PLAICE: SUBAREA IV 

 
2-LINE STOCK RECRUIT RELATIONSHIP  

 Observe
d catches 

Constant catch 
arg 178293t etTAC =  

 

MP slope: BTS-Isis  

80%, 0.562x λ= =
 

4p =  

(max 20% TAC∆ ) 

MP target: BTS-Isis 
0 0.2 aveI I=  
arg 1.1t et aveI I=  

arg 206700t etTAC =  
0.49w =  

(max 20% TAC∆ ) 

TAC  
145702 178293 

(178293, 178293) 
149568 
(96345, 172055) 

149868 
(87507, 172475) 

TAC∆  
0.166 0.018 

(0.018, 0.018) 
0.078 
(0.057, 0.132) 

0.062 
(0.047, 0.152) 

F  
0.735 4.529 

(0.267, 7.220) 
0.354 
(0.258, 4.056) 

0.419 
(0.270, 6.555) 

F∆  
0.202 0.332 

(0.138, 0.502) 
0.186 
(0.126, 0.341) 

0.197 
(0.119, 0.434) 

arg
2009 /sp t etB B

 
1.000 0.000 

(0.000, 4.102) 
2.695 
(0.000, 4.890) 

2.050 
(0.000, 4.529) 

argmin /sp t et
yB B

 
0.491 0.000 

(0.000, 1.013) 
0.798 
(0.000, 0.949) 

0.698 
(0.000, 0.953) 

 

Table 2b. As for Table 2a, but here when projecting with a 2-line stock–recruit relationship. 
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PLAICE: SUBAREA IV 

 
BEVERTON–HOLT STOCK RECRUIT RELATIONSHIP WITH H=0.9 

 Observed 
catches 

Constant catch 
arg 160634t etTAC =  

Median constant catch 
required to reach target 
for each simulation: 
184068 (160634,216004) 
 

MP slope: BTS-Isis  

80%, 1.0x λ= =  
4p =  

(max 20% TAC∆ ) 

MP target: BTS-Isis 
0 0.2 aveI I=  
arg 1.1t et aveI I=  

arg 206700t etTAC =  
0.0w =  

(max 20% TAC∆ ) 

TAC  
145702 160634 

(160634, 160634) 
181650 
(137235, 234484) 

184272 
(126068, 248620) 

TAC∆  
0.166 0.021 

(0.021, 0.021) 
0.118 
(0.091, 0.148) 

0.146 
(0.101, 0.191) 

F  
0.735 0.200 

(0.136, 0.457) 
0.238 
(0.190, 0.338) 

0.214 
(0.182, 0.263) 

F∆  
0.202 0.189 

(0.142, 0.295) 
0.189 
(0.137, 0.260) 

0.198 
(0.147, 0.265) 

arg
2009 /sp t etB B

 
1.000 9.647 

(1.000, 16.739) 
7.624 
(3.794, 12.943) 

8.684 
(6.293, 12.808) 

argmin /sp t et
yB B

 
0.491 1.013 

(0.736, 1.013) 
0.902 
(0.739, 0.945) 

0.893 
(0.682, 0.955) 

 

Table 3a. Comparison of results for stochastic “forecast” projections for North Sea Plaice under a 
Beverton–Holt stock–recruit relationship for the “forecast” MPs. Management quantities shown 
are medians with associated 95% probability intervals in parentheses. 1000 simulations were 
performed. Units are tons where applicable. 
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PLAICE: SUBAREA IV 

 
2-LINE STOCK RECRUIT RELATIONSHIP 

 Observed 
catches 

Constant catch 
arg 146275t etTAC =  

Median constant catch 
required to reach target 
for each simulation: 
168306 (146275,195181) 
 

MP slope: BTS-Isis  

80%, 0.61x λ= =  
4p =  

(max 20% TAC∆ ) 

MP target: BTS-Isis 
0 0.2 aveI I=  
arg 1.1t et aveI I=  

arg 206700t etTAC =  
0.378w =  

(max 20% TAC∆ ) 

TAC  
145702 146275 

(146275, 146275) 
147736 
(122006, 171214) 

144947 
(120021, 169205) 

TAC∆  
0.166 0.024 

(0.024, 0.024) 
0.083 
(0.060, 0.113) 

0.076 
(0.057, 0.105) 

F  
0.735 0.216 

(0.152, 0.398) 
0.322 
(0.245, 0.540) 

0.316 
(0.239, 0.554) 

F∆  
0.202 0.172 

(0.122, 0.248) 
0.179 
(0.122, 0.275) 

0.179 
(0.123, 0.282) 

arg
2009 /sp t etB B

 
1.000 4.126 

(1.000, 7.238) 
3.085 
(1.057, 5.261) 

3.337 
(1.002, 5.362) 

argmin /sp t et
yB B

 
0.491 1.013 

(0.804, 1.013) 
0.831 
(0.435, 0.949) 

0.794 
(0.405, 0.954) 

 

Table 3b. As for Table 3a, but here projecting with a 2-line stock–recruit relationship. 
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PLAICE: SUBAREA IV 

 
BEVERTON–HOLT STOCK RECRUIT RELATIONSHIP WITH H=0.9 

 Observed 
catches 

Constant catch 
arg 16063t etTAC =

 

MP slope: BTS-Isis  

80%, 1.0x λ= =  
4p =  

(max 20% TAC∆ ) 

MP target: BTS-Isis 
0 arg0.2 , 1.ave t etI I I= =

 
arg 206700t etTAC =  

0.0w =  

(max 20% TAC∆ ) 

TAC  
145702 160634 173748 198740 

TAC∆  
0.166 0.021 0.120 0.112 

F  
0.735 0.235 0.315 0.331 

F∆  
0.202 0.188 0.207 0.166 

arg
2009 /sp t etB B

 
1.000 10.454 7.782 6.375 

argmin /sp t et
yB B

 

0.491 0.921 0.813 0.796 

 

Table 4a. Comparison of results for deterministic “hindsight” projections under a Beverton–Holt 
stock–recruit relationship when using only the BTS-Isis aggregated index in the “forecast” MPs. 
Units are tons where applicable. 
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PLAICE: SUBAREA IV 

 
2-LINE STOCK RECRUIT RELATIONSHIP  

 Observ
ed 
catches 

Constant catch 
arg 14627t etTAC =

 

MP slope: BTS-
Isis  

80%, 0.6x λ= =
 

4p =  
(max 20% 

TAC∆ ) 

MP target: BTS-Isis 
0 arg0.2 , 1.1ave t etI I I= =

 
arg 206700t etTAC =  

0.378w =  

(max 20% TAC∆ ) 

TAC  
145702 146275 146550 147666 

TAC∆  
0.166 0.024 0.089 0.067 

F  
0.735 0.306 0.727 0.537 

F∆  
0.202 0.194 0.208 0.163 

arg
2009 /sp t etB B

 

1.000 2.811 1.413 1.788 

argmin /sp t
yB B

 

0.491 0.921 0.446 0.529 

 

Table 4b. As for Table4a, but here when projecting with a 2-line stock–recruit relationship. 
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SOLE: SUBAREA IV 

 
BEVERTON–HOLT STOCK RECRUIT RELATIONSHIP WITH H=0.9 

 Observed 
catches 

Constant catch 
arg 24312t etTAC =  

 
 

MP slope: BTS-Isis  

110%, 0.21x λ= =  
4p =  

(max 20% TAC∆ ) 

MP target: BTS-Isis 
0 arg0.2 , 2ave t et aveI I I I= =  

arg 26300t etTAC =  
0.5w =  

(max 20% TAC∆ ) 

TAC  
22364 24312 23981 23221 

TAC∆  
0.152 0.005 0.055 0.063 

F  
0.908 0.602 0.700 0.799 

F∆  
0.274 0.302 0.309 0.289 

arg
2009 /sp t etB B

 
1.000 1.000 0.997 0.985 

argmin /sp t et
yB B

 
0.519 0.925 0.718 0.541 

 

Table 5a. Comparison of results for deterministic “hindsight” projections for Sole in Subarea IV 
under a Beverton–Holt stock–recruit relationship when using only the BTS-Isis aggregated index 
in the MPs selected with hindsight (see the text for details of the MP control parameters) when 
using a Beverton–Holt stock–recruit relationship. Units are tons where applicable. 
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SOLE: SUBAREA IV 

 
2-LINE STOCK RECRUIT RELATIONSHIP 

 Observed 
catches 

Constant catch 
arg 22465t etTAC =

 
 
 

MP slope: BTS-Isis  

110%, 0.19x λ= =  
4p =  

(max 20% TAC∆ ) 

MP target: BTS-Isis 
0 arg0.2 , 2ave t et aveI I I I= =

 arg 25600t etTAC =  
0.5w =  

(max 20% TAC∆ ) 

TAC  
22364 22465 22700 22504 

TAC∆  
0.152 0.001 0.045 0.062 

F  
0.908 0.525 0.615 0.749 

F∆  
0.274 0.291 0.306 0.285 

arg
2009 /sp t etB B  1.000 1.001 0.991 1.015 

argmin /sp t et
yB B  

0.519 0.982 0.773 0.571 

 

Table 5b. As for Table 5a, but here projecting with a 2-line stock–recruit relationship. 

  



172  | ICES WGMG REPORT 2011 

 

 

 
SOLE: SUBAREA IV 

 
BEVERTON–HOLT STOCK RECRUIT RELATIONSHIP WITH H=0.9 

 Observed 
catches 

Constant catch 
arg 24312t etTAC =  

 

MP slope: BTS-Isis  

110%, 0.21x λ= =
 

4p =  

(max 20% TAC∆ ) 

MP target: BTS-Isis 
0 0.2 aveI I=  
arg 2t et aveI I=

 arg 26300t etTAC =  
0.5w =  

(max 20% TAC∆ ) 

TAC  
22364 24312 

(24312, 24312) 
23147 
(19730, 24836) 

21883 
(19551, 24554) 

TAC∆  
0.152 0.005 

(0.005, 0.005) 
0.042 
(0.030, 0.072) 

0.044 
(0.033, 0.058) 

F  
0.908 0.402 

(0.219, 3.989) 
0.705 
(0.301, 4.477) 

0.387 
(0.283, 1.672) 

F∆  
0.274 0.177 

(0.114, 0.454) 
0.226 
(0.117, 0.442) 

0.156 
(0.111, 0.328) 

arg
2009 /sp t etB B  

1.000 1.448 
(0.000, 4.734) 

0.432 
(0.001, 3.162) 

1.654 
(0.020, 3.617) 

argmin /sp t et
yB B

 

0.519 1.314 
(0.000, 2.496) 

0.398 
(0.000, 2.345) 

1.400 
(0.007, 2.456) 

 

Table 6a. Comparison of results for stochastic “forecast” projections for Sole in Subarea IV under 
a Beverton–Holt stock–recruit relationship when using only the BTS-Isis aggregated index in the 
slope and target type “hindsight” MPs. Management quantities shown are medians with associ-
ated 95% probability intervals in parentheses. 1000 simulations were performed. Units are tons 
where applicable. 
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SOLE: SUBAREA IV 

 
2-LINE STOCK RECRUIT RELATIONSHIP  

 Observed 
catches 

Constant catch 
arg 22465t etTAC =  

 

MP slope: BTS-Isis  

110%, 0.19x λ= =
 

4p =  

(max 20% TAC∆ ) 

MP target: BTS-Isis 
0 0.2 aveI I=  
arg 2t et aveI I=

 arg 25600t etTAC =  
0.5w =  

(max 20% TAC∆ ) 

TAC  
22364 22465 

(22465, 22465) 
22912 
(18954, 24550) 

21007 
(19120, 23332) 

TAC∆  
0.152 0.001 

(0.001, 0.001) 
0.043 
(0.029, 0.083) 

0.043 
(0.032, 0.058) 

F  
0.908 0.514 

(0.246, 3.926) 
2.013 
(0.361, 4.928) 

0.379 
(0.281, 0.928) 

F∆  
0.274 0.210 

(0.123, 0.464) 
0.308 
(0.131, 0.457) 

0.156 
(0.113, 0.268) 

arg
2009 /sp t etB B  

1.000 0.745 
(0.000, 3.586) 

0.012 
(0.000, 2.265) 

1.612 
(0.161, 2.351) 

argmin /sp t et
yB B

 

0.519 0.700 
(0.000, 2.456) 

0.006 
(0.000, 1.832) 

1.364 
(0.161, 2.389) 

 

Table 6b. As for Table 6a, but here projecting with a 2-line stock–recruit relationship. 
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SOLE: SUBAREA IV 

 
BEVERTON–HOLT STOCK RECRUIT RELATIONSHIP WITH H=0.9 

 Observed 
catches 

Constant catch 
arg 19570t etTAC =  

Median constant catch 
required to reach target 
for each simulation: 
23136 
(19570, 27311) 
 

MP slope: BTS-Isis  

110%, 0.45x λ= =
 

3p =  

(max 20% TAC∆ ) 

MP target: BTS-Isis 
0 0.2 aveI I=  
arg 1.5t et aveI I=

 arg 24000t etTAC =  
0.5w =  

(max 20% TAC∆ ) 

TAC  
22364 19570 

(19570, 19570) 
20942 
(18706, 23266) 

20747 
(18755, 23163) 

TAC∆  
0.152 0.006 

(0.006, 0.006) 
0.069 
(0.051, 0.093) 

0.045 
(0.035, 0.061) 

F  
0.908 0.219 

(0.160, 0.375) 
0.318 
(0.249, 0.435) 

0.284 
(0.228, 0.385) 

F∆  
0.274 0.149 

(0.110, 0.204) 
0.144 
(0.105, 0.195) 

0.146 
(0.109, 0.190) 

arg
2009 /sp t etB B  

1.000 3.369 
(1.000, 6.342) 

2.331 
(0.988, 4.359) 

