Due to new information on the results of the North Sea sprat acoustic survey (Scotia 1979) referred to in Section 7, the following corrections are needed:

Page 29, Section 7.5, and paragraph: delete last sentence.
Page 29, Section 7.6: delete and paragraph.
Page 70, Table 7.5: the correct figures in the and column under "Scotia" are 222 and 572, instead of 86 and 174 .

This Report has not yet been approved by the International Council for the Exploration of the Sea; it has therefore at present the status of an internal document and does not represent advice given on behalf of the Council. The proviso that it shall not be cited without the consent of the Council should be strictly observed.

[^0]1

1. PARTICIPANTS AND TERMS OF REFERENCE
1
1.1. Participants
1
1.2. Terms of Reference
2. NORTH SEA AND SKAGERRAK HERRING 1
2.1. The Fishery in 1978 1
2.1.1. Catch data 1
2.1.2. Catch in numbers by age 2
2.2. Age Composition 3
2.3. Recruitment 3
2.3.1. Year class 1976 3
2.3.2. Year class 1977 4
2.4. Estimates of Spawning Stock Biomass from Herring Larval Surveys 5
2.4.1. Northerm North Sea 5
2.4.2. Central North Sea 5
2.4.3. Southern North Sea and Easterm Channel 6
2.4.4. Spawning stock size 6
2.5. State of Stock and Advice on TAC 7
2.6. Herring in Division IIIa 8
2.6.1. Stock composition 8
2.6.2. Future census of the stock composition in Division IIIa 9
2.6.3. Herring fishery regulations in Division IIIa 9
2.6.4. Management advice 10
3. CELTIC SEA HERRING 11
3.1. The Fishery in the 1978/79 Season 11
3.1.1. Introduction 11
3.1.2. Catch data 12
3.1.3. Catch in numbers by age 12
3.2. Estimates of Fishing Mortality 12
3.3. State of the Stock and Advice on TAC 12
3.3.1. Herring surveys 12
3.3.2. Larval surveys and fecundity studies 13
3.3.3. Spawming potential 13
3.3.4. Recruitment 14
3.3.5. Stock assessment 14
3.3.6. Management advice 14
4. WEST OF SCOTLAND HERRING (Division VIa) 15
4.1. The Fishery in 1978 15
4.1.1. Catch data 15
4.1.2. Catch in numbers at age 15
4.2. Estimates of Fishing Mortality and Stock Size 15
4.3. State of the Stock and Management Advice 17
4.3.1. Disregarding immigration to Division VIa 18
4.3.2. Taking immigration into account 18
4.4. Clyde Herring 19
4.4. 4.4.1. The fishery in 1978 19
4.4.2. Tagging 19
4.4.3. Management advice 19
5. WEST OF IRELAND HERRING 20
5.1. Herring in Division VIIb, c 20
5.1.1. Nominal catch and catch in numbers at age 20
5.1.2. Relationship between herring stocks in Division VIIb, c and Division VIa 20
5.1.3. Management advice 20
5.2. Herring in Division VIIj (southwest Ireland) 21
6. IRISH SEA HERRING (Division VIIa) 21
6.1. Introduction 21
6.2. The Fishery in 1978 22
6.2.1. Manx stock 22
6.2.2. Mourne stock 23
6.2.3. The industrial fishery 23
6.3. Estimates of Fishing Mortality and Stock Size 24
6.3.1. Manx stock 24
6.3.2. Mourne stock 25
6.4. State of the Stocks and Advice of TACs 25
6.4.1. Manx stock 25
6.4.2. Mourne stock 26
7. NORTH SEA SPRAT 26
7.1. Introduction 26
7.2. The Fishery in 1978 27
7.2.1. Catch data 27
7.2.2. Catch in numbers by age 27
7.3. Weight at Age 27
7.5. Stock Size Estimate 297.4. Estimates of Fishing Mortality and Recruitment27
7.6. Acoustic Surveys 29
7.7. Catch Prediction and Advice on TAC 30
8. FUTIURE RESEARCH REQUIREMENIS 30
9. REFFERENCES 32
TABLES 2.1-7.5 33-70
FIGURES 3.1-7.3 $71-77$
10. PARTICIPANIS AND TERMS OF REFERENCE
1.1. Participants

R.S. Bailey	United Kingdom
E. Bakken	Norway
A.B. Bowers	United Kingdom
A.C. Burd	United Kingdom
A. Corten	Netherlands
H. Dormheim	Federal Republic of Germany
R. Grainger	Ireland
O. Hagström	Sweden
J. Jakobsson (Chairman)	Iceland
A. Maucorps	France
J. Molloy	Ireland
J. Morrison	United Kingdom
N.A. Nielsen	Denmark
K. Popp Madsen	Denmark
R. Rosenberg	Sweden
Ø. Ulltang	Norway
R.J. Wood	United Kingdom
O.J. Dstvedt	Norway

V. Nikolaev attended part of the meeting as the ICES Statistician.
1.2. Terms of Reference

The Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$ met at Charlottenlund from 30 April to 5 May 1979 in accordance with C.Res.1978/2:45 to re-assess the state and appropriate levels of TACs in 1979 and 1980 for:
a) North Sea herring;
b) Celtic Sea herring;
c) Division VIa and Division VIIb,c herring;
d) Northern Irish Sea herring (Division VIIa);
e) North Sea sprat; and
f) Division IIIa herring.
2. NORTH SEA AND SKAGERRAK HERRING
2.1. The Fishery in 1978
2.1.1. Catch data

Catch data for the years 1969 to 1977 are given in Table 2.1 with a preliminary estimation for the year 1978.

Previous Working Group reports have advised a ban on directed fishing for herring in the North Sea and a reduction of by-catches in other fisheries. These measures were enforced in 1978 without exception
throughout the year so the catches reported in the official statistics must all be considered as by-catches.

The total North Sea catch, excluding Skagerrak, amounted to 9138 tonnes (see Table 2.1) as compared with 46010 tonnes which is the revised catch figure for 1977. The main difference between the preliminary and the revised 1977 figures, which is about 4700 tonnes, comes from three countries.

The preliminary Skagerrak figure amounted to 21227 tonnes as compared with the revised 1977 figure of 37618 tonnes (Table 2.2).

Tables 2.3 to 2.7 give the North Sea catch data by Sub-divisions as in the previous reports. The total recorded by-catch is given in Table 2.8 for all fisheries, which represents the overall herring catch in 1978. Of the total catch of 9138 tonnes, about 6000 tonnes were taken in the industrial fisheries.

In all Sub-divisions, the by-catch figures have decreased from 1977 to 1978 except in Divisions IVc and VIId and e, where it is likely that part of the reported catches were in fact the consequence of directed fishery for herring.

The Group expressed doubt as to the reliability of the figures supplied and also its great concern regarding the control of catches, landings and reporting of them.

2.1.2. Catch in numbers by age

Numbers of herring at each age in catches by fishing areas are given in Tables 2.9 and 2.10 and those for the total North Sea are summarised in the text-table below for the past five years (with the revised figures for 1977):

Millions of herring caught per age group (winter-rings)

Year	Age						Total
	0	1	3	4	5 and older		
1974	996	846	773	362	126	87	3190
1975	264	2461	542	260	141	87	3755
1976	238	127	901	117	52	46	1481
1977	257	144	45	186	11	13	656
1978	109	136	4	5	5	1	260

As in 1977 and despite the prohibition of directed fisheries on herring for industrial purposes, the catch of 0-group herring represents over. 40% of the total catch in numbers of North Sea herring and the juvenile herring ($0+1$ groups) about 95%. These were all taken as by-catch in the industrial fisheries.

2.2. Age Composition

Due to the ban on herring fishery in the North Sea, only few samples from research vessels were available to show the age composition of the stocks in Divisions IVa and IVb. Although the material is rather limited, the data (see text-table below) indicate the predominance of of l-ringed fish.

Percentage Age Distribution

$\begin{gathered} \text { Age in } \\ \text { winter rings } \end{gathered}$	Division IVa W (August)		Division IVb			
			(August)		(November)	(October)
	Germany Fed.Rep.of	Scotland	Scotland	Germany Fed.Rep.of	Germany Fed.Rep.of	England
0	-	-	39.1	-	-	-
1	61.5	-	33.0	86.3	92.3	25.5
2	21.8	42.6	10.8	5.8	1.1	12.9
3	16.7	21.8	12.7	6.2	1.1	36.6
4	-	30.9	3.7	1.5	2.2	19.3
5	-	1.6	0.2	-	-	3.5
6	-	1.9	0.5	-	2.2	1.0
7	-	1.0	0.1	.	1.1	1.1
>8	-	0.3	-	-	-	0
N	78	224	310	497	90	350

In the Eastern Channel; the sampling of some illegal commercial catches indicate the prevailing of the 3 -ringed fish (46.4%) followed by the $2-$ ringed fish (33.1%) and the 4 -ringed fish (14.4%).

2.3. Recruitment

2.3.1. Year class 1976

The final figure for this year class during the 1978 Young Herring Survey is 575 fish/hour for the herring standard area. During the previous meeting of the Working Group, a preliminary figure of 498 fish/hour was used.

The regression formula used is that given in the previous report:

$$
Y=0.0031 x-0.21
$$

where Y is the absolute size of the year class (x 109) derived from VPA and x is the mean catch per hour of l-ringers in the herring standard area.

Substituting the new YHS value for year class 1976 into the regression formula, an estimate of 1.57×10^{9} l-ringers is obtained. This would correspond to a year class size of 2.00×10^{9} as 0 -ringers.

2.3.2. Year class 1977

The Young Herring Survey in February 1979 has yielded a preliminary estimate of 144 fish/hour for the herring standard area. This is by far the lowest abundance of any year class in recent times, as is shown by the text-table below. Substituting the value of 144 fish/hour in the regression formula, the absolute size of the year class as l-ringers is estimated at only 0.24×109. It should be realised that at this extremely low range of YHS abundances, the intercept of the regression line has a relatively strong effect on the estimate of year class strength in absolute numbers. If the regression line had been drawn through the origin, the year class would be estimated at 0.45×10^{9}. The Working Group decided that this procedure was more appropriate when the IYHS indices are at extremely low levels.

Year class	Mean catch/hour of 1-ringers in herring standard area	Best estimate of year class as l-ringers from VPA (in billions)
1968	822	3.35
1969	2.647	7.35
1970	1629	5.79
1971	827	3.82
1972	1195	1.75
1973	1592	4.39
1974	452	0.73
1975	342	-
1976	575	-
1977	(144)	-

Although the strength of the 1977 year class appears to be extremely low, there are some indications that the YHS in February 1979 may have underestimated the abundance of this year class to some extent.

The distribution of l-ringed herring in February 1979 was rather different in comparison to normal years. Very few juveniles were caught in the southeastern North Sea and near the entrance to the Skagerrak, which are normally the areas with the highest concentrations of l-ringers. On the other hand, several catches of more than 1000 fish/hour were taken northwest of the Dogger Bank, where in other years only insignificant numbers of l-ringers were caught. It seems likely therefore that the l-ringed herring were distributed more to the northwestern part of the central North Sea than in other years. This area is sampled less intensively for juvenile herring than the southeastern part, and most of its squares are not included in the standard area of 57 squares on which the YHS abundance indices are based.

The text-table at the tope of page 5 shows the catches of 0 -group herring in the three most recent years, and the estimates of F on 0 -group that are obtained by using the YHS values for the same year class as a reference point.

- \quad| Year | Catch 0-group
 $\times 10-9$ | F O-group | Stock size 1-ringers
 estimated from YHS $\times 10^{9}$ |
| :---: | :---: | :---: | :---: |
| 1976 | 238 | 0.24 | - |
| 1977 | 257 | 0.14 | 850 |
| 1978 | 109 | 0.21 | 1570 |
| 1979 | - | - | 450 |

2.4. Estimates of Spawning Stock Biomass from Herring Larval Surveys

The Report of the Working Group on Herring Larval Surveys South of $62^{\circ} \mathrm{N}$ was available to the Herring Assessment Working Group. Also available were precise estimates of the abundance of herring larvae $<10 \mathrm{~mm}$ in length for all the surveys which were carried out during 1978 both in the North Sea and adjacent waters. These are given in Table 2.12, together with the results of the comparable surveys which were carried out in 1977.

2.4.1. Northern North Sea

The coverage in this area in 1978 was well below the required level. In the Orkney/Shetland area, surveys were only made during the first half of September, and even then some of the stations to the west of Shetland, which yielded substantial numbers of herring larvae in the previous year, were not worked. An additional complication resulted from the fact that one station worked by the Netherlands to the north of Orkney on 8 September 1978 produced a total of 13593 herring larvae $<10 \mathrm{~mm}$ in length beneath 1 square meter of surface. The way in which this station is treated has a major influence on the abundance estimates derived for the northern North Sea in 1978. The Larval Working Group made two estimates of abundance for 1978, one based on the same treatment for this station as all the others and the second based on a reduction to $1 / 10$ th of the surface area applicable to the station. A correction was also necessary, due to the fact that no surveys were carried out during the second half of September in the Orkney/Shetland area, in order to arrive at a mean value for the whole of September, which is essential if spawning stock biomass is to be estimated. The ratio of the abundance values during the first and second halves of September from 1974-77 was calculated and applied to the two estimates for the first half of September 1978. All abundance estimates are substantially higher in the northern North Sea than in 1977, and it would appear very probable that herring larval production in 1978 in this area was about double that in 1977.
2.4.2. Central North_Sea

There was again a complete coverage of this area in late autumn of 1978 with extensive surveys being made during four separate periods in September and October. The results are directly comparable with those of the previous year, and it is clear that production also doubled in the central North Sea in 1978.

2.4.3. Southern North Sea and Easterm Channel

Only two surveys were made during the winter of $1978 / 79$, but the first was notable for the fact that appreciable production occurred in the Sandettié/Hinder area before the end of 1978 for the first time in five years. The results of the second survey in early January 1979 were much the same as in the previous year, particularly in total larval abundance. It would appear that some recovery of the Downs stock is taking place, but a better coverage with surveys during January is required before any firm conclusions can be arrived at.

2.4.4. Spawning_stock size

At the previous meeting of the Herring Assessment Working Group, new functional regressions were calculated of estimated abundances of larvae <lo mm in length on spawning stock biomass for the northerm North Sea and the central North Sea separately.

However, the Larval Working Group considered that a modification to the regression for the central North Sea might be justified (Saville, 1979). The VPA for this area from which the spawning stock size has been estimated in the past was based on catches which included the 2 -ringed fish taken in the industrial fishery. It was argued that a considerable proportion of these herring might recruit to the spawning stocks in other areas. Saville's adjusted functional regression has the following equation:

$$
Y=7.370 x+24.786
$$

where $Y=$ the estimated spawning stock from the regression ($x, 10^{-3}$ tonnes), and $x=$ the mean survey abundance of herring larvae ($x 10^{-11}$).

The size of the spawning stock in the central North Sea in 1977 and 1978 based on this regression is reduced by approximately 6000 tonnes in both years.

The paper by A. Saville, which was presented to the Larval Working Group, also considered the effect on stock sizes both in the North Sea and in Division VIa resulting from the fact that some juvenile herring originating from Division VIa grow up in the North Sea as immatures. Saville's paper contained estimates of spawning stock size both in Divisions IVa and VIa, estimated by incorporating various emigration rates into the VPA analyses, but there were such major differences between his spawning stock estimates and those previously accepted by the Herring Assessment Working Group, that the members of the Larval Working Group considered a careful examination of the whole paper by the Herring Assessment Working Group was essential before any decision could be reached regarding the validity of his new regressions of larval abundance on spawning stock in Divisions IVa and VIa.

