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Executive summary 

The ICES Working Group on Methods of Fish Stock Assessment (WGMG) met in 
Reykjavik, Iceland from 30 September–4 October 2013. Work conducted prior to the 
meeting focused on aspects of the ICES data-limited stocks (DLS) framework; in par-
ticular, how robust it is (in terms of delivering more conservative catch advice when 
less data are available) and whether the performance of some of its age-aggregated 
methods (e.g. for Category 3) can be improved by including in the Harvest Control 
Rule (HCR) either a confidence interval for the age-aggregated index used or the 
average length in the catch relative to some reference level. Indications are that the 
DLS framework does not always deliver more conservative catch advice when less 
data are available, and that the performance of HCRs can potentially be improved 
with additional auxiliary information. The development of generic HCRs, and the use 
of Fproxy values and targets in HCRs were also considered, and suggestions made for 
the preparation of survey indices for use in HCRs. Work conducted during the meet-
ing itself included a comparison of a range of methods for estimating reference points 
when applied to two ICES datasets (North Sea cod and herring); for neither of these 
datasets was FMSY estimated consistently across models and SR forms, highlighting 
the challenges for estimating reference points from stock–recruit data. A brief review 
of current mixed fishery and multispecies approaches was conducted, and a recom-
mendation provided for evaluating a mixed fishery approach under a minimum real-
istic multispecies operating model. A summary of the workshop held as part of the 
World Conference on Stock Assessment Methods is provided, with a look forward to 
the possible future development of the simulation exercises conducted as part of the 
workshop. 

 

 



4  | ICES WGMG REPORT 2013 

1 Introduction 

1.1 Terms of Reference (ToRs) 

The Working Group on Methods of Fish Stock Assessments (WGMG) chaired by José 
De Oliveira, UK will meet in Reykjavik, Iceland, 30 September – 4 October 2013 to: 

a ) Develop and suggest ways to evaluate management approaches for all 
species in mixed fisheries, including data limited stocks that have a high 
probability of being consistent with the precautionary and MSY approach-
es. 

b ) With regard to the ICES Data Limited Stock (DLS) approach: 
i ) Investigate the robustness of the DLS approach as a framework for 

providing advice. 
ii ) Consider ways of extending management approaches using only 

age-aggregated abundance indices, tested on data rich species with 
age data, to data-limited situations without age data. 

c ) Evaluate the outcomes from the Assessment Methods Evaluation Scheme, 
applied during the SISAM World Conference on Stock Assessment meth-
ods for Sustainable Fisheries (WCSAM, Boston, July 2013), and based on 
this, develop recommendations for stock assessment approaches within 
ICES. 

d ) Based on work from WKFRAME2, WKGMSE and WKMSYREF, review 
and evaluate recent software developments in terms of methodology for 
computation of the reference points within the ICES MSY and PA ap-
proaches. 

1.2 Background 

The 2013 meeting was held immediately after the ICES Annual Science Conference 
(ASC) in the same city (Reykjavik); this appeared to work well for the group, and 
allowed WGMG to have a presence at the ASC, including contributing to the 
SCICOM Open Sessions, and planning additional work under the ICES Strategic Ini-
tiative on Stock Assessment Methods (SISAM) with others attending the ASC, but not 
available for the WGMG meeting. There is a proposal to again have the WGMG meet-
ing follow the ASC in 2014, although it would have to transfer to nearby Vigo since 
there are no suitable venues in A Coruña. 

Three ToRs were developed during the 2012 meeting, and a fourth was added follow-
ing the WKMSYREF meeting in January 2013. WGMG received additional recom-
mendations from WGNSSK and WGCSE during 2013, and these have been 
incorporated into future ToRs under the new ICES multi-annual ToR approach. 

The meeting was structured around the four ToRs, and the same approach was used 
for the report. Work under ToR 1 took the form of a brief review and discussion of 
mixed fishery and multispecies approaches currently in use, with a recommendation 
for evaluating a mixed fishery approach under a minimum realistic multispecies op-
erating model. Under ToR 2, simulation work developed specifically for this ToR was 
presented on (a) the robustness of the ICES DLS framework (in terms of its ability to 
produce more conservative catch advice when less data are available), and (b) wheth-
er performance of age-aggregated methods under Category 3 of the DLS framework 
could be improved by incorporating into the Harvest Control Rule (HCR) either a 
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confidence interval for the age-aggregated index used or the average length in the 
catch relative to some reference level. Other areas of work presented under ToR 2 
related to the development of generic HCRs for data-poor fisheries, a comparison of 
HCRs that use Fproxy values and targets with the current ICES Category 3, method 3.2 
rule, and suggestions for the preparation of survey indices for use in HCRs. 

WGMG continues to support SISAM, and was instrumental in the collation and pro-
vision of datasets, as well as the development of the assessment methods evaluation 
scheme, presented to the World Conference on Stock Assessment Methods (WCSAM) 
held in Boston, July 2013. Work under ToR 3 provides both a summary of the work-
shop held as part of WCSAM, and a look forward to where the simulation testing 
exercises go next. Work under ToR 4 was conducted during the meeting, and com-
pared three methods (although a fourth was also presented) applied to two ICES 
datasets (North Sea cod and herring). The three methods, all candidates for estimat-
ing reference points (along with the fourth method), were an equilibrium approach 
with variance, a stochastic projection approach, and a nonparametric approach. The 
fourth method considered reference point estimation in the context of evaluating a 
HCR using Management Strategy Evaluation (MSE). 

A number of recommendations were developed from the work presented and discus-
sions held, and these are presented in Annex 3. Multi-annual ToRs were developed 
under a number of broad themes, and these are reported in Annex 4. Details of meth-
ods presented and issues that arose during the meeting that required clarification are 
presented in Annexes 5-11. 
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2 ToR 1 – Mixed Fishery and Multispecies approaches 

Mixed fishery approaches 

A summary of the work carried out by the Working Group on Mixed Fisheries Ad-
vice for the North Sea (WGMIXFISH) and the Working Group on Multispecies As-
sessment Methods (WGSAM) was presented with a focus on the existing tools and 
models used within these groups. Although the approaches carried out by these 
groups are different, both groups provide multispecies and mixed fisheries consider-
ations to ACOM for North Sea stocks.  

WGMIXFISH aims to apply mixed fisheries forecasts to the draft North Sea single 
species advice provided by the Working Group on the Assessment of Demersal 
Stocks in the North Sea and Skagerrak (WGNSSK), and in 2013 included outcomes 
from management scenarios for consideration by the ACOM advice drafting group 
for the North Sea. The Fcube tool (Fleet and Fishery Forecast) is the only tool used by 
this group. The species considered as part of the demersal mixed fisheries of the 
North Sea are cod, haddock, whiting, saithe, plaice, sole and Nephrops norvegicus. All 
species except Nephrops are subject to monospecific multi-annual management 
plans. These plans are based on harvest control rules to derive annual TACs accord-
ing to the state of each individual stock relative to their biomass reference points and 
their target fishing mortalities. Input data for Fcube consist mainly of catch and effort 
by fleet and métier, and fishing mortality estimates from the single-species stock as-
sessments. Catch, effort and fishing pressure are recombined by fleets and métiers. 
Projections are carried out based on five effort scenarios: status quo effort, min where 
fishing stops when one quota is reached, max where fishing stops when all quotas are 
taken, cod where all fleets set their effort according to their cod quota share, and 
Ef_mgt where effort is adjusted according to the EU effort management regime.  

The absence of species interactions in Fcube was discussed, but since this tool is only 
used for short-term forecasts, these interactions are not considered important at such 
a short time-scale. In the long term, however, they might impact the fishery. General-
ly, it is assumed that for short-term forecast, the fishery does not change much. Key 
parameters such as catchability are assumed to change little and can be set as the 
average of previous years for purposes of a short-term forecast. 

If Fcube was to be implemented as a tool for management evaluation, the forecasts 
would have to be repeated over several years. In that case, some assumptions would 
probably have to be revised to include changes in the fleets, and species interactions 
may have to be included over a long period of time. 

An option for further development of Fcube could be to provide a global indicator of 
the mixed fishery as a whole with respect to harvesting. Such an indicator does not 
currently exist because Fcube is based on outputs from single-species stock assess-
ments, and the forecasts it produces for each species are compared with the corre-
sponding forecasts derived from single-species assessments. As a consequence, there 
are no mixed-fishery Fmsy and other reference points which could be used to assess 
the status of the fishery as a whole.  

Fcube has not been tested on data-limited stocks (DLS). Given that the main inputs 
are effort, catch and fishing mortalities for fleets and métiers, it is necessary to obtain 
this information directly (although it may also be possible to use proxies for fishing 
mortality) in order to run Fcube. However, obtaining estimates (or even proxies) of 
fishing mortality is potentially problematic for DLS.  
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Discussions focused on the various management scenarios that were included in the 
WGMIXFISH report. Those scenarios are quite generic because they do not necessari-
ly reflect fishermen's fishing strategy. Fishermen's knowledge of microstructures (e.g. 
spawning area, local zone of interest) within their fishing zone allow them to adjust 
their effort or target species, or to avoid certain areas to modulate the composition of 
their catches. This information is not generally taken into account in any management 
scheme, which tends to be based on aggregated information at the global scale of the 
fishery, such as aggregated catch and effort. The scenarios presented were considered 
to be simple, exploratory scenarios. The max scenario (fishing only stops when all 
species quotas are taken) goes too high and is detrimental to most stocks, while the 
min scenario (fishing stops when the smallest quota is reached) is too restrictive and 
would not maintain the economic viability of the fishery.  

A “middle road” probably exists between the min and max scenarios, and alternative 
scenarios to those presented were discussed. One included setting a range of TAC 
intervals. This would allow more flexibility, because several species could, with such 
a system, be within an acceptable range of catches without exceeding TACs as is cur-
rently the case in scenarios other than the min one. Such a scenario would, however, 
be difficult to implement as it would imply setting effort to meet a range of TACs. 
TAC-based management makes the whole exercise difficult. Furthermore, forecasts 
may still be driven by the most valuable species, so that one of the consequences of 
such a scenario may be to simply shift baselines towards some other level, resulting 
in TAC-overshoots still occurring to some extent.  

It is recommended that the extent to which stocks within a mixed fishery might “safe-
ly” (from a precautionary point of view) be landed over their TACs, be evaluated. 
The idea is not to promote overshooting of TACs per se, but to evaluate for each stock 
the consequences of being overlanded (likely to happen in any case, except for the 
min scenario) or discarded because of the multispecies nature of the fishery.  

An alternate solution might consider a system with financial penalty. New Zealand 
allows landings over TAC but with penalties set to a “deemed value” in order for the 
vessels not to make profit from the additional catch in that situation (Marchal et al., 
2009; Mace et al., in press). It is possible to include fish prices in Fcube. A target for a 
management scenario could be to find the proper balance between economically rea-
sonable profit and biologically sustainable landings.  

An alternative to the max scenario, perhaps called capped max, could also include a 
cap on maximum effort so that fishing stops when this cap is reached. However this 
cap has to be set and the group did not discuss on which basis it would be set, alt-
hough something like the maximum observed effort over some recent period (e.g. 3 
or 5 years) could be considered. 

Multispecies approaches 

A summary of the modelling approaches followed by WGSAM was also presented. 
This working group focuses mainly on ecosystem modelling (although multispecies 
assessments are also carried out) and associated parameterization, and covers a di-
verse range of models, mostly developed within a regional context. Those models 
include, in most cases, some fishery components which range from basic representa-
tion of vessels as a part of the foodweb to mixed fishery fleets. Additional work car-
ried out at WGSAM also includes building a stomach content sampling programme 
within ICES, building virtual multispecies datasets for model testing, and developing 
foodweb indicators. 
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WGSAM also carries out exploratory analyses around the concept of MSY within a 
multispecies context and how it affects other biological reference points. These anal-
yses include considering "balanced" fishing, where vessels would target evenly every 
component of the ecosystem, from plankton to whales, and how indicators such as 
cannibalism among cod could be used for the HCR in the Barents Sea. In all cases, 
ecosystem models are hard to calibrate and there are uncertainties regarding parame-
ters and outcomes related to external pressure such as fishing mortalities. Therefore, 
the results of all these approaches lack robustness and are not currently suitable as 
part of any advisory process, particularly as they are still under development. How-
ever, WGMG recognizes the huge amount of work and effort in the development of 
those models.  

Given the diverse and complex nature of multispecies approaches, which are current-
ly under varying levels of development, it was not possible to investigate them in any 
depth for the current WGMG meeting; it seems unlikely that any of them are current-
ly usable, from an operational point of view, for testing mixed fishery management 
scenarios. However, it is worth noting that WGSAM did provide some multispecies 
considerations through simulations for the North Sea stocks. In future WGMG meet-
ings, it would be worth considering these multispecies approaches again, as they are 
developed further, particularly with regard to their potential for evaluating manage-
ment scenarios (e.g. MSC and Lenfest reports advocating lower F on forage fish spe-
cies; Smith et al., 2011, Pikitch et al., 2012). 

In summary 

Given the complex nature multispecies and ecosystem approaches and associated 
difficulties with estimation/calibration, a possible way forward to tackling ToR 1 
would be consider developing a minimum realistic model (e.g. MICE; Plagányi et al., 
2012) to serve as an operating model in order to evaluate the performance of mixed-
fishery models (such as Fcube) within a management strategy evaluation framework. 
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3 ToR 2 – ICES Data-limited approach 

3.1 Evaluating robustness 

Introduction 

The ICES Data-Limited Stocks (DLS) framework has been set up with the intention of 
achieving greater precaution in catch advice when less information is available. This 
implies that as one moves down the DLS categories, from data rich in Category 1 to 
increasingly data-limited stocks in lower categories, one would expect that the DLS 
framework would provide concomitantly more conservative catch advice.  

The ICES DLS framework is described in ICES DLS Guidance Report (ICES, 2012), 
which includes descriptions of the methods to apply in each of the DLS categories. 
The approach used here was to start with a data-rich stock in Category 1, then to 
systematically strip away data from this stock to demote it to lower categories, each 
time applying one of the methods appropriate to that category, and focusing on the 
methods most commonly used by ICES working groups. At this point, it should be 
noted that some of the lower categories do not necessarily use “less” data to provide 
catch advice, but rather focus on different data. The most obvious example is method 
3.2 of Category 3 which uses a time-series of an aggregated index of abundance, but 
not catch-at-age data, whereas method 4.1.3 of Category 4 uses only catch-at-age data 
(ICES, 2012). However, the simulations presented here focus only on DLS Catego-
ries 1-3, with an extension to include Category 4 being presented at the WKLIFE-3 
meeting towards the end of October 2013. 

A Management Strategy Evaluation (MSE) framework was used for the analysis 
(based on FLR; Kell et al., 2007), requiring operating models and a management mod-
el that incorporates the method to be evaluated (see below). The simulations in this 
section have been designed to investigate a particular question: based on the same 
conditions (stock, fishery, etc.), does more conservative catch advice follow if less 
data are available? Therefore, full feedback has not been implemented between the 
operating and management models (see below). The simulations presented in this 
section can therefore not be used to evaluate the potential effects of a given DLS 
method on the underlying stock (full feedback would need to be taken into account 
for this). 

Operating models 

The operating models are based on those developed at the June 2008 STECF meeting 
(STECF, 2008; De Oliveira et al., 2010), and are given in Table 3.1.1. The simulated 
populations were generated based upon a cod-like stock (loosely conditioned on 
North Sea cod). The operating model represents the true stock and fishery dynamics, 
from which data are generated (with observation error) to be supplied to the man-
agement model (here catch-at-age and survey index-at-age). Having been supplied 
the data; the management model applies the method for the relevant DLS category to 
provide catch advice. If full feedback were considered, the catch advice would be 
returned to the operating model and would have an impact on the true population. 
However, the objective of the simulations presented in this section was to provide a 
direct comparison of the catch advice that each of the DLS categories would deliver 
given the same underlying stock conditions (the only difference being the amount of 
information to which the given DLS category had access from the stock), so no feed-
back was included. Instead, a comparison of the DLS categories was made based on 
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four exploitation history scenarios: well-managed, well-managed to overexploited, 
overexploited, and overexploited to well-managed (Table 3.1.1). 

 

Table 3.1.1. Operating Model scenarios. FMSY, the harvest rate that should give rise to the MSY 
when the stock is at BMSY, the spawning-stock biomass (SSB) that produces the MSY. The cod-like 
Operating Model assumes a Ricker stock–recruit relationship with steepness of 0.9 and variance 
of the log recruit residuals about the stock–recruit curve of 0.52. Each scenario is constituted by the 
productivity (steepness of the stock–recruitment relationship), the initial status and the error 
model. A 30-year projection is used, and 100 simulations conducted. 

Scenario Factor Level 

cod Stock Cod like 

cod.instat1 Initial status (up to yr 0) Well managed, i.e. F~FMSY and SSB~BMSY 

cod.instat2  Overfished, i.e. F~2FMSY and SSB<<BMSY 

cod.#.fustat1 Future status (yr 1 to 30) Initial status continues 

cod.#.fustat2  Linear change from initial status to alternative 
status (e.g. from instat1 to instat2 or vice 
versa) over years 10 to 20. 

cod.#.#.err1 Error models 
(including 10% on catch-at-
age) 

assuming Iy is log-normally distributed with 
median By/q and 30% CV, where By is the true 
stock size (note: q=1 and is held constant, 
while Iy could either be the total biomass or 
SSB index, in which case By would represent 
the corresponding quantity) 

cod.#.#.err2  As above, but q increases from 0.7 in year 0 to 
1 in year 30 (note: this increase is not directly 
accounted for by the HCR, which assumes it 
remains constant over time)  

Management Models, incorporating methods for each DLS category 

A selection of methods, one for each DLS category, with a focus on the most common 
methods within the lower categories (e.g. method 3.2 in DLS Category 3; ICES, 2012) 
was considered. Neither change limits nor a precautionary buffer (ICES, 2012) is ap-
plied to Category 1. A change limit of ±20% is applied to Categories 2-3, and a pre-
cautionary buffer of -20%, when appropriate (see below) to Categories 3 (but not to 
Category 2). The catch advice for year y+1 is indicated as Cy+1, and both the change 
limit and precautionary buffer are relative to Cy-1, where the latter is interpreted as 
the average catch for years y-3, y-2 and y-1 for the purposes of these simulations. Alt-
hough the methods call for a transition to FMSY, or an appropriate proxy, by 2015, this 
transition has not been applied in the simulations presented because such a transition 
would be applied for a single year only.  

Category 1: 

The method receives a complete set of data (catch-at-age, including discards, and a 
survey index-at-age) and relies on a full analytical assessment, short-term forecast 
and application of the ICES MSY rule, as follows (assuming y-1 as the final year of 
data, y as the year when the assessment is conducted and y+1 the year for which catch 
advice is needed): 
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1. Conduct a full assessment (FLXSA is used); extract an estimate of FMSY and 
BMSY-trigger the first time the assessment is applied (i.e. in year 0) 

2. Perform a short-term forecast, assuming three-year means (for weights-at-age, 
natural mortality, maturity and fishery selection), geometric mean recruitment 
and status quo F for year y (Fy=Fy-1). 

3. Use the ICES MSY rule to calculate Fy+1: 

}1;/min{ 11 triggerMSYyMSYy BSSBFF −++ ×=  

4. Apply the Baranov catch equation to calculate Cy+1, the catch advice. 

Category 2: 

The method receives incomplete catch-at-age data (discards are omitted) but com-
plete survey index-at-age. It follows the same procedure as Category 1, but FMSY is 
replaced by F0.1, and a change limit of ±20% is applied such that: 

111 2.18.0 −+− ≤≤ yyy CCC  3.1.1 

 

Category 3: 

A time-series of an aggregated index of abundance (here total biomass) is available, 
but no catch data. The method was originally proposed by the European Commission 
(De Oliveira et al., 2010), and involves adjusting catch advice based on a recent trend 
in the aggregated index. 



















−
=

∑

∑
−−

−=

−

−=
−+ 1

1

11

)/(

/

xy

zyi
i

y

xyi
i

yy

xzI

xI
CC  3.1.2 

which is then subject to a ±20% change limit, as for Category 2. Here the version orig-
inally proposed by the European Commission (with x=2 and z=5) is used. In addition 
to the change limit, a precautionary buffer of -20% is applied unless the following 
condition is met (in which case the precautionary buffer is omitted): 
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Results 

Results are shown in Figures 3.1.1-3.1.4 for the various exploitation history scenarios 
(well-managed, well-managed to overexploited, overexploited and overexploited to 
well-managed). Results always show the catch advice from a higher category (one 
that uses more data) divided by that from a lower category, so the expectation is that 
the distribution of this ratio (derived from 100 simulations) should be above 1 in each 
case – for the purposes of the results shown, the performance of the DLS framework 
is interpreted in this context (i.e. good performance is when the DLS framework pro-
vides more conservative catch advice when there is less data available). 
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Well-managed 

For the well-managed scenario (Figure 3.1.1) under no trend in survey catchability 
(b), both the medians and inter-quartile ranges (25-75%) are generally above 1 with 
the lower extreme of the distributions around or below 1. Performance improves in 
the presence of a positive trend in survey catchability (c), a feature that is repeated for 
all stock scenarios. This implies that the lower categories introduce greater precaution 
when there is a trend in survey catchability that is not taken into account by the HCR, 
likely due to the additional constraints that the lower categories impose (change limit 
and precautionary buffer). 
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Figure 3.1.1. The well-managed scenario, with future projections of SSB, F, yield (landings) and 
recruits shown in (a) (dark red line corresponds to FMSY, light red lines to F0.1). Catch advice across 
DLS categories (e.g. TACx_y is catch advice for Category x divided by that for Category y) are 
compared in (b) for a constant survey catchability and (c) for a trend in survey catchability, with 
red lines indicating a TACx_y ratio of 1. In all cases the solid black line is the median, the hashed 
lines the 25th and 75th quantile, and the dotted lines the minimum and maximum. 
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Well-managed to overexploited 

Performance of the DLS framework deteriorates somewhat when an initially well-
managed stock becomes overexploited (Figure 3.1.2), particularly when comparing 
Category 1 with the other categories. This feature is likely due to the impact of the 
change-limit (implemented for all Categories apart from Category 1), which does not 
allow a greater than 20% change of Cy+1 relative to Cy-1, and is in effect a 10% year-to-
year change – this is somewhat restrictive, particularly when a greater change is 
needed under a declining stock scenario. When compared to Category 2, Category 3 
does seem to provide more conservative catch advice (although the lower end of the 
distribution does stray below 1, but not more so than for the well-managed scenario). 
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Figure 3.1.2. The well-managed to overexploited scenario (see Figure 3.1.1 for details). 
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Overexploited 

In an overexploited stock scenario (Figure 3.1.3), the performance of the DLS frame-
work is poor, particularly when comparing Category 1 to the other categories as be-
fore, with both the median and inter-quartile range (25-75%) falling below 1 in most 
cases for Category 1 relative to Category 2, and the median falling below 1 in most 
cases for Category 1 relative to Category 3 for the case where there is no trend in sur-
vey catchability (b). This is concerning as it implies that for an overexploited stock 
scenario, Categories 2 and 3 provide less conservative catch advice than Category 1 in 
most cases. 
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Figure 3.1.3. The overexploited scenario (see Figure 3.1.1 for details). 
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Over-exploited to well-managed 

This stock scenario provides similar results to the over-exploited scenario initially 
and the opposite of the well-managed to overexploited scenario later, with the 20% 
change limit restricting the amount by which the catch advice is able to increase for 
the lower categories compared to Category 1. 
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Figure 3.1.3. The overexploited to well-managed scenario (see Figure 3.1.1 for details). 

Conclusions 

These conclusions should be seen in the context of the assumptions that underlie the 
simulations; furthermore, the simulations are not comprehensive and only consider 
the DLS methods most commonly used by ICES WGs. Nevertheless, it is possible to 
draw some general conclusions as follows (note that performance of the DLS frame-

 



16  | ICES WGMG REPORT 2013 

work refers to its ability to deliver more conservative catch advice when less data are 
available, i.e. when one moves down the DLS categories): 

• Under a well-managed stock scenario, the DLS framework delivers, in 
most cases (but not all), more conservative catch advice when there are less 
data available (i.e. as one moves down the DLS categories) 

• The performance of the DLS framework deteriorates when a well-managed 
stock becomes overexploited, with a large part of this deterioration being 
caused by the 20% change limit imposed in the lower categories for catch 
advice in a particular year relative to some catch level two years earlier (ef-
fectively resulting in a constraint on changes in catch of 10% per year). 

• The performance of the DLS framework is poor when a stock is overex-
ploited. A particular concern is that in most cases under an overexploited 
stock, Categories 2 and 3 provide less conservative catch advice than Cate-
gory 1. 

It should be noted that the simulations presented do not include feedback (i.e. the 
catch advice does not affect the underlying population) because the intention was to 
make a direct comparison of catch advice that each DLS category would provide 
under a variety of identical stock situations.  

Summary of discussion 

Category 2 – trends-based assessment 

The approach recommended under Category 2 of the DLS approach differs from that 
of Category 1 only in that it uses a more precautionary reference point and includes a 
catch change limit. 

Regarding more precautionary reference points, F0.1 is recommended as a precaution-
ary proxy for FMSY in current ICES DLS guidelines (ICES, 2012). The group expressed 
some concern that it may not generally be the case (given that F0.1 is based on YPR) 
that this holds true. YPR analyses exclude a stock recruit relationship and therefore 
take no account of the potential for recruitment overfishing. F0.1 calculated in a pro-
duction model context is inherently more precautionary than FMSY. Caution should be 
exercised to ensure that the chosen proxy is indeed more precautionary. Regarding 
the catch change limit, it was noted that the recommended 20% change limit may be 
too restrictive. Since this change limit applies to the catch in the previous year (Cy-1) 
and is applied to the recommended catch for the next year (Cy+1), this implies a 20% 
change over two years. This effectively results in a change limit of 10% per year, and 
may result in HCRs which apply this limit not being able to react quickly enough in 
the case of a declining, overexploited stock. Approaches exist where application of a 
change limit may be overridden if resource abundance declines below some thresh-
old. This should be implemented on a sliding scale to prevent step changes in catch 
advice. 

The simulation results where survey catchability (q) increases over time showed that 
under scenarios of increasing exploitation or overexploitation, the Category 2 HCR 
still produced more conservative TACs compared to the Category 1 HCR than under 
an assumption of constant q. This result was somewhat surprising, but could be ex-
plained by the inclusion of the catch change limit in Category 2, preventing larger, ill-
informed increases in TAC as survey catchability changed. 
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Category 3 – Method 3.2 (age-aggregated index) 

The simulations of the Category 3 HCR focused on the ‘2 vs. 3’ rule most commonly 
applied to stocks in this category.  

To simplify the application of this rule, Cy-1 was taken as the average of the last three 
years’ catch (Cy-3 to Cy-1). In practice, if a trend in catch was observed, Cy-1 would be 
used on its own. In an overexploited scenario including feedback, this simplification 
could potentially result in higher TACs than would be advised in practice as the 
stock (and associated catches) could show a declining trend over time resulting in a 
lower Cy-1 value being used in the HCR than the average of the last three years. How-
ever, the results presented to the group did not include feedback so are unaffected by 
this issue. 

Another simplification required was when a precautionary buffer (additional 20% 
reduction in catch) was applied. There are various guidelines in the DLS approach to 
consider here regarding estimates of the sustainability of the current level of exploita-
tion of the stock. The simplest of these to apply in simulations, and most commonly 
applied in practice, is that a 50% increase in survey biomass (according to the 2 vs. 3 
ratio) is required to prevent the application of a precautionary buffer. It is not clear in 
the guidelines over what period this increase should be measured, and certain stocks 
applied different periods for the ratio (e.g. 3 vs. 5 years). 