2.611 
(1.094, 4.576) 

argmin /sp t et
yB B

 

0.519 2.456 
(0.967, 2.456) 

1.921 
(0.940, 2.456) 

2.150 
(1.033, 2.456) 

 

Table 7a. Comparison of results for stochastic “forecast” projections for Sole in Subarea IV under 
a Beverton–Holt stock–recruit relationship for the best performing ”forecast” MPs when incorpo-
rating only the BTS-Isis aggregated index in the HCR with a Beverton–Holt stock–recruit rela-
tionship. Management quantities shown are medians with associated 95% probability intervals in 
parentheses. 1000 simulations were performed. Units are tons where applicable. 
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SOLE: SUBAREA IV 

 
2-LINE STOCK RECRUIT RELATIONSHIP  

 Observed 
catches 

Constant catch 
arg 18743t etTAC =  

Median constant catch 
required to reach target 
for each simulation: 
22118 
(18743,26168) 
 

MP slope: BTS-Isis  

110%, 0.48x λ= =
 

3p =  

(max 20% TAC∆ ) 

MP target: BTS-Isis 
0 0.2 aveI I=  
arg 1.5t et aveI I=

 arg 23500t etTAC =  
0.5w =  

(max 20% TAC∆ ) 

TAC  
22364 18743 

(18743, 18743) 
20104 
(18109, 22277) 

19877 
(18177, 21978) 

TAC∆  
0.152 0.008 

(0.008, 0.008) 
0.074 
(0.054, 0.098) 

0.047 
(0.036, 0.061) 

F  
0.908 0.220 

(0.161, 0.367) 
0.322 
(0.256, 0.423) 

0.286 
(0.230, 0.383) 

F∆  
0.274 0.149 

(0.110, 0.204) 
0.156 
(0.106, 0.196) 

0.147 
(0.110, 0.191) 

arg
2009 /sp t etB B  

1.000 2.948 
(1.000, 5.519) 

2.117 
(1.002, 3.867) 

2.364 
(1.067, 4.094) 

argmin /sp t et
yB B

 

0.519 2.456 
(0.929, 2.456) 

1.778 
(0.944, 2.456) 

1.980 
(1.007, 2.456) 

 

Table 7b. As for Table 7a, but here for a 2-line stock recruit relationship. 
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SOLE: SUBAREA IV 

 
BEVERTON–HOLT STOCK RECRUIT RELATIONSHIP WITH H=0.9 

 Observed 
catches 

Constant catch 
arg 19570t etTAC =  

MP slope: BTS-Isis  

110%, 0.45x λ= =
 

3p =  

(max 20% TAC∆ ) 

MP target: BTS-Isis 
0 arg0.2 , 1.5ave t et aveI I I I= =

 
arg 24000t etTAC =  

0.5w =  
(max 20% TAC∆ ) 

TAC  
22364 19570 21681 22219 

TAC∆  
0.152 0.006 0.100 0.067 

F  
0.908 0.262 0.487 0.501 

F∆  
0.274 0.244 0.297 0.272 

arg
2009 /sp t etB B  1.000 3.178 2.240 1.920 

argmin /sp t et
yB B  

0.519 2.596 1.390 1.284 

 

Table 8a. Comparison of results for deterministic “hindsight” projections for Sole in Subarea IV 
under a Beverton–Holt stock–recruit relationship when using only the BTS-Isis aggregated index 
in the “forecast” MPs. Units are tons where applicable. 
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SOLE: SUBAREA IV 

 
2-LINE STOCK RECRUIT RELATIONSHIP 

 Observed 
catches 

Constant catch 
arg 18743t etTAC =  

MP slope: BTS-Isis  

110%, 0.48x λ= =
 

3p =  

(max 20% TAC∆ ) 

MP target: BTS-Isis 
0 arg0.2 , 1.5ave t et aveI I I I= =

 
arg 23500t etTAC =  

0.5w =  
(max 20% TAC∆ ) 

TAC  
22364 18743 20859 21356 

TAC∆  
0.152 0.008 0.105 0.066 

F  
0.908 0.269 0.501 0.508 

F∆  
0.274 0.241 0.301 0.272 

arg
2009 /sp t etB B  1.000 2.444 1.897 1.592 

argmin /sp t et
yB B  

0.519 2.191 1.323 1.082 

 

Table 8b. As for Table 8a, but here projecting with a 2-line stock–recruit relationship. 
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Figure 1. Different target type MPs for three values of w: the dashed lines correspond to equa-
tions 13, 14 and 16, while the solid black line correspond to equation 15. The vertical lines indi-
cate the zero and target survey values, while the horizontal dotted line corresponds to the target 
TAC (constant catch rule for w=1) 
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Figure 2:.Deterministic “hindsight” projections with either a Beverton–Holt or 2-line stock–
recruit relationship from 1990 for a constant catch strategy (line), and for BTS-Isis survey slope 
(triangles) and target (dots) “hindsight” MPs, compared to the adjusted 2010 XSA assessment 
estimates for North Sea Plaice (black diamonds). Top plots: total annual catch; middle plots: 
spawning biomass; bottom plots: annual fishing mortality. 
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Figure 3. Stochastic “forecast” spawning biomass projections from 1990 for a BTS-Isis survey 
target “forecast” MP with a Beverton–Holt (top) and a 2-line (bottom) stock–recruit relationship 
(50 of the 1000 simulations shown here) compared to the adjusted XSA assessment estimates for 
North Sea Plaice (black diamonds). The medians and 95% PIs are indicated by the solid and 
dashed black lines. 
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Figure 4. Stochastic “forecast” catch projections from 1990 for a BTS-Isis survey target “forecast” 
MP with a Beverton–Holt (top) and 2-line (bottom) stock–recruit relationship (50 of the 1000 simu-
lations shown here) compared to the observed catches (landings plus discards) for North Sea 
Plaice (black diamonds). The medians and 95% PIs are indicated by the solid and dashed black 
lines. 
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Figure 5. Deterministic “hindsight” projections with a Beverton–Holt (left) and 2-line (right) 
stock–recruit relationship from 1990 for a constant catch strategy (line), and for BTS-Isis survey 
slope (triangles) and target (dots) “forecast” MPs, compared to the adjusted 2010 XSA assessment 
estimates for North Sea Plaice (black diamonds). Top two plots: total annual catch. Middle two 
plots: spawning biomass. Bottom two plots: annual fishing mortality.  
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Figure 6a. Comparison of performance statistics for “forecast” MPs for North Sea Plaice over the 
1990 to 2009 period when projecting with a Beverton–Holt and 2-line stock–recruit relationship 
respectively: medians and 95% probability intervals of 1000 simulations. From top to bottom: 
average annual future catch, average interannual variation in catch, final spawning biomass as a 
fraction of target, and minimum future spawning biomass as a fraction of the target value. The 
solid horizontal lines indicate results for the adjusted 2010 XSA assessment estimates. 
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Figure 6b. Comparison of performance statistics for deterministic “hindsight” projections under 
“forecast” MPs for North Sea Plaice over the 1990 to 2009 period with a Beverton–Holt and 2-line 
stock–recruit relationship respectively. From top to bottom: average annual future catch, average 
interannual variation in catch, final spawning biomass as a fraction of target, and minimum fu-
ture spawning biomass as a fraction of the target value. The solid horizontal lines indicate results 
for the adjusted 2010 XSA assessment estimates.  
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Figure 7. Deterministic “hindsight” projections with either a Beverton–Holt or 2-line stock–
recruit relationship from 1990 for a constant catch strategy (line), and for BTS-Isis survey slope 
(triangles) and target (dots) “hindsight” MPs, compared to the adjusted 2010 XSA assessment 
estimates for Sole caught in Subarea IV (black diamonds). Top plots: total annual catch; middle 
plots: spawning biomass; bottom plots: annual fishing mortality. 
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Figure 8. Stochastic “forecast” spawning biomass projections from 1990 for a BTS-Isis survey 
target “forecast” MP with a Beverton–Holt (top) and a 2-line (bottom) stock–recruit relationship 
(50 of the 1000 simulations shown here) compared to the adjusted XSA assessment estimates for 
Sole in Subarea IV (black diamonds). The medians and 95% PIs are indicated by the solid and 
dashed black lines. 
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Figure 9. Stochastic “forecast” catch projections from 1990 for a BTS-Isis survey target “forecast” 
MP with a Beverton–Holt (top) and 2-line (bottom) stock–recruit relationship (50 of the 1000 simu-
lations shown here) compared to the observed catches (landings plus discards) for Sole in Su-
barea IV (black diamonds). The medians and 95% PIs are indicated by the solid and dashed black 
lines. 
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Figure 10. Deterministic “hindsight” projections with a Beverton–Holt (left) and 2-line (right) 
stock–recruit relationship from 1990 for a constant catch strategy (line), and for BTS-Isis survey 
slope (triangles) and target (dots) “forecast” MPs compared to the adjusted 2010 XSA assessment 
estimates for Sole in Subarea IV (black diamonds). Top two plots: total annual catch. Middle two 
plots: spawning biomass. Bottom two plots: annual fishing mortality. 
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Figure 11a. Comparison of performance statistics for the “forecast” MPs for Sole in Subarea IV 
over the 1990 to 2009 period when projecting with a Beverton–Holt and 2-line stock–recruitment 
relationship: medians and 95% probability intervals of 1000 simulations. From top to bottom: 
average annual future catch, average interannual variation in catch, final spawning biomass as a 
fraction of target, and minimum future spawning biomass as a fraction of the target value. The 
solid horizontal lines indicate results for the adjusted 2010 XSA assessment estimates. 
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Figure 11b. Comparison of performance statistics for deterministic (“hindsight”) projections 
under “forecast” MPs for Sole in Subarea IV over the 1990 to 2009 period with a Beverton–Holt 
and 2-line stock–recruitment relationship. From top to bottom: average annual future catch, aver-
age interannual variation in catch, final spawning biomass as a fraction of target, and minimum 
future spawning biomass as a fraction of the target value. The solid horizontal lines indicate 
results for the adjusted 2010 XSA assessment estimates. 
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APPENDIX A: (to WD7)  

Input to projections 

For purposes of this exercise, the 2010 ICES assessment outputs (ICES WGNSSK Re-
port 2010) were used as the starting points from which the projections are performed.  

The natural mortality rate and maturity ogive used in the 2010 XSA assessments, and 
as assumed here for the retrospective projections commencing in 1990, are given in 
Tables A1.1 and A2.1 for the North Sea Plaice and Sole stocks (subarea IV) respec-
tively. 

The annual catches for each of these stocks, the 2010 XSA estimated number of re-
cruits (1-yr-olds) and the associated spawning biomasses are given in Tables A1.3 
and A2.3 respectively. The corresponding plots of total annual catches of North Sea 
Plaice and Sole in Subarea IV are shown in Figures A1.1 and A2.1, while the plots for 
different biomass components are given in Figures A1.5 and A2.5 respectively. 

Plusgroup 

The “historic” population numbers and fishing mortalities-at-age for North Sea Plaice 
and Sole (Subarea IV) from 1957 to 1989 are taken from the XSA assessment and are 
assumed to be known exactly. However, difficulties arise from the manner in which 
the plusgroup was treated in 2010 assessments which, although this makes little dif-
ference to the overall assessment results, in mathematically inconsistent in not re-
specting equation (A.1) below for the dynamics. Because of the need for comparable 
consistent reflection of the dynamics in the alternative projections considered in this 
analysis, the plusgroup numbers and fishing mortalities needed to be re-estimated 
for the assessment in a way that avoided this inconsistency. Thus, for the sake of con-
sistency between the XSA assessment estimates and the projections, the plusgroup 
numbers, ,10 ,yN were re-estimated such that: 

 

 ,
1, ,

1

y a
m

Z
y m y a

a m
N N e−

+
= −

= ∑  (A.1) 

 

where  

1,y mN +  is the plusgroup number of fish ( 10m = ) at the start of year y+1, and 

'
, , ,y a y a y aZ M F= +  is the total mortality on fish in year y, where  

,y aM  is the natural mortality rate, assumed to be age and year-independent, 

and 

'
, ,y a y a yF S F=  are the fishing mortalities-at-age in year y. 

 

In the above equation both , 1y mN −  and , 1y mZ − are known from the XSA assessment. In 

order to re-compute the plusgroup numbers for the next year, the plusgroup number 
for year 1y −  needs to be known, which in turn is computed from the previous 
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year’s plusgroup number, etc. Therefore, only an estimate of the first plusgroup, 

1,mN , is required to be able to compute all subsequent plusgroup numbers. 

The plusgroup fishing mortality rates, ,10yF , were re-estimated using the Baranov 

catch equation:  

 

 my
Z

mymymy ZeNFC my
,,

'
,, /)1(ˆ ,−−=  (A.2) 

 

In addition, flat fishing selectivity was assumed at older ages so that:  

 

 ' '
, , 1y m y mF F −=  (A.3) 

 

Since the above equations cannot be satisfied simultaneously, 1,mN
 
and

 ,10yF
 
were 

estimated in terms of their maximum likelihood values. The likelihood is calculated 
assuming that the observed plusgroup catches defined by equation (A.2) are lognor-
mally distributed about their expected values: 

 yeCC mymy
ζ

,,
ˆ=        (A.4) 

where ))(,0(~ 2C
y N σζ . Similarly, the plusgroup fishing mortalities are assumed to 

be lognormally distributed about their expected values: 

 ' '
, , 1

y
y m y mF F eτ−=

     
 (A.5) 

where ))(,0(~ 2F
y N στ . 