The Herring Assessment Working Group noted that the calculations made by Saville resulted in a larger spawning stock in recent years in Division IVb than in Division IVa. This was not matched, however, by higher larval production in Division IVb despite a similar fecundity in both areas. In fact the opposite was the case with substantially higher larval production in Division IVa. The Herring Assessment Working Group, while acknowledging that emigration from the North Sea to

Abstract

Division VIa undoubtedly takes place, rejected Saville's contention that his new regression for Division IVa gave more realistic prediction of spawning stock size for larval abundances, than that previously calculated by the Group.

The regressions used to estimate North Sea spawning stock size in 1978 are, therefore, the previous Assessment Working Group regression for Division IVa and Saville's new regression for Division IVb.

The size of the spawning stock in both areas in 1977 and 1978 given below was calculated from the regressions.

	1977 (tonnes)	1978 (tonnes)
Northern North Sea (IVa)	90000	148000
Central North Sea (IVb)	$\frac{41000}{131000}$	$\underline{58000}$
Combined	-206000	

The increase in spawning stock biomass between. 1977 and 1978 is therefore 75000 tonnes. The increase between 1976 and 1977 based on the same regressions was 36000 tonnes. It should be noted that the spawning stock biomass in 1978 has been based on the lower of the two estimated larval abundance values for the month of September in Division IVa. Both the Larval and Herring Assessment Working Groups considered this to be the more realistic of the two values which are given in Table 2.12 for this area.
If some allowance is made for the Downs stock spawning in the southern North Sea and eastern Channel a total spawning stock size for the North Sea is not likely to be greater than 230000 tonnes in 1978, which is somewhat lower than the Herring Assessment Working Group's prognosis made in 1978.

2.5 State of Stock and Advice on TAC

In the previous report (Doc. C.M.1978/H:3) the spawning stock in 1977 as well as prognoses of the stock for 1978 and 1979 were calculated on the basis of catch data and the input fishing mortalities in 1976. In these prognoses, values for the recruiting year classes were those of the IYHS.

At its 1979 meeting, the Working Group agreed not to continue these prognoses due to the risk of errors involved if this was continued for a longer period without direct estimates to check these calculations. At present, the only independent estimate of the spawning stock sizes in the central and northern North Sea are those derived from the herring larval surveys. The results of these surveys are given in Section 2.4. These estimates for the 1978 spawning stock size in the central and northern North Sea are somewhat lower than the prognoses given in the 1978 report. It must be stressed that the larval survey coverage in 1978 in the northern North Sea was far from satisfactory. It was noted with concern that the low level of recruitment, as measured by the IYHS, continued in 1979. Thus, out of the last five most recent year classes (1973-77) the 1973 year class was about 85% of an average year class strength as 0-group, while the four most recent year classes have been about or even below 20\% of the average 0-group abundance.

From an examination of the stock/recruitment relationships published in the 1976 Herring Working Group report and by Saville and Bailey (in press), the Working Group could find no reason to deviate from its previous conclusion that the lower limit of the optimal range of the spawning stock size should be 800000 tonnes. It would, therefore, reiterate its advice given in previous reports of rebuilding the stock as quickly as possible to at least 800000 tonnes. A limited fishery should not be allowed before there is evidence of a recovery of the spawning stock size and improved recruitment and that therefore the rebuilding would take place within a fairly short period under such a fishery.

The contribution of the 2 year olds to the spawning stock derived from an average year class would result in the desired level of stock being quickly reached, assuming the 1979 spawning stock size of 230000 tonnes.
However, the estimated recruitment to the spawning stock in 1980 (1977 year class) will not result in the rapid rebuilding. It is therefore recommended that no fishery should be allowed in 1980.
Three members of the Working Group, Messrs. A Corten, A Maucorps and K Popp Madsen, objected to the above advice of the Working Group, since they were of the opinion that because of the high probability of an improved recruitment after the 1977 year class a very limited quota (of about 20000 tonnes) for consumption fisheries could be allowed in 1980 , provided that management authorities could guarantee a strict enforcement of such a small quota.
The Working Group reiterates its plea for the most stringent measures to be taken to minimise the by-catch of the North Sea herring.
The Working Group stresses the fact that at present the monitoring of. the recovery of the North Sea herring is far from satisfactory.: Little information on the age compositions of the stock has been obtained for the last two years. This, as well as new direct estimates of the spawning stock sizes are urgently needed.
Following a proposal from the 1978 Statutory Meeting, an ICES coordinated acoustic survey has been planned for 1979 to provide a direct estimate of stock size in the western part of Divisions IVa and IVb. However, support for this survey is totally inadequate to guarantee a stock estimate upon which any reliance can be based.

It was noted that the tagging programme proposed by the Working Group last year could not start in 1979, but that plans were being made for launching the programme in 1980, on a continuing annual basis. The purpose would be to monitor spawning stock sizes in Sub-area IV and Division VIa. The Working Group stresses the need to support this programme.

2.6 Herring in Division IIIa

The fisheries data for this area are presented in the report of the Working Group on Division IIIa Stocks (Doc. C.M.1979/G:9).
2.6.1 Stock composition

The Working Group on Division IIIa Stocks considered data on K_{2}, VS and average length as possible means by which different components of the juvenile herring could be distinguished.

The two major indigenous spring spawning stocks, i.e., those of Skagerrak and Kattegat, respectively, differ markedly in mean VS. As, however, mean VS of North Sea autumn spawners are intermediate it would be difficult to separate a mixture of indigenous stocks from North Sea autumn spawners on this criterion alone.

Mean K_{2} values in Division IIIa show a considerable overlap with those
of immature herring caught during the IYHS in the North Sea. In both areas, the K_{2} values are, however, well below those of the North Sea spawning stocks. The reason for this is not clear but it throws some doubt on how far one may draw conclusions based on this character.

The mean length of l-ring herring in the southern Kattegat is in the lower range of mean values derived from the IYHS in the North Sea approaches to the Skagerrak, while mean lengths in the northern Kattegat and Skagerrak are within this range. This may indicate a difference in stock composition between the northern and southern parts of Division IIIa, but could also be the result of separation by depth.

The Working Group concluded that on the evidence at hand it could not rule out the possibility that juvenile herring caught in Division IIIa contain recruits to the North Sea autumn spawning stock.
2.6.2 Future_census_of the stock_composition_in_Division_IIIa

The Working Group recommends that otolith samples should be collected from both spawning and juvenile herring and a workshop set.up at an early data and convened by Dr R Rosenberg in Lysekil (Sweden) in order to determine the range of otolith types present in the indigenous stocks, to compare these with otoliths of the North Sea autumn spawners and to report to the 67 th Statutory Meeting.

Although the meristic characters available to the Working Group did not provide conclusive evidence as regards the racial composition of herring in Division IIIa, the Working Group considered it useful to initiate or continue the taking of $V S$ and K_{2} counts. These characteristics could be particularly useful on substantiating any split in races made on the basis of otolith type or length distribution.
Genetic studies, already commenced in Sweden, may provide a possible further method of differentiating the various herring stocks.
In order to shed further light on the migration through Division IIIa it is recommended that tagging experiments be considered.

2.6.3 Herring_fishery_regulations_in_Division_IIIa

In 1978 the following restrictions were introduced:

1) Ban on direct landings of herring for industrial purposes was extended to include the Kattegat.
2) A 15% by-catch limit was introduced in the Kattegat for sprat landings and 5% in any other fisheries.
3) TACs of 14500 and 50000 tonnes of herring in the Skagerrak and the Kattegat, respectively.
4) Minimum mesh size of 32 mm for directed herring fisheries in the Kattegat.
5) Ban on herring fishing during week-ends in the Kattegat.

In addition, a minimum landing size of 20 cm , and a by-catch percentage of 10% in sprat landings have already been introduced for the Skagerrak.

In 1979, further restrictions were introduced by agreement between Norway, Sweden and EEC:

1) Ban on directed herring fisheries in the Skagerrak in the period from 1 January to 31 March and from 1 October to 31 December 1979.
2) Minimum landing size of 18 mm for the Kattegat.
3) By-catch of herring in sprat landings from the Kattegat. reduced to 10%.
4) Ban on the use of trawls with mesh size less than 32 mm within 3 nautical miles from the coast line during the period from 1 July to 15 September in the whole of Division IIIa.
5) Minimum mesh size of 32 mm for the Skagerrak.
6) The use of mesh sizes less than 16 mm only allowed for sand-eel fishing and only from 1 March to 31 July in the Kattegat and from 1 March to 31 October in the Skagerrak.
7) TACs of 10000 and 35000 tonnes for Skagerrak and Kattegat, respectively.
8) In directed herring fisheries not more than 10% of undersized herring may be present.

In addition, Denmark has closed its herring fishery in the Skagerrak until 15 June 1979.

2.6.4 Management advice

The Herring Assessment Working Group endorsed the following statement given in the report of the Working Group on Division IIIa Stocks:

> "The management of Division IIIa herring present some special problems because of the mixed stock composition and migration in and out of the area. As described in para. 3 .l not all the juvenile herring in the area can be considered as local recruits; some will recruit to herring stocks outside Division IIIa. Management should be directed both at protecting and, if necessary, rebuilding the local spawning stocks, and at protecting the nonnative juvenile herring which occur temporarily in the area.
> As regards the local spawning stonks, there is not much information available concerning their present size and recent development. Judging from the age composition of the catches, it seems that the spawning stocks are quite small at present. In a previous assessment report on these stocks, the combined total of all spawning stocks in Division IIIa was estimated at approximately 20 ooo tonnes (Anon., lg78a).
> It seems very unlikely that a spawning stock of this size has been able to produce the high numbers of juvenile herring which have been present in Division IIIa in recent years, particularly when one considers the relationship between spawning stock size and recruitment in other areas such as the North Sea, Division VIa, and the Celtic Sea (Anon., l978b).
> It is not possible to indicate what the minimum size of spawning stocks in this area should be. The age composition of the catches showsthat the adult fish in the area are sustaining a high mortality (hardly any fish older than 6 years are encountered)
and the local spawning stocks may indeed be below their minimum level for normal recruitment. It seems advisable therefore to reduce the high mortality on the local spawning stocks, and to monitor more precisely the development in each of the major sub-populations. This might be achieved by measuring the catch per unit effort in some selected inshore fisheries based on spawning herring. Also the age composition of the various spawning stocks should be adequately sampled.
The juvenile herring in Division IIIa should be protected as much as possibla, no matter whether they will recruit to the local spawning populations or to stocks outside the area. It is appreciated that the consumption fishery in Division IIIa:cannot avoid taking some quantities of l-group herring because of the mixed occurrence of juvenile and adult herring in the area (in contrast to the North Sea for instance), but these by-catches of juvenile herring should be reduced as much as possible. For this reason the Working Group strongly supports the newly introduced minimum landing size of 18 cm in the Kattegat, which should result in an almost total cessation of exploitation of the 0 -group and also the l-group in the first few months of the year. The present mesh size of 32 mm should be increased to correspond more closely to the minimum landing size. In view of the need to avoid the problem of meshing, however, it would be unrealistic to use the formula suggested by ACFM. The appropriate mesh size appears to be that at present in use by part of the fleet in Kattegat, i.e., $36-37 \mathrm{~mm}$ ".

In addition, the Herring Assessment Working Group makes the following comments:
Based on advice from a Danish-Swedish Study Group a TAC of 45000 tonnes for Division IIIa was agreed upon by Sweden, Norway and EEC for 1979. For the Skagerrak the TAC should be 10000 tonnes and for the Kattegat 35000 tonnes. It seems unlikely that such a TAC will reduce fishing mortality to an acceptable level even if strictly enforced. Lack of data makes it impossible to carry out a realistic prognosis. There is no adequate method of estimating F during 1978, nor is it possible to calculate the exploitation pattern on the basis of historical catch at age data. Exceptionally low catches of l-ringers during the IYHS in the Skagerrak-Kattegat area in 1979 indicate that the number of 2 -ringers may be low in 1980 (Table 2.13). Since regulatory measures have already been taken to reduce the exploitation of 0 - and l-ringers, and since 2 -ringers traditionally have dominated in the catches of older herring, it is thus possible that the TAC in 1980 would have to be reduced far below the 1979 level if the fishing mortalities on older fish are to be reduced to an acceptable level.
The Working Group recommends that a survey be carried out in September 1979 in order to monitor further the strength of the l-group herring. The TAC for 1980 would then have to be considered by the ACFM at the time of the 67th Statutory Meeting.
3. CELTIC SEA HERRING
3.1 . The Fishery in the 1978/79 Season
3.1.1 Introduction

The prohibition of herring fishing in the Celtic Sea, which was first recommended by the 1976 Working Group, was introduced in 1977/78. This prohibition was continued during 1978/79, and in 1978 the ACFM recommended that it should be further continued during 1979/80. The

ACFM also recommended that the landing of by-catches of herring from this area should be prohibited.
3.1.2 Catch data

In spite of these recommendations, however, a considerable quantity of herring was removed from the Celtic Sea during the 1978/79 season. This was mainly the result of a directed Irish trawl and drift net fishery and from catches of herring reported as by-catch in the Dutch and the Federal Republic of Germany mackerel fisheries. The total amount involved was nearly 4000 tonnes. This was 25% more than catches made in similar fisheries during the 1977/78 season. The catch data for the Celtic Sea fishery for the years and seasons since 1967/68 are given in Table 3.1 and Table 3.2. The 1978/79 figures are provisional and some very slight alterations have been made in the 1977/78 figures quoted in the previous report.
3.1.3 Catch in numbers by age

The age composition of the total catch in 1978/79 has been calculated from Irish and Dutch data, using the same procedure as in previous reports. Some slight alterations have been made to the 1977/78 figures because of the revised catch statistics for that year. The age composition of the catches since 1966/67 are given in Table 3.3.
3.2 Estimates of Fishing Mortality

In recent years the only direct mortality estimates for Celtic Sea herring were those derived from Irish catches per unit effort. However, because of the closure of the fishery in 1977/78 and 1978/79, it has not been possible to obtain estimates of F from this source. The Irish catches per unit effort are now severely limited by a quota system and consequently give no valid indication of stock abundance. However, the effort in the Irish trawl and drift net fishery increased substantially in 1978/79, and probably was at least twice the 1977/78 level.

It was therefore decided to make use of the catches in number at age for $1978 / 79$ to estimate the fishing mortality to which the stock has been subjected since the last accurate assessment was made in 1977. Fishing mortalities of $0.2,0.5$ and 0.8 were therefore assumed for 1978/79 and VPA analyses carried out for these values. A comparison of these fishing mortalities with the resulting 1977/78 values indicated that $F=0.8$ was the most realistic estimate of F in 1978/79, because this value reflects the increased effort in the Irish fishery during the year. The calculated stock size and weighted values of F are shown in Tables 3.4 and 3.5.
3.3 State of the Stock and Advice on TAC
3.3.1 Herring_surveys

During 1977/78, an Irish survey during the spawning season was carried out. The purpose of this survey had been to obtain samples for biological investigations and also to obtain an impression of the amount of herring appearing on the spawning grounds. The amount of illegal fishing that took place during 1978/79 meant that it was not possible to obtain by a similar survey any impression of stock abundance because of the constant disturbance of the shoals. It also meant that catches were available on which to carry out biological analyses. Therefore, no Irish trawling survey was conducted during the season.
3.3.2 Larval_survey and fecundity_studies

Following a recommendation from the 1978 Herring Assessment Working Group, a herring larval survey was carried out in the Celtic Sea throughout the spawning period of 1978/79. The survey was divided into seven cruises which were started in September and concluded in April. This period covered the complete spawning period, which is very prolonged in the Celtic Sea. Celtic Sea herring have traditionally been considered as winter spawners, but the possible presence of an autumn-spawning component in the area was discussed briefly by the 1975 Working Group. In recent years, this component has appeared to be more abundant than the winter-spawning component in the Irish catches, the majority of which are now taken in the September-November period.
Larval cruises in the Celtic Sea were first carried out by the United Kingdom during 1959 and 1960. These cruises were confined to the January to March period which coincided with peak spawning in those years. The results were briefly discussed by the 1969 Working Group. Recalculated values of the total number of larvae found were 65 ($\mathrm{x} 10^{9}$) in 1959 and 13 (x 109) in 1960 (Ozcan, 1974). The estimated number found during the first six cruises during 1978/89 are shown below.