It was noted that the 2 vs. 3 rule essentially examines the change in stock size (as in-
dicated by the survey) between 4 years ago (average from 5 to 3 years ago) and 1.5 
years ago (average of 1 and 2 years ago), a period of 2.5 years. This change over 2.5 
years is then applied to recommend a change in catch over 2 years without correcting 
for this difference in time periods. This problem increases if longer time periods are 
used. 

A general criticism of trend-based HCRs (such as the 2 vs. 3 rule) is that while they 
may arrest an increase in exploitation on the stock, they may be likely to maintain 
stocks near to their current condition (which may be suboptimal). It was argued that 
target-based strategies (in terms of FMSY proxies or index targets) could be preferable. 
While there is still uncertainty over exactly what the targets should be, they do at 
least allow for moving the stock in a more favourable direction than the current sta-
tus for overexploited stocks (see Sections 3.2 and 3.3).  

Under Category 3 the same limitations of using a 20% catch change limit apply. 
However, some of the concerns regarding the delayed response for a declining over-
exploited stock could be addressed by the application of a precautionary buffer (po-
tentially allowing a 36% change, or 18% per year). While this buffer is not intended to 
be applied on an annual basis, it would allow for a larger initial reduction in catch for 
overexploited stocks. 

General comments 

The results indicated that the DLS approach does not always provide increasing pre-
caution with increasing uncertainty. This is evident for scenarios of overexploitation 
or increasing exploitation (SSB declining). 

The DLS approach should ideally be more precautionary as one steps down the levels 
of data/method availability. Hence the simulation results were considered to support 
this idea of increasing level of precaution if the TACs resulting from lower categories 
were lower than those arising out of higher categories (i.e. TACcat1> TAC-
cat2>TACcat3). However, ‘precautionary’ could be considered as an ‘on-off’ concept 
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(i.e. beyond a certain point one is no longer being more precautionary, but perhaps 
more wasteful). This could be evaluated more efficiently in a feedback simulation. 

The approaches below Category 1 in the DLS framework could (if they pass certain 
tests) be considered ‘precautionary’ but care should be taken in the ICES introduction 
to advice when stating that they represent MSY-equivalent management. 

3.2 Age-aggregated approaches 

Method 

This proposal presents alternative harvest control rules (HCRs) in addition to those 
described in ICES (2012). The general HCR can take the form 

(.)11 α−+ = yy CC  3.2.1 

Different forms for (.)α  leads to alternative HCRs. The base model considered here 
(hereinafter referred to as HCR1) takes 
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Other HCRs were considered based on survey confidence interval and length-based 
reference points: 

• HCR2:  
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with Iµ  the index mean, Iσ  the index standard deviation, In  the length of the index 
time-series, and xz  the z-statistic from the standard normal distribution for which 
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mean length at first capture. 3.2.8 

The length-based reference points SQL  and MFL =  are used, respectively, as 

proxies of current fishing mortality, SQF , and the fishing mortality at MSY, 

MSYF  (ICES-WKLIFE-2, 2012). Thus, 
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From Beverton and Holt (1957) can be show that 
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and assuming 3/2MK =  equation 3.2.7 holds.  

 

Simulation 

The simulation study used information on life-history traits from the first WKLIFE 
meeting (ICES-WKLIFE, 2012) and was performed in FLR (code in Annex 5). To run 
the simulation the following 3-steps algorithm was applied: 

1. Use information about life-history traits of several fish stocks to build coherent 
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population dynamics under no-exploitation scenario. 
2. Simulate for each stock two exploitation history: 

(i) ”development” - 15 years with linear increasing fishing mortality from no 

fishing up to MSYF2 ; 

(ii) ”overexploitation” - 25 years of stable fishing mortality at a  after the 
development phase; 

3. Add observation error (only) in abundance indices modelled as independent 
lognormal errors in catchability, with a fixed coefficient of variation of 20%. 
Abundance indices were simulated with constant catchability over time and an 
asymptotically flat curve by age. 

The approach taken regarding the population dynamics aims to simulate stocks and 
exploitation histories that are consistent with population dynamics theory and loose-
ly based on the biology of the species, so that a large range of life histories traits and 
commercial exploitation patterns are considered. 

Parameters used for the simulations were those indicated at ICES-WKLIFE-2 (2012) 
and the following settings: 

• Stock–recruit relationship: Beverton–Holt with h=0.9 and virgin biomass of 
1000t; 

• Fleet with an asymptotically flat selection pattern, where the age of 50% re-
tention is the same as the age of 50% maturity; 

• Growth model: parameters of the von Bertalanffy growth model (or prox-
ies) from ICES-WKLIFE-2 (2012); 

• Natural mortality computed following Gislason et al. (2010). 

The confidence interval for the index used in HCR3 and HCR4, is updated every year 
considering the full time-series of the abundance index. 

Applications and results 

Irish Sea Plaice example 

One run was conducted applying the HCRs to Irish Sea Plaice (ple-iris). 

A set of outcomes are shown below for the two scenarios considered. Figures 3.2.1-
3.2.4 presents the development scenario (dev) and Figures 3.2.5-3.2.8 the overexploit-
ed scenario (hi). The variables presented are the multiplier of catch (idxRatio), re-
cruitment (rec), spawning-stock biomass (ssb), catch, catch advice (catch-adv) and 
fishing mortality (f). 
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Figure 3.2.1. Irish Sea plaice. HCR 1 under the development scenario for six variables. 

 

 

Figure 3.2.2. Irish Sea plaice. HCR 2 under the development scenario for six variables. 
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Figure 3.2.3. Irish Sea plaice. HCR 3 under the development scenario for six variables. 

 

 

Figure 3.2.4. Irish Sea plaice. HCR 4 under the development scenario for six variables. 
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Figure 3.2.5. Irish Sea plaice. HCR 1 under the overexploited scenario for six variables. 

 

 

Figure 3.2.6. Irish Sea plaice. HCR 2 under the overexploited scenario for six variables. 
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Figure 3.2.7. Irish Sea plaice. HCR 3 under the overexploited scenario for six variables. 

 

 

Figure 3.2.8. Irish Sea plaice. HCR 4 under the overexploited scenario for six variables. 

 

In terms of SSB recovery and catch stability, the results from the run performed for 
the Irish Sea Plaice are summarized in Table 3.2.1). 

Table 3.2.1. Irish Sea Plaice. Performance of the HCRs with respect to SSB recovery and 
catch stability. 

 

Development scenario Overexploitation scenario 

SSB recovery Catch stability SSB recovery Catch stability 
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HCR1 No No No No 

HCR2 Yes+ No Yes No 

HCR3 Yes Yes No No 

HCR4 Yes++ Yes+ Yes Yes 

 

The outcomes of this run show that the poorest performance regarding SSB and catch 
is obtained with HCR1: SSB does not recover from low/very low levels and the catch 
is not stable, for both scenarios. The best performing HCR in both scenarios is HCR4 
since SSB can recover from low levels and the catch is stable. 

Results for all WKLIFE stocks 

The approach applied to Irish Sea Plaice was also applied to all the WKLIFE stocks. 
In some cases, due to inconsistent life-history parameters, the scenario was excluded. 
Figures 3.2.9-3.2.12 summarizes the outcome of one simulation per stock for the main 
indicators: Catch multiplier (previously, idxRatio), SSB (previously, ssb), Catch (pre-
viously, catch) and F (previously, f). 

In terms of SSB recovery (Figure 3.2.10), the results indicate that HCR1 (currently 
applied for advice) is not able to recover SSB, keeping the biomass at the levels of the 
recent period. HCR3 is able to recover SSB in the case of the development scenario; 
however, if the biomass is stable at low levels, this HCR does not recover SSB with 
the present parameterization (IC of 99% in equation 3.2.4 and symmetric catch multi-
pliers of 15% in equation 3.2.5). HCR2 and HCR4 showed the best performance in 
terms of recovering SSB due to the additional term with length-based reference 
points.  

 

 

Figure 3.2.9. WKLIFE stocks. Performance in terms of Catch multiplier for the four HCRs (ordered 
in rows from HCR4 at the top to HCR1 at the bottom) under the development (left) and overex-
ploited (right) scenarios. 
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Figure 3.2.10. WKLIFE stocks. Performance in terms of SSB for the four HCRs (ordered in rows 
from HCR4 at the top to HCR1 at the bottom) under the development (left) and overexploited 
(right) scenarios. 

 

 

Figure 3.2.11. WKLIFE stocks. Performance in terms of Catch for the four HCRs (ordered in rows 
from HCR4 at the top to HCR1 at the bottom) under the development (left) and overexploited 
(right) scenarios. 
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Figure 3.2.12. WKLIFE stocks. Performance in terms of F for the four HCRs (ordered in rows from 
HCR4 at the top to HCR1 at the bottom) under the development (left) and overexploited (right) 
scenarios. 

Summary of discussion 

The primary conclusion of these analyses was that in simple index-based HCRs, ac-
counting for average length in the catch could result in better performance in terms of 
stock recovery and catch stability. Another conclusion is that the HCR focused on the 
‘2vs.3’ rule (referred to as HCR 1 in the simulations) keeps the stock at the current 
biomass which is a concern particularly for overexploited stocks. 

The only source of stochasticity in the simulations was measurement error in the 
index. Given that this method applies some length-based components in the HCRs 
applied, it may be necessary to include error in length observations before firm rec-
ommendations could be made on the value of including such components in HCRs. 

Another aspect that deserves consideration when using mean length in the catch as 
an indicator of current fishing mortality is that under different circumstances, low 
mean length could reflect either a healthy (good recruitment) or a threatened (few 
older fish) stock. Hence analyses on the performance of HCRs including length-based 
reference points should consider variability and patterns in recruitment. 

For HCR3 and HCR4 where δ is used (equations 3.2.4-5), some thought is needed 
when calculating the index mean and its confidence interval, and selecting a suitable 
starting point for the period used for these calculations that captures the recent level 
and variability of the index. It was recommended that, when used as part of a HCR, 
the time period over which the index mean and its confidence interval are calculated 
remains constant (i.e. the window considered should remain of the same length but 
be moved forward in time). The current simulations considered the whole index pe-
riod (i.e. extending it as new data became available) and thus the 99% confidence 
limits would result in a change only when the survey index moved almost complete-
ly out of the range of observed values, perhaps resulting in an overly inert rule. 
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3.3 Other approaches 

3.3.1 Generic HCRs for data-poor fisheries 

The majority of fish stocks worldwide are not managed quantitatively as there are not 
sufficient data, such as a direct index of abundance, on which to base a resource as-
sessment. Often these stocks are relatively “low-value”, which renders dedicated 
scientific management too costly, and a generic approach is therefore desirable. The 
aim of work presented (Geromont and Butterworth, in press) was to design and test 
some very simple “off-the-shelf” management procedures (MPs) that could be ap-
plied to groups of data-poor stocks which share similar key characteristics in terms of 
demographic parameters. For this initial investigation, a selection of empirical MPs 
was simulation tested over a wide range of Bayes-like operating models (OMs) repre-
senting the underlying dynamics of resources classified as severely depleted, in order 
to ascertain how well these different MPs perform. While the moderately data-poor 
MPs (based on an index of abundance such as a survey or reliable cpue) performed 
somewhat better than the very data-poor ones (based on mean length of catch data) 
as would be expected, the very data-poor MPs nevertheless performed surprisingly 
well across the wide range of uncertainty considered for key parameters. These sim-
ple MPs could well provide the basis to develop candidate MPs to manage the data-
poor stocks, ensuring if not optimal, at least relatively stable sustainable future catch-
es. 

The Working Group considered this initial work to be a valuable exercise with poten-
tial for use once taken further and finalized. ICES does not have the resources to 
evaluate HCRs on a stock by stock basis. Having a set of generic HCRs that have been 
tested for robustness according to the likely dynamics of the stock in question would 
be preferable to non-specific and untested HCRs. 

Robustness testing against further uncertainties would be important for the next 
stage of these evaluations. An important factor to consider would be alternative 
models (to the log-normal) for recruitment variability. In particular, herring-like re-
cruitment with occasional strong year-classes among others which are generally 
weak, would lead to changing bias over time in mean length of the catch as an index 
of abundance. Robustness tests should also consider the factors in the analyses re-
ported in Section 3.1. 

3.3.2 Rules using Fproxy values and targets 

Fproxy rules (in this context, Fproxy is used to mean a value proportional to F, or more 
generally an index of F) have the potential to reduce the delay between data availabil-
ity and advice (albeit requiring some assumptions in certain cases). Such delays (or 
lags) can cause unnecessary variability in advice. 

Fproxy rules with associated Fproxy targets are similar to specified F based on the results 
of analytical assessment, albeit with more uncertainty in location of the correspond-
ing target relative to MSY. The standard ICES slope rule (e.g. method 3.2 of ICES DLS 
Category 3; ICES, 2012) can be viewed in the context of an Fproxy approach, albeit with 
a moving Fproxy target. The following demonstrates this. 
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If we replace 1−yC  by 11, −− yyproxy UF  we get: 
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This fits with the equation 3.3.2.1 if we model the following: 
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as a predictor for 1+yU  and assume that 1, −yproxyF  is a candidate for targetproxy,F , i.e. a 

moving targetproxy,F . In practice the Fproxy rule would be augmented by a trigger point 

triggerU  so the final rule would be: 
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One of the main problems with the Fproxy rule (and all rules based on surveys) is the 
prediction of 1+yU . In many cases yU  is available, and if 1+yU  becomes available 

relatively early in the advisory year then management might include updating advice 
when 1+yU  becomes available. Smoothing of the advice is another factor that needs to 

be included; 20% (10%) change limit is one approach but smoothing of indices before 
computing the TAC provides an alternative. 

It is recommended that further work be conducted to examine some Fproxy-based rules 
as potential candidates for target-based rules in the ICES DLS framework. Work to be 
presented at WKLIFE 3 in November 2013 indicates that the Category 3 rule has some 
major problems compared to the Fproxy rule, related to the lack of a target, the con-
straint between 1+yC and 1−yC  and the use of a recent trend in prediction. 
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3.3.3 Preparation of survey indices for use in HCRs 

Typical indices used for assessments are based on a weighted average of abundance 
at each station, where the weighting factor for each station is a measure of the density 
of stations in the stratum where the station is located. Associated with the estimate of 
survey index is an estimate of the standard error, which essentially is a measure of 
patchiness or the part of the uncertainty that can be reduced by increasing the num-
ber of stations by some factor. 

Noisy survey indices are often accompanied by high estimated standard error, or 
more specifically, abnormally high values compared to adjacent years do usually 
have much higher variance. 

Some methods are not sensitive to occasional outliers; for example a Fproxy rule with 
x% maximum interannual catch change. All estimations of trend are sensitive to 
noise, so rules that dampen out the high values might be useful; an example would 
be weighted (or unweighted) average of b

stationC  where the power b might could lie in 
the range 0.5-0.75. This kind of index will in all cases have lower variability than a 
direct mean but, if it is biased, it needs to be tested based on examples where an ana-
lytical assessment is available. Examples of this kind of index for four Icelandic spe-
cies is shown in Figure 3.3.3.1, demonstrating that the index calculated as an average 
of the square root of biomass at each station performs best for saithe, for which the 
data are really noisy. 

An alternative to dealing with high values would be to smooth indices by, for exam-
ple, a LOESS smoother or smoothing spline, weighting each observation by the in-
verse of the estimated variance or inverse of CV squared. Options to take account of 
very low values of CV might have to be included. 

Results for Icelandic lemon sole showed that this kind of smoothing increased stabil-
ity in TACs. The smoothed index seemed to follow the data well, but to evaluate per-
formance of the index, retrospective analyses are required (Figure 3.3.3.2). 

Questions were raised about how to take the relationship between level of index and 
associated variance into account when simulation testing this method. These ques-
tions will also apply to cases where indices are used directly, as it is a common fea-
ture of survey indices compiled as a weighted mean over stations that a sudden 
increase in the index is often associated with a few large hauls, reflected by an associ-
ated higher estimated CV; in contrast, a low survey index might occur in years with 
no large haul (low CV), although the “typical” haul could be similar.  

The usefulness of an index for providing advice may increase if sizes/ages that are a 
little below the age at first capture in the fishery are included in the index, since these 
fish will be of marketable size in the advice year. 
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Figure 3.3.3.1. Comparison of survey indices calculated as the average of biomass at each station 
to a given power (1, 0.75 and 0.5) with biomass estimates from assessment of four Icelandic spe-
cies. 

 

Figure 3.3.3.2. Lemon sole in Icelandic waters. Retrospective patterns of a smoothing spline. The 
points show the index each year, and the coloured lines a smoothing spline fitted to the data 
points until the year where each line ends. Degrees of freedom in the smoothing spline is the 
number of data points divided by 3. 
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4 ToR 3 – World Conference on Stock Assessment Methods 

4.1 Summary of the WCSAM workshop 

Fisheries Datasets from Around the World 

Before the workshop, the Icelandic modelling teams (and presumably others) had 
mixed success analysing the datasets that had been selected for the exercise. Datasets 
were in many cases too complex for simple age-based models. Problems included 
unclear landings data for North Sea cod and M varying between ages and years. In 
other cases, data were found to be overly aggregated for length-based models. Some 
modelling teams gave up after attempting to work on several datasets, without find-
ing out that Georges Bank yellowtail flounder was the most practical dataset for sim-
ple age-based models. 

At the workshop, it became clear that the modelling efforts were spread across many 
datasets, but a fairly broad model comparison was available with the Georges Bank 
yellowtail flounder, although the comparison did not include SAM, for example 
(Deroba et al., in press). 

Simulation Analysis 

Data were simulated with multinomial observation noise, using the Popsim software. 
The basis for the simulated data was not the original data, but fitted assessment mod-
els. When the operating model is the same as the estimation model it is called “self 
test”, but using different operating and estimation models is called a “cross test”. 
From a statistical viewpoint, a self test is one variation of a parametric model-
conditioned bootstrap which can, among other things, detect estimator bias. 

Conclusions 

On the whole, it was difficult to draw general conclusions from the collaborative 
effort. For example the meeting did not quantitatively rank the models in terms of 
estimation performance. 

Analysis of the original datasets indicated a large degree of model uncertainty, per-
haps more than expected. 

In the simulation analysis (see Section 4.2), the estimation models performed best 
when the operating model was the same (or closely related) model, as expected. 
Across the comparison cases, SAM tended to perform better than SCA. 

When models gave very different results, it was often a matter of scale, while the 
models might agree about the relative changes in stock size. The opposite could be 
seen in some cases; however, where models were comparable in scale but disagreed 
on the relative changes. 

Other Discussion Points 

Existing models, description and availability 

The meeting did not focus on providing a technical overview of assessment models 
used around the world. The NOAA Toolbox was often mentioned, but no direct ef-
fort was made towards an analogous ICES Toolbox. 
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Predicting next year’s survey 

One point made during (and before) the meeting was that perhaps a practical way to 
evaluate the estimation performance of different models was to predict next year’s 
survey results (the survey following the last survey year in the data). The simplest 
approach would be to work with the original datasets and perform retrospective 
analysis, focusing on predicting next year’s survey. 

The advantages of this approach include (1) performance evaluation does not depend 
on a specific operating model, and (2) unrelated models can be evaluated on a com-
mon ground. For example, it is unclear whether biomass models relate to spawning 
biomass, vulnerable biomass or something else, but the survey numbers are a com-
mon basis for all models. 

Compare TAC advice, not B or F 

Another point raised is that what matters in the end is the advice. It is possible that 
models can give different estimation results, but still lead to similar advice, e.g. in the 
form of the recommended TAC. This adds a layer of complexity, but may be consid-
ered in a future collaborative exercise. This might also add a layer of subjectivity, 
where the advice might not only depend on the statistical results, but on personal 
preference regarding precaution. 

In some cases, the advised TAC and the most recent survey are the same thing. For 
example, the advice for Icelandic lumpfish is a function of the most recent survey 
(and the previous year’s survey). Management procedures often base the TAC advice 
on the most recent survey in a similar way. 

One model or many? 

In the discussion, it was mentioned that it might be beneficial to adopt one general-
ized model for most assessments. By changing one or a few settings, one can conduct 
a scientific comparison to quantify the effect of specific assumptions, etc. The Stock 
Synthesis development team is working towards this goal, currently striving for 
greater variety of options as well as code modularization. 

The other viewpoint was also mentioned, that it can be beneficial to have a wide vari-
ety of unrelated models to evaluate model uncertainty in the broadest terms. Apply-
ing unrelated models that are inherently different, in terms of statistical approaches, 
number of areas, number of species, or overall structure, one may find a wider range 
of possible scenarios than within one generalized model. 

Both viewpoints are probably correct: the one’s goal is to understand the effect of 
different assumptions, whereas the other’s is to explore model uncertainty in the 
broadest terms. 

Missing textbook 

It was noted that fisheries biology textbooks do not cover recent methods used in 
stock assessment today: HCR evaluation, uncertainty methods, state-space, age- or 
length-based multispecies models, or area-specific models. A new textbook with 
basic examples would be beneficial. 

4.2 What next for the WCSAM simulation-testing exercise? 

The Working Group discussed the outcomes from the methods simulation testing 
exercise conducted in conjunction with the World Conference on Stock Assessment 
Methods (WCSAM; ICES, 2013). The Working Group agreed that this had been a 
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valuable exercise. It had been substantial and wide-ranging, with considerable effort 
contributed by Jon Deroba from the NEFSC in Woods Hole who had standardized 
and collated the datasets for the selected stocks. A number of studies were conducted 
using these datasets, with results recorded in Deroba et al. (in press). Furthermore 
some additional studies are planned using these and other datasets to investigate the 
advantages and disadvantages of assessments using aggregated vs. disaggregated 
data e.g. combining fleets, combining length distribution and age–length keys into 
age distributions.  

The Working Group focused in particular on the results reported at WCSAM for 
North Sea Cod and North Sea herring in terms of the Scheme developed at the 
Group’s previous meeting in Lisbon in 2012 [ICES-WGMG, 2012 – this report pro-
vides full details of this Scheme]. It is important to recall the underlying objectives of 
this particular exercise, which are to enhance understanding of the different assess-
ment methods, and in particular to examine the robustness of different methods 
when estimating the underlying stock dynamics even when these were not in accord 
with the assumptions made by the assessment method applied. This is with a view 
ultimately to be able to advise which method is the best to apply (at least in certain 
circumstances). Towards this end the stocks selected for consideration and their asso-
ciated assessment-related information were relatively straightforward, and the three 
assessment methods (Extended Survivors Analysis [XSA; Shepherd, 1999], State-
space Assessment Model [SAM; Nielsen and Berg, submitted; ICES-WGMG, 2008, 
2009, 2011] and Statistical Catch-at-age [SCA; see e.g. Rademeyer et al., 2008; Butter-
worth and Rademeyer, 2008] ) were chosen to contrast the most important differences 
among the general category of assessment methods making use of catch-at-age in-
formation. Thus, for example, XSA treats catch-at-age information as exactly correct, 
whereas in contrast SCA is able to allow for error in this information by instead as-
suming some continuity in the pattern of age-specific selectivities that applies over 
time. 
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Figure 4.2.1. SSB for North Sea Cod. Rows indicate the “truth” (red line) as provided by the given 
model fit to the original data (top: XSA, middle: SAM, bottom: SCA) and from which 100 sets of 
pseudo-data are generated (with observation error only); columns indicate estimates (black lines) 
of each given model applied to the 100 sets of pseudo-data (left: XSA, middle: SAM, right: SCA). 
Plots in the diagonal reflect how well each model estimates itself (self-test), while those in off-
diagonals reflect how well each model estimates other models (cross-test). 
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Figure 4.2.2. SSB for North Sea Herring. Details in the caption for Figure 4.2.1. 

The Working Group stressed that the results of the exercise as reported at WCSAM 
should not be seen as complete, and accordingly advises that it would be premature 
to make final recommendations for stock assessment processes based on these results 
to ICES at this stage. For example, the poor results for the self-test of SCA for North 
Sea herring (see the bottom right panel of Figure 4.2.2) might suggest such simulation 
self-tests should become standard practice for methods used by ICES, and applied 
routinely during, say, benchmark assessments. However thus far this problem had 
arisen in only one application and the reasons for the occurrence first needed to be 
better understood. Similarly though the comparisons in Figures 4.2.1 and 4.2.2 pro-
vided a potential case to select among the different assessment methods considered 
on the basis of robustness of estimation, the Working Group agreed that the existing 
calculations needed to be pursued further before that might be appropriate. 

The Working Group considered that the first priority was to take the existing compu-
tations for North Sea cod and herring to conclusion, and developed the following 
ordered set of work for the following 12 month period. 

I) Investigate further, and if necessary adjust for, the following aspects of the 
existing comparisons and their results 

• For North Sea cod, why in the SCA applications to the SAM-generated 
pseudo-datasets, and especially the XSA applications to the SCA-
generated pseudo-datasets was there such variability in the resultant SSB 
trajectories. 
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• For North Sea herring, what were the reasons for the biases evident in SSB 
estimates for SCA applied to all three sets of pseudo-datasets, including 
those from the SCA assessment model fit itself (i.e. the self-test). 

• Why estimates for the SAM assessment method are considerably more sta-
ble than those from the XSA and SCA approaches. 

• For North Sea cod, a comparability difference arises because of the catch 
multipliers estimated for some years (ICES-WGNSSK, 2013), which is not 
possible using the XSA software. These multipliers should be set at the 
values currently estimated by SAM, and the different assessments then 
proceed on the comparable basis that these revised catches were fixed with 
known input values. 

• A number of approaches for understanding and perhaps resolving the self-
test bias in SCA for North Sea herring should be pursued. In this context it 
is important to note that completion of results in time for presentation at 
WCSAM had been a rushed process, so that lesser levels of skill had been 
able to be applied in refining the XSA and SCA assessments for these two 
stocks compared to SAM which is the approach in current use for them. 
Accordingly some further refinement of these other approaches is desira-
ble to ensure that the comparative testing of all the approaches is taking 
place on a level playing field. For example, it appears that for North Sea 
herring the SCA model does not fit the original dataset in the same way as 
XSA and SAM, judging from the red “true” baseline shown in the simula-
tion plots (Figure 4.2.2). This potential lack of fit may reverberate into 
strange SCA simulated datasets that all estimation models find problemat-
ic. It is therefore worth examining whether the SCA fit can be improved 
without really changing the model, by setting different initial parameter 
values. 
i) Taking account of clear autocorrelation in the residuals of the fit to the 

IBTS0 0-ringer index in both the SCA model fit and generation of pseudo-
data from this fit. (Note that this autocorrelation could also have 
implications for the way the other assessments models are fit.) 

ii) Perhaps omitting the IBTS0 series from the fits by all the assessment 
models if it becomes evident that the problems arising are a reflection of 
data conflicts between this series and other data. 

iii) Noting the clear pattern in proportions-at-age residuals in the SCA 
model fit, first examine the (implicit) selectivity patterns for the XSA and 
SAM models, and then move towards creating further selectivity blocks 
for the SCA assessment to diminish this patterning. 

II) Simulations including process error (Section 3.3 and Annex 6 of ICES-WGMG, 
2012) 

• At present these simulations have been conducted only for the SAM meth-
od applied to North Sea cod and herring. These should be extended to the 
SCA method for both stocks (this is not possible for XSA given its struc-
ture). 

III) Further simulations of this type 
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• The reason to consider extension to further stocks is to be able to strength-
en the case for the generic nature of certain results. 

• Extension of the approach to include North Sea haddock should be consid-
ered. This stock had been included in provisional results reported to the 
previous Working Group meeting in Lisbon (ICES-WGMG, 2012), but with 
an unrefined B-ADAPT approach applied together with SAM and XSA. 
The B-ADAPT approach should be replaced by the SCA version currently 
applied to the North Sea cod and herring. 