 

The contributions to the negative of the (penalised) log-likelihood function are given 
by: 

 ln ln lnF CL L L− = − −  (A.6) 
 

where 

 ' ' 2 2
, 1 ,ln [ln (ln ln ) / 2( ) ]F F F

y m y m
y

L F Fσ σ−− = + −∑  (A.7) 

and  

 ∑ −+=−
y

C
mymy

CC CCL ])(2/)ˆln(ln[lnln 22
,, σσ  (A.8) 

where Fσ and Cσ are the standard deviation of the residuals, estimated in the fitting 
procedure by their maximum likelihood values 
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 ' ' 2
, , 11/ (ln ln )F

y m y m
y

n F Fσ −= −∑  (A.9) 

and  

 ∑ −=
y

mymy
C CCn 2

,, )ˆln(ln/1σ  (A.10) 

where n is the number of years over which the summation is taken.  

The adjusted population numbers and fishing mortality matrices, ,y aN  and '
,y aF , are 

given in Tables A1.4 and A1.5 for North Sea Plaice, and Tables A2.4 and A2.5 for Sole 
in Subarea IV. Due to the near-zero estimates of Fσ , the '

,y aF  matrices remain effec-

tively unchanged from those estimated in the 2010 ICES assessments. The plots of the 
adjusted plusgroup population numbers, ,10yN , and annual plusgroup catches (land-

ings and discards), ,10yC , are shown in Figures A1.2 and A1.3 for North Sea Plaice, 

and Figures A2.2 and A2.3 for Sole in subarea IV. 

The catch and population weights-at-age matrices, ,
C
y aw and ,

S
y aw  were taken directly 

from those used in the 2010 XSA assessments, shown in Figures A1.13 and A1.14 for 
North Sea Plaice and A2.11 and A2.12 for Sole in Subarea IV. Decreasing trends in 
weights at older ages are clearly visible in these plots since 1990 for both Plaice and 
Sole stocks. 

The age- and year-dependent fishing selectivities were derived from the adjusted 
'
,y aF  matrix such that 

 '
, , /y a y a yS F F=  (A.11) 

where '
,max( )y y aa

F F= . 

The annual fishing selectivity-at-age vectors are shown in Figures A1.7 to A1.10 for 
North Sea Plaice, and Figures A2.7 and A2.8 for Sole caught in subarea IV. 

Stock–recruitment relationship 

The number of recruits is assumed to be lognormally distributed about a stock–
recruitment relationship such that 

   yXSA
y yR R eς=  (A.12) 

where 

XSA
yR are the number of recruits in year y, input from the 2010 XSA assessment, 

yR  is the number of recruits according to some stock–recruit relationship, and 

yς  are the corresponding recruitment residuals. 

The objective function minimized to estimate the parameters of the relationship is 
given by 

 2 2ln [ln (ln ln ) / 2( ) ]R XSA R
y y

y
L R Rσ σ− = + −∑  (A.13) 
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where 21/ (ln ln )R XSA
y y

y
n R Rσ = −∑ is the standard deviation of the residuals 

estimated in the fitting procedure by its maximum likelihood value and y runs over 
the “historic” years from 1957 to 1989 for the stochastic (“forecast”) projections, and 
from 1957 to 2009 for the deterministic (“hindsight”) projections. 

Two forms of relationships are considered. 

 

Beverton–Holt: 

The number of recruits is given by a Beverton–Holt stock–recruitment relationship 
such that 

 1

1

sp
y

y sp
y

B
R

B
α
β

−

−

=
+

 (A14) 

 

where 

1
sp
yB −  is the spawning biomass in year 1y − , corresponding to the adjusted 

2010 XSA assessment estimates, and 

α  and β  are the stock–recruitment parameters which are estimated. 

 

Note: The “steepness” of the stock–recruitment curves (recruitment at 0.2spB K= as 
a fraction of recruitment at spB K= ) was estimated to be close to one, i.e. 0β =  and 
hence effectively constant recruitment regardless of the level of spawning biomass. 
This is frequently criticized as there is negligible penalty if harvests reduce the re-
source to very low levels. Therefore, the steepness parameter, h, was fixed to 0.9 
when estimatingα , with β  given in terms of h such that 

 ( )(1 ) / 4SBR h hβ α= −  (A.15) 

 

where SBR is the pre-exploitation spawning biomass per recruit. 

 

Plots of the number of recruits obtained from the XSA assessment, along with the 
corresponding Beverton–Holt estimates, are shown in Figures A1.6 and A1.7 for 
Plaice and A2.6 and A2.7 for Sole respectively. 

 

2-Line: 

Due to the unrealistically high estimates of h for the Beverton–Holt relationship (
0.98h =  for North Sea Plaice and 1h = for Sole in Subarea IV), an alternative stock–

recruit relation was tested: a two line (or “hockey-stick”) stock–recruit function, 
where the expected number of recruits is constant above a certain spawning biomass 
level, and as the spawning biomass falls below that level, the number of recruits de-
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creases linearly to zero. The level chosen is the minimum spawning biomass (B0) in 
the time-series from the (adjusted) XSA assessment.  

 

The number of recruits, yR , is given by 

 

0 0
1 1

0
1

: ( / )

:

y

y

sp sp
y y y

sp
y y

B B R B B e

B B R e

ζ

ζ

α

α

− −

−

< =

≥ =
 (A.16) 

 

where 

α
 
is the number of recruits (constant) when the spawning biomass is above 

a prespecified minimum value, 

0 min( )XSA
yy

B B= denotes the minimum spawning biomass over the period 

under consideration below which the number of recruits decline linearly. 

The stock–recruit parameter estimates obtained by minimizing equation (A.13) are 
given in Table A1.2 for North Sea Plaice and A2.2 for Sole in Subarea IV. 

Survey abundance data  

A variety of age-disaggregated survey data were used to tune the XSA assessment. 
However, for the purposes of this paper an age-aggregated index is required: 

 , ,
i S i
y y a y a

a
I w I=∑  (A.17) 

where ,
i
y aI are the age-disaggregated survey indices corresponding to BTS-Isis, BTS-

Tridens and SNS for Plaice, and BTS-Isis and SNS for Sole. The abundance indices, i
yI

, are assumed to be lognormally distributed about their expected values such that 

 
i
yi

yyI I eε=   (A.18) 

where  

i
yI

 
is the age-aggregated survey abundance index i for year y given by equa-

tion (A.17), 

_ˆi i sur i
y yI q B=  is the corresponding model estimate, where  

_sur i
yB  is the survey biomass estimate for year y , 

iq  is the constant of proportionality for abundance series i given by 

 _ln 1/ (ln ln )i i sur i
y y

y
q n I B= −∑  (A.19) 

and i
yε are the residuals  

 _ln ln( )i i i sur i
y y yI q Bε = −  (A.20) 
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with the standard deviation of the residuals for survey index i given by 

 21/ ( )i i
y

y
nσ ε= ∑  (A.21) 

 

The biomass for year y corresponding to survey index i is given by 

 
10

_ _
, ,

1

sur i sur i S
y a y a y a

a
B S w N

=

=∑  (A.22) 

where  

,
S
y aw denote the population weights-at-age for each year which are input, 

,y aN are the adjusted 2010 XSA assessment population numbers-at-age, and  

_sur i
aS  is the fishing selectivity vector associated with survey abundance in-

dex i given by 

 _ _
, ,1 / /sur i sur i

a y a y a
y

S n I N= ∑  (A.23) 

where   

_
,

sur i
y aI is the age-disaggregated survey data matrix corresponding to index i 

which is input,  

n is the number of years of survey data in index i, and  

,y aN corresponds to the 2010 XSA population numbers with adjusted plus-

group.  

 

The age-aggregated survey estimates are given in Tables A1.6 and A2.6 for North Sea 
Plaice and Sole respectively. The corresponding plots of the survey indices are shown 
in Figures A1.4 and A2.4.  
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Section A1: North Sea Plaice (subarea IV) 

The natural mortality-at-age and maturity-at-age vectors used in the XSA assessment 
and retrospective projections from 1990 for North Sea Plaice (subarea IV). 

 

Table A1.1. Natural mortality-at-age and maturity-at-age vectors. 

AGE 1 2 3 4 5 6 7 8 9 10 

Natural 
mortality 
rate 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Maturity 0 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

 

The stock–recruit parameters estimated for the Beverton–Holt and 2-line functions 
used in the deterministic and stochastic projections. 

Table A1.2. Stock–recruit parameters  

 

  BEVERTON–HOLT 2_LINE 

 Period α  
(thousands) 

β  
(tons) 

α  
(thousands) 

0B  
(tons) 

Determinstic 
(“Hindsight”) 

1957–2009 2301950 434656 927286 198132 

Stochastic 
(“Forecast”) 

1957–1989 2147080 405408 939615 250267 
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Year  Number of 
recruits 

Spawning bio-
mass 

Total catch Landings Discards 

1957  457973  288705 78443  70563  7880  
1958  698110  291614 88191  73354  14837  
1959  863386  291514 109164  79300  29864  
1960  757298  302878 117334  87541  29793  
1961  860576  309561 118474  85984  32490  
1962  589154  365078 125375  87472  37903  
1963  688366  348818 148376  107118  41258  
1964  2231500  339871 147571  110540  37031  
1965  694573  316015 140223  97143  43080  
1966  586777  337571 166552  101834  64718  
1967  401295  403512 163365  108819  54546  
1968  434277  382406 139521  111534  27987  
1969  648869  350206 142820  121651  21169  
1970  650576  326437 159982  130342  29640  
1971  410270  291251 136939  113944  22995  
1972  366617  299224 142475  122843  19632  
1973  1312009  252552 143783  130429  13354  
1974  1132726  259124 157485  112540  44945  
1975  864773  273132 195235  108536  86699  
1976  692682  292629 166917  113670  53247  
1977  988665  307704 176689  119188  57501  
1978  912345  295538 159639  113984  45655  
1979  891239  287895 213282  145347  67935  
1980  1128156  263884 171031  139951  31080  
1981  865944  252209 172778  139747  33031  
1982  2031170  250267 203674  154547  49127  
1983  1308491  303768 218521  144038  74483  
1984  1259358  314454 226963  156147  70816  
1985  1848419  337665 220387  159838  60549  
1986  4760609  364215 295300  165347  129953  
1987  1962845  442388 344194  153670  190524  
1988  1770461  382424 310898  154475  156423  
1989  1186811  411792 277611  169818  107793  
1990  1036516  371947 227465  156240  71225  
1991  914585  343770 228939  148004  80935  
1992  776744  279797 182239  125190  57049  
1993  530684  242006 152129  117113  35016  
1994  442947  209421 134177  110392  23785  
1995  1164164  201208 120184  98356  21828  
1996  1290364  202807 133722  81673  52049  
1997  2155842  211554 183193  83048  100145  
1998  774928  228808 175285  71534  103751  
1999  840878  201461 151638  80662  70976  
2000  991191  228618 125459  81148  44311  
2001  540350  262660 182272  81963  100309  
2002  1726207  198132 124607  70217  54390  
2003  537804  230789 144294  66502  77792  
2004  1248173  215963 115902  61436  54466  
2005  791655  252773 109576  55700  53876  
2006  922375  275293 119789  57943  61846  
2007  1046417  271502 89179  49744  39435  
2008  821795  347508 94749  48874  45875  
2009  1017863  403767 100198  54973  45225  

Table A1.3. Spawing biomass estimates from the adjusted 2010 XSA assessment, with total annual 
catches (landings and discards) for North Sea Plaice. 

  



ICES WGMG REPORT 2011 |  199 

 

YEAR 1 2 3 4 5 6 7 8 9 10 
1957 457973 256778 322069 182986 117504 49780 48438 35192 20763 58933 
1958 698110 383614 184865 225749 122171 75186 36568 33338 23255 53959 
1959 863386 568706 270362 123650 142799 76063 49331 25309 22555 50581 
1960 757298 670799 377298 171551 76786 85609 46907 31440 16805 45847 
1961 860576 614899 441591 239779 105744 48183 50972 28949 19875 38652 
1962 589154 706789 416674 283132 151855 63044 31337 32158 16921 36179 
1963 688366 484324 465009 259569 172009 89026 37245 19737 20503 32369 
1964 2231500 536380 304564 276885 152215 101919 50127 21480 11359 30565 
1965 694573 1956330 325547 176043 156783 80258 56631 30309 13162 23972 
1966 586777 586899 1355540 198052 105458 99441 43686 33776 19288 22299 
1967 401295 494319 371937 832385 116531 59210 63824 23833 20304 24356 
1968 434277 343893 314556 224454 500704 65484 32351 42364 13952 26340 
1969 648869 322587 233484 201830 141578 314124 42894 19435 28723 25665 
1970 650576 506081 213512 152352 129908 93520 185267 28910 11797 34472 
1971 410270 471051 296427 118122 83215 74030 51104 92598 20156 26245 
1972 366617 305254 305838 182003 72494 50103 45122 30153 55506 27947 
1973 1312010 263017 188694 185322 108922 43137 29096 27149 16912 48925 
1974 1132730 1060050 160417 110708 97545 57136 25825 17876 15198 37047 
1975 864773 821976 643812 88838 59831 48609 32888 15753 10162 29077 
1976 692682 548525 450535 342684 46074 29718 23712 18465 8620 20423 
1977 988665 449171 330275 266210 201243 28417 17430 12780 10628 16840 
1978 912345 647406 253598 182219 146168 93607 16894 10147 6787 14865 
1979 891239 608629 381577 144234 102938 83416 50378 9636 5993 12245 
1980 1128160 526305 290915 177429 66449 47031 37199 22538 4761 8377 
1981 865944 804536 297898 135126 86149 36186 25369 20569 12348 6997 
1982 2031170 655698 448153 151458 67118 43539 20882 13857 10914 10242 
1983 1308490 1443460 353260 202293 69838 33268 23392 11676 7335 10880 
1984 1259360 934165 777188 181001 86673 34500 17757 13351 6576 9367 
1985 1848420 843888 486900 392310 89506 41365 18156 9917 6807 8150 
1986 4760610 1286790 475587 269456 176694 49864 22568 9893 5502 7895 
1987 1962840 3243130 633464 228453 129409 78140 22104 11575 4680 5789 
1988 1770460 1432170 1546360 290743 99541 54212 37434 9107 6344 4891 
1989 1186810 1270380 703021 723770 134181 44160 25017 17916 3122 4841 
1990 1036520 869783 642864 351602 353191 64212 21540 12585 9019 2062 
1991 914585 798177 490389 328242 185828 162794 32481 11758 7377 5991 
1992 776744 651967 394198 229534 147764 93483 72635 15207 5661 6678 
1993 530684 567595 339205 185748 106060 60448 51973 37617 7130 4530 
1994 442947 385219 315695 167606 87929 45514 26903 34212 23315 4880 
1995 1164160 340377 214579 155030 74346 42117 21652 9768 24869 19340 
1996 1290360 932940 194551 101746 64911 31921 20918 10296 4685 36050 
1997 2155840 1060700 488817 88535 44228 27742 15018 8839 5009 15152 
1998 774928 1827460 432991 175218 38011 18319 12140 7538 4543 9902 
1999 840878 601558 1009900 143943 54210 18214 10426 6242 4436 7747 
2000 991191 639225 337810 544968 40139 25850 9929 6787 3512 7050 
2001 540350 795939 400484 219442 274990 20887 14274 6708 5002 6871 
2002 1726210 455774 350797 134668 81575 111630 12252 8670 4997 9302 
2003 537804 1266050 228653 189466 64328 37549 64349 6567 6143 10916 
2004 1248170 421550 612659 111405 106730 28747 18390 36518 4412 13717 
2005 791655 907301 200817 346915 61062 76051 15049 12051 28709 14799 
2006 922375 624505 496183 115723 217144 35145 54069 8405 8417 36159 
2007 1046420 624515 334116 282853 72005 153819 25328 43503 5468 34097 
2008 821795 872142 352979 203537 202618 50212 116243 20417 36033 32071 
2009 1017860 614491 539583 245324 143705 153734 39699 90345 16765 60403 