Cruise	Mid-date	Abundance of larvae			Days from 31 Aug.
		< 10 mm (109)	$10-15 \mathrm{~mm}(109)$	$>15 \mathrm{~mm}\left(10^{9}\right)$	
18-23/9	21/9	. 36	0		21
15-21/10	18/10	15.83	17.58		48
27-29/11	28/11	5.30	13.19	$1.62 \begin{aligned} & \text { (poor } \\ & \text { coverage) } \end{aligned}$	89
15-18/12	17/12	0	0.73	1.72	108
23-26/1	24/1	0	0	. 84 (1 larva)	146
12-23/2	5/2	7.91	0	0	168

The distribution of the larvae plotted on time with fitted normal distribution curves are shown in Figure 3.1. These curves show very clearly that there are now two distinct spawning phases during the September to March period and that the autumn-spawning component constitutes the most important part of the Celtic Sea stock.

3.3.3 Spawning_potential

Estimates of fecundity of both autumn- and winter-spawning components were obtained during the 1978/79 season. The regressions of fecundity against length for both components are as follows:

Autumn spawners: \quad fecundity $=5.1171^{3}-56.59$
Winter spawners: fecundity $=3.4851^{3}-35.90$
There is a very significant difference between the mean fecundity indices (fecundity/length ${ }^{3}$) for autumn and winter spawners.
These estimates of fecundity were used to calculate the spawning potential of the Celtic Sea stock in the following way. The average mean length/age was calculated and subsequently the fecundity per
age calculated from the fecundity/length regressions. This was calculated for both autumn- and winter-spawning components and the results averaged to give a value for the total season. The average fecundity per age was multiplied by half the corresponding stock numbers (taken from VPA analysis used in the 1976 assessment). As expected the spawning potential was at a very high level during the late 1960s but subsequently fell dramatically as the stock size decreased. The decline is very similar to the decrease in spawning stock in weight shown in the 1976 Working Group report (Doc. C.M.1976/H:2, Figure 2). A comparison between the spawning stock biomass and the resulting recruitment of 2 year old fish was made (Figure 2) and it was evident that the reduced spawning potential in recent years has produced a number of very poor year classes.

3.3.4 Recruitment

There is still no method available for estimating the recruitment level in the Celtic Sea stock. Although the numbers of recruiting 3 year old fish (i.e., the 1975/76: year class) were considerably higher in the 1978/79 catches than in any of the previous six years, there is no positive evidence to indicate an increased level of recruitment in either this or the 1976/77 year class. It is also obvious from the VPA that the recruitment of the 1974/75 year class was overestimated by the 1977 Assessment. Working Group. There is therefore clearly an urgent need to initiate some programme in the Celtic Sea which will provide adequate information about incoming year class strength. This might be achieved by organising a combined beach seine and sprat weir survey along the south coast of Ireland to estimate the 0-group herring abundance or by re-examining the possibility of conducting trawl surveys for l-group herring in the Celtic and Irish Seas. The Working Group therefore recommends that investigations into these aspects should be commenced as soon as possible.

3.3.5 Stock assessment

Because there is no direct estimate from fishing mortality in 1977/78 or 1978/79 and no indication of increased recruitment levels in recent years, it is impossible to make any accurate estimate of stock size for the Celtic Sea. The adult stock size estimated at l April 1978 by the previous Assessment Group was 10000 tonnes. However, if one accepts that the fishing mortality in $1978 / 79$ was approximately 0.8 on the fully recruited age groups, then the adult stock size at l April 1978 was in fact only about 6000 tonnes. The 1976 Working Group has previously decided that the minimum stock size necessary to provide adequate recruitment would be at 40000 tonnes. This was considered to be $1 / 3$ of the adult stock biomass, which was present in a relatively unexploited phase.
It must therefore be considered that the catches during 1977/78 and 1978/79, together with the poor recruitment in both of those years, have prevented the stock from recovering. The adult stock therefore must be considered to be well below the level of 40000 tonnes, which is the declared management objective, and the stock is still in a very critical state.
The Working Group reviewed the above management objective, and in the light of Figure 2 it is recommended that the stock should be rebuilt to at least 40000 tonnes.
3.3.6 Management advice

This Working Group can, therefore, only reiterate the advice already given by the 1978 Assessment Group and by the ACFM:

1) a complete prohibition of herring fishing in

the Celtic Sea during the 1980/81 season; - 2) | a complete prohibition on the landing of all |
| :--- |
| by-catches of herring taken during tbe mackerel |
| and sprat fisheries. |

4. WEST OF SCOTLAND HERRING (Division VIa)
4.1 The Fishery in 1978
4.1.1
4.1.2 Catch in numbers at age
:) Estimates of the numbers of autumn-spawning herring per age group caught in Division VIa (including the Moray Firth) in each of the years 1969-78 are given in Table 4.3. The figures for 1977 were amended using revised catches.
While the catch in number of most age groups decreased in 1978 4 -ringers (1973 year class) still contributed a high percentage of the adult fish. In addition the catch of 0-ringers (1977 year class) was much higher than in the previous two years this being mainly due to increased by-catches of this age group in the Moray Firth sprat fishery.
4.2 Estimates of Fishing Mortality and Stock Size

In previous years the state of and trends in the herring stock in Division VIa have been assessed by carrying out a cohort analysis on the numbers at age caught in the Division VIa fishery and the juveniles caught primarily as a by-catch of the sprat fisheries in the Moray Firth. The latter were included because of the clear evidence that these fish later recruit to adult fisheries west of Scotland rather than to any of the populations spawning in the North Sea. There is additional evidence, from the Bløden Tagging Experiment,
that Division VIa also draws its recruits from a much wider area of the North Sea, and in particular from the major nursery area in the eastern part (Bløden). In the absence of any method of quantifying the movement of recruits from the central North Sea to Division VIa, however, the Working Group had no basis on which to include in the Division VIa cohort analysis fish from the Division VIa "stock" which were caught in the North Sea prior to their intended migration to Division VIa.

From a theoretical demonstration by Ulltang (1977) of the dangers of carrying out a VPA on two separate stocks between which there is a one-way migration, it is now clear that major biases can result in the estimates of fishing mortality, stock size and recruitment, particularly in the area receiving the immigration, from a VPA in which no migration factor is incorporated.

The Working Group was presented with a new assessment of recent trends in the Division VIa population based on a VPA of both the North Sea and Div. VIa populations in which emigration factors had been incorporated. This had been made possible by the discovery of a "biological tag" (the parasite Renicola) that has been used to estimate the proportion of herring at each age in Division VIa that had recruited from Scottish coastal areas and the Bløden nursery area in the North Sea (McKenzie and Johnston, 1976). The results of this analysis are described. in full in a paper presented to the ICES Pelagic Fish Symposium in 1978 (Saville and Bailey, in press). The infestation rates by Renicola in Division VIa are given for the 1969-74 year classes in Table 4.4 and the values of fishing mortality and emigration factors in Tables 4.5 and 4.6 for Division VIa and the North Sea, respectively. Input Fs for the VPA were derived by iteration to comply with the assumption made by the Working Group in 1978 that fishing effort in Division VIa dropped by 30% between 1976 and 1977.
As would be expected from the theoretical treatment (Ulltang, 1977) estimated fishing mortalities in the North Sea are slightly lower than those derived from conventional VPA. Those in Division VIa, however, are considerably higher. The resulting stock in number estimated for Division VIa and the North Sea are given in Tables 4.7 and 4.8 , respectively. In the North Sea, the new population estimates are slightly higher than those estimated by conventional VPA, whereas in Division VIa they are very much lower.

Although the potential dangers of carrying out a conventional:VPA on Division VIa catches were recognised, the Working Group was reluctant to accept the emigration model without further research on the validity of the emigration data used and without confirmation of some of the implications of the model. In the first place, the hypothesis implies that there are considerable numbers of Division VIa recruits up to five years of age in the North Sea which do not spawn there. It was agreed that all countries with relevant data on maturities of fish in the northern North Sea should re-examine them in the light of this hypothesis. Furthermore, the assumption made by Saville (1979), resulting from the emigration hypothesis, implies that these potential VIa recruits must be deducted from the northern North Sea population, gave rise to a spawning stock size in Division IVa very much lower than that in Division IVb. From larval production data (Section 2.4) the reverse appeared to be the case. The Working Group was unable to find an explanation for this inconsistency. Nevertheless, it is possible that the potential VIa recruits could spawn in the North Sea prior to their intended migration. The possibility of a net migration of herring from the North Sea to Division VIa cannot be ruled out.

However, the Working Group felt that the sampling of juvenile herring for parasite infestation in all parts of its distribution area was insufficient to conclude that the decrease in infestation rate with age in Division VIa was due entirely to immigration from the North Sea (one sample in the south Minch may have consisted of fish originating in an area to the south of Division VIa). The sampling in Division VIa, furthermore, seemed at present inadequate to quantify the likely emigration rates with the required accuracy. As a . result, the Working Group recognised the importance of further tagging experiments both to confirm and to quantify the direction and rate of migration.
As a result of the discussion, the Working Group decided to carry out their assessment of the Division VIa stock using the techniques it had used at previous meetings, but in addition to carry out a prognosis based on the emigration model to determine what effect it would have on the conclusions.

In view of the partial closure of the fishery in the second half of 1978, it seemed likely that the fishing effort dropped from 1977 to 1978. By how much, however, was difficult to estimate, and several runs of the VPA were made until the decrease in fishing mortality between 1976 and 1977 approximated to 30%, the level assumed in the 1978 report. The results of the VPA are given in Tables 4.9 and 4.10. These indicated a value of F on 3 -ringers and older in 1978 of 0.6 and the comparable values for 1976 and 1977 were 1.04 and 0.70, repectively, i.e. a little lower than those estimated in 1978. For the analysis, the exploitation pattern was assumed to be the same as in the input values used in the 1978 report.
The estimated decrease in F between 1977 and 1978 is 14% : The spawning stock at 1 January 1978 is estimated to have been 71000 tonnes compared with 68000 tonnes calculated at the 1978 Working Group meeting.

The results of larval surveys conducted in Division VIa were available for comparison with VPA estimates of spawning stock size. The survey coverage was not good in 1978, but it appeared that production was at approximately the same level as, or slightly lower than, in 1977. Estimates of the total abundance of larvae less than 10 mm (number x 10-9) in each survey and an overall mean are given in the following:

1977		1978	
8-16 Sep. (N of $56^{\circ} 30^{\circ} \mathrm{N}$)	404	1-11 Sep. (whole area)	364
$\begin{aligned} & \text { 18-26 Sep. } \\ & \text { (whole area) } \end{aligned}$	1188	$\begin{gathered} 23 \text { Sep. -10 oct. } \\ \text { (whole area) } \end{gathered}$	820
$\begin{aligned} & 15-24 \text { oct. } \\ & \text { (whole area) } \end{aligned}$	335		
Mean	642		592

4.3 State of the Stock and Management Advice

To calculate the most probable future course of events in the
Division VIa stock, prognoses have been made both disregarding cmigration factors and incorporating them.
4.3.1 Disregarding_immigration to Division_VIa

Using the estimated stock number and fishing mortality in 1978 from Tables 4.9 and 4.10, the stock in number at 1 January 1979 has been calculated (Table 4.11). This indicates a spawning stock size of more than 78000 tonnes, or slightly higher than in 1978. On the assumption of zero fishing mortality on 2-ringers and older in 1979 and an F on the l-ringers of the same level as in 1978, the spawning stock in 1980 will be considerably higher. The exact level will depend upon the assumed recruitment level of the 1977 year class.

The estimated number of 0-group in 1978 in Table 4.10 is probably unrealistic and is in any case dependent on the assumed value of F in the Moray Firth sprat fishery. As a conservative approach a value equal to the lowest estimated by VPA has been used (240×10^{6} as 1ringers). On this assumption the spawning stock at 1 January 1980 is calculated at 107000 tonnes.

Prognosis beyond 1980 is impossible without some indication of likely recruitment. For this reason a stock/recruitment scatter diagram is given in Figure 4.l. Considering the majority of the points, there is a rather clear relationship. However, exceptionally large year classes (1963 and 1969) have been produced at both low and high levels of stock. The basis for prediction is, therefore, extremely unreliable, but the likelihood is that a stock of 71000 tonnes in 1978 will produce only poor recruitment.
For a period during the late 1950s and early 1960s a spawning stock of 190-280 000 tonnes produced relatively steady recruitment. It therefore seems desirable to allow the stock to increase to a level of 200000 tonnes as quickly as possible and then to utilise strong year classes to rebuild it further.
The Working Group recommends that no catch should be taken from the stock in 1972, but the decision on whether or not to re-open the Division VIa fishery in 1980 should depend on estimates of the strength of the 1977 year class, possibly by the use of acoustic surveys on the nursery grounds.

4.3.2 Taking_immigration into account

Since emigration factors are not available for 1978, an assumption is required about their value. Assuming that they were at the average level estimated for the previous four years, prognoses have been made from the stock in numbers at 1 January 1977 and the fishing mortalities and emigration rates in 1977 given by Saville and Bailey (in press). The stages in the calculation are shown in Table 4.12.
To predict forward to 1 January 1979, the number of 2-ringers at 1 January 1978 is assumed to have been 100×10^{6} in Division VIa and 540×10^{6} in the North Sea, i.e., the lowest recent values given by Saville and Bailey (loc.cit.).
The calculations given in Table 4.12 are not based on all the age groups in the spawning population. They indicate, however, that the adult stock decreased from 1977 to 1978 but increased fairly sharply in 1979.
For comparison, the stock biomass $\left(t \times 10^{-3}\right)$ of $2-5$ ringers at 1 January are given below ignoring immigration.

1 Jan 1977
1 Jan 1978
1 Jan 1979
72.1
61.5
70.8
46.4
40.6
62.3

The quantity in 1979 considering immigration, however, is not the entire spawning stock, because thi's will also include immigrants still in the North Sea at 1 January. It is, therefore, difficult to make a direct comparison.

4.4 Clyde Herring

4.4.1 The fishery_in 1978

Catch data - Catch data for the years 1968-77 are given in Table 4.13 with a preliminary estimate for year 1978. The preliminary catch figure of almost 3900 tonnes for 1978 decreased by nearly 20% from that of the previous year almost entirely because of the reduction of a nationally set quota for this area.
Catch in numbers - Doubts about the reliability of allocating Clyde herring to race by otolith characteristics were expressed at the Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$, which met in September 1978 to discuss Clyde herring. In response to this, an attempt was made to re-allocate herring into their autumn and spring spawning component using instead maturity stage within age groups on a monthly basis as the criterion of classification. To decide on the requirements for classification into autumn and spring spawning components using this method, representative monthly samples for the period 1973-78 were tabulated by month, maturity stages and VS. High vertebral counts (56.7-57.0) associated with maturity stages IV-VII in spring and with maturity stages III-V in the period September-December were allocated to spring spawners, whereas low vertebral counts (56.3-56.6) associated with maturity stage VIII in the period April to August and October to December and with stages II-IV in the period April to September were allocated to autumn spawners. However, samples at maturity stage VIII with intermediate vertebral counts in the period April-June were difficult to identify on this basis.
Estimates of autumn and spring spawning herring per age group caught in the Clyde in 1977 and 1978 based on this classification are shown in Tables 4.14 and 4.15, respectively. These figures indicate that spring spawned herring made up to 26% and 11% of the catches by number in 1977 and 1978, respectively. Among the spring spawners, the 1974 year class contributed strongly in both years.