• Extension to include other catch-at-age methods should be considered: 
i) ASAP (hopefully with the assistance of Jon Deroba, though it was 

considered that for consistency with the other approaches, it was 
important that the pseudo-data should be generated from the best fit of 
this model and using the same error distribution functions). 

ii) Different selectivity blocking of the SCA. An extreme approach of no 
blocking was NOT supported, as this would NOT reflect model-
misspecification in fits to the proportions-at-age data. Instead two 
options should be considered, one “under-splitting” and the other “over-
splitting” while still both reasonably reflecting the data, to give some 
sense of the implications of the bias-variance trade-off involved in this 
part of the selection process. 

IV) Output statistics 

• For the initial reports, the only output statistics considered had been esti-
mates of trajectories of SSB, recruitment and F. However, the most im-
portant recommendations that follow from assessments are for catch 
limits. It is therefore important to use these simulations to check how well 
the various methods estimate such catches. Accordingly, the importance of 
also reporting on an output catch measure related to sound harvest strate-
gy was emphasized (for example, if a method that produces positively bi-
ased estimates of abundance and negatively biased estimates of fishing 
mortality, this may not be that great a concern if the two biases near cancel 
when developing catch advice). 

• The measure recommended was the F40%SPR catch limit for the forthcoming 
year, calculated based on the average of the estimated recruitments for the 
last 10 years, as this would be relatively easy to calculate (see Annex 6, Sec-
tion A6.1). To enhance this ease without compromising the intent of the 
exercise, data would be assumed to be available in time to allow catch ad-
vice to be given for the “following” year, i.e. without the need to make as-
sumptions for an intervening year between that for the most recent data 
considered and the year for which catch limit advice is being provided. 

• Subsidiary measures suggested (see Annex 6, Section A6.2) were: 
i) The ten year Replacement Yield. 
ii) A prediction of a survey result for the next year. 

V) Reporting schedule and the longer term 

• It would be desirable to report back during the next ICES ASC to ensure a 
wider audience 
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• With a hopefully complete analysis of perhaps three stocks using three-to-
five approaches at that stage, that would be the time to seek to encourage 
still wider application to both more stocks and using further methods, if 
the outcomes from the next year’s work were considered sufficiently valu-
able. 

• SCICOM Chair Manuel Barange had suggested use of one of the Monday 
morning business slots for such discussions. The Working Group endorsed 
this idea, considering that this together with presentation of papers in 
some hopefully appropriate theme sessions would be an effective way of 
moving the SISAM process forward. 

• More detailed discussion should take place during the 2014 WGMG meet-
ing 

• More broadly, and to enhance promoting exchanges on a wider world 
scale, a four-yearly stock assessment review meeting should be organized 
to precede or follow each four-yearly World Fisheries Congress. 
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5 ToR 4 – Estimating reference points 

Estimation of MSY reference points has been discussed by previous ICES groups, for 
example, most recently by the WKFRAME series of meetings (ICES-WKFRAME, 
2010; ICES-WKFRAME-2, 2011; ICES-WKFRAME-3, 2012); furthermore, ICES-
WKMSYREF held in January 2013 (ICES-WKMSYREF, 2013) focused on practical 
tools for implementation, and this work was continued during this WGMG meeting, 
and will be carried forward in the follow-up WKMSYREF 2 meeting in January 2014. 

It should be noted that many methods calculate MSY and related quantities deter-
ministically. MSY estimates are not unique because they depend, for example, on 
selectivity. In practical implementation, stochasticity needs to be taken into account, 
and the associated results will differ from deterministic ones and depend on the 
HCRs applied because of stochasticity. For instance, the trigger biomass level below 
which F is reduced in an otherwise constant F approach to calculating MSY can have 
an appreciable effect on the results. 

5.1 Existing methods and possible improvements 

Four methods for estimating MSY reference points were presented.  

Method 1 – PlotMSY (J.A.A. De Oliveira and T.J. Earl) 
Method 2 – EqSim (E.J. Simmonds and C.P. Millar) 
Method 3 – StochSim (H. Björnsson) 
Method 4 – NSR (N.G. Cadigan) 

PlotMSY (Method 1: equilibrium approach with variance) is intended to provide ro-
bust estimation of deterministic (i.e. no future process error) MSY estimates that 
could be applied easily and widely. It fits three stock–recruit functions, namely the 
Ricker, Beverton–Holt, and a smooth Hockey-stick (Mesnil and Rochet, 2010), to es-
timate MSY quantities. Uncertainty in MSY estimates is characterized by MCMC 
sampling of the joint pdf of the stock–recruit parameters and sampling from the dis-
tributions of other productivity parameters (i.e. natural mortality, weights-at-age, 
maturities, and selectivity). Stock–recruit model error is taken into account by model 
averaging of the three functions. Annex 7 provides a more detailed description of the 
method, including examples and guidelines for use. 

EqSim (Method 2: stochastic equilibrium reference point software) provides MSY 
reference points based on the equilibrium distribution of stochastic projections. 
Productivity parameters (i.e. year vectors for natural mortality, weights-at-age, ma-
turities, and selectivity) are resampled at random from the last 3-5 years of the as-
sessment (although there may be no variability in these values). Recruitments are 
resampled from their predictive distribution. Uncertainty in the stock–recruitment 
model is taken into account by applying model averaging using smooth AIC weights 
(Buckland et al. 1997). The method is described in more detail in Annex 8. 

StochSim (Method 3: stochastic simulations) has been used to estimate reference 
points for a number of Icelandic stocks, where uncertainty is included in parameters, 
recruitment, weights at age and the assessment (Björnsson 2013, Hjörleifsson and 
Björnsson 2013). A Hockey-stick stock–recruit relationship has most commonly been 
used. The standard deviation and autocorrelation of stochastic noise in recruitment 
are estimated from available data, and sensitivity to different values investigated. 
Predictions are carried out under a specified HCR where the TAC is a proportion of 
the reference biomass, but specified fishing mortality could also be used. Simulations 
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are conducted with and without a trigger point, but the HCR selected always in-
cludes a trigger point. Harvest rate MSY (HMSY) is defined as the harvest ratio giving 
maximum mean yield when not including a trigger point, and Hpa is the harvest rate 
giving 5% probability of the spawning stock being above Blim (see Figure A9.1, Annex 
9). Contrary to many of the methods described in this report, characteristics of the 
residuals from the stock–recruitment function are a more important consideration 
than the exact form of the function. For both Icelandic saithe and haddock, HMSY is 
higher than Hpa, a feature expected to be seen in stocks where variability and autocor-
relation of recruitment is high. HMSY from stochastic simulations can be used as the 
advisory HMSY if appropriate uncertainty is included and HMSY > Hpa. If HMSY < Hpa, Hpa 
could be treated as an upper bound for the target harvest ratio. 

NSR (Method 4: nonparametric stock–recruit functions) provides deterministic MSY 
estimates based on a nonparametric stock–recruit model smoother. Bootstrap meth-
ods are used to characterize uncertainty in the stock–recruit model. Uncertainties in 
the values of biological parameters are not taken into account. Annex 10 describes the 
approach in more detail. 

Discussion 

Discussions on the four methods pointed out the need to account for covariance 
among biological variables (mean weights, maturity, etc.). PlotMSY and NSR ignore 
this effect but EqSim uses re-sampling of year vectors to account for this (although 
temporal autocorrelation is not considered). StochSim accounts for variability and 
autocorrelation in weights at age; implementations of StochSim are species-specific. 
M and maturities are treated as constant over time. 

Estimation of MSY reference points often requires extrapolating recruitment outside 
the range of stock–recruit observations. This is especially a problem when there is no 
evidence of departures from a linear relation through the origin in the stock–recruit 
data. Solutions to this problem will usually be quite subjective. In addition, Beverton–
Holt fits are problematic when there is a decline in recruitment with increasing SSB, 
because these can result in a very high steepness estimate implying little possibility of 
recruitment overfishing when in fact the relationship is more likely to be Ricker-like. 

The Hockey-stick model leads to a sudden and unrealistic drop-off in the yield vs. F 
curves (this happens when F>Fcrash). However, in stochastic simulations this behav-
iour usually does not occur because when the spawning stock approaches the SSB-
break, more and more stochastic replicates end below the SSB-break, gradually (and 
not abruptly) leading to impaired recruitment. 

Another approach to account for stock–recruit model uncertainty is to include a third 

parameter as aliasing different stock–recruit shapes, for example , 
instead of applying model averaging techniques to existing models (e.g. Ricker, 

Beverton–Holt, Hockey-stick). The range of  needs to be constrained (i.e.  > 0) so 
that the recruitment rate (R/S) declines monotonically as S increases. 

One should plot residuals to check for bias and the behaviour of variance, and there-
by whether distributional assumptions (e.g. lognormality) are appropriate (i.e. plot 
against time and against SSB). If not, alternative estimation approaches should be 
pursued. 

When fitting stock–recruit models, there is sometimes insufficient information to 
estimate maximum recruitment, with the result that stock–recruit models sometimes 
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produce unrealistic large recruitments that are well beyond the range of observed 
data. This is particularly problematic for the Beverton–Holt model, but sometimes 
also for the Ricker model and the nonparametric smoother. Introducing a limit on 
this maximum is one way of stabilizing estimation. Appropriate approaches will be 
case specific, and there are different ways to achieve this. One possibility is to define 
a prior for the expected maximum recruitment. Another is to use the Hockey-stick 
model, which effectively serves as a surrogate for a prior on maximum recruitment. 

The sensitivity of MSY estimates should be checked to explore the reliability of the 
estimates. In cases where estimates are highly sensitive to assumptions that are un-
certain, then management approaches should not be based on MSY reference points 
estimated from stock–recruit curves. 

In PlotMSY, the influence of implicit priors on MCMC-based estimates should be 
checked. This could be done by downweighting data to check to what extent prior 
information is updated. Annex 11 investigates this issue by using alternative parame-
terization of the implicit priors for the smooth Hockey-stick model in plotMSY, as 
applied to North Sea cod data; the influence of implicit priors appears to be negligible 
for this example. 

The model averaging procedure used in plotMSY (i.e. trimmed harmonic mean 
weighting) has been criticized in the literature for being a poor estimator (see e.g. 
Raftery et al., 2007). There is a need to consider alternatives such as smoothed AIC. 

In EqSim and StochSim one can use a constant F harvest rule (traditionally used to 
define MSY) or some other type of harvest rule (e.g. ICES MSY rule). This can have an 
effect on MSY values in stochastic projections. For example, it is possible that maxi-
mum equilibrium yield may be higher with a ramp-type harvest control rule (e.g. 
Lande et al., 1997). Hence, there is a need to clarify whether MSY estimation has been 
carried out assuming constant F or a different HCR. 

5.2 Comparison of three methods 

Three of the four methods presented in Section 5.1 (Methods 1, 2 and 4) were used 
during the meeting in a comparative exercise by applying each method to two exam-
ple datasets. North Sea cod stock–recruit and biological data were taken from the 
2013 assessment (ICES-WGNSSK, 2013). The stock recruit data (1963-present) are 
shown in Figure 5.2.1 (left), the main features are a strong increasing trend in re-
cruitment vs. SSB, but limited evidence of a plateau in recruits at large SSB. North Sea 
Herring was taken from an example assessment at www.stockassessment.org, using 
data from 1989-2010 (note: ICES HAWG estimates recruitment and SSB from 1947 
onwards; ICES-HAWG, 2013). The stock recruit relationship shown in Figure 5.2.1 
(right) indicates a scattering of points with no clear relationship between stock and 
recruitment. 
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Figure 5.2.1. Fits of the smooth Hockey-stick model from Method 1 to North Sea cod (left) and 
North Sea herring (right). 

The three methods described in Section 5.1 (and Annexes 7, 8 and 10) were applied to 
both stocks using settings described in Table 5.2.1. The outputs are shown in Fig-
ures 5.2.2 and 5.2.3, where the row names correspond to the settings used, and each 
method shows a median estimate as a character, and 95% range as a line (see figure 
captions for more details).  

Table 5.2.1. Details of the stock recruit fits applied to the example datasets. 

NAME MODEL DESCRIPTION OF STOCK–RECRUIT RELATIONSHIP 
M1 BH PlotMSY Beverton–Holt 
M1 HS PlotMSY Hockey-stick 
M1 RI PlotMSY Ricker 
M1 WA PlotMSY Weighted average of other M1 methods 
M2 1B EqSim Beverton–Holt –recruitment process error 
M2 2B EqSim Beverton–Holt – no recruitment process error 
M2 1S EqSim Hockey-stick – recruitment process error 
M2 2S EqSim Hockey-stick – no recruitment process error  
M2 1R EqSim Ricker – recruitment process error 
M2 2R EqSim Ricker – no recruitment process error 
M2 1all EqSim Combined methods with smooth AIC weights – recruitment 

process error 
M2 2all EqSim Combined methods with smooth AIC weights – no 

recruitment process error 
M4 NSR NSR NSR and simple regression bootstrapping.  
M4 TS Boot NSR NSr and regression bootstrapping with autocorrelated errors. 
M4 HS NSR Hockey-stick 
M4 BH NSR Beverton–Holt 
M4 RK NSR Ricker 

 

Output for NS cod (Figure 5.2.2) shows that broadly the three methods provide simi-
lar medians/point estimates of FMSY within each SR form, but there are large differ-
ences between SR forms. Method 1 indicates a wide uncertainty about MSY and BMSY 
compared to Method 4; this may be attributed to Method 4 having more restrictive 
limits on the maximum recruitment, which is poorly estimated by Method 1. The 
nonparametric method indicates very wide uncertainty in FMSY compared to the boot-
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strapped parametric models. In Method 2, allowing for uncertainty in recruitment 
about the expected values in each simulation increases the FMSY estimate, but makes 
only a small difference to the yield estimate. 

Output for NS Herring (Figure 5.2.3) shows a very wide ranges of FMSY for Method 1, 
and only slightly smaller ranges for Method 4. These models are consistent in their 
ordering of the FMSY estimate between SR forms, but not scale. Method 2 shows a 
different pattern, although the low FMSY estimated for the Hockey-stick may reflect a 
numerical optimization issue. An assessment covering a longer period is available 
(ICES-HAWG, 2013) and would be more informative about which SR forms are con-
sistent with the data. In contrast to the cod data, estimates of BMSY are relatively con-
sistent between models with the exceptions of model M2 1S and M2 2S. This reflects 
that the maximum recruitment is well estimated, even if the form of the SR relation is 
not. 

In neither stock is FMSY consistently estimated across models and SR forms. Neverthe-
less, it is possible that these data could inform reference point choice if further infor-
mation in the form of expert judgement or data from earlier periods was taken into 
account, or a SR form that is precautionary for the particular stock was chosen. If this 
is not possible, then alternatives to management based upon direct estimates of FMSY 
should be considered. 

 

 

Figure 5.2.2. North Sea cod. Comparison of Methods 1, 2 and 4, with row names corresponding to 
setting described in Table 5.2.1. Each method shows a median estimate as a character, and 95% 
range as a line (note: although possible to do so, the 95% range was not calculated for Method 2). 
The character indicates who ran the model (Timothy Earl, Colin Millar, Noel Cadigan), and the 
colours indicate the stock recruit form fitted (Beverton–Holt=black; Hockey-stick=red; Rick-
er=green; other=blue). 
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Figure 5.2.3. North Sea cod. Comparison of Methods 1, 2 and 4, with row names corresponding to 
setting described in Table 5.2.1. Details are provided in Figure 5.2.2. Arrows indicate the median 
or upper confidence intervals are beyond the range shown. 

5.3 Wider issues 

Reliable estimation of MSY reference points requires reliable estimation of stock–
recruit functions. Questions that need to be addressed are: 

• Has the production and survival rates of recruits changed in the time-
series of data available?  

• If so, is it anticipated that such changes will occur in the future for MSY 
calculations? 

• Are there sudden regime shifts or gradual changes? 

There is a need to compare internal (i.e. within assessment model) vs. external esti-
mation of stock–recruit parameters. Where possible estimation should be carried out 
internally to take proper account of covariance structures, provided there is no evi-
dence of model misspecification in such a process. Model diagnostics should always 
be carefully explored in such circumstances. 

Often there is temporal autocorrelation in stock–recruit residuals. It may be im-
portant to try to account for this in simple ways when estimating stock–recruit model 
parameters. It may also be important to include this correlation in stochastic MSY 
analyses. Model diagnostics should always be carefully explored in such circum-
stances. 
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6 Recommendations, selection of chair and proposed multi-annual 
ToRs 

6.1 Response to recommendations received from other groups 

The following recommendations were received from WGNSSK and WGCSE respec-
tively: 

WGNSSK: 

There is an increasing focus on using SAM assessment model in WGNSSK; WGNSSK 
expressed however some concerns that total catch data are treated as a usual observa-
tion with two-sided uncertainty around. Since it doesn’t make much sense that true 
catches can be assumed to be lower than observed catches, WGNSSK recommends 
that further investigation is given to analysis and parameterization of one-sided un-
certainty for catch information in statistical catch-at-age models 

WGCSE: 

It was recommended that ICES reconsiders the settings of the A&P model for all 
stocks using this model, after another year and another stock failing to deliver an 
agreed assessment. 

WGMG response 

These requests were received during 2013, after the ToR for the current meeting had 
already been published. While WGMG endeavours to be flexible in its approach to 
handling such requests, it did not have access to the relevant experts (on the SAM 
and A&P models) during the 2013 meeting to be able to respond to these requests. 
Nevertheless, these requests have been accommodated in the future ToRs for the 
group (see ToR c(i) in Annex 4), and it is hoped that the necessary expertise will be 
available in future to deal with them. 

6.2 Recommendations to other groups 

Recommendations aimed at WGSAM and WGMIXFISH jointly, and at WKLIFE, 
SISAM and WKMSYREF, based on discussions and work conducted during the meet-
ing, are given in Annex 3 (with a reference to which section in this report they corre-
spond, for context). 

6.3 Selection of chair 

WGMG proposes that David Miller (The Netherlands) take over as the new Chair 
from 2014 onwards. 

6.4 Proposed multi-annual ToRs 

WGMG tackled the issue of defining multi-annual ToRs by agreeing on a number of 
themes under which it will operate for the next three years (2014-2016). These themes 
are meant to capture broad areas of work relevant to WGMG and topics that are 
currently a priority for ICES and its assessment working groups. These cover the 
continued development of stock assessment methods, for both data-rich and data-
limited stocks, and the development of methods to deal with inaccuracies in catch 
data (including the impact of the new landings regulations) and the estimation of 
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reference points. A number of ToRs that are associated with each of these themes 
have also been developed. The themes and associated ToRs are given in Annex 4. 
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Annex 2: Work plan 

Day 1: 

Welcome, round-table, logistics and adoption of Agenda 

Presentations by ToR leaders on status of ToR work and plans [ToR 1-Lionel, ToR 
2-David, ToR 3-Doug/Arni, ToR 4-Tim] 

ToR 4 – decision on datasets 

ToR 1 presentations (Colin verbally on a4a, José on size-based community model) 

Commence subgroup work 

 

Day 2: 

ToR 4 presentations (Tim on plotMSY, Colin on EqSim, Höski on StochSim, Noel 
on NSR) 

Subgroup work 

ToR 2 presentations (José on ToR 2a, Nuno on ToR 2b) 

 

Day 3: 

Subgroup work 

ToR 2 presentations continued (Doug on ToR 2b)  

Wrap-up ToRs 1, 2 and 3 

Initiate discussion on Multi-annual ToRs 

 

Day 4: 

Wrap-up ToR 4, multi-annual ToRs 

Recommendations, new chair, next meeting 

ToR 2 additional presentation on F-proxy rules and smoothing (Höski: comparison 
to DLS Category 3 rule) 

Continue work on report 

 

Day 5: 

Finalize work on report 

 

 



54  | ICES WGMG REPORT 2013 

Annex 3: Recommendations 

Recommendation Addressed to 

Consider developing a minimum realistic model (e.g. MICE) to serve as an 
operating model in order to evaluate the performance of mixed-fishery 
models within a management strategy evaluation framework. [Section 2] 

WGSAM, 
WGMIXFISH 

In a YPR-context F0.1 is not necessarily a precautionary proxy for FMSY 
(which also incorporates stock–recruit effects), and it is recommended that 
this issue be further investigated as YPR-based calculations fail to account for 
the possibility of recruitment overfishing. [Section 3.1] 

WKLIFE 

The 20% change limit implemented in the DLS approach may be too 
restrictive (effectively 10% per year) and in some cases prevents HCRs from 
reacting quickly enough in the face of declining stocks; it is recommended 
that approaches that override the change limit when the resource is below 
some threshold be investigated (this should be a smooth rather than a step 
change). [Section 3.1] 

WKLIFE 

Target-based HCRs may be preferable to trends-based ones because the latter 
may tend to maintain stocks near current conditions, which may be 
suboptimal, whereas the former introduce greater stability in catches; it is 
recommended that target-based HCRs be considered. [Section 3] 

WKLIFE 

It is recommended that candidate HCRs should always be simulation tested 
to the extent possible, because behaviour in a stochastic environment can 
differ substantially from the deterministic behaviour used to motivate the 
rule. Furthermore, if rules make use of variance estimates for indices of 
abundance, the simulation testing must take care to have plausible statistical 
models to generate simulated variance estimates. [Section 3] 

WKLIFE 

When including length-based metrics as part of a HCR, it is recommended 
that the effect of recruitment patterns and error in length observations on the 
calculation of those metrics be included as part of the evaluation of such 
HCRs. [Section 3.2] 

WKLIFE 

When the confidence interval for the mean of recent index values is used as 
part of a HCR, it is recommended that the time-period over which this mean 
and its confidence interval are calculated remain constant (i.e. the window 
considered should remain of the same length but be moved forward with 
time). [Section 3.2] 

WKLIFE 

It is recommended that the SISAM assessment methods evaluation scheme, 
as developed during the WGMG 2012 meeting in Lisbon, continue to be 
developed. This should deal first with the validity of results and consistency 
of approaches to date, and then be extended to haddock, to further process 
error considerations, and to further methods, using the ICES ASC in 2014 as a 
platform for the communication of results. [Section 4.2] 

SISAM 

The sensitivity of MSY estimates should be checked to explore the reliability 
of the estimates. In cases where estimates are highly sensitive to assumptions 
that are uncertain, then management approaches should not be based on 
MSY reference points estimated from stock–recruit curves. [Section 5.1] 

WKMSYREF 

Reference points should be based on as long a time-series of data as possible, 
keeping in mind the implications of regime shifts and data reliability. 
[Section 5.2] 

WKMSYREF 

The calculations shown in Section 5.2 should be repeated using assessments 
based on a longer period of data which may resolve some of the 
uncertainties. 

WKMSYREF 
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Annex 4: WGMG draft resolution for multi-annual ToRs (Category 2) 

The Working Group on Methods of Fish Stock Assessment (WGMG), chaired by 
David Miller, the Netherlands, will meet in Vigo, Spain, 22-26 September 2014, to 
work on ToRs and generate deliverables as listed in the Table below. 

WGMG will report on the activities of 2014 (the first year) by Date Month Year to 
SSGXX. 

The following are the general themes under which WGMG will operate for the next 
three years (2014-2016): 

1 ) Review selected methods proposed for implementation in ICES assessment 
WGs, including those requested by these WGs 

2 ) Review and advise methods for the evaluation of selected harvest control 
rules using management strategy evaluation 

3 ) Develop and test refinements of methods to deal with inaccuracies in 
catch, specifically: 
a ) underreported catch (e.g. discards or IUU fishing),  
b ) the impact of new landings regulations (with their implications 

for discarding) on continuity of dataseries and on assessments  
4 ) Improve methods to estimate reference points  
5 ) Evaluate the performance of data-limited stock assessment methods 
6 ) Support the SISAM initiative to improve the assessment methods used by 

ICES Working Groups 
• Conclude the evaluation of alternative catch-at-age based assessment 

methods for identified stocks based on the SISAM methods evaluation 
scheme, as developed during the WGMG 2012 Lisbon meeting 

7 ) Address additional requests that fall under the above themes 

ToR descriptors 

TOR 
DESCRIPTION 
 

BACKGROUND 
 

SCIENCE PLAN 

TOPICS 

ADDRESSED DURATION 
EXPECTED DELIVERABLES 
 

a Review selected 
assessment methods 
proposed by ICES 
assessment WGs 
[theme 1] 

WGMG is the only forum for the review 
and development of stock assessment 
methods within ICES on behalf of its 
assessment WGs, which can sometimes 
lack sufficient expertise to undertake 
this. This ToR is intended to 
accommodate such exercises. 

112, 211 Continuing Peer-reviews of 
assessment methods 
suggested for 
assessment WGs to 
use. 

b Review selected 
methods for 
evaluating HCRs 
proposed by ICES 
assessment WGs 
[theme 2] 

WGMG is an appropriate forum for 
evaluating proposals for testing HCRs, 
given the reliance of these testing 
methods on the MSE approach with 
which WGMG members have the 
considerable experience necessary to 
suggest consistency and quality checks 

312 Continuing Peer-reviews of 
proposals for the 
evaluation of HCRs 
often used as part of 
management plans. 
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c (i) Investigate 
applications of the 
state-space 
assessment model 
(SAM), the Aarts and 
Poos model (A&P) 
and the time-series 
analysis model (TSA) 
that deal with 
estimation of 
underreported catch 
[theme 3a] 

A number of important stocks assessed 
by ICES have poor-quality catch data 
due to a lack of estimates of discards, 
and illegal, unreported or unregulated 
(IUU) catches (e.g. North Sea cod, 
Northeast Atlantic mackerel). The SAM 
(Nielsen and Berg, submitted), A&P 
(Aarts and Poos, 2009) and TSA (Fryer, 
2001) assessment models can include 
methods to internally account for this 
problem. The group will evaluate these 
approaches, suggest improvements 
(where applicable) and make 
recommendations on best practice when 
applying such methods. This 
investigation is motivated by requests 
from WGNSSK and WGCSE. 

112, 211 One or two 
years 

Guidelines for best 
practice when 
accounting for un-
estimated discards 
and IUU catches in 
the SAM, A&P and 
TSA stock assessment 
models used by ICES 
WGs. 

c (ii) For two selected 
stocks, investigate 
implications for 
assessment methods 
for what was 
previously discarded 
and not estimated, 
but will now be 
landed [theme 3b] 

The implementation of the “landings 
obligation” in EU waters will, for some 
stocks, result in a change in the 
congruity between reported landings 
and actual catch. This is particularly a 
problem for stocks where discarding is 
known to have occurred but no reliable 
discard estimates exist. The group will 
evaluate the likely impacts of this on the 
fitting of stock assessment models to 
such data and attempt to determine how 
best to account for this for two (yet to be 
decided) case studies. 

112, 211 One or two 
years? This 
should be 
completed 
before the 
implementa
tion of the 
“landings 
obligation”. 

A report illustrating 
the most likely issues 
to arise given this 
change in the quality 
of catch data. 
Guidelines for best 
practice to account 
for these issues to 
assist ICES WGs 
following the 
implementation of 
the “landings 
obligation”. 

d (i) Review and 
consolidate the 
current suite of 
reference points 
[theme 4] 

Currently ICES uses a large number of 
limit and target points, FMSY, Fpa, Flim, Blim, 
Bpa, Btrigger, BMSY and Ftarget (or perhaps 
Btarget). This is confusing for most people. 
For many stock only three values are 
needed: Blim, Ftarget and Btrigger. Most 
management plans have some Ftarget 
(Htarget) which will not be implemented 
perfectly due to stabilizers in the 
management plans, assessment errors 
and implementation errors.  

211, 312 Two to 
three years 

Recommendations for 
a consolidated list of 
reference points. 

d (ii) Review approaches 
for specifying Blim 
[theme 4] 

Blim is an influential biomass limit 
reference point that affects the 
interpretation of results from HCR 
evaluations. This is because the 
precautionary nature of the HCR is 
determined by the probability of the 
stock being below this level. For stocks 
that have not been overexploited 
historically, estimating an appropriate 
level for Blim is problematic, often 
resulting in the use of Bloss (the lowest 
observed biomass) as a proxy for Blim. 
This may result in overly precautious 
management. The group will work on 
(new) methods that could be used to 
determine Blim. 