Table A1.4. Population numbers-at-age for North Sea Plaice taken from 2010 ICES XSA assess-
ment, but with adjusted plusgroup as discussed in text. 
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Year 1 2 3 4 5 6 7 8 9 10
1957 0.077 0.229 0.255 0.304 0.347 0.208 0.274 0.314 0.290 0.290
1958 0.105 0.250 0.302 0.358 0.374 0.321 0.268 0.291 0.323 0.323
1959 0.152 0.310 0.355 0.376 0.412 0.383 0.350 0.309 0.367 0.367
1960 0.108 0.318 0.353 0.384 0.366 0.419 0.383 0.359 0.383 0.383
1961 0.097 0.289 0.344 0.357 0.417 0.330 0.361 0.437 0.381 0.381
1962 0.096 0.319 0.373 0.398 0.434 0.426 0.362 0.350 0.395 0.395
1963 0.149 0.364 0.418 0.434 0.423 0.474 0.450 0.452 0.448 0.448
1964 0.032 0.399 0.448 0.469 0.540 0.488 0.403 0.390 0.459 0.459
1965 0.068 0.267 0.397 0.412 0.355 0.508 0.417 0.352 0.410 0.410
1966 0.071 0.356 0.388 0.430 0.477 0.343 0.506 0.409 0.435 0.435
1967 0.054 0.352 0.405 0.408 0.476 0.504 0.310 0.435 0.428 0.428
1968 0.197 0.287 0.344 0.361 0.366 0.323 0.410 0.289 0.351 0.351
1969 0.149 0.313 0.327 0.341 0.315 0.428 0.295 0.399 0.356 0.356
1970 0.223 0.435 0.492 0.505 0.462 0.504 0.594 0.261 0.467 0.467
1971 0.196 0.332 0.388 0.388 0.407 0.395 0.428 0.412 0.407 0.407
1972 0.232 0.381 0.401 0.413 0.419 0.443 0.408 0.478 0.434 0.434
1973 0.113 0.394 0.433 0.542 0.545 0.413 0.387 0.480 0.475 0.475
1974 0.221 0.399 0.491 0.515 0.596 0.452 0.394 0.465 0.486 0.486
1975 0.355 0.501 0.531 0.557 0.600 0.618 0.477 0.503 0.553 0.553
1976 0.333 0.407 0.426 0.432 0.383 0.434 0.518 0.452 0.445 0.445
1977 0.323 0.472 0.495 0.500 0.665 0.420 0.441 0.533 0.514 0.514
1978 0.305 0.429 0.464 0.471 0.461 0.520 0.461 0.427 0.470 0.470
1979 0.427 0.638 0.666 0.675 0.683 0.708 0.704 0.605 0.678 0.678
1980 0.238 0.469 0.667 0.622 0.508 0.517 0.492 0.502 0.530 0.530
1981 0.178 0.485 0.576 0.600 0.582 0.450 0.505 0.534 0.536 0.536
1982 0.242 0.518 0.695 0.674 0.602 0.521 0.481 0.536 0.565 0.565
1983 0.237 0.519 0.569 0.748 0.605 0.528 0.461 0.474 0.565 0.565
1984 0.300 0.552 0.584 0.604 0.640 0.542 0.482 0.574 0.571 0.571
1985 0.262 0.473 0.492 0.698 0.485 0.506 0.507 0.489 0.539 0.539
1986 0.284 0.609 0.633 0.633 0.716 0.714 0.568 0.648 0.739 0.739
1987 0.215 0.641 0.679 0.731 0.770 0.636 0.787 0.501 0.661 0.661
1988 0.232 0.612 0.659 0.673 0.713 0.673 0.637 0.971 0.742 0.742
1989 0.211 0.581 0.593 0.617 0.637 0.618 0.587 0.586 1.251 1.251
1990 0.161 0.473 0.572 0.538 0.675 0.582 0.505 0.434 0.515 0.515
1991 0.238 0.605 0.659 0.698 0.587 0.707 0.659 0.631 0.594 0.594
1992 0.214 0.553 0.652 0.672 0.794 0.487 0.558 0.657 0.902 0.902
1993 0.220 0.487 0.605 0.648 0.746 0.710 0.318 0.378 0.771 0.771
1994 0.163 0.485 0.611 0.713 0.636 0.643 0.913 0.219 0.277 0.277
1995 0.121 0.459 0.646 0.771 0.745 0.600 0.643 0.635 0.104 0.104
1996 0.096 0.546 0.687 0.733 0.750 0.654 0.761 0.621 0.889 0.889
1997 0.065 0.796 0.926 0.746 0.781 0.726 0.589 0.566 0.611 0.611
1998 0.153 0.493 1.001 1.073 0.636 0.464 0.565 0.430 0.523 0.523
1999 0.174 0.477 0.517 1.177 0.641 0.507 0.329 0.475 0.447 0.447
2000 0.119 0.368 0.331 0.584 0.553 0.494 0.292 0.205 0.330 0.330
2001 0.070 0.719 0.990 0.890 0.802 0.433 0.399 0.195 0.144 0.144
2002 0.210 0.590 0.516 0.639 0.676 0.451 0.524 0.245 0.170 0.170
2003 0.144 0.626 0.619 0.474 0.705 0.614 0.467 0.298 0.118 0.118
2004 0.219 0.642 0.469 0.501 0.239 0.547 0.323 0.141 0.103 0.103
2005 0.137 0.504 0.451 0.369 0.452 0.241 0.482 0.259 0.085 0.085
2006 0.290 0.525 0.462 0.374 0.245 0.228 0.117 0.330 0.168 0.168
2007 0.082 0.471 0.396 0.234 0.260 0.180 0.116 0.088 0.110 0.110
2008 0.191 0.380 0.264 0.248 0.176 0.135 0.152 0.097 0.020 0.020
2009 0.168 0.426 0.257 0.204 0.184 0.129 0.086 0.087 0.035 0.035

 

Table A1.5. Fishing mortality-at-age for North Sea Plaice taken from the 2010 ICES XSA assess-
ment with adjusted plusgroup. 
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Year BTS-Isis BTS-Tridens SNS 

1970 
 

 
 

 
 

2272.52 
1971 

 
 

 
 

 
4115.48 

1972 
 

 
 

 
 

3419.04 
1973 

 
 

 
 

 
3490.6 

1974 
 

 
 

 
 

2731.37 
1975 

 
 

 
 

 
3671.22 

1976 
 

 
 

 
 

1302.31 
1977 

 
 

 
 

 
2276.69 

1978 
 

 
 

 
 

2921.2 
1979 

 
 

 
 

 
3498.43 

1980 
 

 
 

 
 

5141.19 
1981 

 
 

 
 

 
3844.22 

1982 
 

 
 

 
 

4781.09 
1983 

 
 

 
 

 
3369.44 

1984 
 

 
 

 
 

4034.47 
1985 

 
45.26 

 
 

 
3741.39 

1986 
 

62.71 
 

 
 

5260.06 
1987 

 
98.30 

 
 

 
4911.93 

1988 
 

74.58 
 

 
 

4979.08 
1989 

 
72.71 

 
 

 
3975.19 

1990 
 

47.12 
 

 
 

2442.32 
1991 

 
48.61 

 
 

 
4499.28 

1992 
 

47.21 
 

 
 

4138.53 
1993 

 
60.21 

 
 

 
2466.78 

1994 
 

33.59 
 

 
 

1901.9 
1995 

 
26.54 

 
 

 
1732.16 

1996 
 

46.13 
 

5.09 
 

2485.38 
1997 

 
48.85 

 
6.67 

 
3986.73 

1998 
 

58.91 
 

9.23 
 

4766.81 
1999 

 
51.74 

 
11.05 

 
4452.05 

2000 
 

31.36 
 

10.80 
 

1576.88 
2001 

 
30.28 

 
8.65 

 
1130.47 

2002 
 

36.30 
 

10.54 
 

1665.43 
2003 

 
30.31 

 
15.94 

 
 

2004 
 

33.38 
 

16.20 
 

1229.38 
2005 

 
21.25 

 
16.83 

 
759.74 

2006 
 

18.63 
 

20.29 
 

909.908 
2007 

 
33.02 

 
21.85 

 
897.587 

2008 
 

36.64 
 

37.93 
 

1104.63 
2009 

 
51.01 

 
37.52 

 
1098.33 

  
 

 
 

 
 

 

Table A1.6. Age-aggregated survey biomass indices for North Sea Plaice. 
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Figure A1.1. Total annual catch of North Sea Plaice in tons consisting of landings plus discards. 

 

Figure A1.2. Adjusted plusgroup population numbers compared to the XSA estimates for North 
Sea Plaice. 
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Figure A1.3. Adjusted plusgroup catch compared to observed catch for North Sea Plaice. 

 

 

Figure A1.4. Age-aggregated survey series for North Sea Plaice. 
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Figure A1.5. Trajectories for various biomass components from the 2010 XSA assessment with the 
plusgroup adjusted as detailed in text for North Sea Plaice. 

 

 

Figure A1.6. Number of recruits (1-yr-olds) estimated in the 2010 XSA assessment for North Sea 
Plaice (diamonds) compared to the number of recruits in terms of a Beverton–Holt stock-
recruitment curve when fixing h to 0.9 and a 2-line stock recruit relationship fitted to data from 
1957 to 1989 (forecast). Recruitments from 1990 onwards are shown by open diamonds. 
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Figure A1.7. Annual number of recruits (1-yr-olds) estimated in the 2010 XSA assessment for 
North Sea Plaice (diamonds) compared to the annual number of recruits in terms of a Beverton–
Holt stock–recruitment curve fixing h=0.9 (squares) and a 2-line stock–recruit relationship (trian-
gles).  
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Figure A1.8. Fishing selectivities-at-age over the assessment period from 1957 to 2009 for North 
Sea Plaice.  

 

Figure A1.9. Fishing selectivities prior to the projection period from 1957 to 1989 for North Sea 
Plaice. 
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FigureA1.10. Fishing selectivities during the first decade of the projection period for North Sea 
Plaice. 

 

Figure A1.11. Fishing selectivities for the last decade in the projection period showing a marked 
decline in selectivity of older fish for North Sea Plaice. 
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Figure A1.12. Survey selectivity vectors estimated from survey numbers-at-age as a fraction of the 
XSA estimated population numbers-at-age for North Sea Plaice. 

  

Figure A1.13. Landing weights (kg) for North Sea Plaice for each age group. 
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Figure A1.14. Population weights (kg) for North Sea Plaice for each age group. 
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Section A2: Sole in Subarea IV  

The natural mortality-at-age and maturity-at-age vectors used in the XSA assessment 
and retrospective projections from 1990 for Sole in Subarea IV. To take into account 
the effect of the severe winter during 1962 to 1963, a value of 0.9 for natural mortality 
rate was used for 1963. 

 

Table A2.1. Natural mortality-at-age and maturity-at-age vectors. 

AGE 1 2 3 4 5 6 7 8 9 10 

Natural 
mortality 
rate 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Maturity 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

 

The stock–recruit parameters estimated for the Beverton–Holt and 2-line functions 
used in the deterministic and stochastic projections. 

 

Table A2.2. Stock–recruit parameters.  