4.4.2 Tagging

The number of recaptures by month and area of tagged herring (external tags) in the Firth of Clyde is shown in Table 4.16. No further taggings were carried out in this area in 1978.
4.4.3 Management_advice

At its meeting in September 1978, the Working Group concluded that in the absence of any firm evidence about the origin of autumn spawning
herring in the Clyde, the area should be managed as a separate unit. None of the new data available alter this conclusion. Furthermore, the biological data provide no adequate basis on which to make an assessment of the state of the population in this area.
In the autumn spawning component, l-ringed fish constituted a much higher proportion of the catches in 1978 but it is not clear whether this is due to a change in exploitation pattern or to good recruitment. It therefore seems advisable to continue the advice given in 1978, that the herring fishery in this area should be managed in conformity with those of adjacent areas.

The Working Group recommends that for 1980 a TAC should be set at the same level as for 1979, i.e. 2000 tonnes for the Firth of Clyde, which for this purpose is defined as that area within a line drawn from Mull of Kintyre to Corsewall Point.
5. WEST OF IRELAND HERRING
5.1 Herring in Division VIIb, c
5.1.1 Nominal_catch_and catch in numbers at age

Herring catches in Division VIIb, c for the period 1967-77 are given in Table 5.1, together with preliminary catches in 1978. Catches in 1978 were considerably less than in 1977 owing primarily to the decrease in catch by the Netherlands. Catches in numbers at age from 1970-78 are given in Table 5.2.
5.1.2 Relationship between herring stocks in Division VIIb, cand Division VIa

The relationship between herring taken in Division VIa and in Division VIIb, c has already been discussed by previous Working Groups. In the penultimate report of the Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$ (Doc. C.M.I978/H:3) there was a recommendation that steps be taken to clarify stock identification and mixing in these two Divisions. In an attempt to examine this problem Spearman rank-correlation coefficients were calculated using paired sets of age composition data of autumn spawners from the Hebrides, South Minch, Northwest of Ireland and West of Ireland. These data were taken from Annales Biologiques; ICES Statistical News Letters and from Working Party data over compatible time periods. The net result of this analysis indicated that a varying degree of association existed between all combinations of areas, but there was no demonstrable relationship between the age structure in the areas off the Hebrides and West of Ireland (Galway). It could be suggested that the South Minch and Northwest of Ireland were areas in which a complex stock mixing takes place, but it was not possible to quantify this further on the present data. The strong associations between age structure in Donegal and Galway further suggested that the boundary betweeen Division VIa and Division VIIb, c was not a realistic biological boundary and this supported previous conclusions based on meristic, fecundity and age composition comparisons (Grainger, 1976; Molloy, 1975).

5.1.3 Management advice

On the basis of the analysis summarised above, it does not at present seem possible to re-define a boundary between Division VIa and Division VIIb,c.

Because of the dangers of overexploitation in Division VIIb, c, the Working Group reiterates its advice given in 1978 and recommends that a precautionary TAC of 7000 tonnes should be set for 1979 and for 1980 for this area.
5.2 Herring in Division VIIj (southwest Ireland)

Accurate catch statistics of herring from Division VIIj, which is situated west of the Celtic Sea, are not available. This is because all countries report their catches as having been taken in Division VIIg-k. At the present time, however, it would appear that the catches are almost completely taken by Irish vessels. The average landings per year in the $1960-70$ period did not exceed 5000 tonnes. However, in the more recent years the effort in the area has increased considerably because of the closure of the Celtic Sea, and as a result the total Irish catch has increased and in 1978 it exceeded 7500 tonnes.
Scientific data about these herring are limited and not sufficient to estimate stock size. However, catch per effort data would indicate that the fishery is based on rather small stocks which react quickly to increased effort. The majority of herring in the area are autumn spawners and there is a number of well defined spawning beds along the Irish coast. The age distributions in 1977 and 1978 indicate that the 1974 year class was substantial in the area (as it was in the adjacent Division VIIb, c) and was responsible for over 40% of the catch in both years.
EEC regulations, intended to limit the catch in the area to about 5000 tonnes, were introduced in 1978. Until more scientific data become available it would seem desirable to stabilise the fishery in the area at about the level of the recent catches, i.e., about 5-7 000 tonnes. This would prevent diversifications of effort to the area and the inaccurate reporting of catch statistics.

The Working Group therefore recommends that a precautionary TAC of 6000 tonnes be set for 1980 for Division VIIj.
6. IRISH SEA HERRING (Division VIIa)

6.1 Introduction

6.1.1 Herring fishing in the North Irish Sea is supported almost exclusively by two autumn spawning stocks called the Mourne and the Manx stock. The location of their spawning grounds and the general biology of these stocks are described in Doc. C.M.1978/H:3, Appendix. Examination of mature fish caught on the Mourne spawning ground and the Manx spawning ground has demonstrated characteristic differences between the stocks:
a) Mourne spawners are approximately 1 cm longer at each age than Manx spawners;
b) There is a substantial recruitment to the Mourne spawning stock of herring aged 1 ring; virtually no Manx herring spawn until they are age 2 rings;
c) In recent years there have been few herring older than age 2 rings on the Mourne spawning ground; Manx spawners include a substantial proportion of herring older than 2 rings;
d) Mourne spawners have a higher mean vertebral count than Manx spawners (Table 6.1). As would be expected, mean vertebral counts vary a little within stocks from one year class to another, but it is clear that there is a substantial difference between the two stocks for all year classes and age groups.
6.1.2 The Working Group first considered the herring stocks in the North Irish Sea in 1976. It was then concluded that the Mourne and the Manx herrings were separate stocks and that separate assessments should be made. It was, therefore, necessary to allocate catches of herring taken in the North Irish Sea to parent stocks. From 1976 onwards catches taken on the Mourne spawning grounds have been assumed to be Mourne stock and those taken in the Manx grounds to be Manx stock. Catches taken outside the spawning grounds have been identified to stock on the basis of vertebral counts of samples. Many catches have easily been ascribed to one stock or the other; when sample data indicated that catches of adult herring were of mixed origin, half the catch was allocated to each stock. This practice has been followed in the assessment for 1978.
6.1.3 The juvenile herring of the Irish industrial fishery show close affinities to the Mourne stock but no discernible affinities to the Manx. Their vertebral counts, given in Table 6.1 by year class and by age, are very similar to those recorded for Mourne spawning herring and year class strengths have been consistent with the premise that the industrial fishery was predominantly exploiting Mourne stock. In 1976 and 1977 the Working Group decided to assume that only 75% of the cohort 0 -group recruitment to the industrial fishery in any year was attributable to the Mourne stock. The other 25% was thought to belong to another stock component, possibly Celtic Sea herring. For the 1978 assessment, all of the industrial catch has been included in the total catch of Mourne herring, because a detailed examination of VS by year class and age (Table 6.1) suggests that any Celtic Sea component of the industrial catch would be negligible.
6.2 The Fishery in 1978
6.2.1 Manx stock

Nominal catches are given in Tables 6.2 - 6.3 by country and by stock. The declared catch from the North Irish Sea in 1978 was 11075 tonnes of which 8458 tonnes was attributed to Manx stock and 2548 tonnes was attributed to Mourne stock. A small quantity of spring spawning herring was landed; these fish are not considered further in this report. The quantity of herring caught was controlled by a TAC and a restricted fishing season applied to United Kingdom vessels. Daily catch quotas for vessels operating from Isle of Man were set by a joint committee of catchers and processors in order to spread the catch over a reasonable period.
Catches have fallen progressively since 1974. Conservation measures have been applied either by international agreement to all vessels or nationally to United Kingdom vessels.

Catch in numbers by age
Catch in weight in each month was converted to catch in numbers by means of regular counts of herring in boxes of a declared nominal weight. Age distribution was determined by the application
of length/age keys made each month in which there was an appreciable landing in the Isle of Man. The results are given in Table 6.4. Recruit 2 ring fish (1975 year class) made up 60% of the catch; very few 1 ring fish were caught.

6.2.2 Mourne stock

The total nominal catch of herring in the Mourne stock in 1978 was 2548 tonnes (Table 6.3), made up of 1809 tonnes consumption and 739 tonnes caught for industrial purposes. The comparable catch data for 1977 were 1809 tonnes consumption and 1174 tonnes industrial, giving a total of 2983 tonnes. Thus, the consumption catch was identical in the two years while the industrisl catch was 435 tonnes lower in 1978.

Catch in numbers by age

Total catches, by weight, of Mourne herring were converted to numbers at each age by the use of data from samples of catch landed in Northern Ireland, Ireland and England. The age composition of the Mourne catch is given in Table 6.5. As in all recent years 0 and 1 ring herring made up the major part of the catch in number, all the 0 ring and 60% of the 1 ring catch being taken in the industrial fishery.
Substantial changes occurred in the seasonal distribution of the catches taken in 1978, because of national measures to limit the fishery. As a result there was a change in mean weight at age. The mean weights at age in the catch taken in 1978 which are different to those given in the previous report (Doc. C.M.1978/H:3) are:

Age
(rings) $\begin{array}{ll}3 & 0 \\ 3\end{array}$

1
2

3

Mean weight

2345158
199

No meaningful estimate was possible for the older age groups because of the very small numbers of fish sampled.

6.2.3 The industrial fishery

The industrial fishery carried out in the northwestern part of the Irish Sea continued in 1978. Estimates of the total annual weight of young herring taken as a by-catch, based on samples obtained since 1969, are given below:

Year	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978
Tonnes	2210	3796	2715	2251	1913	2190	1573	779	1174	739

As in other recent years the major part of the by-catch was taken in the winter months. From January to March the catches consisted mainly of 1 ring fish of the 1976 year class. These migrated offshore during the spring and summer months and were replaced by 0 ring fish of the

1977 year class. The herring by-catch for the remainder of the year consisted almost exclusively of this age group. As discussed above in para. 6.1.3 the immature herring taken in the industrial fishery are considered to be predominantly pre-recruits of the Mourne stock. The total catch expressed as numbers of herring per age group is shown in Table 6.6 for the period 1969-78. In $19780-r i n g$ herring made up 74% of the total catch in number.

Recent reports of this Group, and also of ACFM in 1978, have all drawn attention to the continuing very high level of the herring catches taken in the industrial fishery. These have continued in spite of both an agreement to prohibit the landing of herring for industrial purposes (subject to a 10% tolerance limit) and the introduction of a 20 cm minimum landing size. Despite the somewhat lower weight of catch taken in 1978, this is still at an unacceptably high level when one considers the very small amount of recruitment to the Mourne spawning stock during recent years.
The Working Group therefore repeats its warning that the Mourne stock is unlikely to survive unless the industrial catch is terminated at once.
6.3 Estimates of Fishing Mortality and Stock Size
6.3.1 Manx stock

In 1976, 1977 and 1978 stock estimates were initiated by cohort analysis with an input F derived from a regression of fishing mortality and fishing effort calculated over the previous 7 to 10 years. This method is inappropriate for the 1978 fishing season because the measure of fishing effort is unlikely to reflect F; a catch quota per boat was decided by a port committee on a day-to-day basis in order to achieve a predetermined weekly and monthly catch pattern within a TAC. The unit of effort recorded is a daily arrival of a fishing boat with a catch, and because of the large number of vessels participating, catch per day per boat was held at a low level. Average catch per day was in fact 2.7 tonnes for vessels based on Isle of Man, about half that in 1977.
In order to obtain a stock estimate, cohort analyses were run with a range of input F at intervals of 0.05 ; from these analyses a series of estimates for F in earlier years was obtained. For each set the correlation of F with effort for the years 1967 to 1977 was calculated. It was found that the correlation was highest for input F of 0.25 and 0.3 and fell away for lower or higher values; the most relevant parts of the results are given in Table 6.7. As a result of this exercise it was decided to apply an input $\mathrm{F}_{1978}=0.30$ to the data for a stock estimate from cohort analysis.
The results of the analysis are given in Tables 6.8 and 6.9. The Tables indicate that half the stock is composed of $2-r i n g$ fish of the 1975 year class, older fish are mainly of the 1974 and 1973 year classes. It would appear that the steady decline in stock size since 1974 has been stopped by conservation measures and the stock size has increased from the low level of 1977. Fishing mortality appears to be reducing steadily from the high levels of 1974 and 1975 in accordance with ACFM advice that F should be gradually reduced towards Fo.l. The value of $\mathrm{F}_{0.1}$ for Manx stock at the present exploitation pattern and mean weights of age equals 0.16.
6.3.2 Mourne stock

For a first cohort run a mean weighted value of F was calculated for 2-9 ring fish from the estimated stock in numbers of herring at each age on 1 January 1978, which was given in the previous report of the Working Group (Doc. C.M.1978/H:3), and the catch in number for these age groups taken in 1978. This gave $F=0.30$ and the cohort was run with this input value for all groups in 1978. The stock in number for 1976, the last reliable year from this cohort, was very similar to that calculated by the previous Working Group. The catches in number taken during 1976 and 1977 were applied to the new cohort stock in number at l January 1976 to give a revised estimate of numbers of 2-9 ring fish at 1 January 1978. The 1978 catch applied to those gave a weighted fishing mortality of $F=0.29$. A new cohort was run with this input value for all age groups in 1978. Input values of F for the last age group in 1977 and earlier years were taken from the mean weighted value of F for age groups l-8 years estimated by the first cohort. The new 1979 cohort values of fishing mortality and stock size are given in Tables 6.10 and 6.11. In calculating fishing mortality on 0 and 1 ring herring in 1978 it was assumed that the numbers of 0 -group were the same in 1976 and 1977, i.e., 52×10^{6}, and a value of 45×10^{6} was assumed for 1978. This was based on the declining trend of 0 ring abundance shown in Figure 6.1. The catch taken in 1978 would then have generated $F=0.66$ on 0 ring and $F=0.81$ on the l-ring herring. Thus, while fishing mortality on the adult component of the Mourne stock was reduced to a moderate level that on the immature and recruit 0 and 1 ring fish remained at a dangerously high rate. In view of the trend shown in Figure 6.1 it may be concluded that year class strength will continue to decline and therefore a value of $40 \times 10^{6} 0$ ring herring has been assumed for 1979. The estimated stock in number at 1 January 1979 for ages 1 ring and older has been calculated from the catch in number per age group in 1978 and the values of fishing mortality discussed above for that year.