211, 312 Three years Guidelines for best 
practice when 
determining Blim to 
assist ICES 
benchmark 
assessments. 
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d (iii) Review 
developments of the 
non-parametric 
stock–recruit models 
for reference point 
estimation [theme 4] 

Estimates of MSY-based reference points 
which take account of stock–recruitment 
effects are heavily dependent on the 
approach used to estimate a stock–
recruitment relationship from the 
available information. The non-
parametric method developed by 
Cadigan [Method 4 in Section 5; 
Annex 10] shows promise as an 
approach that might be generally 
applicable by WGs. Further 
investigation will aim at the provision, if 
found to be appropriate, of a set of 
guidelines for practical implementation 
of this or a related approach. 

211, 312 Two years A set of guidelines on 
the estimation of 
stock–recruitment 
relationships and 
hence calculation of 
MSY-based reference 
points, together with 
advice on 
interpretation and 
application of the 
results, to serve as the 
default for use by 
ICES WGs. 

e (i) Investigate specific 
data-limited methods 
that are advised as a 
priority based on 
high current usage 
for some of the stocks 
to which they have 
been applied 
[theme 5] 

There is a strong need to test proposed 
methods that support the provision of 
advice for data-limited stocks in a way 
that ensures that the methods used are 
consistent with the objectives of the 
ICES DLS framework. 

112, 211 Three years The confirmation that 
certain methods are 
consistent with the 
objectives of the ICES 
DLS framework for 
application by 
assessment WGs. 

e (ii) Investigate different 
ways of compiling 
survey indices that 
are suitable for the 
application of data-
limited methods 
[theme 5] 

Methods that rely on trends in survey 
indices are sensitive to noise in these 
indices. The noise is often caused by a 
few tows accounting for a large 
proportion of the catch. A possible 
solution is to take the average of 
nonlinear functions of abundance at 
each station (square root or similar). 
This reduces variability but might lead 
to biases. Simulation testing could be 
tricky as it might involve modelling the 
distribution of fish in surveys. 

112, 211 Three years Advice on the general 
applicability or 
otherwise of such 
methods.  

f Conclude the 
evaluation of 
alternative catch-at-
age based assessment 
methods for 
identified stocks 
based on the SISAM 
methods evaluation 
scheme, as developed 
during the WGMG 
2012 Lisbon 
meeting[theme 6] 

Initial results of simulation studies 
using the Scheme for North Sea cod and 
herring and presented at WCSAM have 
potentially important implications for 
assessment methods used by ICES 
Working Groups. However these need 
first to be checked, refined and possibly 
extended. 

112, 211 Two years Recommendations on 
appropriate selection 
among catch-at-age 
based methods for 
application in ICES 
WGs, and on general 
diagnostics to be 
applied to methods 
considered in 
benchmark 
assessments 

g Consider additional 
requests that fall 
under the six WGMG 
themes 

This ToR allows flexibility for WGMG to 
handle additional requests 

112, 211, 312 Continuing As appropriate 
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Supporting information 
  

Priority The current activities of this Group will lead ICES into methods related to 
provision of catch advice on a sound scientific basis, including for data-
limited stocks. Consequently, these activities are considered to have a 
very high priority. 

Resource requirements The research programmes which provide the main input to this group are 
already underway, and resources are already committed. The additional 
resource required to undertake additional activities in the framework of 
this group is negligible. 

Participants The Group is normally attended by some 10–15 members and guests. 

Secretariat facilities None. 

Financial No financial implications. 

Linkages to ACOM and 
groups under ACOM 

ACOM has strongly supported the work of this group. The work 
conducted by WGMG is highly relevant to ICES Expert Groups that 
conduct stock assessment. 

Linkages to other 
committees or groups 

WGMG will report to SCICOM in 2014. WGMG is involved with the ICES 
Strategic Initiative on Stock Assessment Methods (SISAM). 

Linkages to other 
organizations 

Possible future links with other organizations that have similar Methods 
Working Groups (e.g. ICCAT) 
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Annex 5: R Code for the simulation study in Section 3.2 

FILE #1 (FUNCTIONS) 
############################################################################### 
# EJ(20120413) 
# Auxiliary functions for LH generation of datasets 
# Parameters:  
# a1, sr, sl = 50% selectivity age, right variance, left variance 
# s, v = steepness and virgin biomass for S/R 
# M1, M2 = two components of M 
# a50, asym = age of 50% maturity, age of asymptotic maturity 
# linf, k, t0 = vonBertalanffy growth pars 
# a, b = length~weight pars 
############################################################################### 
 
iterMedians <- function(x, ...){ 
 return(apply(x, c(1:5), median, na.rm = FALSE)) 
} 
 
iterSums <- function(x, ...){ 
 return(apply(x, c(1:5), sum, na.rm = FALSE)) 
} 
 
iterCv <- function(object, ...){ 
 sqrt(iterVars(object))/iterMeans(object) 
} 
 
#============================================================================== 
# gislasim - cleaned version 
#============================================================================== 
 
setGeneric("gislasim", function(linf, ...) standardGeneric("gislasim")) 
 
setMethod("gislasim", signature(linf="numeric"), function (linf, t0 = -0.1, a = 
1e-05, b = 3, ato95 = 1, sl = 2, sr = 5000, s = 0.9, v = 1000, asym=1, bg=b, 
iter=1, k="missing", M1="missing", M2="missing", a50="missing", a1="missing"){ 
    if(missing(k))  k <- 3.15 * linf^(-0.64) 
    if(missing(M1)) M1 <- 0.55 + 1.44 * log(linf) + log(k)  
    if(missing(M2)) M2 <- -1.61 
    if(missing(a50)) a50 <- FLBRP:::invVonB(FLPar(linf=linf, t0=t0, k=k), 0.72 
* linf^0.93) 
    if(missing(a1)) a1 <- a50 
    par <- FLPar(linf=linf, k=k, t0 = t0, a = a, b = b, asym=asym, bg=bg, 
sl=sl, sr=sr, s=s, v=v, M1=M1, M2=M2, ato95 = ato95, a50=a50, a1=a1, iter=iter) 
    attributes(par)$units = c("cm", "kg", "1000s") 
    return(par) 
}) 
 
setMethod("gislasim", signature(linf="FLPar"), function (linf){ 
    # Renaming to avoid confusing the argument with the object. 
    # linf here is an FLPar object that can contain several parameters  
    object <- linf 
    rm(linf) 
    # now the real thing 
    v0 <- dimnames(object)$params      
    if(!("linf" %in% v0)) stop("The function requires linf.") 
    par <- FLPar(c(linf=NA, t0 = -0.1, a = 1e-05, b = 3, ato95 = 1, sl = 2, sr 
= 5000, s = 0.9, v = 1000, asym=1, bg=3, k=NA, M1=NA, M2=NA, a50=NA, a1=NA), 
iter=ncol(object)) 
    dimnames(par)$iter <- dimnames(object)$iter  
    par[dimnames(object)$params] <- object 
    if(!("bg" %in% v0)) par["bg"] = par["b"] 
    if(!("k" %in% v0)) par["k"] = 3.15 * par["linf"]^(-0.64) 
    if(!("M1" %in% v0)) par["M1"] = 0.55 + 1.44 * log(par["linf"]) + 
log(par["k"]) 
    if(!("M2" %in% v0)) par["M2"] = -1.61 
    if(!("a50" %in% v0)) par["a50"] = FLBRP:::invVonB(FLPar(linf=par["linf"], 
t0=par["t0"], k=par["k"]), c(0.72 * par["linf"]^0.93)) 
    if(!("a1" %in% v0)) par["a1"] = par["a50"] 
    attributes(par)$units = c("cm", "kg", "1000s") 
    return(par) 
}) 
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#============================================================================== 
# genFunctions 
#============================================================================== 
 
genObs <- function(stock, qcv=0.1, ccv=0.1) { 
 ages <- 1:range(stock)["maxfbar"] 
 n <- stock.n(stock)[ac(ages)] 
 z <- harvest(stock)[ac(ages)] + m(stock)[ac(ages)] 
 logq <- -exp(-exp(0.2 * ages)) - 3 # trawl like catchability 
 # observe index in 1st quarter with qcv 
 index <- FLIndex(index = n[ac(ages)] * exp(-0.25 * z[ac(ages)]) * exp(logq + 
rnorm(prod(dim(n[ac(ages)])), 0, qcv)))  # 10% cv 
 range(index)[c("startf","endf")] <- 0.25 
 # observe catch with ccv 
 catch.n(stock) <- catch.n(stock) * exp(rnorm(prod(dim(catch.n(stock))), 0, 
ccv)) 
 catch(stock) <- computeCatch(stock) 
 list(stock = stock, index = list(index)) 
} 
 
genIdx <- function(stock, qcv=0.1, ccv=0.1) { 
 ages <- 1:range(stock)["maxfbar"] 
 n <- stock.n(stock)[ac(ages)] 
 z <- harvest(stock)[ac(ages)] + m(stock)[ac(ages)] 
 logq <- -exp(-exp(0.2 * ages)) - 3 # trawl like catchability 
 # observe index in 1st quarter with qcv 
 index <- FLIndex(index = n[ac(ages)] * exp(-0.25 * z[ac(ages)]) * exp(logq + 
rnorm(prod(dim(n[ac(ages)])), 0, qcv)))  # 10% cv 
 range(index)[c("startf","endf")] <- 0.25 
 list(stock = stock, index = list(index)) 
} 
#============================================================================== 
# cat3 hcr projection 
#============================================================================== 
 
cat3hcr <- function(data, HCR, iyr = 1, fyr = 25, srviyr= -9, qcv = 0.1, 
rndseed=12345){ 
 
 # hcr: cat3 , ic, cat3len, iclen 
  
 # lh 
 stk <- data$stock 
 lhPars <- attr(stk, "lhPars") 
 refpts <- attr(stk, "refpts") 
 k <- lhPars["k"]  
 linf <- lhPars["linf"]  
 t0 <- lhPars["t0"]  
 srModel <- "bevholt" # sr hard coded ... 
 v <- lhPars["v"] 
 s <- lhPars["s"] 
  
 # stock object 
 stk <- qapply(stk, function(x){dimnames(x)[[2]] <- -15:0; x}) 
 range(stk)[4:5] <- c(-15,0) 
 stk <- window(stk, stf=list(nyears=fyr-iyr+1)) 
  
 # index 
 idx <- qapply(data$index[[1]], function(x){dimnames(x)[[2]] <- -15:0; x}) 
 idx <- window(idx, start=srviyr, end=fyr) 
 idx.wt <- stock.wt(stk)[dimnames(index(idx))[[1]],1] 
  
 # S/R 
  sr <- FLSR(model=srModel) 
  params(sr) <- FLPar(abPars(srModel, 
c(refpts["virgin","ssb"]/refpts["virgin","rec"]), v=c(v), s=c(s))) 
  
 # objects for results 
 Cadv <- catch(stk) 
 Cadv[,ac(iyr)] <- mean(Cadv[,ac(iyr-c(1:3))]) 
 
 idxRatio <- catch(stk) 
 idxRatio[] <- NA 
  
 # loop 
 set.seed(rndseed) 
 for(i in iyr:(fyr-1)){ 
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  # biomass index for advice 
  idxadv <- window(index(idx), end=i-1) 
  nobs <- length(dimnames(idxadv)[[2]]) 
  idxadv <- quantSums(idxadv*idx.wt[,rep(1,nobs)]) 
   
  if(HCR=="cat3"){ 
   # mean index last 2 years 
   i1 <- mean(idxadv[,ac(i-c(1,2))]) 
   # mean index previous 3 years 
   i2 <- mean(idxadv[,ac(i-c(3:5))]) 
   idxRatio[,ac(i-1)] <- i1/i2 
  } 
   
  if(HCR=="cat3len"){ 
   # mean index last 2 years 
   i1 <- mean(idxadv[,ac(i-c(1,2))]) 
   # mean index previous 3 years 
   i2 <- mean(idxadv[,ac(i-c(3:5))]) 
   # Lc 
   ages <- as.numeric(dimnames(catch.n(stk))[[1]]) 
   lenbar <- vonB(FLPar(k=k, linf=linf, t0=t0), ages+0.5) 
   Lc <- lenbar[1] 
   Lmf <- (3*Lc+linf)/4 
   #Lsq 
   Lsq <- weighted.mean(lenbar, c(catch.n(stk)[,ac(i-1)])) 
   idxRatio[,ac(i-1)] <- i1/i2*Lsq/Lmf 
  } 
 
  # idx <> IC 
  if(HCR=="ic"){ 
   idxRatio[,ac(i-1)] <- 1 
    if(idxadv[,ac(i-1)] > yearMeans(idxadv) + 
qnorm(0.99)*sqrt(yearVars(idxadv)/nobs)) idxRatio[,ac(i-1)] <- 1.15 
    if(idxadv[,ac(i-1)] < yearMeans(idxadv) + 
qnorm(0.01)*sqrt(yearVars(idxadv)/nobs)) idxRatio[,ac(i-1)] <- 0.85 
  }  
 
  # idx <> IC * len 
  if(HCR=="iclen"){ 
   idxRatio[,ac(i-1)] <- 1 
   if(idxadv[,ac(i-1)] > yearMeans(idxadv) + 
qnorm(0.99)*sqrt(yearVars(idxadv)/nobs)) idxRatio[,ac(i-1)] <- 1.15 
   if(idxadv[,ac(i-1)] < yearMeans(idxadv) + 
qnorm(0.01)*sqrt(yearVars(idxadv)/nobs)) idxRatio[,ac(i-1)] <- 0.85 
   # Lc 
   ages <- as.numeric(dimnames(catch.n(stk))[[1]]) 
   lenbar <- vonB(FLPar(k=k, linf=linf, t0=t0), ages+0.5) 
   Lc <- lenbar[1] 
   Lmf <- (3*Lc+linf)/4 
   #Lsq 
   Lsq <- weighted.mean(lenbar, c(catch.n(stk)[,ac(i-1)])) 
   idxRatio[,ac(i-1)] <- idxRatio[,ac(i-1)]*Lsq/Lmf 
    
  }  
   
  # cacth for next year 
  Cadv[,ac(i+1)] <- Cadv[,ac(i-1)]*idxRatio[,ac(i-1)] 
  # note: will need rewrite to account for iters 
  #browser() 
  trg <- fwdControl(data.frame(year=i, quantity='catch', 
val=c(Cadv[,ac(i)]))) 
  stk[,ac(i)] <- fwd(stk, ctrl=trg, sr=sr)[,ac(i)] 
  #stk <- fwd(stk, ctrl=trg, sr=sr) 
  idx[,ac(i)] <- genIdx(stk, qcv = qcv)$index[[1]][, ac(i)] 
 } 
  
 # output 
 flqs <- FLQuants(ssb=ssb(stk), catch=catch(stk), rec=rec(stk), f=fbar(stk), 
catch.adv=Cadv, idxRatio=idxRatio) 
 attr(flqs, "lhPars") <- lhPars 
 attr(flqs, "refpts") <- refpts 
 flqs  
} 
 
#============================================================================== 
# extract 

 



62  | ICES WGMG REPORT 2013 

#============================================================================== 
 
getStkInfo <- function(object, scn, hcr){ 
 res <- lapply(object, function(x){ 
  lh <- as.data.frame(attr(x, "lhPars")) 
  rp <- as.data.frame(attr(x, "refpts")[c("msy", "f0.1", "fmax"), 
"harvest"]) 
  data.frame(params=c(ac(lh[,1]), ac(rp[,1])), value=c(lh[,3], rp[,4]), 
scn=scn, hcr=hcr)  
 }) 
  
 res <- do.call("rbind", res) 
 res$stk <- unlist(lapply(strsplit(rownames(res), "[.]"), "[[", 1)) 
 rownames(res) <- NULL 
 res 
  
} 
  
getRes <- function(object, scn, hcr){ 
 res <- lapply(object, as.data.frame) 
 res <- do.call("rbind", res) 
 res$stk <- unlist(lapply(strsplit(rownames(res), "[.]"), "[[", 1)) 
 rownames(res) <- NULL 
 res$scn <- scn 
 res$hcr <- hcr 
 res 
} 
 
  
FILE #2 (SIMULATING STOCKS) 
library(FLBRP) 
library(plyr) 
library(Hmisc) 
library(parallel) 
library(reshape) 
source("funs.R") 
 
# read data 
wklifeLst <- read.table("allStockslifeHistoryParam.txt", sep="\t", head=TRUE) 
wklifeLst <-transform(wklifeLst, value=as.numeric(as.character(value))) 
wklifeLst <- wklifeLst[!is.na(wklifeLst$value),] 
# remove "fle-2232" the parameters are duplicated and seem inconsistent 
wklifeLst <- subset(wklifeLst, stock != "fle-2232") 
 
set.seed(123) 
wklife.brp <- mclapply(split(wklifeLst, wklifeLst$stock), function(x){ 
    cat(as.character(x$stock)[1], "\n") 
    # get parameters 
    par <- FLPar(x$value, tolower(x$param)) 
    if(!("linf" %in% dimnames(par)$params) & "lmax" %in% dimnames(par)$params){ 
        dimnames(par)$params[dimnames(par)$params == "lmax"] <- "linf" 
    }  
    if("linf" %in% dimnames(par)$params){ 
      # complete with gislasim 
      dnms <- dimnames(par)$params 
      par <- par[dnms %in% dimnames(gislasim(0))$params] 
      par <- gislasim(par) 
   # set max age if not available compute from linf 
   if(!("tmax" %in% x$param)){  
    tmax <- floor(invVonB(FLPar(c(linf=par["linf"], k=par["k"], 
t0=par["t0"])), par["linf"]-1)) 
   } else { 
    tmax <- x[x$param=="tmax", "value"] 
   } 
   # run lh 
   res <- lh(par, range=c(min=1, max=tmax, minfbar=ceiling(tmax/10), 
maxfbar=floor(tmax/2), plusgroup=tmax))     
    res@desc <- as.character(x$stock[1]) 
    attr(res, "lhPars") <- par 
    attr(res, "refpts") <- refpts(res) 
    res 
    } else { 
      NULL 
    } 
}, mc.cores=4) 
wklife.brp <- wklife.brp[!unlist(mclapply(wklife.brp, is.null))] 
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wklife.stk <- mclapply(wklife.brp, function(x){ 
  cat(x@desc, "\n") 
  #Fc <- c(refpts(x)["crash","harvest"]*0.7) 
 Fc <- c(refpts(x)["msy","harvest"])*2 
  if(!is.na(Fc)){  
 Fmsy <- c(refpts(x)["msy","harvest"]) 
 Ftrg <- c(seq(0, Fc, len=19), rep(Fc, 20), seq(Fc, Fmsy, len=10)) 
 trg <- fwdControl(data.frame(year=c(2:50), quantity=rep('f', 49), val=Ftrg)) 
 ex.stk <- as(x, "FLStock")[,1:50] 
 #ex.sr <- as.FLSR(ex.stk, model=x@model, params=x@params) 
 ex.sr <- fmle(as.FLSR(ex.stk, model="bevholt"), control=list(trace=0)) 
 stk <- fwd(ex.stk, ctrl=trg, sr=ex.sr) 
 stk@name <- x@desc 
 stk@desc <- paste("simulated data loosely based on", x@desc) 
 attr(stk, "lhPars") <- x@lhPars 
 attr(stk, "refpts") <- x@refpts 
 stk   
  } else { 
    NULL 
  } 
}, mc.cores=4) 
wklife.stk <- wklife.stk[!unlist(mclapply(wklife.stk, is.null))] 
wklife.stk <- FLStocks(wklife.stk) 
 
# subset full time-series to get just developing period 
stks01 <- window(wklife.stk, start=5, end=20) 
# generating survey index and adding observation error to catches 
set.seed(239246) 
stks01 <- mclapply(stks01, genIdx, qcv=0.2, mc.cores=4) 
 
# subset full time-series to get just stable at high exploitation period 
stks03 <- window(wklife.stk, 25,40) 
# generating survey index and adding observation error to catches 
set.seed(239246) 
stks03 <- mclapply(stks03, genIdx, qcv=0.2, mc.cores=4) 
 
save(list=ls(), file="RData.data") 
 
FILE #3 (TESTING HCR) 
library(FLBRP) 
library(parallel) 
source("funs.R") 
load("RData.data") 
 
#==================================================================== 
# Run simulations 
#==================================================================== 
 
# scenario development 
cat3.scn1 <- mclapply(stks01, cat3hcr, HCR="cat3", mc.cores=1) 
cat3len.scn1 <- mclapply(stks01, cat3hcr, HCR="cat3len", mc.cores=4) 
cat3ic.scn1 <- mclapply(stks01, cat3hcr, HCR="ic", mc.cores=4) 
cat3iclen.scn1 <- mclapply(stks01, cat3hcr, HCR="iclen", mc.cores=4) 
 
# scenario over-exploitation 
cat3.scn2 <- mclapply(stks03, cat3hcr, HCR="cat3", mc.cores=4) 
cat3len.scn2 <- mclapply(stks03, cat3hcr, HCR="cat3len", mc.cores=4) 
cat3ic.scn2 <- mclapply(stks03, cat3hcr, HCR="ic", mc.cores=4) 
cat3iclen.scn2 <- mclapply(stks03, cat3hcr, HCR="iclen", mc.cores=4) 
 
#==================================================================== 
# process results 
#==================================================================== 
 
o1 <- getStkInfo(cat3.scn1, scn="dev", hcr="HCR1") 
o2 <- getStkInfo(cat3len.scn1, scn="dev", hcr="HCR2") 
o3 <- getStkInfo(cat3ic.scn1, scn="dev", hcr="HCR3") 
o4 <- getStkInfo(cat3iclen.scn1, scn="dev", hcr="HCR4") 
o5 <- getStkInfo(cat3.scn2, scn="hi", hcr="HCR1") 
o6 <- getStkInfo(cat3len.scn2, scn="hi", hcr="HCR2") 
o7 <- getStkInfo(cat3ic.scn2, scn="hi", hcr="HCR3") 
o8 <- getStkInfo(cat3iclen.scn2, scn="hi", hcr="HCR4") 
 
stkInfo <- rbind(o1, o2, o3, o4, o5, o6, o7, o8) 
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o1 <- getRes(cat3.scn1, scn="dev", hcr="HCR1") 
o2 <- getRes(cat3len.scn1, scn="dev", hcr="HCR2") 
o3 <- getRes(cat3ic.scn1, scn="dev", hcr="HCR3") 
o4 <- getRes(cat3iclen.scn1, scn="dev", hcr="HCR4") 
o5 <- getRes(cat3.scn2, scn="hi", hcr="HCR1") 
o6 <- getRes(cat3len.scn2, scn="hi", hcr="HCR2") 
o7 <- getRes(cat3ic.scn2, scn="hi", hcr="HCR3") 
o8 <- getRes(cat3iclen.scn2, scn="hi", hcr="HCR4") 
 
res <- rbind(o1, o2, o3, o4, o5, o6, o7, o8) 
 
rm(o1, o2, o3, o4, o5, o6, o7, o8) 
 
#==================================================================== 
# plots 
#==================================================================== 
 
bwplot(data~factor(year)|scn*hcr, groups=stk, data=subset(res, 
qname=="idxRatio" & stk!="rng-comb"), main="WKLIFE stocks: Catch multiplier") 
bwplot(data~factor(year)|scn*hcr, groups=stk, data=subset(res, qname=="ssb" & 
stk!="rng-comb"), main="WKLIFE stocks: SSB") 
bwplot(data~factor(year)|scn*hcr, groups=stk, data=subset(res, qname=="catch" & 
stk!="rng-comb"), main="WKLIFE stocks: Catch") 
bwplot(data~factor(year)|scn*hcr, groups=stk, data=subset(res, qname=="f" & 
stk!="rng-comb"), main="WKLIFE stocks: F") 
 
# ple-iris 
xyplot(data~year|qname, data=window(cat3.scn1[["ple-iris"]], end=24), type="l", 
scales=list(relation="free"), main="ple-iris: dev: HCR1") 
xyplot(data~year|qname, data=window(cat3len.scn1[["ple-iris"]], end=24), 
type="l", scales=list(relation="free"), main="ple-iris: dev: HCR2") 
xyplot(data~year|qname, data=window(cat3ic.scn1[["ple-iris"]], end=24), 
type="l", scales=list(relation="free"), main="ple-iris: dev: HCR3") 
xyplot(data~year|qname, data=window(cat3iclen.scn1[["ple-iris"]], end=24), 
type="l", scales=list(relation="free"), main="ple-iris: dev: HCR4") 
 
xyplot(data~year|qname, data=window(cat3.scn2[["ple-iris"]], end=24), type="l", 
scales=list(relation="free"), main="ple-iris: hi: HCR1") 
xyplot(data~year|qname, data=window(cat3len.scn2[["ple-iris"]], end=24), 
type="l", scales=list(relation="free"), main="ple-iris: hi: HCR2") 
xyplot(data~year|qname, data=window(cat3ic.scn2[["ple-iris"]], end=24), 
type="l", scales=list(relation="free"), main="ple-iris: hi: HCR3") 
xyplot(data~year|qname, data=window(cat3iclen.scn2[["ple-iris"]], end=24), 
type="l", scales=list(relation="free"), main="ple-iris: hi: HCR4") 
 

 

 



ICES WGMG REPORT 2013 |  65 

Annex 6: ToR 3 additional output statistics 

A6.1. Catch associated with F40%SPR 

The derivation of Fx%SPR is described in detail in Annex 7, Section A7.2 (here we are 
interested in x=40). Essentially, F40%SPR is the F value that gives 40% of the Bssb/R value 
corresponding to F=0 (Annex 7, Equation A7.2.10, with associated definitions in Ta-
ble A7.2.1). Once this is calculated, it is possible to calculate the Y/R associated with 
F40%SPR , Y/R40%SPR, by inserting F40%SPR into Equation A7.2.9 in Annex 7. The yield asso-
ciated with F40%SPR is then derived by simply multiplying Y/R40%SPR by an appropriate 
level of recruitment, R. A possible candidate for this level of recruitment, and also 
other population vectors required for the calculations (e.g. mean weights, maturity, 
natural mortality and fishery selection at age), could be the corresponding averages 
over the last ten years for the most recent assessment of the stock. 

A6.2. Replacement Yield and prediction of a survey result for next year 

Replacement Yield is the catch that can be taken from a stock in one year which will 
result in an unchanged biomass at the start of the following year. In a deterministic 
age-aggregated model, Replacement Yield is identical to the sustainable yield at the 
present biomass, and provides a useful measure of the current productivity of the 
resource. However the equivalence is less straightforward in age structured models 
because of non-stationary age structure, and transient effects can then distort impres-
sions of resource productivity if the single-year prescription is applied blindly. To 
damp out such effects, it is more customary for such models to compute ten year 
Replacement Yield as that constant catch which, if taken each year for the next ten 
years, will result in the same spawning biomass at the end of that period as at the 
start. As for F40%SPR above, the population vectors required for this calculation could 
be the corresponding averages over the last ten years for the most recent assessment 
of the stock. An iterative process is needed to determine this catch through repeated 
ten year population projections with different constant catches until the criterion of 
an unchanged spawning biomass is satisfied. 