  BEVERTON–HOLT 2_LINE 

 Period α  
(thousands) 

β  
(tons) 

α  
(thousands) 

0B  
(tons) 

Determinstic 
(“hindsight”) 

1957–2009 115220 8074 93345 17857 

Stochastic 
(“forecast”) 

1957–1989 106895 7739 91226 22280 
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Year  Number of recruits Spawning biomass Total catch 

1957 128913 60713 12067 
1958 128646 64446 14287 
1959 488778 66599 13832 
1960 61716 71980 18620 
1961 99499 113421 23566 
1962 22899 111614 26877 
1963 20424 106822 26164 
1964 539159 36250 11342 
1965 121982 28686 17043 
1966 39909 83085 33340 
1967 75191 81938 33439 
1968 99252 68048 33179 
1969 50869 51582 27559 
1970 137891 44507 19685 
1971 42107 39149 23652 
1972 76403 43523 21086 
1973 105045 34480 19309 
1974 109975 33280 17989 
1975 40825 35680 20773 
1976 113295 37232 17326 
1977 140307 30380 18003 
1978 47127 34920 20280 
1979 11664 42679 22598 
1980 151574 32895 15807 
1981 148896 22280 15403 
1982 152374 31867 21579 
1983 141488 39308 24927 
1984 70850 42631 26839 
1985 81670 39661 24248 
1986 159308 32562 18201 
1987 72702 28693 17368 
1988 455761 38698 21590 
1989 108274 33199 21805 
1990 177524 89328 35120 
1991 70435 77064 33513 
1992 353383 76294 29341 
1993 69162 54425 31491 
1994 56976 74044 33002 
1995 95962 58771 30467 
1996 49342 37138 22651 
1997 270702 29097 14901 
1998 113617 20843 20868 
1999 82211 41474 23475 
2000 123072 38011 22641 
2001 62890 30306 19944 
2002 183396 30855 16945 
2003 83962 24764 17920 
2004 44153 36962 18757 
2005 48196 31460 16355 
2006 216019 23789 12594 
2007 55007 17857 14635 
2008 81516 37490 14071 
2009 102743 34414 13952 

Table A2.3. Number of recruits and spawning biomass estimates from the 2010 XSA assessment, 
with total annual catches for Sole in Subarea IV. 
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YEAR 1 2 3 4 5 6 7 8 9 10 
1957 128913 72455 89309 59106 17319 15058 27046 11837 2500 46183 
1958 128646 116645 64214 71157 41456 12092 10843 18272 9062 34616 
1959 488778 116404 103781 50075 50907 28474 7627 6950 12311 29191 
1960 61716 442265 101846 82467 35416 37526 20278 5754 4362 29304 
1961 99499 55843 388723 78710 58640 23192 25996 13739 3691 22703 
1962 22899 90030 49617 304373 53013 41261 16519 19770 8361 18195 
1963 20424 20719 79946 38988 219104 33371 27307 10356 13977 17730 
1964 539159 8304 7993 27187 10396 59622 8154 6857 2666 7985 
1965 121982 487799 7366 5222 19166 5784 37457 4405 4483 6525 
1966 39909 110374 396576 5629 3204 12584 2872 22002 2504 6396 
1967 75191 36111 88191 231736 4152 1776 7877 1891 13893 5680 
1968 99252 68036 29169 55369 128708 1898 1097 5302 988 10948 
1969 50869 88820 45250 13175 26344 70258 1278 760 3234 7082 
1970 137891 45652 57613 20539 6855 12054 39659 841 455 5724 
1971 42107 123534 35467 27405 10751 4505 7833 24508 527 3786 
1972 76403 37700 80036 18370 12662 5462 2705 4874 15314 2407 
1973 105045 68792 26889 37454 9892 6734 3453 1950 3238 10857 
1974 109975 94380 50614 12171 18492 5122 3883 2179 1037 7712 
1975 40825 99414 70768 25308 5793 10016 2806 2006 1346 4697 
1976 113295 36689 68119 36890 11754 3256 5419 1788 952 3297 
1977 140307 101523 29828 35034 20050 6051 2027 3088 1095 2039 
1978 47127 125294 70623 15505 17141 11065 3783 1531 1736 2139 
1979 11664 42617 89560 36039 8200 9194 5969 1770 804 2135 
1980 151574 10546 30781 41875 17332 4570 5255 3739 825 1821 
1981 148896 136544 8392 15951 20977 8742 2755 2665 2043 1275 
1982 152374 134324 95758 4493 7902 11158 4428 1592 1568 1819 
1983 141488 135343 96396 43130 2313 3788 5541 2410 855 1822 
1984 70850 127653 89734 47855 18870 1499 2116 3159 1250 1272 
1985 81670 63926 86270 39406 21847 8712 652 1103 1866 1277 
1986 159308 73741 42036 36955 16359 10823 4501 391 637 1824 
1987 72702 143792 57817 20440 16600 7433 4547 1913 249 1187 
1988 455761 65694 102472 31344 10030 8826 3759 2624 872 855 
1989 108274 412380 46868 47840 13872 4908 4293 1926 1527 575 
1990 177524 97859 329012 25036 21738 8154 2869 2518 1127 1302 
1991 70435 159810 77190 198343 13363 10924 4192 1604 1139 1062 
1992 353383 63618 132081 45664 105355 5695 6388 2142 767 649 
1993 69162 318822 51065 77298 25905 58879 2797 2888 1233 581 
1994 56976 62529 240492 30255 40065 10247 30413 1114 1487 997 
1995 95962 50871 49155 134466 14487 18427 3840 16760 567 792 
1996 49342 82263 33885 28476 56443 7108 9723 1576 9444 557 
1997 270702 44482 56528 15260 9629 25144 2762 4251 529 5718 
1998 113617 243429 34497 28652 6840 3854 10582 1356 1634 1916 
1999 82211 102573 166378 16812 11719 2864 1641 5040 472 1081 
2000 123072 74114 77819 81610 7424 4791 1438 853 2673 369 
2001 62890 109124 52724 39272 33128 3590 1979 537 358 1745 
2002 183396 56064 74154 27165 16628 14061 1891 997 225 965 
2003 83962 164940 40215 35848 12889 7231 6590 1071 335 629 
2004 44153 74975 118490 19743 17131 6126 2828 3651 589 521 
2005 48196 39460 53619 61584 8805 8408 3484 1702 2390 307 
2006 216019 42510 28650 26504 27640 3913 3852 1703 954 1597 
2007 55007 188980 29247 16307 15098 14889 2045 2027 871 1385 
2008 81516 49471 133054 16108 8623 8200 8228 1067 1141 807 
2009 102743 71932 38866 85491 8984 5072 5188 5008 548 981 

Table A2.4. Population numbers-at-age for Sole in Subarea IV taken from 2010 ICES XSA assess-
ment, but with plusgroup adjusted as described in text.  
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YEAR 1 2 3 4 5 6 7 8 9 10 
1957 0.000 0.021 0.127 0.255 0.259 0.228 0.292 0.167 0.241 0.241 
1958 0.000 0.017 0.149 0.235 0.276 0.361 0.345 0.295 0.303 0.303 
1959 0.000 0.034 0.130 0.246 0.205 0.239 0.182 0.366 0.248 0.248 
1960 0.000 0.029 0.158 0.241 0.323 0.267 0.289 0.344 0.294 0.294 
1961 0.000 0.018 0.145 0.295 0.252 0.239 0.174 0.397 0.272 0.272 
1962 0.000 0.019 0.141 0.229 0.363 0.313 0.367 0.247 0.304 0.304 
1963 0.000 0.053 0.179 0.422 0.402 0.509 0.482 0.457 0.479 0.479 
1964 0.000 0.020 0.326 0.250 0.486 0.365 0.516 0.325 0.390 0.390 
1965 0.000 0.107 0.169 0.388 0.321 0.600 0.432 0.465 0.443 0.443 
1966 0.000 0.124 0.437 0.204 0.490 0.368 0.318 0.360 0.349 0.349 
1967 0.000 0.114 0.365 0.488 0.683 0.382 0.296 0.549 0.481 0.481 
1968 0.011 0.308 0.695 0.643 0.505 0.296 0.268 0.394 0.422 0.422 
1969 0.008 0.333 0.690 0.553 0.682 0.472 0.318 0.412 0.489 0.489 
1970 0.010 0.152 0.643 0.547 0.320 0.331 0.381 0.367 0.390 0.390 
1971 0.011 0.334 0.558 0.672 0.577 0.410 0.374 0.370 0.483 0.483 
1972 0.005 0.238 0.659 0.519 0.531 0.358 0.227 0.309 0.390 0.390 
1973 0.007 0.207 0.693 0.606 0.558 0.451 0.360 0.532 0.503 0.503 
1974 0.001 0.188 0.593 0.642 0.513 0.502 0.561 0.382 0.522 0.522 
1975 0.007 0.278 0.551 0.667 0.476 0.514 0.351 0.645 0.506 0.506 
1976 0.010 0.107 0.565 0.510 0.564 0.374 0.463 0.391 0.634 0.634 
1977 0.013 0.263 0.554 0.615 0.494 0.370 0.181 0.476 0.282 0.282 
1978 0.001 0.236 0.573 0.537 0.523 0.517 0.660 0.544 0.496 0.496 
1979 0.001 0.225 0.660 0.632 0.485 0.459 0.368 0.663 0.379 0.379 
1980 0.004 0.128 0.557 0.591 0.584 0.406 0.579 0.504 0.630 0.630 
1981 0.003 0.255 0.525 0.602 0.531 0.580 0.449 0.430 0.501 0.501 
1982 0.019 0.232 0.698 0.564 0.635 0.600 0.508 0.521 0.520 0.520 
1983 0.003 0.311 0.600 0.727 0.334 0.482 0.462 0.556 0.644 0.644 
1984 0.003 0.292 0.723 0.684 0.673 0.733 0.552 0.426 0.581 0.581 
1985 0.002 0.319 0.748 0.779 0.602 0.561 0.411 0.448 0.444 0.444 
1986 0.002 0.143 0.621 0.700 0.689 0.767 0.756 0.351 0.629 0.629 
1987 0.001 0.239 0.512 0.612 0.532 0.582 0.450 0.686 0.419 0.419 
1988 0.000 0.238 0.662 0.715 0.615 0.621 0.569 0.442 0.999 0.999 
1989 0.001 0.126 0.527 0.689 0.431 0.437 0.434 0.436 0.379 0.379 
1990 0.005 0.137 0.406 0.528 0.588 0.565 0.482 0.694 0.727 0.727 
1991 0.002 0.091 0.425 0.533 0.753 0.436 0.572 0.637 1.121 1.121 
1992 0.003 0.120 0.436 0.467 0.482 0.611 0.694 0.452 0.791 0.791 
1993 0.001 0.182 0.423 0.557 0.827 0.561 0.820 0.564 0.499 0.499 
1994 0.013 0.141 0.481 0.636 0.677 0.882 0.496 0.576 1.043 1.043 
1995 0.054 0.306 0.446 0.768 0.612 0.539 0.790 0.474 0.792 0.792 
1996 0.004 0.275 0.698 0.984 0.709 0.845 0.727 0.991 0.459 0.459 
1997 0.006 0.154 0.580 0.702 0.816 0.765 0.611 0.856 1.082 1.082 
1998 0.002 0.281 0.619 0.794 0.771 0.754 0.642 0.955 1.089 1.089 
1999 0.004 0.176 0.612 0.717 0.794 0.589 0.554 0.534 1.336 1.336 
2000 0.020 0.241 0.584 0.802 0.627 0.784 0.886 0.768 0.456 0.456 
2001 0.015 0.286 0.563 0.759 0.757 0.541 0.585 0.769 0.679 0.679 
2002 0.006 0.232 0.627 0.646 0.733 0.658 0.469 0.992 0.537 0.537 
2003 0.013 0.231 0.611 0.638 0.644 0.839 0.490 0.499 0.515 0.515 
2004 0.012 0.235 0.554 0.707 0.612 0.464 0.408 0.324 1.187 1.187 
2005 0.026 0.220 0.605 0.701 0.711 0.681 0.616 0.479 0.424 0.424 
2006 0.034 0.274 0.464 0.463 0.519 0.549 0.542 0.570 0.511 0.511 
2007 0.006 0.251 0.496 0.537 0.510 0.493 0.551 0.475 0.928 0.928 
2008 0.025 0.141 0.342 0.484 0.431 0.358 0.397 0.567 0.586 0.586 
2009 0.017 0.164 0.341 0.391 0.479 0.415 0.385 0.384 0.899 0.899 

Table A2.5. Fishing mortality-at-age for Sole in Subarea IV taken from the 2010 ICES XSA as-
sessment, but with plusgroup adjusted as described in text.  
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YEAR BTS-ISIS SNS 
1957   
1958   
1959   
1960   
1961   
1962   
1963   
1964   
1965   
1966   
1967   
1968   
1969   
1970  293.271 
1971  326.698 
1972  129.932 
1973  388.106 
1974  149.056 
1975  188.455 
1976  113.629 
1977  278.598 
1978  312.679 
1979  151.525 
1980  222.524 
1981  396.531 
1982  487.724 
1983  323.870 
1984  355.336 
1985 2.709 315.860 
1986 2.003 267.961 
1987 3.190 260.693 
1988 6.819 716.098 
1989 11.912 863.145 
1990 11.015 523.502 
1991 7.270 667.303 
1992 11.310 698.119 
1993 10.028 579.423 
1994 5.658 268.420 
1995 6.043 226.161 
1996 3.088 75.031 
1997 10.290 579.225 
1998 5.459 690.122 
1999 6.940 297.214 
2000 2.854 156.842 
2001 2.810 170.643 
2002 2.772 470.770 
2003 3.117 

 2004 1.898 247.183 
2005 1.664 76.286 
2006 1.637 166.041 
2007 3.942 195.469 
2008 5.085 167.186 
2009 3.350 180.814 

Table A2.6. Age-aggregated survey biomass indices for Sole in Subarea IV. 
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Figure A2.1. Total annual landings of Sole in Subarea IV in tons. 

 

Figure A2.2. Adjusted plusgroup population numbers compared to the XSA estimates for Sole in 
Subarea IV. 
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Figure A2.3. Adjusted plusgroup catch compared to observed catch for Sole in Subarea IV. 