Millions of fish at I January 1979

> Age (rings)

0	1	2	3	4	5	6	7	8	9	10	Total
40.0	21.1	9.0	12.7	5.7	1.8	0.7	0.1	0.3	0.1	0.0	91.5

6.4 State of the Stocks and Advice of TACs
6.4.1 Manx stock

There is no reliable method of forecasting recruitment to the Manx stock. Catch of 1 ring fish is not correlated significantly with subsequent recruitment of age 2 rings. The stock/recruitment plot gives no guidance on recruitment levels. It is, therefore, considered prudent to assume moderate levels of recruitment. The stock is still heavily dependent on the recruiting year class and one poor year class would delay the recovery of the stock that appears to have started with a moderate fishing mortality and a good
recruitment in 1978 , though it must be remembered that the stock size estimate for 1978 is not very reliable. However, the Working Group considers that, given moderate recruitment, a TAC of 10000 tonnes in 1979 and 1980 would result in a reduction of F towards $F_{0.1}$ level and allow an increase in stock size.
From 1973 to 1977 fishing for herring in the North Irish Sea was prohibited for six weeks from the end of September and this has almost certainly helped control F. Fishing in September has been concentrated over the spawning beds in recent years and disturbance of spawn has been observed. A crude larval survey carried out 2 to 3 October 1978 (when eggs spawned up to 21 September would have hatched) caught negligible numbers of larvae. A repeat survey conducted on 18 to 20 October caught numbers of larvae comparable with those produced in similar surveys in 1974-75 and 1977, and more than those caught in 1976. This observation is by no means firm evidence that trawling over the spawning beds affects spawning success but it is provocative.
The Working Group recommends that herring fishing in the North Irish Sea be prohibited for 8 weeks from 22 September each year. This is an extension of the period recommended by the Working Group in 1978 and is designed to afford greater protection to the spawning shoals which frequent the spawning beds from early September to mid-November.

6.4.2 Mourne stock

By applying the mean weights at age tabulated in the previous report (Doc. C.M.1978/H:3) the spawning stock size at 1 January 1979 was estimated at 6353 tonnes. At 1 January 1978 it was 6058 tonnes. Spawning stock size is based on an estimate that $1 / 3$ of the 1 ring stock spawn at that age. This ratio has been derived from samples taken from June to December during the past five years. It must be noted, however, that the stock in number in both years is heavily dependent on assumed values of initial strength for year classes 1976, 1977 and 1978. For this reason it is considered quite unrealistic to attempt a stock prognosis for future years based on further assumed values. It is quite clear, as stated in earlier reports, that the Mourne stock has declined to a very low level and that all fishing on the stock should be prohibited until a substantial recovery has taken place. The Working Group is unable to advise an optimal spawning stock size for Mourne herring due to the fact that this stock has been in a declining state ever since the first assessment was carried out. In addition, there is no estimate of the size of the spawning stock which produced the most abundant year class measured, i.e., the 1969 year class.
It is recommended that the present prohibition on fishing for herring within 12 miles of the coast of Ireland up to the northern boundary of Division VIIa at latitude $55^{\circ} 00^{\prime} \mathrm{N}$ should be continued in order to protect the remaining spawning stock; and it is further recommended that directed herring fishing be prohibited in a zone extending 12 miles from the English coast between $53^{\circ} 20^{\circ} \mathrm{N}$ and $55^{\circ} \mathrm{N}$ in order to protect the juvenile component of the Manx stock. The Working Group also reaffirms that it is imperative that the industrial catch should be terminated at once.

7. NORTH SEA SPRAT

7.1 Introduction

As in previous assessments the sprat populations have been treated as two separate stocks. The Kattegat, Skagerrak stock (including

Norwegian fjords) has been assessed by the Working Group on Division IIIa Stocks (Doc. C.M.I979/G: 9), and the North Sea stock is assessed here.
7.2 The Fishery in 1978

Catch data
The catches of sprat in the North Sea for the years 1976-78 are shown in Table 7.l. The provisional total catch for 1978 was 378000 tonnes. That is about 75000 tonnes more than in 1977, but about 250000 tonnes less than catches in 1976 and 1975. The 1978 catch was somewhat lower than the TAC recommended by the ACFM (400 000 tonnes) for the year 1978.
In 1978, about the same relative increase in catch was found in the western and eastern part of Division IVb, while catches in Division IVa west were reduced when compared to 1977.
The Danish catch accounted for more than half the total (international) catch as in previous years. A major part of the Danish catch was taken by bottom trawl in Division IVb east in autumn. The Norwegian catch was taken by purse seine in Division IVb, mainly in the western part in the first and fourth quarter of the year. The United Kingdom sprat fisheries have remained rather stable. Most of the catch was taken by trawl in the winter months off the coast of Scotland and England.
7.2.2 Catch_in numbers_by_age

Denmark, Norway and the United Kingdom supplied catches by age group in number and their summed quarterly catches are given in Table 7.2. These catches account for about 95% of the preliminary total catch figure. A feature of the 1978 catches are the relatively low catches in the first quarter of 1978 and the high level of l-group fish in the third quarter. This catch is similar to the high level of this age group in the third quarter of 1976.
Table $7 \cdot 3$ gives the numbers accumulated by Sub-division in the North Sea. A notable feature is the high catch of l-group fish in IVb east in 1978.

7.3 Weight at Age

No new data on weight at age were available, and the overall weighted mean weights given in the previous report (Doc. C.M.1978/H:3, Table 7.4) were used for calculations of stock biomass.

[^1]periods of the year. The estimate of stock size is not so heavily dependent on small changes in F, when the F value is high.
Assuming that natural mortality previously set at 0.8 is generated on all age groups at the same rate throughout the year, then on a quarterly basis M may be set at 0.2. A VPA has been run on the quarterly catch data of Table 7.2. To test the rate of convergence, input F values for the last quarter of 1978 were set at half the value of the input values given in Table 7.7.a of the 1978 Working Group report (Doc. C.M.1978/H:3) and other runs were made increasing the value of F by 50% each time. For the 1974 year class, rate of convergence expressed as a percentage of the initial F value is shown in Figure 7.1 as an example. The input F values were 0.28 , $0.42,0.63$. It is seen that by the third quarter of 1977 the difference in these estimates is of the order $15-20 \%$, reducing to 10% by the fourth quarter of 1976. Estimates of stock size in the first quarter of the year of fourth quarter data entry may be calculated, with some degree of reliability, provided the assumption is accepted that M does not vary with age and season.

In these trials varying input Fs were also used to examine the form of the exploitation pattern. F values, incremented in steps of 50%, were used in each successive run. It was apparent that both stock numbers and fishing mortalities derived from the quarters of the years 1974-76 differed little. Taking the F values by age for these years, mean exploitation patterns were calculated. Those derived for the fourth quarter are given below expressed as a ratio of the F value for 1 ringers. The value on 4 ringers is based on the same assumption as was made in 1978.

Mean exploitation pattern in fourth quarter

Age	0	1	2	3	4
	0.12	1	2.07	5.60	(7.21)

No independent data are available which can be used to set the input F values for 1978. Examination of the trial VPA runs showed that the large catch of l-group in third quarter of 1976 was taken with $F=0.2$. A similarly large catch was taken in third quarter of 1978.
Both these quarter 3 catches come from the Danish industrial fishery exclusively. There was no restriction on catch in this quarter and hence there is no indication of any major change in effort between 1976 and 1978 .
A VPA was run setting the input F values for quarter 4 which gave an F in quarter 3 approximately to 0.2 on 1 ringers (the value calculated for 1976). The input Fs on other age groups were set using the average exploitation pattern for that quarter given above. The stock sizes and fishing mortalities derived are given in Table 7.4.
Using the mean quarterly weights at age (Doc. C.M.1978/H:3, Table 7.4), biomasses have been calculated and are shown in Figure 7.2. For each year two biomass estimates are shown for quarters 3 and 4. The lower estimates derive from the older fish and are referable directly to the estimates in quarters 1 and 2. The large increases in biomass reflect the major increase in weight for age of these
age groups during the year. The higher estimates include the increment due to the new 0-group recruitment entering the stock in the second half of the year.
The only estimate of sprat recruitment, independent of data from the fishery, are those from the Young Herring Surveys. Johnson (Doc. C.M.1978/H:31) has reviewed the recent data collected in those surveys. Johnson grouped the data into 19 sub-areas, 11 of which were sampled in each year of 1976, 1977 and 1978. Mean abundances were calculated for age groups 1 and 2 for these 11 sub-areas.and are given in the text table below.

Ye	VPA stock	TYHS age groups		
class	Q 1×109		$\stackrel{\mathrm{l}}{\mathrm{No} / \mathrm{hr}}$	$\stackrel{2}{\mathrm{No} / \mathrm{hr}}$
1974	100			3076.91
1975	159	5	015.36	4.151 .82
1976	108		196.82	2355.45
1977	158	3	413.64	

The time series is too short to allow any conclusions to be drawn.

7.5 Stock Size Estimate

The results from VPA are shown as biomass estimates in Figure 7.2. The new year class as 0-group enter the fishery in quarters 3 and 4 each year. Biomasses are shown separately for the new recruitment and the surviving stock for these quarters. The total North Sea biomass, including recruitment, has averaged about 1 million tonnes over the period 1974-77. It should, however, be noted that the VPA was based on several assumptions which, if wrong, could bias the results. .
In the previous report the results of an acoustic survey were presented which suggested that the pelagic biomass was of the order of 795000 tonnes in the area of distribution of the winter sprat fisheries of the east coasts of England and Scotland. This was interpreted as an estimate of the sprat population in the western half of the North Sea. This survey was later reported at the Statutory Meeting (Doc. C.M.1978/H:55). Unfortunately, it has since been discovered that a computational error occurred and that the biomass is considerably lower.

7.6 Acoustic Surveys

In January or February 1978 and 1979 Scottish and English research vessels have conducted acoustic surveys using integrates over the area of sprat fisheries off the United Kingdom. North Sea coasts. The areas covered in each year are indicated in Figure 7.3.
In 1978 transducer difficulties on RV "Corella" and the wide' disparity in the estimate from RV "Scotia" rendered the use of the surveys problematical at the time of the Working Group meeting. Revision of both series of data has led to much closer agreement in the two surveys.
The cruise data have been grouped into the three major areas covered. The biomass estimate has been obtained in the same manner as reported in Doc. C.M. $1978 / \mathrm{H}: 3$, using a target strength of $-34 \mathrm{~dB} \mathrm{~kg}^{-1}$.

In 1979 an intercalibration was undertaken between RV "Corella" and RV "Scotia". Vessels followed parallel courses over an area in which the English sprat fishery was operating. The results of these parallel surveys are also given in Table 7.5. From this it would appear that some confidence may be placed in the reproducability of the technique.
It can, however, only be surmised that these tonnages refer solely to sprat. On the acoustic surveys, the research vessels sampled by trawl in attempts to identify scatterers. In the case of "Corella", much of the catches consisted of 0/1-group sprat, which also occurred in the adjacent fishery. Comparing the biomass estimates for the English northeast coast in the two years, the considerable drop in abundance is consistent with the reduced catch rates in 1979 as compared with 1978. However, how much this reflects a real stock change, and how much might be caused by difficulties for the fishery arising from weather cannot be determined. In the Scottish area the high biomass in 1979 is associated with a high abundance of 0/l-groups, i.e., the 1978 year class.
Even supposing that these estimates referred solely to sprat, it is not possible to interpret them in relation to the total North Sea biomasses. There is no way by which the relative proportions of the North Sea stock which are distributed in the western and in the eastern area may be quantified. It is thus not possible to raise the acoustic abundance to a value representing the total North Sea.
7.7 Catch Prediction and Advice on TAC

At the 1978 Working Group meeting a precautionary TAC was recommended for 1979. This was set at 400000 tonnes "until a more reliable estimate of stock size can be obtained" (Doc. C.M.1978/H:3). The Working Group also pointed out that, while it was difficult to set a TAC for the year in which the Working Group met, it was even more pointless to try to project a TAC for the following year. This is because the year class entering the fishery which might contribute over half the total biomass was not yet born.
The Working Group must point out that because of this limitation it cannot see a scientifically determined TAC for 1980.
The Working Group reconsidered the recommendation of a TAC of 400000 tonnes for 1979 and saw no reason to change its former advice.
8. FUTURE RESEARCH REQUIREMENTS

- Great emphasis should be given to the acoustic surveys which will be held in the North Sea and Division VIa for the first time in July 1979. At present the amount of vessel time allocated to this project is inadequate to provide stock estimates with the required level of accuracy. It is strongly recommended that these surveys are repeated in 1980 and that the number of participating vessels is increased.
- Unfortunately, the tagging programme for herring in the North Sea and Division VIa which was recommended by the Working Group last year cannot start until the summer of 1980. This means that the first estimates for the herring stocks derived from this experiment will not be available until 1981. However, these estimates will still be very important at that time, and apart from these stock
estimates, the experiment will also provide very important information on the migration of herring, in particular between the North Sea and Division VIa. It is strongly recommended that the required funds for chartering of vessels and acquisition of tagging equipment are provided through ICES.
- Despite the recommendation made by the Working Group last year, the effort put into larval surveys is still inadequate to obtain a sufficient coverage of the main spawning grounds both in the North Sea and Division VIa. This is also due to the withdrawal from these surveys of Poland and the German Democratic Republic. The Working Group wants to stress the fact that sampling effort should be increased, particularly in Divisiors IVa (W) and VIa, if estimates of larval production in these areas are to be produced with a reasonable degree of accuracy.
- The Working Group recommends that Irish trawling surveys during the Celtic Sea herring spawning season should be continued, because it is an important method by which the state of the stock can be monitored.
- Racial studies on juvenile herring in Division IIIa should be intensified in order to establish the origin of these fish. Particular emphasis should be placed on otolith characters, in combination with VS and K_{2} counts. The Working Group recommends that a Workshop on otolith typing should be arranged in 1979 in order to refine the methodology for separating spring and autumn spawners.
- Unless more data are provided on the occurrence of adult fish in maturity stage 1 and 2 in Division IVa (W), the Working Group cannot judge whether Saville's emigration model provides a better basis for stock assessment of herring in the North Sea and Division VIa than the methods used by the Working Group so far. The Working Group therefore recommends that all countries screen their available data from Division IVa (west) for adult fish in low maturity stages, preferably in combination with K_{2} and VS data.
- The planned acoustic survey on northern North Sea (and Division VIa) herring will give occasion for an extensive sampling and will be the opportunity of getting valuable information on the age distribution and stock composition. The Working Group stresses the importance of full biological sampling, including the determination of the stages of maturity and the counting of VS and K_{2}. All otoliths taken for are determinations should be retained.
- New programmes should be initiated in order to obtain estimates of recruitment to Division VIa. Because of the total absence of any reliable recruitment estimates for Division VIa, the Working Group was not able to predict the adult stock in this area for 1980 with any degree of accuracy. Recruitment estimates could possibly be obtained from acoustic surveys in the nursery areas during late 1979 or early 1980.
- In view of the necessity to monitor changes in the abundance of North Sea sprat it is recommended that acoustic surveys, e.g., in January, should be coordinated and extended so as to cover the main fishing areas during the period (see Figure 7.3).

9. REFERENCES

Edwards, J I and Bailey, R S. 1978. An echo integration survey of sprats in United Kingdom coastal waters from the Humber to Moray Firth, January 1978. ICES, Doc. C.M.1978/H:55 (mimeo.).

Grainger, R. 1976. An investigation into stock composition of autumn-spawning herring to the west of Ireland. ICES, Doc. C.M.1976/H:16 (mimeo.).
Johnson, P 0. 1978. Report on the sprat sampling from ICES Young Herring Surveys undertaken in February 1976, 1977 and February-March 1978. ICES, Doc. C.M.1978/H:31 (mimeo.).

MacKenzie, K and Johnstone, C. 1976. Recruitment to the Minch herring population as determined by the use of parasites as biological tags and a new meristic character. ICES, Doc. C.M.1976/H:34 (mimeo.).
Saville, A. 1979. The estimation of spawning stock size from fish egg and larval surveys. ICES/ELH Symp./DS:5.
Saville, A and Bailey, R S. (In press). The assessment and management of the herring stocks in the North Sea and to the West of Scotland. ICES Symp. on Biol.Basis of Pelagic Fish Stock Management, No.5.
Ozcan, A. 1974. A review of herring stocks to the west of the British Isles. PLD Thesis. Univ. of East Anglia.