When a population model is fit to data including survey data, the model will include 
some relationship linking population quantities (e.g. numbers-at-age, survey selectiv-
ity-at-age, and some survey catchability coefficient) to the expected value for a survey 
abundance index. The model fitting process then tries to match these expected values 
for each past year as closely as possible to the values obtained from the actual sur-
veys for those years. To produce an expected survey result for the next year, this pro-
cess is effectively reversed. The assessment provides a population model, stock–
recruitment relationship of some form and associated parameter values; these enable 
projection of the population forward in time. The projection to the next year then 
provides the values for numbers-at-age that year which are needed for input to the 
relationship providing the value of the expected survey abundance. 
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Annex 7: Method 1: PlotMSY  

A7.1. Description and examples 

The PlotMSY software was developed in 2010 in order to support the estimation of 
yield-per-recruit and MSY-based fishing mortality reference points, and was applied 
in ICES WGs for a number of stocks that year. Because .sen and .sum files was a 
common output from ICES WGs at the time, the software was developed to rely on 
the availability of these files in order to facilitate its rapid application, given carefully 
derived inputs to these files. It was developed within ADMB and in such a way as to 
provide robust estimation of stock–recruit parameters using the .sum file (by normal-
izing inputs, re-parameterizing SR functions and automating the process of selecting 
sensible initial values); it uses the MCMC functionality in ADMB to characterize un-
certainty of this estimation, and combines these with biological and fishery-based 
variables for deriving the F reference points. The option of including additional un-
certainty due to these biological and fishery-based variables, and based on the esti-
mates of precision supplied in the .sen file, is also provided. 

The software fits three stock–recruit functions, namely Ricker, Beverton–Holt and a 
smooth version of the Hockey-stick (to ensure differentiability in ADMB). Although 
reference points are estimated for each of these stock–recruit functions individually, 
an option is provided to combine appropriate outputs from any number of these 
stock–recruit functions (all three or two out of the three) in order to derive integrated 
estimates for the given combination, where the default weighting is based on har-
monic means of the likelihood of individual samples from the MCMC chains. Inte-
grated estimates can also be derived by using manually inputted weights as an 
alternative to the default weighting option. 

A mathematical description of the approach is supplied in Section A7.2-A7.4 and a 
user-manual with instruction on how to use the software in Section A7.5. Example 
applications for North Sea herring and cod stocks are given below. [Note: a more 
detailed description of the .sen and .sum files than given in the tables in this section is 
provided in Section A7.5.] 

Some example implementations 

North Sea Herring 

The information used by PlotMSY, extracted from the .sen and .sum files, is given in 
Table A7.1.1. Despite the low variability in the fits within each SR (Figure A7.1.1) for 
NS Herring, estimates of FMSY and Fcrash are highly variable, and overlap for two of the 
three models (Figures A7.1.2-A7.1.4). If this were to be taken at face value, it would 
imply that FMSY was not a suitable target for this stock, as it would be above Fpa and so 
inconsistent with the precautionary approach. Further simulations (not shown) indi-
cated that the high variability in FMSY and Fcrash was driven mainly by variability in the 
selection pattern, which may have been overestimated in the assessment method 
used to obtain these estimates (Table A7.1.1). The aggregated estimates of FMSY and 
Fcrash assuming no a priori information about the most suitable SR form are shown in 
Figures A7.1.5 and A7.1.6 both with and without variability in selectivity (note differ-
ing horizontal axis scales). Both of these plots indicate that the most weight is given 
to the Hockey-stick SR form, which estimates different reference points to the other 
two forms, emphasizing the importance of expert judgement of which SR forms are 
appropriate to this stock. 
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Table A7.1.1. Herring input files. Extracts of the relevant information from the sen and sum files 
used by PlotMSY. 

(a) Sen file 
… 
sH0 0.04 0.66 
sH1 0.02 0.64 
sH2 0.07 0.38 
sH3 0.09 0.38 
sH4 0.09 0.36 
sH5 0.12 0.36 
sH6 0.10 0.59 
sH7 0.09 0.56 
sH8 0.09 0.56 
WH0 0.01 0.26 
WH1 0.05 0.18 
WH2 0.12 0.08 
WH3 0.16 0.08 
WH4 0.19 0.09 
WH5 0.22 0.09 
WH6 0.23 0.07 
WH7 0.25 0.07 
WH8 0.26 0.05 
WS0 0.01 0.42 
WS1 0.05 0.14 
WS2 0.14 0.12 
WS3 0.18 0.08 
WS4 0.22 0.07 
WS5 0.24 0.07 
WS6 0.26 0.09 
WS7 0.28 0.09 
WS8 0.30 0.10 
 M0 0.90 0.15 
 M1 0.79 0.10 
 M2 0.38 0.10 
 M3 0.36 0.12 
 M4 0.34 0.13 
 M5 0.32 0.14 
 M6 0.31 0.14 
 M7 0.31 0.14 
 M8 0.31 0.14 
MT0 0.00 0.00 
MT1 0.00 0.00 
MT2 0.81 0.19 
MT3 0.96 0.08 
MT4 1.00 0.01 
MT5 1.00 0.00 
MT6 1.00 0.00 
MT7 1.00 0.00 
MT8 1.00 0.00 
… 
[Column 1: sH=human consumption selection, WH=human consumption mean weights, 
WS=stock mean weights, M=natural mortality, MT=maturity; Column 2: point 
estimates; Column 3: estimates of precision (CV)] 
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(b) Sum file 

"Stock summary, North Sea herring" 
… 
1948  67254871 3745254 6280750  689002  689002 0 0 0.172 0.172 0 0 
1949  59233629 3153426 6022422  712831  712831 0 0 0.186 0.186 0 0 
1950  81899218 3063290 6095126  657368  657368 0 0 0.196 0.196 0 0 
1951  74850249 3002633 6205832  762990  762990 0 0 0.234 0.234 0 0 
1952  74700698 2833434 6064726  829020  829020 0 0 0.246 0.246 0 0 
1953  80117110 2788460 5950584  843234  843234 0 0 0.261 0.261 0 0 
1954  75150250 2615589 5821101  915293  915293 0 0 0.292 0.292 0 0 
1955  66386216 2438759 5471153  866312  866312 0 0 0.289 0.289 0 0 
1956  49130963 2409669 4911058  850007  850007 0 0 0.292 0.292 0 0 
1957 129994149 2226630 5576099  784655  784655 0 0 0.306 0.306 0 0 
1958  49674387 2043143 5267150  790958  790958 0 0 0.315 0.315 0 0 
1959  56911045 1696368 5460222 1131438 1131438 0 0 0.329 0.329 0 0 
1960  23068993 2605148 4439268  839029  839029 0 0 0.287 0.287 0 0 
1961 108146787 2231088 5050511  756910  756910 0 0 0.322 0.322 0 0 
1962  52904555 2124400 4699657  666636  666636 0 0 0.346 0.346 0 0 
1963  79319932 1522707 5362817  658026  658026 0 0 0.244 0.244 0 0 
1964  82145285 2443642 5677378  931918  931918 0 0 0.324 0.324 0 0 
1965  38186782 2373794 5020299 1217122 1217122 0 0 0.501 0.501 0 0 
1966  34935009 1945442 3886424  976764  976764 0 0 0.510 0.510 0 0 
1967  42926504 1575369 3169232  835679  835679 0 0 0.654 0.654 0 0 
1968  40873807 1021722 2755198  806936  806936 0 0 0.948 0.948 0 0 
1969  19560054  567502 2137185  556821  556821 0 0 0.864 0.864 0 0 
1970  36506468  510936 2063677  532853  532853 0 0 0.905 0.905 0 0 
1971  26990621  489432 1947389  540906  540906 0 0 1.212 1.212 0 0 
1972  17716377  348363 1684535  472598  472598 0 0 0.645 0.645 0 0 
1973   8966446  350109 1292385  443743  443743 0 0 0.827 0.827 0 0 
1974  16387018  304370  949794  274581  274581 0 0 0.845 0.845 0 0 
1975   3870909  204434  783871  265136  265136 0 0 0.968 0.968 0 0 
1976   4901246  119491  543617  147709  147709 0 0 0.723 0.723 0 0 
1977   5520616  166708  408399   61023   61023 0 0 0.337 0.337 0 0 
1978   5826925  124492  462777   52680   52680 0 0 0.250 0.250 0 0 
1979  11172880  154817  590662   65578   65578 0 0 0.207 0.207 0 0 
1980  17072849  190042  811792   81064   81064 0 0 0.183 0.183 0 0 
1981  37468083  210660 1405635  159213  159213 0 0 0.201 0.201 0 0 
1982  59709399  309589 2128653  271848  271848 0 0 0.185 0.185 0 0 
1983  56232194  431922 2861911  403124  403124 0 0 0.231 0.231 0 0 
1984  53650428  647582 3602001  453613  453613 0 0 0.304 0.304 0 0 
1985  67456938 1034057 4093865  606221  606221 0 0 0.388 0.388 0 0 
1986  79717524 1097999 4685579  766048  766048 0 0 0.379 0.379 0 0 
1987  81409294 1123546 4615820  785441  785441 0 0 0.374 0.374 0 0 
1988  42926504 1294972 4538014 1033023 1033023 0 0 0.365 0.365 0 0 
1989  35640743 1646233 3801856  794923  794923 0 0 0.350 0.350 0 0 
1990  29978769 1696368 3704282  695231  695231 0 0 0.300 0.300 0 0 
1991  31642129 1741052 3433189  672663  672663 0 0 0.329 0.329 0 0 
1992  59174425 1501537 3460764  698716  698716 0 0 0.369 0.369 0 0 
1993  51392356 1151988 3191495  680784  680784 0 0 0.422 0.422 0 0 
1994  36397112  818313 2827773  598391  598391 0 0 0.437 0.437 0 0 
1995  46828381  874144 2746945  544705  544705 0 0 0.379 0.379 0 0 
1996  44233811  921723 2934360  297747  297747 0 0 0.229 0.229 0 0 
1997  31108760 1058115 3131429  284077  284077 0 0 0.201 0.201 0 0 
1998  22098052 1217122 3325066  384231  384231 0 0 0.222 0.222 0 0 
1999  71128595 1467396 3412651  361494  361494 0 0 0.212 0.212 0 0 
2000  48496394 1536473 4329662  373249  373249 0 0 0.212 0.212 0 0 
2001  84901303 1531870 4852478  385001  385001 0 0 0.187 0.187 0 0 
2002  44278067 2084418 5626510  407176  407176 0 0 0.176 0.176 0 0 
2003  21274080 2397651 5962498  495836  495836 0 0 0.201 0.201 0 0 
2004  24865702 2455891 5040420  584201  584201 0 0 0.244 0.244 0 0 
2005  23277552 2419327 4231216  635394  635394 0 0 0.260 0.260 0 0 
2006  27480851 2294441 3513067  507372  507372 0 0 0.231 0.231 0 0 
2007  26245366 1797667 2996633  363669  363669 0 0 0.197 0.197 0 0 
2008  26192928 1444105 3051061  252458  252458 0 0 0.128 0.128 0 0 
2009  35039971 1525755 3509556  183506  183506 0 0 0.076 0.076 0 0 
2010  37095269 1899308 4085685  192336  192336 0 0 0.078 0.078 0 0 
2011  31139884 2004690 4231216  217075  217075 0 0 0.093 0.093 0 0 
 
[Col2=Recruitment, Col3=SSB, Col4=TSB, Col5=total catch, Col6=human consumption 
landings, Col7=discards, Col8=industrial bycatch, Col9=total F, Col10=human 
consumption F, Col11=discards F, Col12=industrial bycatch F] 
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Figure A7.1.1. North Sea herring stock–recruit fits for Ricker (top), Beverton–Holt (middle) and 
smooth Hockey-stick (bottom). The left hand figures illustrate the 95th, 90th, median, 10th, and 
5th percentiles from the successful MCMC samples, plotted with the assessment data points; the 
right hand figures provide 100 illustrative resamples. The estimates derived from MCMC sam-
pling are illustrated in red; the deterministic estimates in blue. The bottom row in the legends 
indicates the number of successful resamples (i.e. with feasible stock–recruit parameters). 
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Figure A7.1.2. North Sea herring yield and SSB based on the Ricker stock and recruitment model 
estimates. Top: box plots of Fmsy and Fcrash with proxies for Fmsy based on the yield-per-recruit: 
Fmax, F0.1, F35% and F40% SPR also Flim, Fpa and F in the final year; middle: equilibrium land-
ings vs. fishing mortality; bottom: equilibrium SSB vs. fishing mortality. The left hand figures 
illustrate the 95th, 90th, median, 10th, and 5th percentiles from the successful MCMC samples, 
plotted with the assessment data points; the right hand figures provide 100 illustrative resamples. 
The estimates derived from MCMC sampling are illustrated in red; the deterministic estimates in 
blue. 
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Figure A7.1.3. North Sea herring yield and SSB based on the Beverton–Holt stock and recruitment 
model estimates. See Figure A7.1.2 for further details. 
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Figure A7.1.4. North Sea herring yield and SSB based on the Hockey-stick stock and recruitment 
model estimates. See Figure A7.1.2 for further details. 
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Figure A7.1.5. North Sea herring combined distribution of FMSY and Fcrash weighted by model like-
lihood. The weights derived likelihood are given in the legend. 
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Figure A7.1.6. North Sea herring combined distribution of FMSY and Fcrash weighted by model like-
lihood with no selectivity variability. [Note the scale on the horizontal axis differs from Fig-
ure A7.1.5.] 

 

 



ICES WGMG REPORT 2013 |  75 

North Sea Cod 

Information from the .sen and .sum files, is given in Table A7.1.2. For North Sea Cod, 
the SR fits show that the SR relationship is estimated to be mostly linear within the 
historically observed range (Figure A7.1.7). Consequently any movement in the 
direction of FMSY should be cautious as the maxima of the Beverton–Holt and Ricker 
SR curves are poorly estimated. For all three SR forms (Figures A7.1.8-A7.1.10), FMSY 
is estimated with reasonably tight bounds and well below Fcrash. Weighting the 
estimates by likelihood (Figure A7.1.11) gives an estimate of FMSY around 0.24, but 
for all Ricker and Beverton–Holt SR forms the actual yield and SSB that can be 
achieved at FMSY is uncertain, as these F levels have not been observed during the 
period for which data exists. Figure A7.1.12 plots the probability of SSB < Blim for 
when results are weighted by the likelihood values, where the F associated with a 5% 
probability is given as 0.69. This value is slightly higher than the value currently used 
value for Fpa (0.65). The rather narrow confidence intervals on the F-based reference 
points (Figures A7.1.8-A7.1.10) raises the possibility that the CVs used in the sen file 
may be too small for this stock, and highlights the care with which this file needs to 
be constructed. 
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Table A7.1.2. Cod input files: Extracts of the relevant information from the sen and sum files used 
by PlotMSY. 

(a) Sen file 

… 
sH1 0.016 0.175 
sH2 0.176 0.097 
sH3 0.483 0.076 
sH4 0.598 0.079 
sH5 0.648 0.085 
sH6 0.698 0.109 
sH7 0.690 0.109 
sD1 0.128 0.175 
sD2 0.280 0.097 
sD3 0.159 0.076 
sD4 0.060 0.079 
sD5 0.021 0.085 
sD6 0.018 0.109 
sD7 0.026 0.109 
WH1 0.747 0.112 
WH2 1.306 0.143 
WH3 2.634 0.137 
WH4 4.236 0.097 
WH5 6.104 0.062 
WH6 7.642 0.050 
WH7 9.701 0.040 
WD1 0.286 0.255 
WD2 0.755 0.282 
WD3 1.726 0.419 
WD4 3.542 0.542 
WD5 5.964 0.480 
WD6 6.674 0.345 
WD7 8.823 0.792 
WS1 0.339 0.196 
WS2 0.964 0.138 
WS3 2.404 0.136 
WS4 4.173 0.093 
WS5 6.112 0.061 
WS6 7.647 0.059 
WS7 9.770 0.036 
 M1 1.039 0.100 
 M2 0.698 0.100 
 M3 0.490 0.100 
 M4 0.233 0.100 
 M5 0.200 0.100 
 M6 0.200 0.100 
 M7 0.200 0.100 
MT1 0.010 0.000 
MT2 0.050 0.100 
MT3 0.230 0.100 
MT4 0.620 0.100 
MT5 0.860 0.000 
MT6 1.000 0.000 
MT7 1.000 0.000 
… 
[Column 1: sH=human consumption selection, sD=discard selection, WH=human 
consumption mean weights, WD=discard mean weights, WS=stock mean weights, 
M=natural mortality, MT=maturity; Column 2: point estimates; Column 3: 
estimates of precision (CV)]
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(b) Sum file 
… 
1963  466 152  514 125 111 14 0 0.49 0.43 0.05 0 
1964  853 164  687 153 140 13 0 0.51 0.47 0.04 0 
1965 1070 204  863 203 182 21 0 0.54 0.49 0.06 0 
1966 1379 227 1051 249 217 32 0 0.56 0.49 0.07 0 
1967 1272 251 1136 298 265 34 0 0.61 0.54 0.07 0 
1968  657 262  944 300 279 21 0 0.64 0.59 0.04 0 
1969  606 259  805 240 228 12 0 0.62 0.59 0.03 0 
1970 1839 274 1333 268 244 24 0 0.64 0.58 0.06 0 
1971 2369 276 1460 352 291 61 0 0.71 0.58 0.12 0 
1972  584 241  977 362 328 34 0 0.77 0.70 0.07 0 
1973  875 213  801 260 235 25 0 0.75 0.68 0.07 0 
1974  808 232  755 241 216 25 0 0.74 0.66 0.08 0 
1975 1378 213  859 238 206 32 0 0.77 0.67 0.10 0 
1976  849 183  659 238 200 37 0 0.80 0.68 0.13 0 
1977 2097 161 1008 244 181 63 0 0.80 0.59 0.21 0 
1978 1272 160 1122 324 284 40 0 0.86 0.75 0.11 0 
1979 1435 167 1007 314 272 42 0 0.80 0.70 0.11 0 
1980 2274 182 1173 339 273 66 0 0.86 0.69 0.17 0 
1981  886 195  990 363 325 38 0 0.89 0.80 0.09 0 
1982 1407 188 1019 335 294 40 0 0.98 0.87 0.12 0 
1983  819 155  818 282 257 26 0 0.97 0.88 0.09 0 
1984 1427 132  828 246 200 47 0 0.92 0.74 0.17 0 
1985  379 127  570 226 203 23 0 0.89 0.80 0.09 0 
1986 1693 116  777 206 162 45 0 0.94 0.73 0.20 0 
1987  671 109  740 248 218 30 0 0.94 0.83 0.11 0 
1988  462 101  551 200 187 13 0 0.95 0.89 0.06 0 
1989  768  94  538 169 136 33 0 0.97 0.78 0.19 0 
1990  334  80  379 136 114 22 0 0.91 0.76 0.15 0 
1991  370  74  350 120 105 15 0 0.91 0.80 0.11 0 
1992  793  71  518 135 108 27 0 0.88 0.70 0.18 0 
1993  447  69  431 149 124 26 0 0.89 0.74 0.15 0 
1994  944  72  527 153 115 38 0 0.91 0.68 0.23 0 
1995  558  81  563 186 152 34 0 0.93 0.76 0.17 0 
1996  404  79  459 166 143 23 0 0.96 0.82 0.13 0 
1997 1059  75  632 166 126 40 0 0.96 0.73 0.23 0 
1998  171  61  343 141 109 32 0 0.98 0.76 0.22 0 
1999  303  56  257 101  86 15 0 1.00 0.86 0.14 0 
2000  549  50  345 102  81 21 0 1.00 0.79 0.20 0 
2001  209  42  248  91  72 19 0 0.96 0.75 0.20 0 
2002  256  43  266  89  79  9 0 0.93 0.83 0.10 0 
2003  119  37  151  61  51 10 0 0.90 0.76 0.14 0 
2004  200  32  150  48  38  9 0 0.86 0.69 0.17 0 
2005  137  30  145  47  39  8 0 0.80 0.67 0.14 0 
2006  345  26  157  42  32 10 0 0.72 0.56 0.17 0 
2007  147  33  186  56  29 27 0 0.67 0.35 0.32 0 
2008  179  38  186  54  30 24 0 0.63 0.35 0.29 0 
2009  191  47  212  57  38 19 0 0.60 0.40 0.20 0 
2010  326  52  246  62  46 16 0 0.58 0.43 0.15 0 
2011  166  56  237  67  50 17 0 0.57 0.43 0.14 0 
 
[Col2=Recruitment, Col3=SSB, Col4=TSB, Col5=total catch, Col6=human consumption 
landings, Col7=discards, Col8=industrial bycatch, Col9=total F, Col10=human 
consumption F, Col11=discards F, Col12=industrial bycatch F] 
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Figure A7.1.7. North Sea cod stock–recruit fits for Ricker (top), Beverton–Holt (middle) and 
smooth Hockey-stick (bottom). See Figure A7.1.1 for more details. 
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Figure A7.1.8. North Sea cod yield and SSB based on the Ricker stock and recruitment model 
estimates. See Figure A7.1.2 for further details. 
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Figure A7.1.9. North Sea cod yield and SSB based on the Beverton–Holt stock and recruitment 
model estimates. See Figure A7.1.2 for further details. 
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Figure A7.1.10. North Sea cod yield and SSB based on the Hockey-stick stock and recruitment 
model estimates. See Figure A7.1.2 for further details. 
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Figure A7.1.11. North Sea cod combined distribution of FMSY and Fcrash weighted by model likeli-
hood. 
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Figure 7.1.12. North Sea cod probability of SSB < Blim for the combined analysis weighted by 
model likelihood, indicating the F value coinciding with a 5% probability. 
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A7.2. Derivation of basic equations 

Population Dynamics 

Definitions for all symbols used are provided in Table A7.2.1. 

Stock–recruit function: 

)( ,, ryssbyry BgRN −==  A7.2.1 

Population numbers-at-age: 

2,,1,,,,
,1,1 −+== −−

++ ArraeNN ayyac MFs
ayay   A7.2.2 

AyyAcAyyAc MFs
Ay

MFs
AyAy eNeNN ,,1,1,

,1,,1
−−−−

−+ += −−  A7.2.3 

Catch numbers-at-age: 

ArraeN
MFs

Fs
C ayyac MFs
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,
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,
, +=−

+
= −−  A7.2.4 

Spawning-stock biomass: 

∑
=
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A
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MmFsf
ayaaysyssb

ayyaceNQwB ,,
,,,,  A7.2.5 

 

Stock–recruit functions g: 

Ricker: 

ryssbB
ryssby eBR −−

−= ,
,

βα  A7.2.6 

Beverton–Holt: 

ryssb

ryssb
y B

B
R
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+
=

,

,

β
α

 A7.2.7 

Smooth Hockey-stick: 

[ ]4/)(4/ 22
,

22
, γβγβα +−−++= −− ryssbryssby BBR  A7.2.8 

where ssbB01.0=γ . This formulation reduces to the following when γ=0: 


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


<

≥
=

−−

−

βα

βαβ
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y BB

B
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Yield-per-recruit and SSB-per-recruit 

Derivations of yield- and SSB-per-recruit are given in Section A7.3, and are as follows 
(given that these follow from equilibrium considerations, the year subscript is 
dropped): 
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A specification of whether total, landings or discard yield-per-recruit (ypr) is being 
considered is needed in order to complete the formulation of equation A7.2.9, where 
Y/R, wa and sa are formulated generically; for example, these need to be replaced by 
YC/R, wc,a and sc,a for total ypr, and by YL/R, wl,a and sl,a for landings ypr (a=r, r+1, …, A; 
Section A7.3). 

 

Calculation of F0.1, Fmax and Fx%SPR 

F0.1 and Fmax are estimated calculating the derivative with respect to F of ypr 
equation A7.2.9, as shown in Section A7.4. Fx%SPR (typically x=35 or 40) is derived by 
solving equation A7.2.10 for the F that gives x% of Bssb/RF=0 (the Bssb/R value for F=0 in 
equation A7.2.10). 

 

Calculation of MSY quantities 

MSY quantities are also derived from ypr equation A7.2.9, but they need to 
incorporate the stock–recruit relationship. In order to do this, the stock–recruit 
functions, g, need to be re-formulated as R = g(Bssb/R): 

Ricker: 

)(
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RBR
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ssb

β
α

=  A7.2.11 

Beverton–Holt: 
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RBR
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Smooth Hockey-stick: 
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=  A7.2.13 

Doing this makes it straight-forward to multiply equation A7.2.9 with the stock–
recruit function and then to substitute equation A7.2.10 into the resultant equation in 
order to have an expression of yield in terms of F.  
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Yield is calculated by substituting the relevant equations A7.2.9-13 into the following, 
so that it is expressed in terms of F (and not R or Bssb): 

)()( RBgRYY ssb×=  A7.2.14 

[Note, however, that this procedure (of expressing g in terms of Bssb/R) is not, strictly 
speaking, needed for the Hockey-stick model, as only the horizontal part of the curve 
would be used in calculations of MSY quantities, which amounts to multiplying 
equation A7.2.9 by a constant (2αβ in equation A7.2.8a).] 

FMSY is then the value of F for which 0=∂∂ FY . Other MSY quantities follow by 
making relevant substitutions in equations A7.2.9-13. 

 

Including uncertainty in biological and fishery-related variables 

Assuming that estimates of precision (CVs) are available for the variables aM ′ , aQ′ , 

asw ,′ , aw′  and as′  (given here as point estimates, with the latter two being treated 

generically, but could be specific to one of several catch components), say 
aMν , 

aQν , 

asw ,
ν , 

awν  and 
asν  (note these are all CVs) then given a random variable ε drawn 

from a N(0;1) distribution (one for each biological or fishery-related variable at age), 
uncertainty in these variables are included as follows: 

Natural mortality: 

}001.0);1(max{
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Proportion mature: 
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For :0=′aQ  Set 0=aQ  

Mean weights (for stock w=ws,a, and for the relevant catch component, e.g. landings, 
w=wl,a): 

25.0 wwweww νεν ′−′′=  

where )1ln( 2 +=′ ww vv  

Selectivity of the relevant catch component (e.g. for landings sa=sl,a): 

}0);1(max{
aa ssaa ss εν+′=  
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Table A7.2.1. Definition of terms 

y Year 
a Age 
r; A age at recruitment (r) and of the plus-group (A) 
Ny,a Number of fish in year y and age a 
Ry Recruitment in year y  
Bssb,y Spawning-stock biomass in year y. For the purposes of fitting the smooth 

Hockey-stick given in equation A7.2.8, the average over the whole time-
series, ssbB , is used. 

g The stock–recruit function 
α, β, γ Parameters of the stock–recruit functions (note, γ is fixed to ssbB01.0 ) 

My,a Natural mortality in year y and age a 
Fy Fishing mortality in year y 
sa; sc,a; sl,a; sd,a Fishery selection at age a, given in generic form (sa) for the purposes of 

equation A7.2.9, and relevant to the total catch (c), landings (l) and 
discards (d), respectively 

Cy,a Total catch numbers in year y and age a 
Qa Proportion mature at age a 
f, m Proportion of fishing (f) and natural mortality (m) prior to spawning 
ws,y,a Mean weights in the stock in year y and age a. For equilibrium 

equations, the year subscript is dropped to give ws,a. 
wa; wc,a; wl,a; 
wd,a 

Mean weights at age a, given in generic form (wa) for the purposes of 
equation A7.2.9, and relevant to the total catch (c), landings (l)and 
discards (d), respectively 

Y/R; YC/R; 
YL/R; YD/R 

Yield-per-recruit, given in generic form (Y/R) for the purposes of 
equation A7.2.9, and relevant to the total catch (C), landings (L)and 
discards (D), respectively 

Bssb/R Spawning-stock biomass per recruit 
F0.1; Fmax; 
Fx%SPR 

Fishing mortality reference points based on yield-per-recruit. Typically, 
x=35 or 40 in Fx%SPR. 

FMSY Fishing mortality at maximum sustainable yield 
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A7.3. Equilibrium calculations 

Assuming Ny,r = R and Fy = F for all y, we have: 

Age Population numbers Total Yield SSB 
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Summing across all ages, Total Yield and SSB can therefore be calculated as follows: 

Total Yield: 
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Total Yield-per-recruit and SSB-per-recruit follow by simply dividing equations A7.3.1 and A7.3.2 by R. 