 

Figure A2.4. Age-aggregated survey series for Sole in Subarea IV. 
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Figure A2.5. Trajectories for various biomass components from the XSA assessment for Sole in 
Subarea IV with plusgroup adjusted as detailed in the text. 

 

Figure A2.6. Number of recruits (1-yr-olds) estimated in the 2010 XSA assessment for Sole in 
Subarea IV (diamonds) and number of recruits in terms of a Beverton–Holt stock–recruitment 
curve when fixing h=0.9 and a 2-line stock–recruit relationship fitted to data from 1957 to 1989 
(forecast) . Recruitments from 1990 onwards are shown by open diamonds.  
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Figure A2.7. Annual number of recruits (1-yr-olds) estimated in the 2010 XSA assessment for Sole 
in Subarea IV (diamonds) compared to the number of recruits in terms of a Beverton–Holt stock–
recruitment curve when fixing h=0.9 (squares) and a 2-line stock–recruit relationship.  

 

Figure A2.8. Fishing selectivities-at-age over the assessment period from 1957 to 2009 for Sole 
(Subarea IV).  
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Figure A2.9. Fishing selectivities for Sole in Subarea IV during the projection period. 

 

Figure A2.10. Survey selectivity vectors estimated from survey numbers-at-age as a fraction of the 
adjusted XSA estimated population numbers-at-age for Sole in Subarea IV. 
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Figure A2.11. Landing weights (kg) for Sole in Subarea IV for each age group. 

 

Figure A2.12. Population weights (kg) for Sole in Subarea IV for each age group. 
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Abstract 

Understanding the relationship between spawning stock size and subse-
quent reproduction and recruitment of juveniles to a fishery is a funda-
mental component of sustainable fisheries management. Literature 
results suggest that the effect of parental stock size measurement errors 
(SME’s) when fitting spawner-recruitment models is to overestimate the 
slope at the origin and underestimate the maximum recruitment. This 
will often lead to poor estimates of MSY reference points, which have 
been adopted by many national and international fisheries management 
agencies to guide fisheries management. 

 

We present methods to account for SME when fitting spawner-
recruitment models and estimating Fmsy and Bmsy, and apply these 
methods to two case studies of cod and American plaice in NAFO Subdi-
vidion 3Ps, located off the south coast on Newfoundland, Canada. If the 
SME is large then estimates of MSY reference points can be quite differ-
ent from the results obtained assuming no ME or only ME in the popula-
tion numbers-at-age component of parental stock size. Fmsy may be 
considerably lower, and Bmsy considerably greater, than the no-ME re-
sults. However, the SME variance is highly confounded with ME and 
process error in recruitment, and additional data are likely to be required 
to estimate the SME variance reliably. 

Introduction 

Understanding the relationship between parental stock size (S) and subsequent re-
production and recruitment (R) of juveniles to a fishery is widely recognized as a 
fundamental component of sustainable fisheries management (Quinn and Deriso, 
1999). For example, stock–recruit (SR) relationships are used to project future fish 
population dynamics in response to proposed management actions, and to determine 
management reference points (Needle, 2002). Many fisheries are managed using ref-
erence points (RPs), where prescribed actions should occur when stock size or fishing 
mortality rates transgress reference points. Reference points are widely considered an 
essential part of well-managed fisheries (e.g. Hilborn and Stokes, 2010). Reliable SR 
models are therefore important for successful fisheries management. 

Maximum sustainable yield (MSY) RPs have been adopted by many national (e.g. US, 
NZ) and international fisheries management agencies (e.g. IWC, ICCAT, IATTC, 
ICES, NAFO). The fishing mortality that maximizes long-term yield (Fmsy) is often 
taken to be an upper limit for management purposes, while the resulting biomass at 
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Fmsy (i.e. Bmsy) is a target. Although management using MSY RPs is not without 
criticism (e.g. Hilborn, 2010; Legović et al., 2010), if these RPs are to be used then it is 
important to have reliable estimates of them. 

Within age structured models, MSY RPs are essentially derived from long-term stock 
projections over a range of fishing mortalities. If the projections are deterministic then 
the calculation of MSY RPs is also deterministic. In this context some theory has been 
developed related to MSY calculations (Sissenwine and Shepherd, 1987). MSY RPs 
are determined by the growth and mortality process of the stock, and by the age pat-
tern in fishing mortality. The SR relationship is a fundamental component in the 
stock growth process. Consequently, the SR relationship has a major impact on MSY 
RPs. 

Parametric SR models are commonly used to compute MSY RPs, especially when 
MSY calculations involve inferring R outside the range of the estimated S’s. A para-
metric SR model expresses R as an analytic function of S and a small number of un-
known parameters θ that must be estimated. Two SR models commonly used are the 
Ricker (Ricker, 1954) and the Beverton–Holt (Beverton and Holt, 1957). These models 
are described in the Methods section. The SR θ parameters are estimated either as 
part of an analytic stock assessment model, or based on a time-series of SR estimates 
obtained from a stock assessment model. In the latter case, which we refer to as ex-
ternal SR estimation, the θ parameters are usually estimated by minimizing the log 
error sum of squares based on a sample of SR observations, although other estimation 
procedures have been advocated (e.g. Walters 1990; Michielsens and McAllister, 2004; 
Jiao et al., 2004). We refer to fitting a SR model as part of an assessment model as in-
ternal estimation. 

The log error sum of squares fitting criteria is based on the assumption that S is 
known with little or no error and most of the error in the SR data comes from the 
measurement of R and other process errors or environmental variability that affect 
how much R is derived from S amount of parents. This is the common regression 
estimation framework where the relationship between known covariates and a ran-
dom response is estimated. However, in most situations S is not known without er-
ror. It has been argued that the measurement error (ME) in R is larger than the ME in 
S because S is usually derived as the sum of estimates of biomass-at-age times matur-
ity-at-age from some type of cohort model, and age-specific errors in biomass esti-
mates will tend to cancel in the sum. This is true, but there are additional sources of 
ME in S related to how adequately S reflects the actual reproductive potential of a 
stock. Trends in sex ratio and fecundity as well as possible effects from changes in 
reproductive potential related to changes in age composition are not accounted for in 
the normal calculation of S (Morgan et al., 2011). Hence, the ME errors in S may actu-
ally be of equivalent or larger in magnitude compared to the ME and process errors 
in R. When the SR parameters are estimated internally then the ME in S caused by 
estimation errors in biomass-at-age may be properly adjusted for, but the other 
sources of ME in S still need to be accounted for. 

It is well known (e.g. Carroll et al., 2006) that ME can result in biased estimates of the 
parameters of regression models. For example, consider the common simple linear 
regression model for a response variable Y that is a stochastic linear function of some 
covariate X, Y = βo + β1X + εY, where εY is a random error term that is usually assumed 
to be distributed as 𝜀𝑦~𝑁(0, 𝜎𝜀2). For convenience it is assumed that X is also random 
with mean 𝜇𝑋 and variance 𝜏𝑋2. If X is only observed with error, say W = X + εX, and if 
the regression parameters are estimated using the data {(y1,w1), (y2,w2), …}, then the 
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least squares estimates of the parameters are biased and the bias depends on the 
magnitude the ME’s, εX ‘s. If 𝑉𝑎𝑟(𝜀𝑋) = 𝜎𝑋2 = 𝜙𝜏𝑋2 then the estimate of the slope, 𝛽̂1, 
has expectation 𝐸�𝛽̂1� = 𝜆𝛽1 where 𝜆 = 1/(1 + 𝜙). Note that 𝜆 < 1 so that the bias is 
attenuated towards zero. The bias depends on how large the ME variance 𝜎𝑋2 is rela-
tive to the total variability of the X’s, 𝜏𝑋2. The bias is zero only if 𝜙 = 0 and the bias is 
large when 𝜙 is large. A large amount of ME masks the linear relationship between Y 
and X. Large sample sizes do not reduce this bias. 

ME bias also occurs when fitting SR models. Walters and Ludwig (1981) found that 
ME with the Ricker model favoured overexploitation, except if density-dependence 
in the data were strong, in which case ME favoured underexploitation. Kehler et al. 
(2002) found that ME led to overestimation of the slope-at-the-origin (Sao) of the 
Ricker model when most of the observed S’s were less than Smax – the S correspond-
ing to maximum R, (Rmax). They found the reverse when most of the observed S’s 
were greater than Smax. This was basically the same conclusion as Walters and 
Ludwig (1981). Kope (2006) found that large ME biases led to overestimates of pro-
ductivity for populations with low productivity or populations that were overfished, 
in which case most observations would be less than Smax. Cadigan (2009) presented 
diagnostics to describe the impact of ME on Sao and the S corresponding to 50% of 
Rmax, which we refer to as S50%. For the Beverton–Holt model, he concluded that 
ME always led to overestimation of Sao and underestimation of S50%. The ME effect 
for the Ricker model was the same, except when there was substantial density-
dependence (i.e. decline in recruitment at large S) in the data. Overestimating Sao 
makes a stock appear more productive than it actually is. 

Similar to the linear regression model, ME in SR data masks the relationship between 
S and R. ME reduces the apparent change in R as S increases. This may be accommo-
dated in model fitting by attenuating towards zero the slope of the SR model within 
the range of the observed S’s. Because SR models go through the origin, this attenua-
tion is achieved by increasing Sao. The other consequence of ME is underestimation 
of Rmax and S50%. This is illustrated with a simple simulated example in Figure 1. A 
relatively large number of SR observations (n = 100) were generated from a Beverton–
Holt model using a lognormal R ME distribution with a coefficient of variation (CV) 
equal to 0.2. The S’s were uniformly distributed over S20% - S80%. The true values of 
S were used for estimation (top panel), as well as S values with ME (CV equal to 0.4; 
bottom panel). This large amount of S ME was used to illustrate the bias problem. 
The estimated Beverton–Holt model with ME is more “knife-edged”. When there was 
only ME in R (top panel), the estimates of Sao and S50% were 1.01 and 19 170 which 
were close to the true values (i.e. 1.0 and 20 000). However, when there was both ME 
in R and S then the estimates of Sao and S50% were 1.51 and 10 510 which were sub-
stantially different from the true values. We repeated the simulation with n = 10 000 
SR observations. As expected, the estimates of Sao and S50% with only ME in R were 
almost exactly equal to the true values, while the estimates with S ME were substan-
tially biased (Sao = 1.49; S50% = 11 096). This demonstrates that ME bias is not re-
duced with large sample sizes. 

A problem with this simple example is that estimates of S are highly autocorrelated, 
and simply adding additional error to S like above may create a time-series of S’s that 
have low likelihood or plausibility given our other information on S from surveys, 
catches, etc. ME’s in S related to trends in sex ratio’s or changes in the age composi-
tion of S will likely be autocorrelated. We will address this problem in this paper. 
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For linear models it is well known that not all of the variance parameters are identi-
fied. In particular, the ME variance parameter 𝜎𝑆2 cannot be estimated without addi-
tional data (e.g. replicates) or assumptions. However, for non-linear models these 
parameters are sometimes identifiable (see Section 8.1.2 in Carroll et al., 2006). This 
was observed for the Beverton–Holt and Ricker SR models. In exploratory simula-
tions with large sample sizes, the profile likelihood for the ME variance in S was 
maximized at the correct value. However, for realistic sample sizes the likelihood was 
sometimes maximized at very different values of ME variance. Hence, there are pa-
rameter identification problems for practical sample sizes. We explore this issue us-
ing sensitivity analyses. 

Carroll et al. (2006) describe several methods to reduce covariate ME bias in non-
linear regression models. In regression calibration the unobserved covariate X in the 
regression model is estimated based on auxiliary information (i.e. internal validation 
data, replicate measurements of W, etc). Such information will usually not be avail-
able when fitting SR models. Also, Carroll et al. (2006) concluded that this approach 
can be poor for highly non-linear models. The simulation-extrapolation method in-
volves adding additional covariate ME to the data in a resampling strategy and then 
establishing the bias trend with increasing ME. This trend is extrapolated to the ori-
gin to estimate the ME bias and to bias-correct parameter estimates. It requires either 
knowing the ME variance or having data (i.e. replicates) to estimate it. The extrapola-
tion step can be error-prone and is more successfully performed when one has a 
theoretical understanding of the form of the covariate ME bias as a function of the 
ME variance. This understanding may be specific to the functional form of the non-
linear model. Carroll et al. (2006) discussed a corrected score function approach which 
can be more generally implemented using a Monte Carlo sampling approach. They 
also discussed the likelihood approach which is applicable to a wide range of models 
and usually gives more efficient estimates than other approaches, albeit at a cost of 
additional assumptions and less robustness. This approach can be used directly for 
model comparisons and profile likelihood confidence intervals for the parameters of 
non-linear models. No specialized statistical theory is required for inferences. The 
main difficulty with this approach is computing the likelihood function which in-
volves integration over the unobserved X variables. Fortunately, this is easy in 
ADMB (ADMB Project 2009), and this is the approach we pursue. 

ME bias may lead to overestimation of Fmsy and underestimation of Bmsy. If these 
RP’s are used in a fisheries management framework then the biases will lead to a 
smaller “caution/critical” zone which could possibly lead to overexploitation of 
stocks. In this paper the impact and magnitude of ME in S on MSY RP’s derived from 
Beverton–Holt and Ricker SR models is quantified. Methods are illustrated using two 
example stocks, cod and American plaice in NAFO Subdivision 3Ps. 

Material and methods 

SR models and RP’s 

Let μ(s) = E(R|S=s) denote the SR model which gives the expected value of the re-
cruitment random variable (R) as a function of stock size (S). The Beverton–Holt SR 
model is μ(s) = αs/(β+s). It is straight-forward to show that Rmax = α, S50% = β, and 
Sao = α/β. The Ricker model is μ(s) = αs exp(-βs). Rmax = α/β exp(1) and Sao = α; how-
ever, a closed form solution for S50% does not exist and it must be found numeri-
cally. The Ricker model is commonly used for SR relationships in which a reduction 
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in recruitment at large stock sizes is expected to occur because of density-dependent 
effects. 