Ulltang, Ø. 1976. Sources of errors in and limitation of virtual population analysis (cohort-analysis). ICES, Doc. C.M.1976/H:40.
ICES, 1978. Report of the Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$, Charlottenlund, 26 February - 6 March 1976. ICES Coop.Res.Rep., No.78.

ICES, 1978. Report of the Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$, Charlottenlund, 9-18 March 1978. ICES, Doc. C.M.1978/H:3 (mimeo.).
ICES, 1979. Report of the Working Group on Division IIIa Stocks. ICES, Doc. C.M.1979/G:9 (mimeo).

ICES, 1979. Report of the Working Group on Herring Larval Surveys South of $62^{\circ} \mathrm{N}$, Charlottenlund, 26 and 27 April 1979. ICES Doc. C.M.1979/H:4 (mimeo.).

Table 2.1 HERRING. Catch in tonnes 1968-78.
North Sea (Sub-area IV and Divisions VIId and e) by country. Skagerrak (Division IIIa excl: Kattegat) total catch.
(Data provided by Working Group members)

Country/Year	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978 ${ }^{\text {F }}$
Belgium	134	468	1200	681	1337	2160	603	2451	1430	57	-
Denmark	163100	180260	133331	185393	213738	$174254^{\text {a }}$	61728	115616	34841	12769	2806
Faroe Islands	49995	40640	58365	45524	48444	$54935{ }^{\text {b }}$	$26161 b)$	25854	14378	8070	40
Finland		-	-	-	-	-	-	-	1034	-	-
France	12852	15307	11482	11408	12901	22235	12548	20391	14468	1613	2016
German Dem.Rep.			290	475	127	1728	3268	2689	2624	2	-
Germany,Fed.Rep.	21216	12798	7150	3570	3065	$10634^{\text {c }}$)	12470	6953	1654	221	-
Iceland	44489	19997	22951	37171	31998	23 742d)	29017	16286	9412	-	-
Netherlands	22306	29.769	46218	32479	24829	34070	35106	38416	20146	4134	189
Norway	211904	114938	193102	125.842	117501	99739	40975	34183	27386	4065	1189
Poland	11954	9221	5057	2031	2235	5738	9850	$\begin{array}{ll}7 & 069\end{array}$	7072	3616	-
Sweden	88061	33109	34670	36880	7366	$4222^{\text {e }}$	3561	$\begin{array}{ll}6 & 858 \\ 6 & 475\end{array}$	4777	$\begin{array}{ll}3 & 616 . \\ 3 & 224\end{array}$	$2 \overline{6} 5$
UK(England) f)	$\begin{array}{r}5 \\ \hline 128\end{array}$	$\begin{array}{r}6666 \\ \\ \hline 2\end{array}$	9702 2105	4113 25	- 394	2 16	$\begin{array}{r}5699 \\ \hline 5034\end{array}$	$\begin{array}{ll}6 & 475\end{array}$	9662	3224 8159	2652 431
UK(Scotland $)^{\text {f }}$)	16477	22053	21885	25073	17227	$\begin{array}{ll}16 & 012 \\ 30 & 735\end{array}$	15034	89 804	15015	8159 78	431 4
- OSSR	70029	61549	18078	9500	16386	30735	18096	20653	10935		4
Total North Sea	717645	546775	563481	520140	497548	484012	275116	312798	174834	46010	9138
Skagerrak	280036	113279	71071	61570	67021	84566	$55 \quad 512$	51911	15550	37618	21227
Grand Total	997681	660054	634552	581710	564569	568578	330628	364 7004	190384	83628	30365

a) Total includes 2107 tonnes for human consumption unspecified to area.
b) Supplied by Fiskirannsoknarstovan.
c) From Federal Republic of Germany national statistics compiled by Federal Research Board of Fisheries, Hamburg.
d) Excludes 15938 tonnes caught on Skagerrak border and allocated to that area on the basis of age analysis.
e) Swedish catches in Danish ports reported by area (North Sea, Skagerrak) used for area allocation of Swedish landings reported as Skagerrak and North Sea in Swedish statistics.
f) Catches from Moray Firth not included.
*) Preliminary.

Table 2.2. HERRING. Total catch in tonnes.
Skagerrak (Division IIIa excl. Kattegat).

Year	Denmark	Faroe Islands	Germany, Fed.Rep. of	Iceland	Norway	Sweden	Total	Norwegian Fjordsb)
1969	57965	-	-	-	13957	41357	113279	
1970	30107	-	-	6453	7581	26930	71071	1830
1971	26985	5636	-	3066	6120	19763	61570	3166
1972	34900	4115	-	7317	1045	19644	67021	4222
1973	42098	5 265a)	-	$15938{ }^{\text {a }}$	836	20 429a)	84566	1680
1974	35732	7132	36	231	698	11683	55512	1720
1975	29997	8053	108	1209	196	12348	51911	1459
1976	7363	1553	6	123	-	6505	15550	2304
1977	19382	10064	32	-	31	8109	37618	2312
1978 ${ }^{\text {\# }}$	6425	1041	28	-	2182	11551	21227	2400

F) Preliminary.
a) See Table 2.1 footnote under relevant country.
b) Not included in total Skagerrak catch.

Table 2.3. HFRRING. Total catch in tonnes. North Sea, northeast (Division IVa east of $2^{\circ} \mathrm{E}$).

Year	Belgium	Denmark	Faroe Islands	France	German Dem.Rep.	Germany Fed.Rep. of	Iceland	$\begin{gathered} \text { Nether- } \\ \text { lands } \end{gathered}$	Norway	Poland	$\begin{gathered} \text { UK } \\ \text { Scotland } \end{gathered}$	Sweden	USSR	Total
1972	-	19711	979	-	-	9	1943	40	50	-	-	-	-	22732
1973	-	686	$12776^{\text {a }}$	-	637	-	- -	331	236	-	-	-	-	14666
1974	-	12284	532	-	55	-	2460	46	-	-	-	-	-	15377
1975	-	8036	-	-	-	-	1539	24	53	-	-	-	-	9652
1976	-	1220	-	-	113	-	-	-	-	5	-	919	-	2257
1977	-	-	-	-	-	-	-	-	1245	-	-	619	-	1864
1978*)	-	-	-	-	-	-	-	-	1033	-	-	-	-	1033

\#) Preliminary.
a)See Table 2.1 footnote under relevant country.

Table 2.4. HERRING. Total catch in tonnes.
North Sea, northwest (Division IVa west of $2^{\circ} E$).

Year	Denmark	Faroe Isl.	Finland	France	German Dem.Rep.	Germany Fed.Rep. of	Iceland	$\begin{gathered} \text { Nether- } \\ \text { lands } \end{gathered}$	Norway	Poland	UK Eng- Iand	UK Scot- Iand	Sweden	USSR	Total
1972	29711	37004	-	888	-	100	29721	1967	100408	1620	74	17227	-	16386	235106
1973	41341	42 159a)	1540	209	1057	2624	23742	4615	62749	5547	-	15430	4222	30735	247697
1974	3475	16676	-	414	40	1431	22421	2139	14393	9187	-	10473	-	3525	84174
1975	14031	16124	-	1266	1151	1566	7868	2222	26355	6310	-	$\bigcirc 674$	-	12194	95761
1976	14011	12446	1034	4183	1614	1275	9179	7421	23768	6199	-	11823	3858	4741	101552
1977	5515	7036	-	178	-	-	-	1240	2820	-	-	8137	2997	-	27923
1978 ${ }^{\text {F }}$	-	-	-	-	-	-	-		-	-	-	-		-	-

\#) Preliminary.
a) See Table 2.1 footnote under relevant country.

Table 2.5. HERRING. Total catch in tonnes.
North Sea, Central (Division IVb). Adult herring fisheries.

Year	Denmark	Faroe Isl.	France	$\begin{aligned} & \text { German } \\ & \text { Dem.Rep. } \end{aligned}$	Germany Fed.Rep. of	Iceland	Netherlands	Norway	Poland	UK England	$\begin{aligned} & \text {. UK } \\ & \text { Scotland } \end{aligned}$	Sweden	USSR	Total
1972	1589	10460	2014	-	21	334	11372	17043	615	271	-	4068	-	47787
1973	-	-	8259	34	115	-	17370	29027	191	2175	582	-	-	57753
1974	2067	8953	8561	3173	3832	4136	31229	26582	662	5658	41	2416	14.566	116396
1975	4374	9730	4963	1538	2480	6879	28963	7743	759	6403	2230	6858	8190	91110
1976	5472	499	2026	896	342	233	9362	3618	606	9361	3192	-	5868	41475
1977 1978	608 -	1034	$\underline{53}$	-	221		2455	-	-	414	-	-	-	4785

${ }^{3}$) Preliminary.

Table 2.6. HERRING. Total catch in tonnes. North Sea Central (Division IVb).

Year	Young herring fisheries						Total young and adult fisheries (Tables 2.5 and 2.6)
	Denmark	Germany, Fed.Rep.	Sweden	UK (England)	UK (Scotland)	Total	
1972	162671	2823	3298	-	-	168792	216579
1973	129988	5638	-	-	-	135626	193379
1974	43866	6761	1145	-	-	51772	168168
1975	88191	2557	-	-	-	90748	181858

Table 2.7. HERRING. Total catch in tonnes.
North Sea Southern and English Channel, East and West
(Divisions IVc and VIId and e).

Year	Belgium	Denmark	$\begin{aligned} & \text { Faroe } \\ & \text { Isl. } \end{aligned}$	France	Germany Fed.Rep.	Nether- lands	Norway	Poland	$\begin{array}{\|c\|} \hline \mathrm{U} \cdot \mathrm{~K} \cdot \\ \text { England } \end{array}$	USSR	Total
1971	673	25	-	6160	126	16385	-	-	82	-	23451
1972	1337	57	-	9999	112	11450	-	-	49	-	23004
1973	2160	132	-	13767	2257	11754	-	-	93	-	30163
1974	603	36	-	4573	432	1692	$\overline{-}$	1	41	5	7383
1975	2451	984	-	14162	350	7207	32	-	72	269	25527 (
1976	1430	2351	1433	8035	-	3363	-	262	301	326	17501 a)
1977	57	-	-	930	-	397	-	-	-	-	1384
1978*	-	-	-	-	-	-	-	-	-	-	-

* Preliminary.
a) Included 1 tonne caught by German Democratic Republic.

Table 2.8. HERRING. By-catch (in weight) by areas and countries.

Country	IVa West			IVa East			IVb			IVc + VIId		
	1976	1977	1978	1976	1977	1978	1976	1977	1978	1976	1977	1978
Denmark	4105	502	-	-	186	-	7682	5958	2806	-	-	-
Faroe Islands	-	-	25	-	-	-	-	-	15	-	-	-
France	100	148	477	11	44	-	88	198	302	25	62	1237
German Dem.Rep.	-	-	-	-	2	-	-	-		-	-	-
Germany, Fed.Rep. of	-	-	-	-	-	-	-	-	-	-	-	-
Netherlands	-	-	-	-	42	-	-	-	-	-	-	-
Norway	-	-	27	-	-	-	-	-	129	-	-	-
Poland	-	-	-	-	2	-	-	-	-	-	-	-
Sweden	-	-	-	-	-	-	-	-	-	-	-	-
UK (England)	-	-	-	-	-	-	165	2810	2620	-	-	32
UK (Scotland)	-	-	-	-	-	-	-	22	431	-	-	-
USSR	-	-	-	-	43	4	-	35	-	-	-	-
Total	4205	650	529	11	319	4	7915	9023	6303	25	62	1269

Table 2.9. HERRING North Sea catch in millions of fish by age.

Year	Area	Age in winter rings										Total
		0	1	2	3	4	5	6	7	8	>8	
1972	IVaW of $2^{\circ} \mathrm{E}$	-	338.9	830.1	176.8	88.6	19.3	4.1	-	0.5	0.4	$1458.7{ }^{\text {a }}$
	IVaE of $2^{\circ} \mathrm{E}$	-	75.1	91.0	17.8	5.8	0.7	0.1	-	-	-	190.5
	IVb	-	25.2	46.4	98.8	20.5	6.7	0.6	0.2	0.6	-	199.0
	IVbYH	750.4	2896.6	337.9	21.1	6.4	1.2	0.2	-	-	-	4013.8
	IVc+VIId, e	-	4.8	135.1	29.3	9.3	5.0	-	-	-	-	183.5
	Total NS	750.4	3340.6	1440.5	343.8	130.6	32.9	5.0	0.2	1.1	0.4	6045.5
1973	IVaW of 2°	-	52.5	742.1	452.6	58.0	39.5	20.3	2.6	0.5	0.6	1368.7
	IVaE of $20 E$	-	0.3	16.2	23.1	6.3	7.2	1.0	0.3	0.8	-	55.2
	IVb	-	242.5	180.1	39.0	28.3	4.7	7.2	-	-	-	501.8
	IVbYH	289.4	2070.5	362.5	29.4	2.6	0.5	0.2	0.3	-	-	275
	IVc+VIId, e	-	2.2	43.3	115.1	55.0	7.4	1.9	0.5	0.1	0.0	22). 5
	Total NS	289.4	2368.0	1344.2	659.2	150.2	59.3	30.6	3.7	1.4	0.6	4906.6
1974	IVaW of $2^{\circ} \mathrm{E}$	65.3	162.9	98.5	112.9	97.1	36.0	18.6	4.5	1.5	1.0	598.3 .
	IVaE of $2^{\circ} \mathrm{E}$	5.7	131.8	24.2	10.8	1.0	-	-		0.1		173.6
	IVb (adult)	-	54.0	493.7	212.3	19.5	18.9	3.6	0.3	0.4	0.1	802.8
	IVbYH	925.1	493.5	132.1	5.7	-	-	-	-	-	-	1556.4
	IVc+VIId		3.9	24.1	20.3	8.4	1.2	0.1	0.2	-	-	58.2
	Total NS	996.1	846.1	772.6	362.0	126.0	56.1	22.3	5.0	2.0	1.1	3189.3
1975	IVaW of $2^{\circ} \mathrm{E}$	-	267.0	120.0	69.0	49.0	40.2	9.8	6.3	2.9	1.1	565.3
	IVaE of 20 E	-	82.5	8.2	7.0	2.4	0.4	0.1	0.1			100.7
	IVb (adult)		268.8	147.1	124.2	81.2	14.8	5.8	2.7	0.5	0.3	645.4
	IVbYH	262.8	1818.1	139.2	19.8	2.6	-	0.4				2242.9
	IVc+VIId	1.0	24.1	127.2	39.6	5.3	1.8					199.0
	Total NS	263.8	2460.5	541.7	259.6	140.5	57.2	16.1	9.1	3.4	1.4	3753.3
1976	IVaW of $2^{\circ} \mathrm{E}$	-	19.4	572.9	56.3	17.9	13.2	3.6	2.6	0.5	0.3	
	IVaE of $2^{\circ} \mathrm{E}$	-	-	10.6	1.1	0.5	0.5	0.4				13.1
	IVb (adult)	0.9	35.5	205.9	17.6	28.4	20.3	1.8	1.8	0.5	0.1	312.8
	IVbYH	237:3	49.5	17.7	0.5	1.7	-	-	-	-	-	306.7
	IVc+VIId	-	22.2	94.4	41.8	3.5	0.5	0.3		-	-	162.7
	Total NS	238.2	126.6	901.5	117.3	52.0	34.5	6.1	4.4	1.0	0.4	1482.0
1977	IVaW of $2^{\circ} \mathrm{E}$	2.6	2.7	9.3	171.7	8.6	3.8	2.1		0.2		201.9
	IVaE of $2^{\circ} \mathrm{E}$	0.4	3.3	+	4.9	1.2	1.1	1.0	0.6	0.5	+	13.0
	IVb (adult)	-	1.1	25.9	6.8	0.3	1.9	1.0	0.6	$+$	+	37.0
	IVbYH	253.8	136.3	3.1	-	-	-	-	-	-	-	393.2
	IVc+VIId	-	0.9	6.4	3.0	0.7	0.2	+	+	-	-	11.2
	Total NS	256.8	144.3	44.7	186.4	10.8	7.0	4.1	1.5	0.7		656.3
1978	IVaW of $2^{\circ} \mathrm{E}$	-	-	0.1	0.1	1.5	0.2	0.1	+	+	+	2.6
	IVaE of $2^{\circ} \mathrm{E}$,	35	-	0.2	1.2	-	0.1	0.2	0.2	0.3	2.2
	IVb	109.0	135.4	1.5	1.4	1.1	0.1	0.1	+	-	-	248.6
	IVc+VIId	-	0.3	2.3	3.2	1.0	+	+				6.8
		109.0	135.7	3.9	4.9	4.8	0.3	0.3	0.2	0.2	0.3	259.6

Table 2.10. HERRING Skagerrak catch in millions of fish by age.