 

Where the catch is made up of different components (e.g. landings and discards), then the weight-at-age of the catch is calculated as follows: 
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Substituting equation A7.3.3 into A7.3.1 means that YC can be expressed as YC = YL + YD, where for example Landings Yield YL is as follows: 
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where 
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Similar expressions can be obtained for YD and sd,a. 
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A7.4. Derivation of F0.1 and Fmax 

Differentiating equation A7.2.9 with respect to F, we have: 
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F0.1 is calculated by finding the value of F which results in: 
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where the right-hand-side is derived by setting F=0 in equation A7.4.1: 
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Fmax is calculated by finding the value of F which results in:  
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A7.5. Installation and user instructions 

The R function plotMSY() provides an interface to ADMB code to calculate FMSY and 
potential proxies for fish stocks. FMSY is calculated based on the three common stock 
recruit relationships; Ricker, Beverton–Holt and Hockey-stick (approximated by a 
continuous function as formulated by Mesnil and Rochet, 2010). Data are input as sen 
and sum files in the Aberdeen file format, and output as a tab delimited text file 
(suitable for importing into Excel) and plots in Portable Network Graphics (PNG) 
format. 

Full details of the method used in this program to calculate MSY and related quanti-
ties are given in Sections A7.2-4. Please report any bugs to timothy.earl@cefas.co.uk 
to see whether these can be removed in future versions.  

 

Installation 

While running, the function creates and deletes a number of files in the working di-
rectory. It is therefore recommended that no user files are stored in the same directo-
ry as the executable files. Input and output files may be stored in subdirectories of the 
working directory. 

The minimum requirement for the program to run in R is that there must be a direc-
tory containing the following files: 

• srmsymc.exe and srmsymc2.exe – compiled ADMB code. Where the exe-
cutables are provided as source code, they should be compiled with 
ADMB 4.4.0 or later. 

• readLow.r – for reading Lowestoft format files to find pf and pm 
• plotMSY.r as an interface to the ADMB code 
• run_plotMSY.r – a simplified interface for running plotMSY.r 
• convertSumSen.r for file type conversions 
• A subdirectory called “output” used by default for text and PDF output 

files. 

The functions have been tested with R versions 2.8, 2.9, 2.10 and 2.14. It may work 
under other versions, and has no dependencies except base packages. 

Running the program 

The program requires a sen and sum file in the Aberdeen file formats (see Ta-
bles A7.5.1 and A7.5.2). These should be in the same directory (as each other) and 
have the same name except for the extension. Optionally an index file in the Lowes-
toft file format can be provided, which is used to find the files containing pm and pf, 
the proportion of fishing mortality and natural mortality occurring before spawning.  

If sen and sum files of the required format are not available, dat files can be provided 
in the format required by ADMB – examples are provided in Table A7.5.3. 

An example of the input files, is the files cod.sum and cod.sen (Tables A7.5.1 and 
A7.5.2 respectively). These should be saved in a directory called “cod data” within 
the working directory to run the examples below.  

 

mailto:timothy.earl@cefas.co.uk
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Method 1 

Edit the working directory and “settings” section in run_plotMSY.r and save it. 
This script can then be run in R. After executing the script, the variable stock con-
tains the data from this run. 

Method 2 

Set the R working directory to the folder containing the directory with the executable 
files and R scripts. This can be done from the “file” menu in R, by choosing “Change 
dir…” (this only needs to be done once in each R session), or using the command 
setwd(). 

Run the command 

> source("plotMSY.r") 

This should indicate that plotMSY has been loaded successfully. If not, ensure that 
the files listed in the “Installation” section are in the same folder, and that this is the 
working directory. 

Run the plotMSY() function with appropriate  parameters, for example to use the 
example cod data (instructions for saving this data are above) use a command such 
as: 

cod = plotMSY (".\\cod data\\cod.sen", pfpm=c(0,0), nits=10) 

which will produce output in folder .\\output\\cod\\. The R object called “cod” 
may also be useful for diagnostics 
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Table A7.5.1. cod.sum (information used by PlotMSY given in bold). 
Stock summary  Cod in Division 347 
12 
1 0 0 
Year 
1963 2011 
 Recruits  age 1  (millions) 
1 1000000 
 SSB  ('000 t) 
1000 
 TSB  ('000 t) 
1000 
 Catch  Total  ('000 t) 
1000 
 Catch  H.cons ('000 t) 
1000 
 Not used used 
1000 
 Not used used 
1000 
 Mean F  Total 
2 4 
 Mean F  H.cons. 
2 4 
 Not used used 
0 0 
 Not used used 
0 0 

1963 465.56 151.90 514.01 124.99 111.46 13.54 0 0.485 0.432 0.053 0 
1964 852.56 164.23 686.94 152.82 139.57 13.25 0 0.513 0.469 0.044 0 
1965 1069.82 203.82 862.85 203.21 182.00 21.21 0 0.543 0.486 0.057 0 
1966 1379.18 227.29 1050.73 249.20 217.11 32.09 0 0.560 0.488 0.072 0 
1967 1271.87 251.45 1135.97 298.05 264.53 33.51 0 0.605 0.537 0.068 0 
1968 656.71 262.24 944.11 299.54 278.63 20.91 0 0.635 0.591 0.044 0 
1969 606.22 258.59 804.52 239.67 227.53 12.14 0 0.623 0.591 0.032 0 
1970 1839.49 273.76 1333.08 268.07 244.04 24.03 0 0.639 0.582 0.057 0 
1971 2369.05 276.23 1460.08 351.86 290.81 61.05 0 0.705 0.583 0.122 0 
1972 584.20 241.35 976.76 361.86 327.54 34.32 0 0.768 0.695 0.073 0 
1973 875.02 213.20 800.51 259.63 235.05 24.58 0 0.752 0.681 0.071 0 
1974 807.74 232.35 755.40 240.87 215.94 24.93 0 0.736 0.660 0.076 0 
1975 1377.80 212.99 859.41 238.47 206.32 32.15 0 0.772 0.668 0.104 0 
1976 849.16 182.96 659.34 237.52 200.21 37.31 0 0.803 0.677 0.126 0 
1977 2096.96 161.14 1007.52 244.02 181.09 62.93 0 0.798 0.592 0.206 0 
1978 1271.87 160.33 1122.42 323.51 283.95 39.56 0 0.858 0.753 0.105 0 
1979 1435.47 166.71 1006.51 314.27 272.41 41.86 0 0.804 0.697 0.107 0 
1980 2273.88 181.50 1172.91 339.42 272.98 66.45 0 0.860 0.692 0.168 0 
1981 885.58 194.66 989.54 362.94 324.70 38.24 0 0.890 0.796 0.094 0 
1982 1407.04 188.34 1018.66 334.70 294.49 40.21 0 0.983 0.865 0.118 0 
1983 819.13 154.97 817.50 282.38 256.81 25.57 0 0.972 0.884 0.088 0 
1984 1426.88 132.46 828.19 246.22 199.59 46.63 0 0.916 0.743 0.173 0 
1985 378.51 126.63 569.78 225.71 202.93 22.78 0 0.887 0.797 0.090 0 
1986 1692.98 115.73 776.85 206.49 161.64 44.85 0 0.936 0.733 0.203 0 
1987 671.32 108.99 739.70 248.20 218.27 29.93 0 0.938 0.825 0.113 0 
1988 462.31 100.61 550.73 199.59 186.64 12.94 0 0.948 0.887 0.061 0 
1989 767.58 94.28 538.21 169.06 136.47 32.59 0 0.966 0.780 0.186 0 
1990 333.70 80.18 378.89 136.22 114.42 21.79 0 0.906 0.761 0.145 0 
1991 370.28 73.64 350.46 120.21 105.48 14.74 0 0.910 0.798 0.112 0 
1992 792.54 71.11 517.62 134.86 107.77 27.09 0 0.877 0.701 0.176 0 
1993 446.86 68.60 431.06 149.34 123.69 25.66 0 0.891 0.738 0.153 0 
1994 944.11 72.11 527.02 153.43 115.05 38.38 0 0.906 0.679 0.227 0 
1995 557.94 81.06 562.98 185.91 152.10 33.80 0 0.934 0.764 0.170 0 
1996 403.53 79.22 459.09 165.55 142.84 22.71 0 0.955 0.824 0.131 0 
1997 1059.17 75.21 632.23 166.38 126.33 40.04 0 0.961 0.730 0.231 0 
1998 170.59 61.27 342.83 140.79 108.72 32.07 0 0.980 0.757 0.223 0 
1999 303.46 55.94 256.53 100.91 86.42 14.50 0 0.999 0.856 0.144 0 
2000 548.53 49.66 344.90 101.93 81.09 20.83 0 0.995 0.792 0.203 0 
2001 208.98 41.73 247.95 90.85 71.59 19.26 0 0.956 0.753 0.203 0 
2002 255.76 42.57 266.47 88.52 79.03 9.49 0 0.926 0.827 0.099 0 
2003 119.13 36.90 151.00 60.72 51.03 9.69 0 0.901 0.757 0.144 0 
2004 200.19 31.98 149.64 47.62 38.27 9.35 0 0.857 0.689 0.168 0 
2005 137.45 29.76 144.93 47.05 39.11 7.94 0 0.800 0.665 0.135 0 
2006 344.90 26.24 156.53 41.61 31.93 9.68 0 0.723 0.555 0.168 0 
2007 147.12 32.83 185.54 56.11 29.20 26.90 0 0.669 0.348 0.321 0 
2008 178.80 38.25 186.09 54.12 29.66 24.46 0 0.630 0.345 0.285 0 
2009 191.19 47.19 211.72 56.90 37.67 19.23 0 0.602 0.399 0.203 0 
2010 326.44 51.79 246.23 61.82 45.83 15.99 0 0.583 0.432 0.151 0 
2011 165.71 56.33 236.81 66.90 50.16 16.75 0 0.572 0.429 0.143 0 

 
[Col2=Recruitment, Col3=SSB, Col4=TSB, Col5=total catch, Col6=human consumption landings, 
Col7=discards, Col8=industrial bycatch, Col9=total mean F, Col10=human consumption mean F, 
Col11=discards mean F, Col12=industrial bycatch mean F] 
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Table A7.5.2. cod.sen (information used by PlotMSY given in bold). 
cod347 
1 7 2011 3 First age, last age, starting year, number of catch 
components 
    (H=human consumption, D=discards, I=industrial bycatch) 
1 1 0  Catch components used (1=used, 0=not used) 
'N1' 327748 0.458  Population estimates in 2011 (survivors) with CV 
'N2' 49021 0.214 
'N3' 32860 0.165 
'N4' 6374 0.147 
'N5' 2101 0.148 
'N6' 821 0.176 
'N7' 829 0.198 
'sH1' 0.016 0.175  Human consumption F at age in 2011 with CV 
'sH2' 0.176 0.097 
'sH3' 0.483 0.076 
'sH4' 0.598 0.079 
'sH5' 0.648 0.085 
'sH6' 0.698 0.109 
'sH7' 0.690 0.109 
'sD1' 0.128 0.175  Discard F at age in 2011 with CV 
'sD2' 0.280 0.097 
'sD3' 0.159 0.076 
'sD4' 0.060 0.079 
'sD5' 0.021 0.085 
'sD6' 0.018 0.109 
'sD7' 0.026 0.109 
'WH1' 0.747 0.112  Human consumption weights at age in 2011 with CV 
'WH2' 1.306 0.143 
'WH3' 2.634 0.137 
'WH4' 4.236 0.097 
'WH5' 6.104 0.062 
'WH6' 7.642 0.05 
'WH7' 9.701 0.04 
'WD1' 0.286 0.255  Discard weights at age in 2011 with CV 
'WD2' 0.755 0.282 
'WD3' 1.726 0.419 
'WD4' 3.542 0.542 
'WD5' 5.964 0.48 
'WD6' 6.674 0.345 
'WD7' 8.823 0.792 
'WS1' 0.339 0.196  Stock weights at age in 2011 with CV 
'WS2' 0.964 0.138 
'WS3' 2.404 0.136 
'WS4' 4.173 0.093 
'WS5' 6.112 0.061 
'WS6' 7.647 0.059 
'WS7' 9.770 0.036 
'M1' 1.0385 0.1  Natural mortality-at-age in 2011 with CV 
'M2' 0.6975 0.1 
'M3' 0.4895 0.1 
'M4' 0.2325 0.1 
'M5' 0.2 0.1 
'M6' 0.2 0.1 
'M7' 0.2 0.1 
'MT1' 0.01 0  Proportion mature at age in 2011 with CV 
'MT2' 0.05 0.1 
'MT3' 0.23 0.1 
'MT4' 0.62 0.1 
'MT5' 0.86 0 
'MT6' 1 0 
'MT7' 1 0 
'R06' 117233 0.458  Estimated recruitment for 2012 with CV 
'R07' 117233 0.458  Estimated recruitment for 2013 with CV 
'HF06' 1 0.05  Year-effect multipliers on human consumption & discard F 
with CV 
'HF07' 1 0.05  (Industrial multiplier would appear separately if used) 
'HF08' 1 0.05 
'K06' 1 0.1  Year-effect multipliers on natural mortality with CV 
'K07' 1 0.1 
'K08' 1 0.1  
Cod    Information from Aberdeen suite files (can be ignored) 
347 
1 
1 7 1 
2 
H.cons. 
2 4 
Discards 
2 4 
1963 2011 
Stock numbers in 2011 are SAM estimates 
-1    
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Table A7.5.3. Example dat files when sum and sen files are not used. 

(a) srmsymc.dat 

#stkname, filname // stkname=stock dealing with; filname=name of 2nd file 
out out.dat  
#ybeg, yend, r, A, Ropt, simopt, senopt,penopt // ybeg=1st yr; yend=last yr; 
# r=recr age; A=plusgroup; Ropt=S-R function type, simopt (0=no sim, 1=do sim); 
# senopt (0=error only in recr, 1=error in recr & steady-state vectors); 
# penopt(0=no SR constraints, 1=apply SR constraints) 
1963 2011 1 7 1 1 1 1  
#R, Bssb // R=recr; Bssb=SSB 
 465.56 151.90 
 852.56 164.23 
1069.82 203.82 
1379.18 227.29 
1271.87 251.45 
 656.71 262.24 
 606.22 258.59 
1839.49 273.76 
2369.05 276.23 
 584.20 241.35 
 875.02 213.20 
 807.74 232.35 
1377.80 212.99 
 849.16 182.96 
2096.96 161.14 
1271.87 160.33 
1435.47 166.71 
2273.88 181.50 
 885.58 194.66 
1407.04 188.34 
 819.13 154.97 
1426.88 132.46 
 378.51 126.63 
1692.98 115.73 
 671.32 108.99 
 462.31 100.61 
 767.58  94.28 
 333.70  80.18 
 370.28  73.64 
 792.54  71.11 
 446.86  68.60 
 944.11  72.11 
 557.94  81.06 
 403.53  79.22 
1059.17  75.21 
 170.59  61.27 
 303.46  55.94 
 548.53  49.66 
 208.98  41.73 
 255.76  42.57 
 119.13  36.90 
 200.19  31.98 
 137.45  29.76 
 344.90  26.24 
 147.12  32.83 
 178.80  38.25 
 191.19  47.19 
 326.44  51.79 
 165.71  56.33 
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(b) out.dat 

#fno, sno, f, m // fno=nr fleets; sno=fleet for ypr stats; f=F before spwn; 
# m=M before spwn 
2 1 0 0  
#sdat // col1=sel fleet 1 (landings); col2=sel fleet 2 
0.0273348519362187 0.2186788154897490  
0.3006833712984050 0.4783599088838270  
0.8251708428246010 0.2716400911161730  
1.0216400911161700 0.1025056947608200  
1.1070615034168600 0.0358769931662870  
1.1924829157175400 0.0307517084282460  
1.1788154897494300 0.0444191343963554  
#sdat cv // col1=sel fleet 1 (landings); col2=sel fleet 2 
0.175 0.175  
0.097 0.097  
0.076 0.076  
0.079 0.079  
0.085 0.085  
0.109 0.109  
0.109 0.109  
#wdat // col1=wght fleet 1 (landings); col2=wght fleet 2 
0.747 0.286  
1.306 0.755  
2.634 1.726  
4.236 3.542  
6.104 5.964  
7.642 6.674  
9.701 8.823  
#wdat cv // col1=wght fleet 1 (landings); col2=wght fleet 2 
0.112 0.255  
0.143 0.282  
0.137 0.419  
0.097 0.542  
0.062 0.480  
0.050 0.345  
0.040 0.792  
#biodat // col1=natural mortality; col2=maturity; col3=wght in stock 
1.0385 0.01 0.339 
0.6975 0.05 0.964 
0.4895 0.23 2.404 
0.2325 0.62 4.173 
0.2000 0.86 6.112 
0.2000 1.00 7.647 
0.2000 1.00 9.770 
#biodat cv // col1=natural mortality; col2=maturity; col3=wght in stock 
0.1 0.0 0.112 
0.1 0.1 0.143 
0.1 0.1 0.137 
0.1 0.1 0.097 
0.1 0.0 0.062 
0.1 0.0 0.050 
0.1 0.0 0.040 

Notes on dat files shown in Table A7.5.3: 
• Positioning of comment lines is important. Additional comment lines should not be added. 
• Filename in “srmsymc.dat” indicates the name of the file called “out.dat” in this example. 
• multiple entries on a line should be separated by space(s) or tab(s) 
• line breaks separate data for each year (srmsymc.dat) or age (out.dat). The number of lines 

should correspond to the year range and age range given in line 4 of srmsymc.dat. 
• The remaining parameters on line 4 are: 

Ropt – stock recruit option (ignored by plotMSY)  
simopt – use Monte Carlo Markov Chain, always 1 (TRUE) 
senopt – add noise to biological parameters 1 (TRUE) or 0 (FALSE)  
penopt – penalise unfeasible SR relationships, i.e. where alpha or beta are less than zero, or 

the Hockey-stick breakpoint is outside the range of the data.  
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Function arguments 

In general, the program is run with the following command (Table A7.5.4 describes 
the arguments used): 

plotMSY(senfilename, indexfilename, pfpm, srweights, trimming, 
nits, nhair, varybiodata, stockname, fpa, flim, bpa, blim, 
outputfolder, datfilename, silent, onlyYPR) 

 

Table A7.5.4. Description of arguments to the plotMSY() function. 

senfilename Name of the sen file, including absolute or relative path, e.g. 
“.\\data\\cod.sen”. 
Default is NA, which provides interactive file selection in Windows. 

indexfilename Name and path of the Lowestoft index file used to find pf and pm.  
Default is NA which provides interactive file selection occurs in Windows. 
indexfilename is ignored if pfpm is provided and pfpm is not NA.  

pfpm A vector of two numbers, pf and pm, e.g. c(0,0). pf is the proportion of 
fishing mortality that occurs before spawning, pm is the proportion of 
natural mortality that occurs before spawning.  
Default is NA which looks up pf and pm from the Lowestoft format file 
indicated by indexfilename. 

srweights The relative weights to be given to each of the stock–recruit functions, a 
vector of 3 non-negative numbers, in the order Ricker, Beverton–Holt, 
smooth Hockey-stick. NA is used to indicate automatic weighting by 
likelihood. If any value is NA, all values must by NA or 0 – i.e. manual and 
automatic weighting cannot be combined. 
Default is c(NA,NA,NA). See below for details of automatic weights and 
trimming. 

trimming Proportion of least likely iterations to trim from the harmonic mean when 
calculating automatic weights for SR models. NA is used to create a 
diagnostic for choosing a suitable value of trimming. See below for details 
of automatic weights and trimming. 

nits Number of iterations of the MCMC to output. The MCMC will perform 
100,000 iterations as a burn in, and then output every 10,000th iteration 
until nits iterations have been output.  
Default is 100. 

nhair Maximum  number of lines to output on “hair plots”. 
Default is 100. 

varybiodata If TRUE, (default) bootstraps the biological data (weight, maturity, 
mortality) 
If FALSE, varies SR relationship only. 

stockname Display title for stock used in titles and output path.  
Defaults to senfilename without the “.sen” extension. 

fpa Value of Fpa to be plotted on output.  
Default NA indicates no value plotted. 

flim Value of Flim to be plotted on output. 
Default NA indicates no value plotted. 

bpa Value of Bpa – currently not used.  
Default NA indicates no value plotted. 

blim Value of Blim to be plotted on output. 
Default NA indicates no value plotted. 

outputfolder Location for output files.  
Defaults to ".\\output\\[stockname]\\" 
(Note: the ’.’ is interpreted by R as the current working directory.) 
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Datfilename Name and path of a pre-calculated dat file. If datfilename is provided, 
senfilename, indexfilename, varybiodata and pfpm are ignored*. 
Default is NA. 

Silent Suppresses the majority of the output to screen. 
Default is TRUE. 

onlyYPR Calculates only the yield-per-recruit statistics. Used when the SRRs are not 
believed to be reliable, or are hard to estimate. 

*if datfilename and senfilename are both provided, data from the dat file will be passed to the ADMB 
executable. If a sum file with the same name as senfilename exists, this will be used to add historic data 
points to the yield and SSB plots, and provide text for the plot axis labels. The sen file need not exist. 

 

During execution, the R window may appear to stop responding, as it has passed 
control to an external executable. It will resume when the executable is complete. The 
only way to halt execution is to close R (Since R version 2.14, pressing ‘escape’ may 
cancel execution part way through). The largest influence on the execution time is the 
value of nits; typical execution times for values of nits on a PC are given in 
Table A7.5.5. 

 

Table A7.5.5. Typical execution times for plotMSY, recorded for R version 2.10.1 running 
under XP 32 bit on a 2.3Ghz processor with 3.45GB RAM 

nits Total execution time (min:sec) 
10 0:24 

100 1:49 
1000 15:50 

 

Output files 

The function creates the files described below and invisibly returns a list to R. The list 
contains the same data as in the [stock].txt file, except the header information. The 
contents of the image files (those marked with ‘*’ are not produced when running 
with the ‘onlyYPR’ option) and the files produced are as follows (‘[stock]’ is replaced 
by the name of the stock given to the function): 

• [stock]_SRR.png* illustrates the uncertainty inherent in the estimation of the 
stock and recruitment curves. The left hand curves in each figure illustrate the 
confidence intervals from X/nits resamples (printed at the bottom of the legend) 
from the MCMC chain; where X (recorded in the legend) represents the number 
of samples that have feasible parameter estimates (i.e. alpha and beta are positive 
for the usual parameterization of the functions). The right hand figures present 
curves plotted from the first nhair resamples for illustration. In this, and the 
following plots, the blue line indicates a deterministic estimate, separate from the 
MCMC chain. 

• [stock]_diagnostics.png* presents the range and correlation of the alpha and beta 
parameters for each stock and recruit function, the figures on the left as estimated 
using a transformation to increase orthogonality, on the right as defined for the 
original formulations of each of the curves. The transformation may reduce the 
correlation between the parameters allowing an improved estimate for both the 
Ricker and Beverton–Holt curve parameters.   

• [stock]_Yield_Ri.png* presents for the fit of the Ricker curve:  
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a) box plots of the estimated FMSY fishing mortality with proxies for FMSY, based 
on the yield-per-recruit definitions of Fmax, F0.1, F35% and F40%, and also Flim, Fpa 
and F in the final year, for comparison;  

b) the equilibrium landings vs. fishing mortality plot based on the fitted stock 
and recruit plot and the selection, maturity and weight at age data. The left 
hand figure illustrates the percentiles from re-sampling the MCMC chain 
with the assessment data points, the right hand figure the first nhair re-
samples of the estimated relationship;  

c) the equilibrium SSB vs. fishing mortality relationship for the fitted stock and 
recruit plot, selection, weight and maturity-at-age data, with the assessment 
data points.  

• [stock]_Yield_BH.png* – as stock_Yield_Ri.wmf for Beverton–Holt 
• [stock]_Yield_HS.png* – as stock_Yield_Ri.wmf for Hockey-stick 
• [stock]_YPR.png presents the yield-per-recruit output from the model: 

a) The estimates of Fmax, F0.1, F35% and F40% SPR with Flim, Fpa and the final year F. 
b) The human consumption yield-per-recruit at specified levels of fishing 

mortality. 
c) The spawner biomass per recruit at the specified level of fishing mortality.  

• [stock]_Fmsy.png* contains a histogram of the FMSY values estimated by the three 
stock–recruit models, weighting each model equally, with quantiles for the 
overall distribution. 

• [stock]_Fmsy2.png* contains a histogram of the FMSY values estimated by the 
three stock–recruit models, weighting each model either by its likelihood or by 
manually imposed weights, with quantiles for the overall distribution. The 
procedure for weighting by likelihood is to calculate the harmonic mean Hi for 
each model i using the number of samples given by nits, then to allocate a 
weighting to model i as follows: Hi/ΣiHi. A model can be ignored by either 
method (likelihood or manual weighting) by allocating a zero to it in the 
srweights vector. 

• [stock]_Fmsy3.png* is plotted if Blim is specified. This plot gives the probability of 
SSB being below Blim at different values of F using the weighted combination of 
stock–recruit models for whichever choice of weighting is used in the file 
[stock]_Fmsy2.png. This is done by sampling, at different values of F, a number 
of SSB values from each model in proportion to the relevant weighting, and 
calculating the proportion of SSB values from the combined set that are below 
Blim. The 5%-ile and corresponding F-value are shown as an indication of F values 
consistent with the precautionary approach. 

• [stock].txt is a tab delimited file (for Excel or similar spreadsheet packages) 
containing a summary of the output plotted in the images. This is split into three 
sections: 
a) A header, listing the stock name, senfile used, pf and pm or the index file 

used to find them, the number of MCMC iterations saved, whether variation 
in biological parameters is simulated and whether the SR relationships are 
constrained to be physically plausible. These all coincide with input 
parameters. 

b) For each Stock Recruitment relationship, the name of the SR relationship is 
followed by the number of MCMC iterations that produced feasible stock–
recruit parameters, and then a table indicating the estimated values of Fcrash, 
FMSY, MSY, BMSY, the transformed alpha and beta and their untransformed 
counterparts, and AICc. For each value, the deterministic value, mean, 
selected percentiles and coefficient of variation are given. Also included is N, 
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the number of iterations used to derive the statistic (the remainder having 
been discarded because of a boundary issue, such as F hitting an upper 
permitted bound, here 5 for Fcrash and 3 for FMSY). 

c) A table of per recruit statistics, giving the same statistics as in the previous 
table for F20%, F25%, F30%, F35%, F40%, F0.1, Fmax BMSYpr, MSYpr, Fpa and Flim. Fpa and 
Flim are provided as arguments to the function, rather than estimated by this, 
so there is no estimate of their variability. 

d) Aggregated percentiles of FMSY, Fcrash, MSY and BMSY are shown with models 
equally weighted and weighted either manually or proportionally to the 
likelihood of the model (labelled with _w), whichever of these weighting 
choices has been made. The weights applied to each model for the manual or 
likelihood weighting are also given. 

• [stock]_trim_diag.png is plotted if trimming is NA, it shows the weights 
allocated to the three stock–recruit functions under different levels of trimming. 

•  [stock] _trim_diag.csv is a csv file produced if trimming is NA, containing a 
table of the weights allocated to the three stock–recruit functions under different 
levels of trimming. 

 

Weighting and trimming 

Where there is no a priori information about the likelihood of each of the stock–recruit 
relationships being fitted to the data, the likelihood of each model can be assessed by 
taking the harmonic mean of the likelihoods of individual iterations of each stock–
recruit function (E.J. Simmonds, personal communication). Within this program, this 
is done by setting the srweights of two or three of the models to NA, this is referred 
to in this guide as automatic weighting.  