Deterministic MSY RP’s were obtained for each SR model using the approach of Sis-
senwine and Shepherd (1987). This requires additional information on weights, ma-
turities, natural mortality, and fishery selectivity. These are described separately for 
each example. 

External SR estimation methods 

The data available are a paired time-series {(R1,S1),…,( Rn,Sn)} obtained from fitting a 
stock assessment model or directly from a survey. The length of the time-series is 
denoted by n. Both R and S are assumed to be measured with error. Let ST and RT 
denote the true values of S and R, 
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and 

 ),0(~),2/exp( 22
SMESMESMESME

T NSS σεσε −=  (2) 

 

Note that errors in Eq.s (1) and (2) are adjusted so that E(R) = RT and E(S) =ST. We 
assume that the R and S ME’s are independent of each other, and independent over 
time. In fact there will be some time-series correlations because current S is a function 
of previous R’s. Also, S ME’s related to trends in sex ratio’s or changes in the age 
composition of S will likely be autocorrelated. We account for this in the next section. 

Let R and RT be n×1 vectors of R estimates and true values, and define S and ST simi-
larly. The likelihood of the “data” (i.e. R and S estimates) is based on Pr(R = r, S = s). 
Given values of RT and ST, the conditional probability of the data, Pr(R = r, S = s| 
RT,ST), can be written as a product of probabilities, 
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The stock–recruitment model is used for Pr(RT|ST). We assume, 
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We initially assume that the 𝜀𝑅𝑃𝐸  ’s are independent over time; hence, using Eq. (4), 
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The independence assumption in Eq. (4) will often not be appropriate and we address 
this issue later. Eq. (5) can be used for )|(Pr vSuR == TT  in Eq. (3). 

The last component to model is Eq. (3) is Pr(ST). The ST ‘s will usually be highly de-
pendent over time, but the relationship between 𝑆𝑦𝑇 and 𝑆𝑦−1𝑇  can be complex and 
depends on total mortality rates, growth rates, and maturation rates. We have inves-
tigated two approaches. The first was to assume a simple random walk, and the sec-
ond was to use information from stock assessments. The random walk approach 
ignored information on the impacts of catches on S, and the impacts of changes in 
growth rates and maturation rates. We also investigated a delayed-difference ap-
proach for modelling the relationship between 𝑆𝑦𝑇 and 𝑆𝑦−1𝑇 , with S “growth rate” 
information derived from the stock assessment. However, the S growth rate informa-
tion was not independent from the stock assessment estimates of S, and we aban-
doned this approach. 

The more statistically rigorous approach is to estimate the SR model within the stock 
assessment model, and account for ME in S directly in the assessment model. This is 
the approach we pursue. 

Standard errors were derived for SR parameters and MSY RP’s using the delta 
method. Confidence intervals (CI’s) were derived by assuming log parameter esti-
mates were normally distributed, and then exponentiating the log CI’s. 

Internal SR estimation methods 

In this approach the SR model is estimated as part of an analytic stock assessment 
model. The specific assessment model we use is a survey only model, but our conclu-
sions should not be sensitive to the choice of assessment model. The basis of the sur-
vey assessment model has been described in Section 9.1 of ICES (2009). We have 
extended the model in a couple of aspects, particularly because we wish to use the 
approach to estimate MSY RP’s. 

SURBA+ background 

The survey-only assessment model (SURBA+) provides estimates of trends in stock 
size and direct estimates of mortality rates based on a time-series of age-based survey 
indices of stock size (Ia,y, a=1,…,A, y=1,…Y) and assumptions about survey “catchabil-
ity” and natural mortality. Population size is modelled using the standard cohort 
model, )exp( ,,1,1 yayaya ZNN −=++ , where Na,y is the beginning of year population size at 

age a in year y, and Za,y is the annual total mortality rate. Parameters are estimated 
using survey indices that are assumed to be related to population size via the obser-
vation equation 
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 )exp( ,,,, yayayyaaya ZpNqI ε+−=  (6) 

where pyZa,y is the fraction of total mortality that occurs before the survey takes place, 
q’s are parameters for survey catchability, and ε’s are observation error terms. In Eq. 
(6), Na,y is projected forward to the time of the survey by applying the fraction of total 
mortality. 

The total mortality rate is split into a user supplied contribution due to natural mor-
tality (Ma,y), and an estimated contribution due to fishing (Fa,y). The basis of SURBA+ 
is a simple separable model for fishing mortality, Fa,y = safy, where sa is the fishery se-
lectivity for different ages, which is assumed to be year-invariant. The F year effects, 
fy, are identified by constraining sa = 1 for some age afull that one expects is the first age 
fully recruited to the fishery. We also assume that selection on the oldest two ages is 
equal. 

There is confounding between qa’s and sa’s in a SURBA model (e.g. Section 4.1.2.2 in 
ICES 2008b). To remove this confounding, values for q’s are usually supplied by the 
user (i.e. assumed or derived from external sources). Hence, SURBA provides popu-
lation size estimates that are relative to the assumed scale of the survey q’s. SURBA is 
a highly parameterized model, even when q values are fixed, and it is useful to con-
trol the variation in some parameter values. 

We use a ”random walk” to control or smooth one of the between-year variation in fy 
‘s. This is sensible if one expects that the true fishing mortality rates do not vary sub-
stantially from year to year, which makes sense for stocks like the ones in our exam-
ples, in which the fishery is not based mostly on recruitment and quota’s do not 
change much from year to year. The random walk is 

 

 ,)log()log( )(
1

F
yyy ff δ+= −  (7) 

 

where 𝛿𝑦
(𝐹) are independent 𝑁(0, 𝜎𝐹2) random error terms. The variance 𝜎𝐹2 could be 

user specified but a more objective modelling approach is to estimate 𝜎𝐹2 and let the 
data decide how much smoothing is appropriate. This is easy to do using the ADMB 
random effects module (ADMB-RE), which uses the marginal likelihood, in which the 
δ random effects are numerically “integrated out”, for inference about fixed effect 
parameters like 𝜎𝐹2. A fixed-effect (i.e. not random) mean parameter may be specified 
to start the random walk, but this is not necessary in ADMB-RE. 

 

As a result of moratoria on directed fishing, fishing mortality was very low during 
1994–1996 for both of the stocks in our examples. To account for this, we did not in-
clude the fy ‘s during 1994–1996 as part of the random walk. We simply set these val-
ues to be 0.05. We re-started the random walk in 1997. Hence, the specific random 
walk model we used in our examples is 
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Another problem we had to contend with in our examples was survey year effects. 
The surveys in that area can be highly variable in which there can be large increases 
or decreases in survey catch rates for all ages. The magnitude of the changes can be 
well beyond what is possible in the stock. Not accounting the year effects resulted in 
high estimates of 𝜎𝐹2, unrealistic predictions of F in some years, and residual year 
effects (i.e. correlated errors). This problem of survey year effects is fairly common in 
stock assessments. We addressed this problem by modifying the observation equa-
tion (i.e. Eq. 6),  

 

 ),exp( ,,,,, yayayayaya pZNQI ε+−=  (8) 

 

where log(Qa,y) = log(qa) + τy and τy are independent 𝑁(0, 𝜎𝑄2) random year effects. 
Unfortunately there is some confounding between the magnitude of 𝜎𝑄2 and 𝜎𝐹2 so we 
simply set 𝜎𝑄 = 0.25 which seemed to result in plausible estimates of F and little to no 
correlation in residuals.  

The other model component to specify is the selectivity, sa. We expect that sa varies 
smoothly as a function of age. A variety of parametric models have been used for this 
purpose; however, sensitivity to parametric assumptions is always a concern. We 
decided to also use a random effects approach to produce smooth nonparametric 
estimates of sa. At younger ages we expect log(sa) to increase roughly linearly with 
age, but at older ages we expect much less change in sa‘s. To accommodate this type 
of variation we used the following random effects model: 
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where ξa is a normal distribution error term. This model penalizes against first-order 
differences at older ages, {log(sa+1) - log(sa)}2, and will favour constant selectivity unless 
there is “strong” evidence in the data for a trend. The strength of the evidence is de-
termined via the improvement in fit to the data vs. the likelihood-cost of having 

0)(Var 2 ≥= Sa σξ  in the likelihood. At younger ages the penalty is {log(sa+1) + log(sa-1) - 
2 log(sa) }2 which favours log-linear selectivities; that is, the penalty is zero when sa is 
log-linear in a. In some preliminary analyses the estimates of sa ‘s seemed too variable 
(i.e. 2

Sσ  too large) so we constrained 2.0=Sσ . 

Recruitment in SURBA+ 

Similar to Eq. (1), we model recruitment as a stochastic function of parental stock 
size,  

 

 ( ) ),0(~),exp(| 2
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Note that we have not bias-corrected the process error in exp(𝜀𝑅𝑃𝐸). Parental stock 
size (ST) is estimated from the assessment model SSB (S; i.e. sum of mid-year bio-
mass-at-age times maturity estimates) and other measurement error,  

 

 ),0(~),exp( 2
SMESMESME

T NSS σεε=  (11) 

 

We can estimate 𝜎𝑅𝑃𝐸2  because we assume that the survey observation error variances 
in Eq.s (6) and (8) are the same for all ages. Unfortunately 𝜎𝑆𝑀𝐸2  is confounded with 
𝜎𝑅𝑃𝐸2  and we cannot reliably estimate these two variance parameters separately. 
Hence, we cannot estimate the size of the S ME’s (𝜀𝑆𝑀𝐸) and the R PE’s (𝜀𝑅𝑃𝐸) sepa-
rately. Virtually the same stock assessment model fits may be obtaining using a wide 
range of values for 𝜎𝑆𝑀𝐸2 , and some choices can have a large impact of RP’s. The best 
we can do is estimate the RP’s over a range of values for 𝜎𝑆𝑀𝐸2 . Additional information 
is required to estimate RP’s more precisely. Empirical Bayes estimates of the 𝜀𝑅𝑃𝐸‘s 
and 𝜀𝑆𝑀𝐸’s can be used with Eq.s (10) and (11) to obtain more specific estimates of R 
and S for the assessment model time period. 

Note that if 𝜎𝑆𝑀𝐸2 = 0 then the assessment model has no S ME. We refer to the SR 
model estimated this way as internal. If 𝜎𝑅𝑃𝐸2  is large then the SR model has little to 
no affect on the assessment model. The size of each cohort in the assessment model is 
then estimated independently of parental stock size. Estimates of R and S obtained 
this way (e.g. XSA, ADAPT) are often used to estimate the SR, which is a two-stage 
procedure. We refer to such SR model estimates as external. In the following exam-
ples we examine differences in BH SR parameters and derived MSY RP’s when the 
SR model is estimated external to the assessment model (EXT), internal to the as-
sessment model (INT), and internal with ME. Errors may be independent and identi-
cally distributed (IID) or autocorrelated in some way (AR). 

Results 

Example 1: Atlantic cod (Gadus morhua) in NAFO Subdivisions 3Ps 

SURBA has been used recently (e.g. DFO 2010) in assessments of Atlantic cod (Gadus 
morhua) in NAFO Subdivision 3Ps which is located off the south coast of Newfound-
land, Canada. The SURBA+ model was applied to the DFO survey index for the years 
1983–2009 and ages 1–12. M was assumed to be equal 0.2 for all ages and years. We 
fixed qa = 0.154 ,0.462 ,and 0.923 for a = 1,…,3 and qa = 1 for a>3. These values have 
been used in the most recent assessment for this stock. Estimates of population size 
are relative to these assumptions about survey catchability. We assumed the fully 
recruited age to be fishery was six (i.e. afull = 6). 

We illustrate some basic analytic assessment results for the EXT SURBA+ model run. 
Stock size estimates are shown in Figure 2. The current limit reference point for this 
stock is based on Brecovery, which is SSB in 1994. Estimates of stock status relative to 
the LRP are shown in Figure 3. Average F’s are shown in Figure 4 and fishery selec-
tivity in Figure 5, rescaled so that the maximum is one. Predictions of survey year 
effects are shown in Figure 6. These year-effects are the reason why the predicted 
survey indices (Figure 7) can vary substantially from year to year, similar to the sur-
vey indices. Residual patterns (Figure 8) do not indicate serious assessment model 
lack of fit. 
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We also fitted a SURBA+ model in which the age pattern in fishing mortality could 
smoothly change over time. Although the results suggested that selectivity may be 
more slightly domed since the fishing moratorium ended in 1997 (see ICES, 2009), 
this model did not explain much additional variability and we have not pursued it 
further. 

The negative loglikelihood (nll) for the EXT Surbap+ model was 286.846. The nll for 
the INT model was 270.520 which is a substantial reduction and indicates the BH SR 
model explains a significant amount of variation, albeit with considerable process 
error (𝜎�𝑅𝑃𝐸 = 0.29). The unconstrained estimate of 𝜎𝑆𝑀𝐸 from the Surba+ ME model 
was close to zero with nll = 270.520, which is very close to the INT nll as expected 
because when 𝜎𝑆𝑀𝐸 = 0 these models are the same. The nll when 𝜎𝑆𝑀𝐸 was fixed at 
0.25 was only slightly greater, nll = 270.569, and 𝜎𝑅𝑃𝐸 = 0.26 which indicates the con-
founding between 𝜎𝑅𝑃𝐸 and 𝜎𝑆𝑀𝐸. 

The BH SR model estimates of MSY RP’s from the EXT, INT, and ME (𝜎𝑆𝑀𝐸 = 0.25) 
Surba+ models are shown in Figure 9. The EXT and INT SR models and RP’s are simi-
lar, although there is less variation from the BH model in the INT predictions of R, as 
expected. The INT and ME SR models and RP’s are also similar. However, when 
𝜎𝑆𝑀𝐸 = 0.4 (nll = 270.783) the differences in the ME RP’s are larger (Figure 10). 