Age in winter rings	0	1	2	3	4	5	6	7	8	>8	Total
1974	632.2	292.3	92.1	46.4	14.5	5.8	1.1	0.8	-	-	1085.2
1975	76.2	380.7	38.0	36.2	49.1	13.3	5.4	0.6	0.6	-	600.1
1976	64.6	49.7	63.1	5.1	1.2	0.5	0.2	0.1	-	-	184.4
1977	54.4	118.8	87.6	37.5	8.9	4.5	2.8	0.8	$+$	-	315.3
1978	41.5	137.8	91.7	19.0	3.5	0.8	0.5	0.3	0.1	-	295.2

Table 2.11 Millions of HERRING caught annually per age group (winter rings) in the North Sea over the last 10 years.

Year Winter rings	0	1	2	3	4	5	6	7	8	>8	Total
1969	112.0	2503.3	1883.0	296.3	133.1	190.8	49.9	42.7	27.4	25.1	5263.6
1970	898.1	1196.2	2002.8	883.6	125.2	50.3	61.0	7.9	12.0	12.2	5249.3
1971	684.0	4378.5	1146.8	662.5	208.3	26.9	30.5	26.8	-	12.4	7176.7
1972	750.4	3340.6	1440.5	343.8	130.6	32.9	5.0	0.2	1.1	0.4	6045.5
1973	289.4	2368.0	1344.2	659.2	150.2	59.3	30.6	3.7	1.4	0.6	4906.6
1974	996.1	846.1	772.6	362.0	126.0	56.1	22.3	5.0	2.0	1.1	3189.3
1975	263.8	2460.5	541.7	259.6	140.5	57.2	16.1	9.1	3.4	1.4	3753.3
1976	238.2	126.6	901.5	117.3	52.0	34.5	6.1	4.4	1.0	0.4	1482.0
1977	256.8	144.3	44.7	186.4	10.8	7.0	4.1	1.5	0.7	+	656.3
1978	109.0	135.7	3.9	4.9	4.8	0.3	0.3	0.2	0.2	0.3	259.6

Table 2.12. Estimates of the abundance of herring larvae in the North Sea and Division VIa in 1978/79 and comparable estimates for 1977/78.

Area	1977/78 ($\times 10^{-9}$)	1978/79 (x 10^{-9})
Northerm North Sea	$\begin{aligned} & 31 \text { August }-16 \text { September } \\ & <10 \mathrm{~mm}-1582 \\ & 19-29 \text { September } \\ & <10 \mathrm{~mm}-354 \end{aligned}$	$\frac{5-14 \text { September }}{<10 \mathrm{~mm}-5390^{\# 1}}$
Mean survey abundance	968	$3564^{\text {a) }} 2363^{\text {b }}$
Central North Sea	$\begin{aligned} & \frac{11-16 \text { September }}{<10 \mathrm{~mm}-502} \\ & \frac{20-22 \text { September }}{<10 \mathrm{~mm}-310} \\ & \frac{2-10 \text { October }}{<10 \mathrm{~mm}-104} \\ & \frac{14-19 \text { October }}{<10 \mathrm{~mm}-3} \end{aligned}$	$\begin{aligned} & \frac{6-13 \text { September }}{<10 \mathrm{~mm}-1484} \\ & 20-27 \text { September } \\ & <10 \mathrm{~mm}-79 \\ & 29 \text { September }-11 \text { October } \\ & \hline<10 \mathrm{~mm}-314 \\ & 22-29 \text { October } \\ & <10 \mathrm{~mm}-2 \\ & \hline \end{aligned}$
Mean survey abundance	230	470
Southerm North Sea and Eastern Channel	$\begin{aligned} & \frac{13-16 \text { December }}{\text { <11 mm - Total } 1} \\ & 12-22 \text { December } \\ & <11 \mathrm{~mm}-1 \text { Total } 2 \\ & 2-6 \text { January } \\ & <11 \mathrm{~mm}-0 \text { Total } 8 \\ & 19-23 \text { January } \\ & <11 \mathrm{~mm}-3 \text { Total } 28 \end{aligned}$	$\begin{aligned} & \frac{11-22 \text { December }}{<11 \mathrm{~mm}-34 \text { Total } 49} \\ & \frac{3-10 \text { January }}{<11 \mathrm{~mm}-4 \text { Total } 7} \end{aligned}$

※) Estimate giving equal weighting to one quite exceptionally high density station.
a) Larval Working Group estimate for the whole of September based on ratio of abundances first half to , second half of September 1974-77 and giving equal weighting to high density station.
b) Larval Working Group estimate for the yhole of September but with weighting of high density station reduced to normal value.

Table 2.12 (Continued)

Area	1977 ($\times 10^{-9}$)	1978 ($\times 10^{-9}$)
VIa	$\begin{aligned} & \frac{8-16 \text { September (N of } 56^{\circ} 301 \text { only) }}{<10 \mathrm{~mm}-404} \\ & \frac{18-26 \text { September (whole area) }}{<10 \mathrm{~mm}-1188} \\ & \frac{15-24 \text { October (whole area) }}{<10 \mathrm{~mm}-335} \end{aligned}$	$\begin{aligned} & \frac{1-11 \text { September (whole area) }}{<10 \mathrm{~mm}-364} \\ & \frac{23 \text { September }-10 \text { October (whole are) }}{<10 \mathrm{~mm}-820} \end{aligned}$
Mean survey abundance	642	592

Table 2.13. Abundance indices of l-group herring in Division IIIa, 1972-79 International Young Herring Surveys.

Year	Abundance indices l-group herring
1972	77.8
1973	180.7
1974	726.2
1975	454.8
1976	1339.4
1977	203.5
1978	575.0
1979 \#)	12.0

*) Preliminary index based on herring less than 20 cm , which is an overestimate of abundance.

Annual Celti Sea herring catches 1965-78.
(Data provided by Working Group members)

Year	France	German Dem.Rep.	Germany Fed.Rep.	Ireland	Netherlands	Poland	UK	USSR	Total
1965	1742	-	353	3980	7198	-	1054	-	14327
1966	5506	-	1143	6891	16605	112	197		31454
1967	3825	-	910	11133	13184	300	398	-	29750
1968	2637	-	1662	9. 480	15679	130	598	-	30186
1969	7038	-	5906	18712	16256	252	400	-	48164
1970	3629	-	1481	24702	7015	1191	220	-	38236
1971	3393	-	974	12602	9672	881	65	-	27587
1972	7327	-	393	20109	6758	751	-	618	35956 (
1973	5553	7	294	13105	5834	1125	-	334	26 375a)
1974	2261	-	433	13991	2105	954	24	105	19744
1975	1924	-	361	8430	2825	512	24	1054	15130
1976	1919 106	147	28 96	3705 1394	1627 1455	-	-	826	8258 3051
1978 ${ }^{\text {\# }}$)	4	-	220	2725	I 002	-	-	-	3951

* Provisional. a) Including 123 tonnes for Bulgaria.

Table 3.2 Celtic Sea herring catches by season (1 April to 31 March).
(Data provided by Working Group members)

Year	France	German Dem.Rep.	Germany Fed.Rep.	Ireland	Netherlands	Poland	UK	USSR	Total
1965/6	1742		353	3482	13071	-	1054		19702
1966/7	5506		1143	8061	11459	112	197		26478
1967/8	3825		910	10736	10204	425	398		26498
1968/9	2637		1662	11996	12191	130	598		29214
1969/79	7038		5906	16712	13111	261	400		43428
1970/1	3627		1481	19106	4667	778	220		29879
1971/2	3383		974	13757	10600	880	65		29659
1972/3	7327		393	18846	6852	751	-	618	34878 (
1973/4	4143	7	294	11317	5834	1139	-	334	23 191a)
1974/5	2150	-	435	11683	2462	954	-	105	17684
1975/6	2451	-	399	6524	2441	579	24	1054	13472
1976/7	1371	147	36 96	2970 1322	$\begin{array}{ll}1324 \\ 1 & 378\end{array}$	257	-	826	7 2 2
1977/8/9\#)	95 3	-	220	2656	1 1 1	-	-	-	3881

\#) Provisional. a) Including 123 tonnes for Bulgaria.

Table 3.3 Celtic Sea. Catch in numbers $\times 10^{-3}$ (1 April - 31 March).

Season/Age	1	2	3	4	5	6	7	8	>8	Total
1965/6	58	70937	9456	15911	3433	4584	12241	1391	7566	125576
1966/7	6337	19146	58633	9827	13193	5585	3581	8742	3839	128614
1967/8	6921	36168	19486	47837	8954	9334	3894	6462	6684	145741
1968/9	11699	53028	38421	11207	22286	4538	3965	1251	4608	151003
1969/70	7787	91994	54473	32318	11881	17265	4612	2130	3418	225878
1970/1	640	31540	48706	25937	18270	7095	5751	1925	3194	143058
1971/2	10262	22451	34382	40536	18449	9807	3779	4846	2143	146655
1972/3	7279	124357	16922	13817	13674	4331	2654	2103	749	185886
1973/4	22171	34122	45162	6269	8251	4655	3209	1966	714	126519
1974/5	4516	38285	15427	19865	3782	3311	2668	806	742	89402
1975/6	11452	13077	15709	6898	6042	3252	1268	964	1022	59685
1976/7	7262	9090	5202	5196	2092	2669	1384	1005	777	34701
1977/8	3859	4095	3491	1534	782	547	289	36	55	14687
1978/9	1660	10373	3890	1573	450	471	115	260	130	18922

Table 3.4. Celtic Sea herring. Fishing mortalities from VPA and weighted mean values of F.

Age	$1973 / 74$	$1974 / 75$	$1975 / 76$	$1976 / 77$	$1977 / 78$	$1978 / 79$
1	0.27	0.17	0.49	0.44	0.17	0.15
2	0.77	0.91	0.92	0.81	0.42	0.80
3	0.84	0.87	1.10	1.08	0.75	0.80
4	0.45	1.01	1.14	1.31	0.99	0.80
5	0.60	0.52	0.88	1.23	0.60	0.80
6	0.47	0.46	1.05	1.18	1.21	0.80
7	0.67	0.48	0.28	2.06	0.32	0.80
8	0.70	0.70	0.70	0.70	0.70	0.80
$\overline{\mathrm{~F}}(2-8)$	0.42	0.84	0.95	1.13	0.60	0.80

Tiable 3.5. Celtic Sea herring. Calculated stock size in number $\left(10^{-6}\right)$ by age and year ($M=0.1$) at 1 April.

Age	$1973 / 74$	$1974 / 75$	$1975 / 76$	$1976 / 77$	$1977 / 78$	$1978 / 79$
1	97.3	29.9	30.9	21.4	25.8	12.5
2	66.3	67.0	22.7	17.2	12.4	19.7
3	83.1	27.8	24.5	8.2	6.9	7.4
4	17.3	32.6	10.6	7.4	2.5	3.0
5	19.1	9.7	10.7	3.1	1.8	0.9
6	13.0	9.5	5.2	4.0	0.8	0.9
7	6.9	7.3	5.4	1.6	1.1	0.2
8	5.6	3.2	4.1	3.7	0.2	0.7
Biomass	40.5	29.8	16.4	8.7	4.8	5.9
$(2-8)$						

Table 4.1. Total catches of herring (tonnes) in Division VIa, 1969-78. (Data provided by Working Group members)

Country	1969	1970	1971	1972	1973	1974	1975	1976	1977	$1978{ }^{\text {F }}$
Belgium	-	-	-	-	-	-	-	12	-	-
Denmark a)	-	-	554	150	932	-	374	249	626	-
Faroe Islands ${ }^{\text {a) }}$		15100	8100	8094	10003	5371	3895	4017	3564	
France	966	1293	2055	680	2441	547	1293	1528	1548	1409
German Dem.Rep.	416	207	330	935	2507	2037	1994	929		
Germany, Fed.Rep.of:	15805	16548	7700	4108	17443	14354	9099	4980	221	126
Iceland ${ }^{\text {b }}$	-	5595	5416	2066	2532	9566	2633	3273	-	-
Ireland ${ }^{\text {b }}$	11895	11716	12161	17308	14668	12557	10417	8558	7189	10208
Netherlands	1514	1102	9252	23370	32715	19635	19360	20812	8515	5929
Norway	-	20199	76720	17400	36302	26218	512	5307	1098	4462
Poland	3188	3709	-	-	5685	6368	2934	3085	6	-
Sweden	-		-	-	-	-	12	2206	261	-
UK (England)	3		-	-	-	45	125	20	301	134
UK (N.Ireland) UK (Scotland)			5	F	000		6	${ }^{1} 1$	${ }^{1} \mathrm{c}$)	$6^{\text {c }}$)
UK (Scotland) USSR	90222 -	103530 3	99537 -	107638 $?$	120800 $2 \quad 052$	107475 5388	85395 $3 \quad 232$	53351 3092	$25238{ }^{\text {c }}$	$10097{ }^{\text {c }}$
Total	124012	179004	221825	181749	248080	209564	141269	111420	48568	32371
Scottish juvenile herring and sprat fisheries in Moray Firth	3100	1385	5666	10242	7219	13003	2454	313	205	276

\#) Preliminary figures.
a) Figures supplied by Fiskirannsoknarstovan.
b) Catches prior to 1976 mainly taken in Division VIIb and landed in Division VIa.
c) Including by-catch in local sprat fishery (16 tonnes in 1977; 157 tonnes in 1978).

Table 4.2. Monthly catches of herring (tonnes) by France, Ireland, the Netherlands, Norway and UK in Division VIa in 1977 and 1978.

	1977	1978
January	5706	4176
February	3591	3660
March	3786	2996
April	200	1064
May	397	921
June	182	5999
July	2501	6081
August	12452	2342
September	3135	2451
October	3635	1251
November	3734	820
December	4224	328
Sub-total: Jan-Jun	13862	18816
Sub-total: Jul-Dec	29681	13273
Total	43543	32089

Table 4.3 Herring autumn spawners. Catch in number $x 10^{-3}$, Division VIa, Moray Firth included.