The harmonic mean of likelihoods is numerically unstable, because a single low like-
lihood iteration can significantly alter the weights allocated to each model. To correct 
for this, the program allows the user to select a level of trimming which removes this 
proportion of the least likely iterations before calculating the harmonic mean. To 
allow the user to choose a suitable value of trimming, a diagnostic is available, pro-
duced with trimming=NA. This produces a plot and table showing the effect of dif-
ferent levels of trimming as is shown in Figure A7.5.1. A suitable choice of trimming 
would be the lowest value where the weights seem to have stabilized after the initial 
variability at low levels of trimming, perhaps 2% in this case. E.J. Simmonds (person-
al communication) suggested identifying the trimming value as the lowest value of 
trimming such that the maximum percentage difference by trimming an extra point 
is less than 1000/nits%. For example, Table A7.5.6 shows the start of a trim diagnos-
tics file for a simulation with nits=1000, so the least acceptable trim percentage is 
where the relative changes from one row to the next are all less than 1%. The percent-
age change in BH weight from 0.3-0.4 is 2.2%, but none of the percentage changes 
from 0.4-0.5 are greater than 1%, so a trim value of 0.4% would be chosen. 

To summarize the use of stock–recruit weights and trimming, a flow chart is shown 
in Figure A7.5.2, indicating a possible approach to identifying suitable values of these 
parameters for a stock. 
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Figure A7.5.1. Weights given to Stock–recruit functions under different levels of trimming. 

 

Table A7.5.6. Extract from an example trim diagnostics table. 

Trim Percentage Ricker Beverton–Holt Smooth Hockey-stick 

0 0.088663003 0.130909267 0.78042773 

0.1 0.131280931 0.134228228 0.73449084 

0.2 0.130347436 0.137496333 0.732156231 

0.3 0.123401989 0.137162076 0.739435935 

0.4 0.123312989 0.140222716 0.736464295 

0.5 0.12340671 0.141063786 0.735529504 

... ... ... ... 
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How many of the stock recruit forms are compatible with knowledge of  the stock

Use yield per 
recruit statistics
onlyYPR=TRUE

Use one SR form
onlyYPR=FALSE
srweights

=c(1,0,0)

Is there a knowledge about the 
likelihood of different stock recruit 
forms beyond the stock-recruit pairs in 
the .sen file?

Use two SR forms
onlyYPR=FALSE
srweights

=c(NA,NA,0)
trimming=NA

Use all SR forms
onlyYPR=FALSE
srweights
=c(NA,NA,NA)

trimming=NA

Use trim_diag.csv and trim_diag.png
to investigate whether trimming a small 
percentage (e.g 1%) removes instability in the 
weights

Use this information 
to set srweights

START

Yes

No

0 21 3

Re-run with trimmed mean by setting trim to a 
suitable value, or srweights to the weights 
corresponding to the chosen trim value

 

Figure A7.5.2. Flow chart as a guideline to help with the choice of relative stock–recruit function 
weights and appropriate level of trimming.  
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Annex 8: Method 2: EqSim 

This section is taken from an online pdf document that can be found at: 

https://github.com/wgmg/msyExamples 

To install the msy package the best way is to install devtools and use the function 
install_github. If you are using windows you will also need to install Rtools.exe 
which is a collection of software which enables you to compile R packages from 
source code. Run the following lines to install the latest version of msy; any other 
packages that you require will automatically be downloaded from CRAN, the R 
package repository. However, FLCore is also installed from github. 

library(devtools) 
install_github("msy", "wgmg") 
install_github("FLCore", "flr") 

 

A8.1. Exploring Maximum Sustainable Yield of North Sea Cod using EqSim 

First load the library and load in some data. The North Sea cod data has been 
preloaded as an FLStock object. The EqSim method requires an FLStock to work.  

library(msy) 
load("data/codNS.rData") 

In the following subsections, we will simulate the North Sea cod stock into the future 
under some basic assumptions. For the simulations, we need to choose which years 
we will use to generate noise in the quantities:  

• weight at age 
• maturity-at-age 
• natural mortality-at-age 
• selection pattern. 

We also need to choose a set of Fbar values to simulate over in order estimate F 
reference points. A convenient way to store this set up information is to contain it in a 
list. 

codsetup <- list( 
  data = codNS, 
  wt.years = c(2008, 2012), 
  Fscan = seq(0, 1.5, len = 40), 
  Bpa = 150000, 
  Blim = 70000, 
  Btrigger = 150000, 
  verbose = FALSE) # set verbose = TRUE to see simulation progress 

 

Segmented regression (Hockey-stick) worked example 

Using the settings defined above we can run the three components of the simulation 
approach for estimating MSY reference points. The components are: 

1. Estimate the stock recruitment relationship 
2. Simulate a stock to equilibrium and continue simulating for some years 
3. Calculate reference points from the simulated stock at equilibrium 

 

https://github.com/wgmg/msyExamples
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This is done in one go with the code 
codsg <- within(codsetup, { 
  fit <- fitModels(data, nsamp = 2000, model = "segreg") 
  sim <- EqSim(fit, wt.years = wt.years, Fscan = Fscan,  
    verbose = verbose) 
  ref <- Eqplot(sim, fit, Blim = Blim, Bpa = Bpa, plot = FALSE) 
}) 

The reference points can be accessed by 
t(codsg$ref$Refs) 
## F SSB Catch 
## Flim 0.7723 193985.6 322413 
## Flim10 0.7817 181018.7 305683 
## Flim50 0.8330 68887.8 125793 
## MSY:median 0.3462 765573.4 407897 
## Maxmeanland 0.3077 891186.0 410688 
## FCrash5 0.8077 145367.5 259684 
## FCrash50 0.8846 827.4 1714 

and summary plots are obtained by calling the Eqplot function again 
with(codsg, Eqplot(sim, fit, Blim = Blim, Bpa = Bpa)) 

The stock recruitment fit is returned by fitModels and is plotted using the SRplot 
function 

SRplot(codsg$fit) 

These are the main functions of the EqSim approach. The following paragraphs will 
cover each step in more detail. 

Model fitting 

Model fitting is done by maximum likelihood using the nlminb optimizer in R. By 
refitting to non-parametric bootstrap resamples of the stock and recruit pairs, 
samples from the approximate joint distribution of the model parameters can be 
made. This all happens in the fitModels function. The fitModels function first sets 
up the stock and recruit pairs based on the information in the FLStock object and 
removes any incomplete pairs before proceeding to the model fitting / averaging 
algorithm chosen. Currently only a bootstrap based model averaging method called 
smooth AIC is implemented fully. The details can be found in fitModelsBuck. The 
algorithm implemented is: 

1. take a resample with replacement from the stock and recruit pairs 
2. fit every stock–recruit model under consideration and store the AIC of each 
3. retain the parameter estimates from the best model 
4. repeat 

This process provides a robust way to average over several models, as long as the 
bootstrap resampling procedure provides an adequate approximation to the 
empirical distribution of the stock and recruits pairs. 

The arguments to the fitting function are 
args(fitModels) 
## function (stk, nsamp = 5000,  
##   models = c("ricker", "segreg", "bevholt"), 
##   method = "Buckland", runid = NULL, remove.years = NULL,  
##   delta = 1.3, nburn = 10000) 

where 

• stk is an FLStock, 
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• nsamp is the number of simulations to run a simulation for, 
• models is the models to average over (one model may be supplied),  
• remove.years is used to remove outlying years from the fit,  
• delta and nburn are related to an MCMC based fitting procedure that is not 

complete, 
• runid is an opportunity for the user to name the fit. 

The results from the fitting process are returned to the user as a list 
str(codsg$fit, 2) 
## List of 6 
## $ fit :'data.frame': 2000 obs. of 4 variables: 
## ..$ a : num [1:2000] 6.22 6.33 4.8 5.59 4.96 ... 
## ..$ b : num [1:2000] 166604 161872 240825 190059 285356 ... 
## ..$ cv : num [1:2000] 0.438 0.432 0.419 0.452 0.407 ... 
## ..$ model: chr [1:2000] "segreg" "segreg" "segreg" "segreg" 
## $ pred : num [1:2000, 1:49] 135847 138191 104869 122097 ... 
## $ fits :'data.frame': 1 obs. of 4 variables: 
## ..$ a : num 6.09 
## ..$ b : num 177048 
## ..$ cv : num 0.463 
## ..$ model: Factor w/ 1 level "segreg": 1 
## $ data :'data.frame': 49 obs. of 3 variables: 
## ..$ rec : num [1:49] 845768 1067681 1375049 1274418 ... 
## ..$ ssb : num [1:49] 153588 165474 204933 228076 252322 ... 
## ..$ year: num [1:49] 1964 1965 1966 1967 1968 ... 
## $ stknam: chr "North Sea/Skagerrak/Eastern Channel … 
## $ stk :Formal class 'FLStock' [package "FLCore"] with 20 slots 

where 

• fit is a sample from the joint distribution of the estimated model and 
parameters, 

• pred is an associated sample from the predictive distribution of recruitment 
based on the model and parameters in fit and the SSB values used , 

• fits contains the fitted parameters to the observed data, 
• data contains the data used, 
• stknam holds the name of the stock for plotting later on,  
• stk retains the original FLStock object. 

 

Simulating forward  

Simulating forwards is done using the EqSim function. The function takes as input 
the output from the fitModel function. Simulations are run independently for each 
sample from the distribution of model and parameters. This is done for a range of 
Fbar values. For example if we scanned over 10 values of Fbar and had taken 200 
samples from the stock–recruit relationship then 2000 simulations would be run in 
total. These simulations run for 200 years, say, and the last 50 years are retained to 
calculate summaries, such as the proportion of times the stock crashes at a given level 
of F. It is important to note that each simulation is conditioned on a single stock 
recruit relationship with fixed parameters (including CV). Error is introduced within 
the simulations randomly generating process error about the constant stock–recruit 
fit, and by using historical variation in maturity, natural mortality, weight at age etc. 
Note that if there is no variability in these quantities in the stock object then no 
variability will be taken into the simulations. 

The arguments to the simulation function are 
args(EqSim) 
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## function (fit, Nrun = 200, wt.years = c(2007, 2011),  
##   Fscan = seq(0, 1, len = 20), process.error = TRUE,  
##   verbose = TRUE, Btrigger = 0) 

where  

• fit is the output from fitModels, 
• Nrun is the number of years to simulate forward; note thet currently, the last 50 

are used for summarizing equilibrium conditions, 
• wt.years is the start and end year from which to generate the noise in weight at 

age etc.,  
• Fscan is the range of Fbar values to scan over, 
• process.error allows the simulations to be run using the predictive distribution 

of recruitment or the mean recruitment, 
• verbose = TRUE shows a progress bar to the user, 
• Btrigger is the location of the ramp in a simple HCR; if Btrigger = 0, this is 

like having no HCR present. 

The results from the simulation process are returned to the user as a list 
str(codsg$sim, 2) 
## List of 14 
## $ ssbs : num [1:7, 1:40] 3594589 3760648 4366111 4904481  
## $ cats : num [1:7, 1:40] 0 0 0 0 0 ... 
## $ recs : num [1:7, 1:40] 444087 516098 819854 1131301 ... 
## $ ssbsa: num [1:40, 1:50, 1:2000] 4478184 3179649 2533362   
## $ catsa: num [1:40, 1:50, 1:2000] 0 153849 256893 366760   
## $ recsa: num [1:40, 1:50, 1:2000] 905941 1319530 548875  
## $ Mat : Named num [1:6] 0.01 0.05 0.23 0.62 0.86 1 
## ..- attr(*, "names")= chr [1:6] "1" "2" "3" "4" ... 
## $ M : Named num [1:6] 1.038 0.697 0.489 0.233 0.2 ... 
## ..- attr(*, "names")= chr [1:6] "1" "2" "3" "4" ... 
## $ Fprop: Named num [1:6] 0 0 0 0 0 0 
## ..- attr(*, "names")= chr [1:6] "1" "2" "3" "4" ... 
## $ Mprop: Named num [1:6] 0 0 0 0 0 0 
## ..- attr(*, "names")= chr [1:6] "1" "2" "3" "4" ... 
## $ west : num [1:6, 1:5] 0.322 0.918 2.292 4.108 6.065 ... 
## $ weca : num [1:6, 1:5] 0.322 0.918 2.292 4.108 6.065 ... 
## $ sel : num [1:6, 1:5] 0.248 0.794 1.076 1.13 1.154 ... 
## $ Fscan: num [1:40] 0 0.0385 0.0769 0.1154 0.1538 ... 

where  

• ssbs, cats and recs contain the 0.025, 0.05, 0.25, 0.5, 0.75, 0.95, 0.975 percentiles 
of the simulations of SSB, catch and recruitment for each Fscan value. 

• ssbsa, catsa and recsa contain, for each Fscan, the final 50 years of each 
simulation of SSB, catch and recruitment. 

• The remaining values show the range of variability included for maturity, natural 
mortality etc. and the Fbar values used. 

 

Reference points  

Reference points are derived from the output of EqSim. 

 

Some code to fit different stock recruit models and apply different simulation 
settings 

The remainder of this section presents code to use to generate the fits presented for 
cod in the main report.  
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Beverton–Holt 
codbh <- within(codsetup, { 
  fit <- fitModels(data, nsamp = 2000, model = "bevholt") 
  sim <- EqSim(fit, wt.years = wt.years, Fscan = Fscan,  
    verbose = verbose) 
  ref <- Eqplot(sim, fit, Blim = Blim, Bpa = Bpa, plot = FALSE) 
}) 

 

Ricker 
codrk <- within(codsetup, { 
  fit <- fitModels(data, nsamp = 2000, model = "bevholt") 
  sim <- EqSim(fit, wt.years = wt.years, Fscan = Fscan,  
    verbose = verbose) 
  ref <- Eqplot(sim, fit, Blim = Blim, Bpa = Bpa, plot = FALSE) 
}) 

 

Model averaging 
codall <- within(codsetup, { 
  fit <- fitModels(data, nsamp = 2000,  
    model = c("segreg", "bevholt", "ricker")) 
  sim <- EqSim(fit, wt.years = wt.years, Fscan = Fscan,  
    verbose = verbose) 
  ref <- Eqplot(sim, fit, Blim = Blim, Bpa = Bpa, plot = FALSE) 
}) 

 

Model averaging with extra bits 
codall_variations <- within(codall, { 
# simulate without process error in the recruitment predictions 
  sim2 <- EqSim(fit, wt.years = wt.years, Fscan = Fscan,  
    process.error = FALSE, verbose = verbose) 
# simulate with process error (i.e. using predictive distrution  
# of recruitment) and include a simple HCR 
  sim3 <- EqSim(fit, wt.years = wt.years, Fscan = Fscan,  
    Btrigger = Btrigger, verbose = verbose) 
# simulate without process error (i.e. using model and  
# parameter error only, not including 'observation' error)  
# and include a simple HCR 
  sim4 <- EqSim(fit, wt.years = wt.years, Fscan = Fscan,  
    process.error = FALSE, Btrigger = Btrigger, verbose = verbose) 
# now calculate the reference points for each simulation 
  ref2 <- Eqplot(sim2, fit, Blim = Blim, Bpa = Bpa, plot = FALSE) 
  ref3 <- Eqplot(sim3, fit, Blim = Blim, Bpa = Bpa, plot = FALSE) 
  ref4 <- Eqplot(sim4, fit, Blim = Blim, Bpa = Bpa, plot = FALSE) 
}) 

 

A8.2. The code behind the fitting and simulations 

fitModels 
## function (stk, nsamp = 5000,  
##   models = c("ricker", "segreg", "bevholt"), 
##   method = "Buckland", runid = NULL, remove.years = NULL,  
##   delta = 1.3, nburn = 10000) 
## { 
##   dms <- dims(stk) 
##   rage <- dms$min 
##   if (rage == 0) { 
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##     data <- data.frame(rec = stock.n(stk)[1, drop = TRUE], 
##       ssb = ssb(stk)[drop = TRUE], year = with(dms, 1:year + 
##       minyear - 1)) 
##   } 
##   else { 
##     data <- data.frame(rec = stock.n(stk)[1, -seq(rage), 
##       drop = TRUE], ssb = ssb(stk)[1, seq(dms$year - rage), 
##       drop = TRUE], year = with(dms, (rage + 1):year + 
##       minyear - 1)) 
##   } 
##   if (!is.null(remove.years)) { 
##     data$ssb[data$year %in% remove.years] <- NA 
##   } 
##   data <- data[complete.cases(data), ] 
##   if (is.null(runid)) 
##     runid <- name(stk) 
##   method <- match.arg(method, c("Buckland", "Simmonds", "King", 
##     "Cadigan")) 
##   if (!is.character(models)) 
##     stop("models arg should be character vector giving names of  
##     stock recruit models") 
##   if (method == "Buckland") { 
##     c(fitModelsBuck(data, runid, nsamp, models), list(stk = stk)) 
##   } 
##   else { 
##     cat("The", method, "is not ready yet! Working on it!\n") 
##   } 
## } 
## <environment: namespace:msy> 

 

fitModelsBuck 
## function (data, runid, nsamp = 5000, models = c("ricker",  
##   "segreg", "bevholt"), ...) 
## { 
##   nllik <- function(param, ...) -1 * llik(param, ...) 
##   ndat <- nrow(data) 
##   fit <- lapply(1:nsamp, function(i) { 
##     sdat <- data[sample(1:ndat, replace = TRUE), ] 
##     fits <- lapply(models, function(mod) nlminb(initial(mod, 
##       sdat), nllik, data = sdat, model = mod, logpar = TRUE)) 
##     best <- which.min(sapply(fits, "[[", "objective")) 
##     with(fits[[best]], c(a = exp(par[1]), b = exp(par[2]), 
##       cv = exp(par[3]), model = best)) 
##   }) 
##   fit <- as.data.frame(do.call(rbind, fit)) 
##   fit$model <- models[fit$model] 
##   pred <- t(sapply(seq(nsamp), 
##     function(j) exp(match.fun(fit$model[j])(fit[j,], sort(data$ssb))))) 
##   fits <- do.call(rbind, lapply(models, 
##     function(mod) with(nlminb(initial(mod,data), nllik, data = data, 
##     model = mod, logpar = TRUE), data.frame(a = exp(par[1]), 
##     b = exp(par[2]), cv = exp(par[3]), model = mod)))) 
##   list(fit = fit, pred = pred, fits = fits, data = data, stknam = runid) 
## } 
## <environment: namespace:msy> 

 

SRplot 
## function (fit) 
## { 
##   modset <- fit$fit 
##   data <- fit$data 
##   ssb <- data$ssb 
##   rec <- data$rec 
##   mn <- length(ssb) 
##   minSSB <- min(ssb, max(ssb) * 0.05) 
##   maxSSB <- max(ssb) * 1.1 
##   maxrec <- max(rec * 1.5) 
##   plot(ssb, rec, xlim = c(0, maxSSB), ylim = c(0, maxrec), 
##     type = "n", xlab = "SSB ('000 t)", ylab = "Recruits", 
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##     main = paste("Predictive distribution of recruitment\nfor", 
##     fit$stknam)) 
##   out <- do.call(rbind, lapply(sample(1:nrow(modset), 500), 
##     function(i) { 
##       fssb <- runif(500, minSSB, maxSSB) 
##       FUN <- match.fun(modset$model[i]) 
##       frec <- exp(FUN(modset[i, ], fssb) + rnorm(500, sd = modset$cv[i])) 
##       points(fssb, frec, pch = 20, col = paste0(grey(0), 
##       "05"), cex = 0.0625) 
##       data.frame(ssb = fssb, rec = frec) 
##     })) 
##   out$grp <- with(out, floor(10 * (ssb - min(ssb))/(max(ssb) - 
##     min(ssb) + 0.001))) 
##   out$mid.grp <- with(out, (grp + 0.5)/10 * (max(ssb) - min(ssb)) + 
##     min(ssb)) 
##   summ <- with(out, t(simplify2array(tapply(rec, grp, quantile, 
##     c(0.5, 0.05, 0.95))))) 
##   mid.grp <- sort(unique(out$mid.grp)) 
##   lines(mid.grp, summ[, 1], col = 7, lwd = 3) 
##   lines(mid.grp, summ[, 2], col = 4, lwd = 3) 
##   lines(mid.grp, summ[, 3], col = 4, lwd = 3) 
##   x <- fit$fits 
##   y <- seq(1, round(max(ssb)), length = 100) 
##   sapply(1:nrow(x), function(i) lines(y, 
##     exp(match.fun(as.character(x$model[i]))(x[i,], y)), col = "black", 
##     lwd = 2, lty = i)) 
##   lines(ssb, rec, col = 10) 
##   points(ssb, rec, pch = 19, col = 10, cex = 1.25) 
## } 
## <environment: namespace:msy> 

 