The predicted ME errors in SSB are somewhat consistent with concerns about de-
clines in the age at maturity for 3Ps cod. The concerns are that fish that mature at 
young ages produce fewer eggs of lower quality, and do not contribute as much to 
SSB as older fish. The trend in the predicted errors from the ME model is negative 
when proportion mature at young ages increases (Figure 11). Negative errors mean 
that SSB is reduced, indicating less spawning potential than estimated by the sum of 
mature biomass at age. 

Example 2: American plaice (Hippoglossoides platessoides) in NAFO Subdivision 3Ps 

The SURBA+ model was applied to the DFO survey index for the years 1983–2009 
and ages 5–15. M was assumed to be equal 0.2 for all ages and years. We fixed qa = 0.6 
and 0.8 for a = 5 and 6, and qa = 1 for a>6. These were the values that were close to one 
but also accounted for the partial recruitment of these ages to the survey – as evi-
denced by negative raw survey Z’s and Surba+ residual patterns with age. Estimates 
of population size are relative to these assumptions about survey catchability. We 
assumed the fully recruited age was seven (i.e. afull = 7). Because there are only two 
ages in the model less than afull in Eq. (9) we used the first-order random walk for all 
ages. 

We illustrate some basic analytic assessment results for the EXT SURBA+ model run. 
Stock size estimates are shown in Figure 12. The SSB in 1994 was the minimum in the 
time-series. Estimates of SSB relative to the 1994 value are shown in Figure 13. The 
purpose of this figure is to describe the trend in SSB relative to the 1994 level. Aver-
age F’s are shown in Figure 14 and fishery selectivity in Figure 15, rescaled so that the 
maximum is one. Predictions of survey year effects are shown in Figure 16. These 
year-effects are the reason why the predicted survey indices (Figure 17) can vary 
substantially from year to year, similar to the survey indices. Residual patterns (Fig-
ure 18) do not indicate serious assessment model lack of fit. 

The negative loglikelihood (nll) for the EXT Surbap+ model was 227.483. The nll for 
the INT model was 212.617 which is a substantial reduction and indicates the BH SR 
model explains a significant amount of variation, albeit with considerable process 
error (𝜎�𝑅𝑃𝐸 = 0.31). The unconstrained estimate of 𝜎𝑆𝑀𝐸 from the Surba+ ME model 
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was large (𝜎�𝑆𝑀𝐸 = 0.69) with nll = 211.920, which is close to the INT nll where 
𝜎𝑆𝑀𝐸 = 0. This demonstrates the confounding between 𝜎𝑅𝑃𝐸 and 𝜎𝑆𝑀𝐸. The nll when 
𝜎𝑆𝑀𝐸 was fixed at 0.25 was only slightly greater, nll = 212.561.  

 

The BH SR model estimates models and estimates of MSY RP’s from the EXT, INT, 
and ME (𝜎𝑆𝑀𝐸 = 0.25) Surba+ are shown in Figure 19. The RP’s from the three models 
are similar. However, when 𝜎𝑆𝑀𝐸 = 0.69 the differences in the ME RP’s are much 
larger (Figure 20). 

Discussion 

There may be additional sources of error in determining parental stock size, apart 
from errors in the components of the common SSB calculation. We refer to these er-
rors as parental stock size measurement errors, or SME. These additional sources of 
error may be due to, for example, trends in sex ratio and fecundity, or possible effects 
from changes in reproductive potential related to changes in age composition. The 
variance of the SME’s cannot be estimated in a stock assessment model unless addi-
tional and specific information is available about the size of these effects. This infor-
mation will usually not be available, and the best we can do is provide a sensitivity 
analysis of the impact of SME’s pm assessment model results. The main impact in our 
examples was on the stock–recruit parameter estimates and MSY reference points. If 
the SME’s are large then reference points can be substantially different from those 
obtained assuming no SME’s. In the 3Ps cod example, Bmsy decreased when SME 
was large, and Fmsy increased slightly. In the 3Ps American plaice example, Bmsy 
increased substantially when SME was large, and Fmsy decreased. It would be useful 
to provide profile plots of how estimated MSY reference points are affected by as-
sumptions about SME. 

Further extensions of the methodology are still required. As mentioned earlier, it 
seems likely that SME’s will be autocorrelated over time. It may also not be possible 
to estimate the amount of autocorrelation, in which case a sensitivity analysis into 
this aspect of SME is also necessary. 
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Figure 1. Simulation example, with 100 stock (SSB) and recruitment observations generated from 
a Beverton–Holt model (grey line in both panels) with a slope at the origin of 1.0 and maximum 
recruitment of 20 000. Estimated models are shown as black lines. Panel a): Lognormal recruit-
ment observations were generated with a coefficient of variation of 0.2. Panel b): The same re-
cruitment observations as in panel a), but additional lognormal measurement errors with a 
coefficient of variation of 0.4 were added to the SSB’s. 
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Figure 2. Estimates of recruitment (top left panel) and biomass (bottom left panel). The red line 
indicates the time-series mean. Vertical lines indicate 95% confidence intervals. 
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Figure 3. Estimates of SSB relative to 1994 values, which for SSB is the limit reference point for 
this stock. Vertical lines indicate 95% confidence intervals. Dashed references lines at one are 
shown. 
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Figure 4. Average fishing mortality for ages 4–12 (solid line) and 1–3 (dashed line). Vertical lines 
indicate 95% confidence intervals. 

 

 

Figure 5. Predicted fishery selectivity. 
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Figure 6. Year effects in survey catchability (Q). 

 

 

Figure 7. Sum of observed (points) and predicted (lines) survey indices each year. Predicted indi-
ces have been corrected for the log transformation bias. 

 

 

Figure 8. Standard residuals vs. year, age, cohort, and predicted value. The dashed line in the top 
right panel indicates the average residual each year. 
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Figure.9. Beverton–Holt stock–recruit (SR) model fits to 3Ps cod (Gadus morhua) data. Panel a) 
External (EXT; blue line and grey +’s) and internal (INT; red line and o’s) SR fits and predictions 
of SSB and recruitment (R). The INT model has no measurement error (ME) in SSB. Panel b) INT 
with ME (sd=0.25; green line) and without ME (red lines and o’s). Arrows indicate the predicted 
SSB’s from the ME model. ME standardized residuals. Panel c) R time-series from the EXT, INT, 
and ME models. Panel d) SSB time-series from the EXT, INT, and ME model. Panel e) Residual 
time-series. The solid lines correspond to the models in panels a) and b). The dashed line indi-
cates the ME SSB residuals. Panel f) SR parameters and MSY reference points. 
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Figure 10 ME sd=0.4. See Figure 9 for other details.  
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Figure 11. Time-series of average proportion mature at ages 3–5 (blue triangles), and the predicted 
errors in SSB (red circles). The solid lines are loess smoothed trends in the estimates. 
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Figure 12. Estimates of recruitment (top left panel) and biomass (bottom left panel). The red line 
indicates the time-series mean. Vertical lines indicate 95% confidence intervals. 
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Figure 13. Estimates of SSB relative to 1994 values. This is not the limit reference point for this 
stock – the figure label is wrong. Vertical lines indicate 95% confidence intervals. Dashed refer-
ences lines at one are shown. 

 

1985 1990 1995 2000 2005 20

0

10

20

30

40

50

3Ps American plaice

S
S

B
/B

lim

Year



242  | ICES WGMG REPORT 2011 

 

 

Figure 14. Average fishing mortality. Vertical lines indicate 95% confidence intervals. 

 

 

Figure 15. Predicted fishery selectivity. 
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Figure 16. Year effects in survey catchability (Q). 

 

 

Figure 17. Sum of observed (points) and predicted (lines) survey indices each year. Predicted 
indices have been corrected for the log transformation bias. 
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Figure 18. Standard residuals vs. year, age, cohort, and predicted value. The dashed line in the top 
right panel indicates the average residual each year. 
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Figure 19. Beverton–Holt stock–recruit (SR) model fits to 3Ps American plaice (Hippoglossoides 
platessoides) data. Panel a) External (EXT; blue line and grey +’s) and internal (INT; red line and 
o’s) SR fits and predictions of SSB and recruitment (R). The INT model has no measurement error 
(ME) in SSB. Panel b) INT with ME (sd=0.25; green line) and without ME (red lines and o’s). Ar-
rows indicate the predicted SSB’s from the ME model. ME standardized residuals. Panel c) R 
time-series from the EXT, INT, and ME models. Panel d) SSB time-series from the EXT, INT, and 
ME model. Panel e) Residual time-series. The solid lines correspond to the models in panels a) 
and b). The dashed line indicates the ME SSB residuals. Panel f) SR parameters and MSY refer-
ence points. 
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Figure 20. ME sd=0.63; the estimated value See Figure 19 for other details.  
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Annex 6: Estimating 𝝈𝑹 

In the context of discussing WD 6 (Annex 5), it was noted that the estimation of the 
recruitment variation parameter 𝜎𝑅 in a Maximum Likelihood Estimation (MLE) set-
ting when a stock–recruit model forms part of the assessment model, and the re-
cruitment residuals 𝜀𝑦 appear in a penalised likelihood term 

− ln 𝐿 = 𝑛 ln(√2𝜋𝜎𝑅) +
1

2𝜎𝑅2
�𝜀𝑦2
𝑦

 

leads to a maximum likelihood estimate of 𝜎𝑅 = 0 if no additional constraints are 
placed on the model. This did not appear to happen in the state-space model pre-
sented in WD 6, and a discussion arose as to why this was the case for that model, 
which treats process errors as random effects that are integrated out. 

Part of the problem stems from the fact that the penalised likelihood given in the 
above equation is not a “true” likelihood, in the sense that 𝜀𝑦 measures the distance 
between what are essentially two model estimates (the parametric stock–recruit curve 
and the estimated recruitment in year y), instead of measuring the distance between 
(fixed) data values and model estimates. The reason why no sensible MLE exists is 
that the above equation goes to −∞ when 𝜀𝑦 exactly equals 0 and 𝜎𝑅 is positive but 
tends towards zero. In this case, it is possible that all the 𝜀𝑦 equal zero exactly, given 
that these are treated as unknown parameters to be estimated. If, on the other hand, 
annual recruitments were observed (i.e. were treated as data, rather than as parame-
ters to be estimated), then the 𝜀𝑦 could not all be exactly equal to zero (because it 
would be extremely unlikely that the stock-recruitment relationship would be able to 
match all the observed annual recruitments exactly). Therefore, 𝜀𝑦2 would be strictly 
positive, at least for some years, in which case the above equation for − ln 𝐿 would be 
minimised for some finite (and strictly positive) value of 𝜎𝑅.  

When the annual recruitment as reflected by 𝜀𝑦 is treated as unknown (rather than as 
known data), the equation above is not really a likelihood function for recruitment 
but, instead, a probability distribution for it (or, using a different terminology, a ran-
dom effect). In that case, the equation is implicitly saying that the annual recruitment 
is a random variable (varying around the stock-recruitment relationship and with the 
magnitude of the variability controlled by 𝜎𝑅). Hence, annual recruitments cannot be 
treated just as parameters to be estimated by ML, since the equation above is not a 
likelihood. Instead, they must be integrated out of the model, using their probability 
distribution, and apart from the stock recruitment function parameters themselves, 
the only other recruitment-related parameter left in the model (which is, indeed, a 
real parameter) is 𝜎𝑅. Because annual recruitments have been integrated out of the 
model using their entire probability distribution (and not just estimating 𝜀𝑦 = 0), the 
ML estimate of 𝜎𝑅 no longer suffers from the problem caused by 𝜀𝑦 being exactly 
equal to zero and the ML estimate of 𝜎𝑅 will typically be a finite (and strictly positive) 
value. In this case, a kind of “posterior” probability distribution can be subsequently 
obtained for the annual recruitment values, which will be different from the original 
one input in the model (i.e. the one at the top of this section), as the “posterior” distri-
bution of recruitment will be centred at different values on different years depending 
on the information coming from other parts of the model and from the various data 
sources used to fit the model. 

The above provides an explanation as to why the 𝜎𝑅 = 0 problem does not arise for 
the state-space model presented in WD 6, as the implementation there uses the Ran-
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dom Effects module of ADMB to integrate out the random effects. Note that the pole 
(infinite value) at 𝜎𝑅 = 0 in the integrand provided by the equation above will not 
cause the likelihood profile in 𝜎𝑅 obtained after integrating out the recruitments to 
increase indefinitely as 𝜎𝑅 tends to zero; this is because the very large value of the 
integrand in this region is more than compensated by the rate at which the volume of 
the integration phase space over the recruitments approaches zero in this limit, so 
that a non-zero MLE of 𝜎𝑅 will result. The bottom line here is that, in order to avoid 
pathological behaviour, random effects should be treated specifically as such, and not 
merely as parameters to be estimated via ML. The practical problem is that integrat-
ing out random effects can be difficult: there is often no analytical solution to the 
integral and numerical integration must be used. Actually implementing this numeri-
cal integration in ADMB is not straightforward when models become more compli-
cated (i.e. less well approximated by linear and Normal assumptions). 

Considering this problem during a recent stock assessment workshop, Smith et al. 
(2011) recommended that an assessment model should be treated as a random effects 
model and the process errors integrated out. However, because analytical integration 
could be very complicated in many cases, an alternative approach is to include a 
prior distribution on 𝜎𝑅 in the estimation to keep the “maximum likelihood” estimate 
of 𝜎𝑅 away from zero and with a positive definite Hessian, and then to drop this prior 
when implementing an MCMC algorithm (that Hessian then having provided a sen-
sible jump function for this algorithm). 
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