EqSim 
## function (fit, Nrun = 200, wt.years = c(2007, 2011), 
##   Fscan = seq(0,1, len = 20), process.error = TRUE, 
##   verbose = TRUE, Btrigger = 0) 
## { 
##   btyr1 <- wt.years[1] 
##   btyr2 <- wt.years[2] 
##   flgsel <- 0 
##   flgmatwt <- 0 
##   keep <- min(Nrun, 50) 
##   SR <- fit$fit 
##   data <- fit$data 
##   stk <- fit$stk 
##   stk.win <- window(stk, start = btyr1, end = btyr2) 
##   west <- matrix(stock.wt(stk.win), ncol = btyr2 - btyr1 + 1) 
##   weca <- matrix(catch.wt(stk.win), ncol = btyr2 - btyr1 + 1) 
##   sel <- matrix(harvest(stk.win), ncol = btyr2 - btyr1 + 1) 
##   Fbar <- matrix(fbar(stk.win), ncol = btyr2 - btyr1 + 1) 
##   sel <- sweep(sel, 2, Fbar, "/") 
##   if (flgsel == 0) { 
##     sel[] <- apply(sel, 1, mean) 
##   } 
##   if (flgmatwt == 0) { 
##     west[] <- apply(west, 1, mean) 
##     weca[] <- apply(weca, 1, mean) 
##   } 
##   Mat <- apply(mat(stk.win), 1, mean)[drop = TRUE] 
##   M <- apply(m(stk.win), 1, mean)[drop = TRUE] 
##   Fprop <- apply(harvest.spwn(stk.win), 1, mean)[drop = TRUE] 
##   Mprop <- apply(m.spwn(stk.win), 1, mean)[drop = TRUE] 
##   Nmod <- nrow(SR) 
##   NF <- length(Fscan) 
##   ages <- dims(stk)$age 
##   ssby <- array(0, c(Nrun, Nmod)) 
##   Ny <- Fy <- WSy <- WCy <- Cy <- Wy <- array(0, c(ages, Nrun, 
##     Nmod)) 
##   rsam <- array(sample(1:ncol(weca), Nrun * Nmod, TRUE), c(Nrun, 
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##     Nmod)) 
##   Wy[] <- c(weca[, c(rsam)]) 
##   R <- mean(data$rec) 
##   ssbs <- cats <- recs <- array(0, c(7, NF)) 
##   pssb1 <- pssb2 <- array(0, NF) 
##   ssbsa <- catsa <- recsa <- array(0, c(NF, keep, Nmod)) 
##   begin <- Nrun - keep + 1 
##   if (verbose) 
##     loader(0) 
##   for (i in 1:NF) { 
##     Fbar <- Fscan[i] 
##     Zpre <- (Fbar * Fprop * sel[, rsam[1, ]] + M * Mprop) 
##     Zpos <- (Fbar * (1 - Fprop) * sel[, rsam[1, ]] + M * 
##       (1 - Mprop)) 
##     Zcum <- c(0, cumsum(Fbar * sel[c(1:ages, rep(ages, 49 - 
##       ages)), rsam[1, ]] + M[c(1:ages, rep(ages, 49 - ages))])) 
##     N1 <- R * exp(-unname(Zcum)) 
##     Ny[, 1, ] <- c(N1[1:(ages - 1)], sum(N1[ages:50])) 
##     ssby[1, ] <- colSums(Mat * Ny[, 1, ] * west[, rsam[1,]]/ 
##       exp(Zpre)) 
##     for (j in 2:Nrun) { 
##       SSB <- ssby[j - 1, ] 
##       if (process.error) { 
##         allrecs <- sapply(unique(SR$mod), 
##           function(mod) exp(match.fun(mod)(SR,SSB) + 
##             rnorm(Nmod, 0, SR$cv))) 
##       } 
##       else { 
##         allrecs <- sapply(unique(SR$mod), 
##           function(mod) exp(match.fun(mod)(SR,SSB))) 
##       } 
##       select <- cbind(seq(Nmod), as.numeric(factor(SR$mod, 
##         levels = unique(SR$mod)))) 
##       Ny[1, j, ] <- allrecs[select] 
##       Fnext <- Fbar * pmin(1, SSB/Btrigger) 
##       Zpre <- rep(Fnext, each = length(Fprop)) * Fprop * 
##         sel[, rsam[j, ]] + M * Mprop 
##       Fy[, j - 1, ] <- rep(Fnext, each = ages) * sel[, 
##         rsam[j - 1, ]] 
##       Ny[-1, j, ] <- Ny[1:(ages - 1), j - 1, ] * 
##         exp(-Fy[1:(ages - 1), j - 1, ] - M[1:(ages - 1)]) 
##       Ny[ages, j, ] <- Ny[ages, j, ] + Ny[ages, j - 1, ] * 
##         exp(-Fy[ages, j - 1, ] - M[ages]) 
##       ssby[j, ] <- apply(array(Mat * Ny[, j, ] * west[, 
##         rsam[j, ]]/exp(Zpre), c(ages, Nmod)), 2, sum) 
##       Cy[, j, ] <- Ny[, j - 1, ] * Fy[, j - 1, ]/(Fy[, 
##         j - 1, ] + M) * (1 - exp(-Fy[, j - 1, ] - M)) 
##     } 
##     Cw <- Cy * Wy 
##     Cat <- apply(Cw, 2:3, sum) 
##     quants <- c(0.025, 0.05, 0.25, 0.5, 0.75, 0.95, 0.975) 
##     ssbs[, i] <- quantile(ssby[begin:Nrun, ], quants) 
##     cats[, i] <- quantile(Cat[begin:Nrun, ], quants) 
##     recs[, i] <- quantile(Ny[1, begin:Nrun, ], quants) 
##     ssbsa[i, , ] <- ssby[begin:Nrun, ] 
##     catsa[i, , ] <- Cat[begin:Nrun, ] 
##     recsa[i, , ] <- Ny[1, begin:Nrun, ] 
##     if (verbose) 
##       loader(i/NF) 
##   } 
##   list(ssbs = ssbs, cats = cats, recs = recs, ssbsa = ssbsa, 
##     catsa = catsa, recsa = recsa, Mat = Mat, M = M, 
##     Fprop = Fprop,Mprop = Mprop, west = west, weca = weca, 
##     sel = sel, Fscan = Fscan) 
## } 
## <environment: namespace:msy> 
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Eqplot 
## function (sim, fit, Blim, Bpa = 1.4 * Blim, ymax = c(NA, NA, 
## NA), plot = TRUE) 
## { 
##   stk <- fit$stk 
##   Nmod <- dim(sim$ssbsa)[3] 
##   Nyrs <- dim(sim$ssbsa)[2] 
##   Fscan <- sim$Fscan 
##   catm <- apply(sim$catsa, 1, mean) 
##   maxcatm <- which.max(catm) 
##   catsam <- apply(sim$catsa, c(1, 3), mean) 
##   maxpf <- apply(catsam, 2, which.max) 
##   fmsy <- Fscan[maxpf] 
##   msym <- mean(fmsy) 
##   vcum <- median(fmsy) 
##   fmsy.dens <- density(fmsy) 
##   vmode <- fmsy.dens$x[which.max(fmsy.dens$y)] 
##   pssb1 <- apply(sim$ssbsa > Blim, 1, mean) 
##   pssb2 <- apply(sim$ssbsa > Bpa, 1, mean) 
##   pp1 <- max(which(pssb1 > 0.95)) 
##   grad <- diff(Fscan[pp1 + 0:1])/diff(pssb1[pp1 + 0:1]) 
##   flim <- Fscan[pp1] + grad * (0.95 - pssb1[pp1]) 
##   maint <- fit$stknam 
##   rec <- fit$data$rec 
##   ssb <- fit$data$ssb 
##   Catchs <- catch(stk)[, 1:length(ssb), drop = TRUE] 
##   FbarO <- fbar(stk)[, 1:length(ssb), drop = TRUE] 
##   recs <- sim$recs 
##   ssbs <- sim$ssbs 
##   cats <- sim$cats 
##   ssbsa <- sim$ssbsa 
##   NF <- length(Fscan) 
##   pp1 <- max(which(pssb1 > 0.5)) 
##   grad <- diff(Fscan[pp1 + 0:1])/diff(pssb1[pp1 + 0:1]) 
##   flim50 <- Fscan[pp1] + grad * (0.5 - pssb1[pp1]) 
##   pp1 <- max(which(pssb1 > 0.9)) 
##   grad <- diff(Fscan[pp1 + 0:1])/diff(pssb1[pp1 + 0:1]) 
##   flim10 <- Fscan[pp1] + grad * (0.9 - pssb1[pp1]) 
##   maxcatm <- which.max(catm) 
##   if (plot) { 
##     op <- par(mfrow = c(2, 2), mar = c(2.5, 4, 1.5, 1), 
##       oma = c(0, 0, 0, 0), cex.axis = 0.75, tcl = 0.25, 
##       mgp = c(0, 0.25, 0), las = 1) 
##     xmax <- max(Fscan) 
##     y.max <- if (!is.na(ymax[1])) ymax[1] 
##       else max(recs[7, ], rec) 
##     plot(Fscan, recs[7, ], type = "l", lty = 4, ylim = c(0, 
##       y.max), xlim = c(0, xmax), ylab = "", xlab = "") 
##     title(ylab = "Recruitment", xlab = "F bar", cex.lab = 0.75, 
##       line = 2.5, cex.main = 0.75) 
##     mtext(text = paste(maint, " a) Recruits"), cex = 0.75, 
##       side = 3, line = 0.5) 
##     lines(Fscan, recs[6, ], lty = 3) 
##     lines(Fscan, recs[5, ], lty = 2) 
##     lines(Fscan, recs[4, ], lty = 1) 
##     lines(Fscan, recs[3, ], lty = 2) 
##     lines(Fscan, recs[2, ], lty = 3) 
##     lines(Fscan, recs[1, ], lty = 4) 
##     points(FbarO, rec, pch = 21, cex = 0.75, bg = 1) 
##     lines(c(flim, flim), c(0, y.max), col = 3) 
##     y.max <- if (!is.na(ymax[2])) ymax[2] 
##       else max(ssbs[7, ]) 
##     plot(Fscan, ssbs[7, ], type = "l", lty = 4, ylim = c(0, 
##       y.max), xlim = c(0, xmax), ylab = "", xlab = "") 
##     title(ylab = "SSB", xlab = "F bar", cex.lab = 0.75, 
##       line = 2.5, cex.main = 0.75) 
##     mtext(text = "b) Spawning Stock Biomass", cex = 0.75, 
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##     side = 3, line = 0.5) 
##     lines(Fscan, ssbs[6, ], lty = 3) 
##     lines(Fscan, ssbs[5, ], lty = 2) 
##     lines(Fscan, ssbs[4, ], lty = 1) 
##     lines(Fscan, ssbs[3, ], lty = 2) 
##     lines(Fscan, ssbs[2, ], lty = 3) 
##     lines(Fscan, ssbs[1, ], lty = 4) 
##     lines(c(0, xmax), c(Blim, Blim)) 
##     text(x = 0.1, y = Blim * 1.1, "Blim", cex = 0.7) 
##     points(FbarO, ssb, pch = 21, cex = 0.75, bg = 1) 
##     lines(c(flim, flim), c(0, y.max), col = 3) 
##   } 
##   FCrash5 <- Fscan[which.max(cats[2, ]):NF][which(cats[2, 
##     which.max(cats[2, ]):NF] < 0.05 * max(cats[2, ]))[1]] 
##   FCrash50 <- Fscan[which.max(cats[4, ]):NF][which(cats[4, 
##     which.max(cats[4, ]):NF] < 0.05 * max(cats[4, ]))[1]] 
##   if (plot) { 
##     y.max <- if (!is.na(ymax[3])) ymax[3] 
##       else max(cats[7, ]) 
##     plot(Fscan, cats[7, ], type = "l", lty = 4, ylim = c(0, 
##       y.max), xlim = c(0, max(Fscan)), ylab = "", xlab = "") 
##     title(ylab = "Catch", xlab = "F bar", cex.lab = 0.75, 
##       line = 2.5, cex.main = 0.75) 
##     mtext(text = "c) Catch", cex = 0.75, side = 3, line = 0.5) 
##     lines(Fscan, cats[7, ], lty = 4) 
##     lines(Fscan, cats[6, ], lty = 3) 
##     lines(Fscan, cats[5, ], lty = 2) 
##     lines(Fscan, cats[4, ], lty = 1) 
##     lines(Fscan, cats[3, ], lty = 2) 
##     lines(Fscan, cats[2, ], lty = 3) 
##     lines(Fscan, cats[1, ], lty = 4) 
##     points(FbarO, Catchs, pch = 21, cex = 0.75, bg = 1) 
##     lines(c(flim, flim), c(0, y.max), col = 3) 
##     lines(c(FCrash5, FCrash5), c(0, y.max), col = 5) 
##     lines(c(FCrash50, FCrash50), c(0, y.max), col = 5) 
##     lines(Fscan, catm, lty = 1, col = 2) 
##     lines(rep(Fscan[maxcatm], 2), c(0, y.max), lty = 1, col = 5) 
##     plot(Fscan, 1 - pssb1, type = "l", lty = 2, ylim = c(0, 1), 
##       xlim = c(0, max(Fscan)), ylab = "", xlab = "") 
##     title(ylab = "Prob MSY, SSB<Bpa or Blim", xlab = "F bar", 
##       cex.lab = 0.75, line = 2.5, cex.main = 0.75) 
##     mtext(text = "d) Prob MSY and Risk to SSB", cex = 0.75, 
##       side = 3, line = 0.5) 
##     lines(Fscan, 1 - pssb2, lty = 4) 
##     text(x = max(Fscan[pssb2 > 0.5]) - 0.05, y = 0.5, "SSB<Bpa", 
##       cex = 0.75) 
##     text(x = max(Fscan[pssb1 > 0.7]) + 0.1, y = 0.3, "SSB<Blim", 
##       cex = 0.75) 
##     lines(c(flim, flim), c(0, 1), col = 3) 
##     lines(c(0, flim), c(0.05, 0.05), lty = 2, col = 3) 
##     text(x = 0.1, y = 0.075, "5%", cex = 0.75, col = 3) 
##     lines(c(flim10, flim10), c(0, 1), col = "darkgreen") 
##     lines(c(0, flim10), c(0.1, 0.1), lty = 2, col = "darkgreen") 
##     text(x = 0.05, y = 0.125, "10%", cex = 0.75, 
##       col = "darkgreen") 
##     lines(fmsy.dens$x, cumsum(fmsy.dens$y * 
##       diff(fmsy.dens$x)[1]), col = 4) 
##     text(x = 0.9, y = 0.8, "Prob of Fmsy", cex = 0.75, col = 4) 
##     lines(rep(vcum, 2), c(0, 1), lty = 1, col = 4) 
##     lines(c(Fscan[maxcatm], Fscan[maxcatm]), c(0, 1), col = 5) 
##   } 
##   out <- c(Blim, Bpa) 
##   outF <- c(flim, flim10, flim50, vcum, Fscan[maxcatm], FCrash5, 
##     FCrash50) 
##   outB <- approx(Fscan, ssbs[4, ], xout = outF)$y 
##   outC <- approx(Fscan, cats[4, ], xout = outF)$y 
##   outTable <- rbind(outF, outB, outC) 
##   rownames(outTable) <- c("F", "SSB", "Catch") 
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##   colnames(outTable) <- c("Flim", "Flim10", "Flim50", 
##     "MSY:median","Maxmeanland", "FCrash5", "FCrash50") 
##   list(Blim = Blim, Bpa = Bpa, Refs = outTable) 
## } 
## <environment: namespace:msy> 
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Annex 9: Method 3: StochSim 

Most processes that need to be taken into account in Harvest Control Rule simula-
tions are correlated in time. Ignoring those correlations leads to underestimation of 
risk and a higher acceptable fishing mortality as demonstrated by simulations done 
for Icelandic haddock and saithe. 

Introduction 

In recent years Harvest Control Rules have been evaluated for many fish stocks. Typ-
ically a group of scientist working with the stocks makes a series of stochastic simula-
tion, their work then being reviewed by another group of scientist appointed by 
organizations like ICES. The official stamp is usually that the Harvest Control Rule is 
“precautionary and in accordance with the ICES MSY approach”. 

Most of HCR evaluations done so far are single species. Some of them are done by 
what is called “full model” where biological model, observation model and assess-
ment model are linked in a closed loop. Simpler models are stochastic simulation 
models where dynamics of the stock are simulated forward, including stochasticity in 
weights at age, residuals from the stock recruitment function, assessment uncertainty 
etc. The main problem here is to include appropriate uncertainty in the simulations, 
both in terms of magnitude and autocorrelation. In addition, the uncertainty in both 
the form and actual parameters of the stock recruitment function needs to be includ-
ed, but for most stocks available data are very limited in this context.  

Stochastic simulations can in principle be used to evaluate MSY. When fishing mor-
tality or harvest rate exceeds a certain level, a higher and larger proportion of the 
stochastic simulations lead to spawning stock depleted to a level where reduced re-
cruitment is predicted, resulting in lower yields. 

Material and methods. 

The stocks investigated were Icelandic haddock and saithe. (Björnsson 2013, Hjör-
leifsson and Björnsson 2013). Data on catch in number and catch weights are availa-
ble since 1979. The two surveys used in the assessment commenced in 1985 and 1996 
respectively, so estimates of assessment uncertainty are based on a relatively short 
time-series. 

The simulations were done by an assessment and prognosis model written in AD 
model builder. Parameters of the stock recruitment function, selection and current 
stock size are estimated from available data. The variance-covariance matrix of the 
estimated parameters is used to generate stochastic replicates that are saved and used 
in the stochastic simulations of the Harvest Control Rule.   

Autocorrelation of the residuals from the stock–recruitment model were modelled by 
a first order AR model. 

ttRt ξερε +=+1  A9.1 

Where tξ is normally distributed white noise with mean 0 and standard deviation 

)1( 2
Rρσ − . The parameter Rρ had to be fixed in the model as it was not estimable in 

addition to the 2 parameters of the stock recruitment function and standard deviation 
of the residuals. Different types of stock–recruitment relationship were tested, but the 
results presented are based on the Hockey-stick function. Assessment errors were 
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modelled in the same way, with parameters based on empirical assessment 
performance and analytical retrospective pattern. Stochasticity in mean weight at age 
was modelled by a common year factor applied to all age groups. The year factor is 
also modelled by a first order AR model, with parameters estimated from data for the 
most important age groups. Criteria that results of the simulations were tested 
against were 05.0)( lim << BSSBP  and maximum average yield (HMSY). According 
to ICES standards (ICES-WKGMSE, 2013) )( limBSSBP <  should not exceed 0.05 in 
any year (type 3 risk). 

Results and discussions  

Mean yield and the fifth percentile of SSB show that HMSY is usually higher than the 
harvest ratio corresponding to 05.0)( lim << BSSBP  (Figure A9.1). Using only white 
noise leads to a considerably higher acceptable harvest ratio than when correlated 
noise is included: 0.27 vs. 0.216 for saithe and 0.52 vs. 0.44 for haddock. For both 
species, the harvest rate giving maximum yield is higher than that fulfilling the 
precautionary criterion )( limBSSBP < . 

 

 

Figure A9.1. Average yield and the fifth percentile of spawning stock as function of harvest ratio 
for Icelandic saithe and haddock. 

The characteristics of the two stocks are different: stock assessment of haddock is 
much more precise than that for saithe but with greater variability in recruitment. 
Results for haddock are therefore very sensitive to the value of Rρ . Including uncer-
tainty in Rρ would be an appropriate action but is not easily done with available data 
for only 30 years. For saithe, uncertainty assessment error is high, and uncertainty 
about its magnitude and autocorrelation important. For both stocks the proposed 
harvest ratios - 0.2 for saithe and 0.4 for haddock - are lower than that resulting in 
MSY, but perhaps not so low taking into account unaccounted uncertainty. 
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Annex 10: Method 4: NSR 

A10.1. Introduction 

Cadigan (2013) presented a nonparametric approach to estimate stock–recruitment 
(SR) relationships. The approach preserves compensatory density-dependence in 
which the recruitment rate monotonically decreases as stock size increases, which is a 
basic assumption of commonly used parametric SR models. This is sometimes re-
ferred to as the compensatory mortality property (CMP; e.g. Quinn and Deriso, 1999). 
The CMP ensures that for any level of F there is a unique equilibrium stock size in 
projections. CMP ensures the equilibrium yield curve (i.e. Catch vs. F) is continuous 
with a well-defined maximum at FMSY. Cadigan (2013) used this approach to fit non-
parametric SR curves with CMP and to derive “SR-nonparametric” equilibrium yield 
curves. A simple bootstrap procedure was used to characterize the uncertainty in the 
SR model, including model uncertainty, and to derive confidence intervals for MSY 
reference points based on uncertainty in the SR relationship. 

In this section the nonparametric SR model (i.e. NSR) is applied to two case studies, 
North Sea cod and herring. The approach is also extended to include a time-series 
bootstrap methodology to account for the additional uncertainty due to autocorrelat-
ed SR residuals. In addition, additional information and implementation details are 
provided. 

Time-series bootstrap 

Cadigan (2013) used a regression bootstrap approach in which the stock–recruit 
model residuals were re-sampled and added to predictions to generate bootstrap 
datasets. This approach is extended in this section to use time-series bootstrap resid-
uals to account for autocorrelation in the model residuals. Such autocorrelation is a 
common feature. Not accounting for autocorrelation can lead to bootstrap confidence 
intervals that are too narrow. The program “tsbootstrap” in the “tseries” R package 
(Adrian and Hornik, 2012) was used, with default settings. 

A10.2. Case Studies 

The scam package (Pya, 2012) in R was used to fit the nonparametric SR curves. How-
ever, there were convergence problems for both case studies. This problem occurred 
when fitting models with a fixed smoothing parameter selected to give a prespecified 
degrees-of-freedom (df), such as df=3 or 4 (see Cadigan, 2013). Convergence prob-
lems did not seem to occur when the scam package estimated the smoothing parame-
ter; however, convergence problems did occur even when the smoothing parameter 
was fixed at the same value as selected by the scam package which suggests that there 
is a bug in the package. Hence, only results based on the option with convergence 
(i.e. internal smoothing parameter selection) are presented in this section. Note that 
after this work was completed the scam package developer proposed a solution to 
this problem which is described in Section A10.3. Bootstrap procedures included 
estimation of the smoothing parameter, which is also different from Cadigan (2013) 
where this parameter was fixed when generating bootstrapped data. 

North Sea herring 

The autocorrelation structure of the NSR raw residuals (Figure A10.2.1) is very dif-
ferent from the autocorrelation structure of an example of simple (i.e. iid) boot-
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strapped residuals. However, the autocorrelation structure of an example of time-
series bootstrapped residuals was much more similar to the NSR raw residuals. 
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Figure A10.2.1. Autocorrelation function (ACF) for the NSR raw residuals (left panel), an example 
of simple bootstrap IID NSR residuals (middle panel) and an example of time-series (TS) boot-
strap NSR residuals (right panel). 

The smoothing parameter selected by the scam package was large (175.8). In this case 
the NSR is basically the same as a Ricker function (see Cadigan, 2013). The NSR curve 
(Figure A10.2.2) was virtually identical. However, the NSR bootstrap confidence in-
tervals were wide, and the time-series intervals were somewhat wider than confi-
dence intervals based on simple bootstrapped residuals. All methods fit the data 
almost equally as well (Table A10.2.1) although the Hockey-stick model fit best and 
the Beverton–Holt fit worst. 
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Figure A10.2.2. A comparison of NSR (black), Ricker (RK; red), Beverton–Holt (BH; blue) and 
Hockey-stick (HS; green) estimated stock recruit curves. Data are shown as points. Dashed lines 
indicate 95% simple NSR bootstrap confidence intervals. Dotted lines indicate 95% time-series 
NSR bootstrap confidence intervals. Top panels: recruits. Bottom panel: recruits per spawner. 

 

Table A10.2.1. Fit statistics; MSE (mean-square error) and GCV (generalized cross validation). The 
degrees of freedom (df) of each method is also provided. 

 MSE  df  GCV  
NSR  0.284  2.0  0.344  
HS  0.275  2.0  0.333  
BH  0.300  2.0  0.363  
RK  0.284  2.0  0.344  

 

Equilibrium yields inferred from the four stock recruit curves were similar (Fig-
ure A10.2.3), although the FMSY’s differed substantially (Table A10.2.2). Time-series 
bootstrap confidence intervals were wider than intervals based on the simple boot-
strap. 
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Figure A10.2.3. A comparison of equilibrium yields inferred from four stock–recruit curves: NSR 
(black), Ricker (RK; red), Beverton–Holt (BH; blue) and Hockey-stick (HS; green). 

 

Table A10.2.2. MSY reference points inferred from four stock–recruit curves, with lower (LCI) and 
upper (UCI) 95% bootstrap confidence intervals. The NSR intervals are based on the simple boot-
strap method, with time-series bootstrap intervals in the next row. 

Method FMSY BMSY 
 Est LCI UCI Est LCI UCI 
NSR  0.40  0.21  0.67  1118  843  2620  
TS Boot    0.15  0.83   756  6365  
HS  0.58  0.35  0.61  845  677  1378  
BH  0.35  0.22  0.61  1160  667  2044  
RK  0.41  0.22  0.70  1115  832  2145  

North Sea cod 

There is little autocorrelation in NSR raw residuals (Figure A10.2.4) and its autocorre-
lation structure is similar to the simple bootstrapped residuals and the time-series 
bootstrapped residuals. Hence, the simple bootstrap method is appropriate and one 
would not expect the time-series bootstrap confidence intervals to differ much com-
pared to the simple approach. This is basically what was observed for the stock–
recruit confidence intervals (Figure A10.2.5). 
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Figure A10.2.4. Autocorrelation function (ACF) for the NSR raw residuals (left panel), an example 
of simple bootstrap IID NSR residuals (middle panel) and an example of time-series (TS) boot-
strap NSR residuals (right panel). 
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Figure A10.2.5. A comparison of NSR (black), Ricker (RK; red), Beverton–Holt (BH; blue) and 
Hockey-stick (HS; green) estimated stock recruit curves. Data are show as points. Dashed lines 
indicate 95% simple NSR bootstrap confidence intervals. Dotted lines indicate 95% time-series 
NSR bootstrap confidence intervals. Top panels: recruits. Bottom panel: recruits per spawner. 
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The smoothing parameter selected by the scam package was 3.9 which is intermediate 
in value. The NSR curve differed only slightly from the estimated Ricker (Fig-
ure A10.2.5). All methods fit the data almost equally as well (Table A10.2.3) although 
the Hockey-stick model fit best and the Beverton–Holt fit worst, similar to North Sea 
herring. 

Table A10.2.3. Fit statistics; mean-square error (MSY) and GCV (generalized cross validation). 
The degrees of freedom (df) of each method is also provided. 

 MSE  df  GCV  
NSR  0.232  2.0  0.252  
HS  0.214  2.0  0.233  
BH  0.249  2.0  0.270  
RK  0.232  2.0  0.253  

 

Equilibrium yields inferred for the NSR, Beverton–Holt, and Ricker stock recruit 
curves were similar to each other but not to the yield curve derived from the Hockey-
stick model (Figure A10.2.6). Estimates of FMSY’s differed substantially (Table A10.2.4) 
among methods. Time-series and simple bootstrap confidence intervals were similar 
and both were substantially wider than intervals based on parametric models. 
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Figure A10.2.6. A comparison of equilibrium yields inferred from four stock–recruit curves: NSR 
(black), Ricker (RK; red), Beverton–Holt (BH; blue) and Hockey-stick (HS; green). 
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Table A10.2.4. MSY reference points inferred from four stock–recruit curves, with lower (LCI) and 
upper (UCI) 95% bootstrap confidence intervals. The NSR intervals are based on the simple boot-
strap method, with time-series bootstrap intervals in the next row. 

Method FMSY BMSY 
 Est LCI UCI Est LCI UCI 
NSR  0.42  0.25  0.76  1309  199  15204  
TS Boot    0.25  0.76   199  15351  
HS  0.25  0.25  0.25  1096  879  1525  
BH  0.19  0.18  0.20  2910  1555  2958  
RK  0.43  0.40  0.49  1145  423  1284  

 

Conclusions 

Model-uncertainty in MSY reference points was large for the two case studies. We 
look forward to future versions of the scam package. 

A10.3. Additional information 

SCAM R package background 

The scam package is similar to the R mgcv(gam) package for fitting GAMs (generalized 
additive models), except that scam allows for a variety of shape constraints on the 
component functions of the linear predictor of the GAM. The constraints involve 
monotonicity (increasing or decreasing) with options to specify convex or concave 
shapes. Scam uses spline smoothers for nonparametric regression. Data are assumed 
to be independent and from an exponential family distribution with mean μ that is a 
partially linear function of covariates, 

∑∑ ==
++= nl p

j jj
p

k kk xfxg
11

*
0 )()( θθµ , where g  is a 

smooth monotone link function and the )( jj xf ’s are unknown smooth func-

tions of the jx  covariates. kθ ’s and )( jj xf ’s must be estimated. 

The scam package uses spline approximations for the )( jj xf ’s; 
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m
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)()( γ , where qγγ ,...,1  are unknown spline 

parameters to estimate and )(),...,(1 xBxB m
q

m  are known spline basis functions. The 

scam package uses B-spline basis functions. Knots determine the location and shape 
of the polynomial. The knots are evenly spaced and cover the range of x. The shape 
constraints are based on evenly spaced knots; these constraints are difficult to specify 
otherwise. The number of knots (q) should be large to avoid over-smoothing/under-
fitting; however, this could result in over-fitting of the data. 

A penalty function is used to control the variation in the γ‘s. A smoothing parameter 
determines the contribution of the smoothing penalty function to the total fit func-
tion. The scam package uses generalized cross-validation or the Akaike information 
criterion to determine the value of the smoothing parameter. P-splines are penalized 

B-splines. The scam package uses various shape restrictions on the  spline parame-
ters to ensure the correct shape restrictions on f. For example, if f(x) is strictly mono-
tone increasing in x, and since all B-spline basis functions are nonnegative, then a 
sufficient condition for this shape constraint (i.e. monotone increasing) is γi > γi-1. This 

 



ICES WGMG REPORT 2013 |  125 

is achieved by redefining the γ  parameters as 11 βγ = , 

∑=
+=

j

i jj 21 )exp(ββγ , for j = 2,…,q. The βi‘s are uncon-

strained parameters to estimate. The penalty function is based on the squared differ-
ences of β2,…,βq. However, the shape restrictions themselves add much smoothing 
and model results are usually not that sensitive to the choice of smoothing parameter. 

Implementation 

The scam package option bs=’mpd’ produces a monotone decreasing spline smoother. 
The scam code is simple to use. If the SR data are contained in a R dataframe called 
dat, then the R code 

scam(log.recruit ~ s(stock.size,bs="mpd" ,m=2) + offset(log(stock.size)),data=dat) 

will provide nonparametric estimates of a SR curve with the CMP. By default the 
scam link function is the identity function, and the default error distribution is Gauss-
ian. This R code is more appropriate when recruitment is lognormally distributed. 
The s(.) term represents log{μ(S)/S} which is assumed to be a monotonic decreasing 
function of S. The offset term is added to s(.) so that the right-hand side of the scam 
equation represents log{μ(S)}. The number of spline knots can be determined by scam 
or user-specified within the s() code; that is, s(k=nknots,….), where nknots is the num-
ber of knots. The scam developer has recently indicated that the smoothing parameter 
should also be specified in the s() code, such as s(sp=λ,…) where λ is the externally 
supplied smoothing penalty weight. This is different than described by the scam doc-
umentation. 

Predictions of the SR relationship over a fine mesh of S values that can exceed the 
range of observed S’s are required to calculate MSY RPs. Cadigan (2013) encountered 
problems with the predict.scam function and used a different approach to extrapolate 
the SR function for MSY RP calculations. However, these problems seem to have been 
fixed in the most recent version of the software and predict.scam was used in the two 
case studies in this section. 

Cadigan (2013) fixed the number of knots (q) at 20 as a compromise between spline 
flexibility and computational speed for bootstrapping. q is an upper limit on the 
model degrees of freedom (df’s) so this number should be large enough that the 
smoother has sufficient flexibility. There is little harm, other than computational inef-
ficiency, in setting q to be too large because both the shape constraint and the smooth-
ing penalty reduce unnecessary smoother flexibility. Results were not sensitive when 
q was increased to 40, although there were some differences in recruitment extrapola-
tions. 
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Annex 11: Influence of implicit priors in plotMSY 

This Annex investigates the influence of implicit priors on the posterior marginal 
distributions for estimable parameters of the smooth Hockey-stick model in the 
plotMSY software (Annex 7). It does this by declaring the parameters on the original 
scale (in ADMB, estimable parameters ap and bp are declared as “init_number ap” and 
“init_number bp”) and then alternatively on the log scale and then back-transforming 
(“init_number lnap” and “init_number lnbp”, then set “ap=exp(lnap)” and 
“bp=exp(lnbp)”). The program was compiled and run with the arguments “-mcmc 
10000000 –mcsave 1000”. MCMC diagnostics are shown in Figures A11.1-4, with simi-
lar behaviour, whether the implicit priors are on the original or log scales. Fig-
ure A11.5 shows negligible difference in the marginal posterior distributions for the 
two methods, indicating that the implicit priors are having a negligible effect on the 
plotMSY estimates. 
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Figure A11.1. MCMC traces on estimable parameters ap and bp on the (a) original and (b) log 
scale. This diagnostic plot is used to decide whether there are undesirable trends. 

 

 



ICES WGMG REPORT 2013 |  127 

(a) Original scale 
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(b) Log scale 
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Figure A11.2. MCMC autocorrelation over a range of lag values for estimable parameters ap and 
bp on the (a) original and (b) log scale. This diagnostic plot is used to decide whether the MCMC 
chain needs further thinning. 
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(a) Original scale 
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(b) Log scale 
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Figure A11.3. MCMC cumulative quantiles for estimable parameters ap and bp on the (a) original 
and (b) log scale. This diagnostic plot is used to decide whether the MCMC chain has converged. 
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(a) Original scale 
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(b) Log scale 

0 2000 4000 6000 8000 10000

-1
.1

-1
.0

-0
.9

-0
.8

-0
.7

-0
.6

Iterations

V
al

ue

logap

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

Iterations

V
al

ue

logbp

 

Figure A11.4. MCMC cumulative quantiles for estimable parameters ap and bp on the (a) original 
and (b) log scale. This diagnostic plot is used to decide whether the MCMC chain has converged. 
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(a) Original scale 
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Figure A11.5. MCMC density for estimable parameters ap and bp on the (a) original and (b) log 
scale. This diagnostic plot provides an approximation to the marginal posterior probability densi-
ty function for these estimable parameters. In (b), the plot shows the estimates back-transformed 
to the original scale for comparison with (a). 
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