\qquad	0	1	2	3	4	5	6	7	8	9	10	>10
1968	71425	220870	105348	26031	243304	19679	28436	17699	7275	4493	5326	4570
1969	192368	39160	107189	84565	27604	264558	25795	45908	27932	11003	5197	13058
1970	16299	238431	108872	272693	124498	42623	185380	24821	29920	14276	5156	6903
1971	209598	169780	286148	346206	261891	94206	25876	166165	16425	16286	8038	5578
1972	249941	321539	753355	210243	72885	83361	37428	13445	94577	8154	5855	5377
1973	267872	50737	273783	990183	155828	66476	68522	26512	8037	$537671\}$	-	-
1974	536119	312029	153833	205806	553627	90584	45144	43069	18504	453931	-	-
1975	82698	185723	257116	108284	84977	228583	38929	15573	20304	$20.6891)$	-	-
1976	8446	78894	386932	123947	44430	36714	87477	14208	5766	$130781)$	-	-
1977 \#	11871	38582	60563	119880	25593	12506	13046	20759	2948	$\begin{array}{lll}3 & 2621\end{array}$	-	-
1978	116967	35738	68146	32061	47819	12285	6042	3801	7531	3 3221)	-	-

3) Preliminary. 1) Age 9 and older

Table 4.4. Division VIa herring. Infestation rate by Renicola
(i.e. percentage of number of fish with parasites) based on sampling in the years 1973-77.

Year class	Age						
	1	2	3	4	5	6	
1974	27	18					
1973.	50	32	22				
1972	75	45	35	13			
1971	40	31	19	13	8		
1970			36	23	11	10	
1969				14	9	10	

Table 4.5 Fishing mortalities by year and age on the herring population in Division VIa.
(a) taking into account emigration rates from the North Sea, and
(b) from conventional VPA disregarding emigration.

$\begin{aligned} & \text { Age } \\ & \text { (rings) } \end{aligned}$	1272		1973		1974		1975		1276		1977	
	(a)	(b)										
0	0.54	0.41	0.32	0.26	0.56	0.44	0.35	0.28				
1			0.18	0.12	0.67	0.49	0.34	0.24	0.52	0.41		
2					0.85	0.56	1.19	0.85	1.33	0.97	0.78	0.56
3							1.25	0.88	1.90	0.80	1.10	0.80
4									1.33	1.03	1.10	0.80
5											1.10	0.80

Table 4.6 Fishing mortalities (F) and emigration factor s (E) by year and age on the herring population in the North Sea (Sub-area IV):
(a) taking into account emigration rates from the North Sea, and
(b) from conventional VPA disregarding emigration.

$\begin{aligned} & \text { Age } \\ & \text { (rings) } \end{aligned}$	1972		1973		1974		1975		1976		1977	
	(a)	(b)										
0 F	0.17	0.17	0.13	0.15	0.19	0.19	0.03	0.31				
1 F			0.98	1.04	0.61	0.70	0.82	0.88	0.19	0.20		
2 F					0.96	1.07	1.06	1.28	0.77	0.80	0.08	-
E					0.06		0.23		0.12		0.09	
3 F							1.09	1.26	0.76	0.80	0.31	-
E							0.19		0.12		0.10	
4 F									0.75	0.80	0.13	
E									0.18		0.32	
5 F											0.17	
E											0.15	

Table 4.7 Herring stock in number $\left(\mathrm{x}_{10^{-6}}\right.$) in Division VIa.
(a) taking into account emigration rates from the North Sea; and (b) from conventional VPA disregarding emigration.

$\begin{gathered} \text { Age } \\ \text { (rings) } \end{gathered}$	1972		1973		1974		1975.		1976		1977	
	(a)	(b)										
0	630	780	1030	1220	1310	1580	290	360				
1			330	470	670	850	680	920	190	250		
2					250	380	300	470	430	660	100	150
3							130	190	140	180	160	230
4									50	70	30	50
5											20	20

Table 4.8 Herring stock in number $\left(x^{10} 0^{-6}\right)$ in the North Sea.
(a) taking account emigration rates and
(b) from conventional VPA disregarding emigration.

$\begin{aligned} & \text { Age } \\ & \text { (rings) } \\ & \hline \end{aligned}$	1972		1973		1974		1975		1976		1977	
	(a)	(b)										
0	5040	5010	2490	2240	6040	5900	1080	1040				
1			3950	3820	1940	1750	4590	4390	720	670		
2					1340	1220	950	780	1830	1650	540	-
3							440	380	240	200	700	-
4									110	90	90	-
5											40	-

Table 4.9. Herring in Division VIa, Moray Firth included. Fishing mortalities by year and age.

Age (rings)	1969	1970	1971	1972	1973	1974	1975	1976	$1977^{\text {FI }}$	1978 ${ }^{\text {F }}$
0	0.13	0.004	0.16	0.40	0.26	0.43	0.28	0.03	0.03	0.04
1	0.04	0.21	0.05	0.35	0.12	0.48	0.23	0.42	0.16	0.11
2	0.10	0.15	0.37	0.29	0.51	0.55	0.81	0.91	0.57	0.42
3	0.19	0.37	0.84	0.45	0.66	0.80	0.84	1.10	0.70	0.60
4	0.14	0.40	0.65	0.37	0.63	0.85	0.81	0.90	0.62	0.60
5	0.35	0.29	0.54	0.39	0.60	0.83	0.95	0.91	0.61	0.60
6	0.29	0.40	0.25	0.38	0.56	0.94	0.96	1.10	0.88	0.60
7	0.49	0.43	0.66	0.18	0.44	0.74	0.90	1.04	0.75	0.60
8	0.58	0.60	0.50	0.89	0.14	0.57	0.85	0.90	0.54	0.60
≥ 9	0.30	0.38	0.66	0.45	0.63	0.82	0.89	1.01	0.69	0.60
Mean $\mathrm{F}_{\mathrm{W}} \geq 3$	0.30	0.39	0.67	0.45	0.63	0.83	0.89	1.04	0.70	0.60

*) Inefficient estimates.
Table 4.10. Herring in Division VIa, Moray Firth included. Stock in number $\times 10^{-6}$ and biomass of adult stock at the beginning of the year.

Age (rings)	1969	1970	1971	1972	1973	1974	1975	1976	1977 ${ }^{\text {F }}$	$1978{ }^{\text {\# }}$
0	1661	4079	1470	786	1231	1604	356	308	401	3295
1	943	1320	3675	1131	474	859	943	243	270	351
2	1129	816	968	3164	719	381	482	677	145	208
3	521	320	635	605	2149	391	199	193	248	74
	227	391	574	248	348	1008	160	78	58	111
	930	179	236	272	155	167	389	64	29	28
6	109	591	122	125	167	77	66	136	23	14
7	125	74	359	86	77	86	27	23	41	9
8	66	69	43	168	65	45	37	10	7	17
≥ 9	39	33	34	24	62	51	23	14	4	4
Total ≥ 2	3146	3074	2971	4690	3741	2206	1383	1197	555	466
Biomass ≥ 2 $\left(\right.$ tonnes x 10^{-3})	505	507	483	6.59	596	372	223	177	88	71

\#) Inefficient estimates.

Table 4.11. Prognosis of the Division VIa herring, disregarding immigration.

Age	$\begin{aligned} & \text { Stock in } \\ & \text { umber }\left(10^{6}\right) \end{aligned}$	F_{1978}	Stock in number (10^{6}) 1 Jan 1979	\bar{W} (g)	F_{1979}	Stock in number (10^{6}) 1 Jan 1980
0		0.04				
1	351	0.11	(240)	90	0.11	
2	208	0.42	285	121	zero	195
3	74	0.60	124	158	"	258
4	111	0.60	37	175	"	112
5	28	0.60	55	186	"	33
6	14	0.60	14	206	"	50
7	9	0.60	7	218	"	13
8	17	0.60	4	224	"	6
≥ 9	4	0.60	10	224	"	13
$\left(\begin{array}{c}\text { Biomass } \\ \left(t \times 10^{-3}\right)\end{array}\right.$	71.0		78.3			107.5

Zable 4.12. Prognosis of Division VIa herring $(1978,1979)$ taking immigration into account.

± 5	$\begin{gathered} i_{b} \text { at } 1 \mathrm{Jan} \\ 1977 \\ (109) \end{gathered}$	$\begin{gathered} F_{b} \\ 1977 \end{gathered}$	Survival at 1 Jan 1978	$\begin{gathered} N_{a} \text { at } 1 \mathrm{Jan} \\ 1977 \\ \left(10^{9}\right) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{a}} \\ 1977 \end{gathered}$	$\begin{array}{\|l\|} \mathrm{E} \\ 1977 \end{array}$	$\begin{array}{\|l} \text { No. of } \\ \text { emigrants } \\ \text { which survive } \\ \text { to } \\ \text { I Jan } 1978 \end{array}$	$\begin{aligned} & \text { Hence, } \\ & \mathrm{N}_{\mathrm{b}} \mathrm{at} \\ & \mathrm{~J}^{2} \\ & 1978 \end{aligned}$	Hence, ${ }^{\mathrm{N}} \mathrm{a}_{\mathrm{Jan}}$ at 1978	$\begin{aligned} & \mathrm{c}_{\mathrm{b}} \mathrm{in} \\ & 1978 \end{aligned}$	$\left\lvert\, \begin{gathered} F_{b} \begin{array}{c} \text { required } \\ \text { to } \\ \text { generate } \\ C_{b} \end{array} \\ \text { men } \end{gathered}\right.$	$\begin{array}{\|c\|} \hline E \\ 1978 \end{array}$	Survival of N_{b} at 1 Jan 1979	Survival of emigrants at 1 Jan 1979	$\left\lvert\, \begin{gathered} \text { Total } \\ \mathrm{N}_{\mathrm{b}} \\ \mathrm{at} \\ \mathrm{IJan} 1979 \end{gathered}\right.$	$\overline{\mathrm{w}}$ (g)
ν										. 117						
1										. 036						
2	. 10	. 78		. 54	. 08	. 09		(.100)	(.540)	. 068	. 74	. 125	(.100)	(.098)	. 198	127
3	. 16	1.10	. 041	. 70	. 31	. 10	. 028	. 069	. 412	. 032	. 42	. 140	. 043	. 040	. 083	158
4	. 03	1.10	. 048	. 09	. 13	. 32	. 030	. 078	. 420	. 048	. 49	. 250	. 045	. 048	. 093	175
j	. 02		. 009	. 04	. 17	. 15	. 012	. 021	. 052	. 012	. 66	. 150	. 043	. 005	. 048	186
;							. 003	. 009	. 026	. 0060	1.20	. 000	. 010	-	. 010	206
-													. 002	-	. 002	218
	From Tables and 4.	5.7		$\begin{array}{r} \text { From Savill } \\ \text { (in p } \end{array}$	$\begin{aligned} & \text { Ie \& B } \\ & \text { press) } \end{aligned}$	$\overline{\text { ailey }}$									-	
	46.4							42.4							64.8	
	46.4							40.6							62.3	.

$\mathrm{N}=$ stock in number, $\mathrm{E}=$ instantaneous emigration rate, $\mathrm{C}=$ catch in number and subscripts a, b refer to North Sea and VIa respectively.
\#) Number of emigrants which survive $=\frac{E N_{a}\left(e^{-Z_{b}}-e^{-Z_{a}}\right)}{E+F_{a}-F_{b}}$
*) F_{b} calculated from

$$
C_{b}=\frac{M_{b} F_{b}}{Z_{b}}\left(1-e^{-Z_{b}}\right)+\frac{N_{a} E F_{b}}{E+F_{a}-F_{b}}\left\{\left(\frac{1-e^{-Z_{b}}}{Z_{b}}\right)-\left(\frac{1-e^{-Z_{a}}}{Z_{a}}\right)\right.
$$

Month	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978
Jan	506	446	272						\#	$4^{\text {F) }}$
Feb	1820	1569	491	52 \%	$71^{\text {\#\# }}$	91 ${ }^{\text {* }}$	$68^{\text {¹) }}$	$7{ }^{*}$)	${ }^{7}$	$6^{\text {\# }}$
Mar	232	263	495	82\%)	36^{*}	168*)	85.	$69^{\text {\# }}$)	$\underset{ }{3}$	$7^{\text {F }}$
Apr	510	526	406	400	316	398	369	521	530	246
May	760	325	305	569	385	280	283	436	544	245
Jun	700	793	111	657	468	607	203	281	640	238
Jul	1266	1249	260	416	688	690	354	332	494	376
Aug	960	680	385	700	593	543	240	473	601	586
Sep	894	404	519	263	668	310	515	541	559	581
Oct	1329	824	461	410	711	451	811	598	556	653
Nov	1204	283	193	463	464	245	571	595	560	647
Dec	380	342	190	166	248	91	120	236	328	267
NK	33	59		48	67	189	44	50	35	
Total	10594	7763	4088	4226	4715	4063	3663	4139	4847	3857

अ) Subject to closure of directed herring fishery.

Table 4.14. Catch in numbers $\times 10^{-3}$ autumn spawners in the Firth of Clyde, 1977 and 1978

Year	0	1	2	3	4	5	6	7	8	9	$9+$	Total
1977	-	1034.1	6119.7	4067.5	831.3	912.8	442.0	398.6	229.7	101.5	182.5	14319.7
1978	-	13913.7	1416.6	1695.1	1710.8	561.8	541.4	291.0	244.9	156.2	198.5	20730.0

Table 4.15. Catch in numbers $\times 10^{-3}$ spring spawners in the Firth of Clyde, 1977 and 1978

Year	0	1	2	3	4	5	6	7	8	9	$9+$	Total
1977	-	6.7	1404.6	2908.9	230.4	198.8	132.3	90.4	21.2	44.5	9.8	5047.6
1978	-	209.1	379.5	563.9	1013.6	72.1	64.9	38.6	72.7	17.9	37.5	2469.8

Table 4.16. Number of recaptures month and area of herring release in the Firth of Clyde.
(1) Released October 1976 No recaptured
(2) Released July 1977 No. recaptured

Table 5.1. Herring in Division VIIb,c. Nominal catches (tonnes) 1967-78. (Data for 1967-75 from Bulletin Statistique.)

Year	France	German Dem.Rep.	Germany Fed.Rep	Ireland	Netherlands	Poland	UK	USSR	Total
1967				108					108
1968	713			30	525				1268
1969			71	145	355				571
1970	733		180	1518	179			2	2612
1971	42		52	1646	61				1801
1972	312		23	3154	71			347	3907
1973			5	5036	200				5241
1974	10		-	4412	51		25		5764
1975	20		914	5576	9815			646	16971
1976		240	28	5537	12306	83		118	18312
1.977 1978				8	4194 475			-	12921 7

* Provisional.

Table 5.2. Catch in number $\times 10^{-3}$, Division VIIb, c Herring.

Year	Winter rings									
	0	1	2	3	4	5	6	7	8	>8
1970	-	60	456	803	1237	511	9015	972	408	393
1971	-	387	124	429	532	602	404	6077	605	316
1972	-	351	4671	276	1054	1143	1127	626	11724	1278
1973	44	4972	5270	3782	1932	1117	870	824	729	14084
1974	-	320	7394	8535	3557	1789	1369	1706	3620	7314
1975	962	10105	15279	24409	16874	11194	3911	5040	5058	14877
1976	62	7717	14688	16823	19733	15171	5136	2624	2362	10050
1977	-	2220	30016	7646	9835	7415	6241	3893	+ 722	1957
1978	-	1965	15829	14229	4068	3678	2208	1782	704	1267

Table 6.1 Irish Sea Herring (Division VIIa). Mean vertebral count by stock, year class and age of fish (no. of fish in samples in brackets). Spawning fish caught on spawning grounds and Irish Sea industrial fishery.

	Mourne stock				Manx stock				Industrial fishery		
	1	2	3	4	1	2	3	4	0	1	2
1969	56.64 (285)	(26.63)	56.65 (161)	56.56 (97)		56.21 (424)	56.22 (231)	56.39 (217)	$\begin{aligned} & 56.59 \\ & (118) \end{aligned}$	$\begin{gathered} 56.60 \\ \text { (10) } \end{gathered}$	$\begin{array}{r} 56.71 \\ (7) \end{array}$
1970	$\begin{gathered} 56.84 \\ (87) \end{gathered}$	$\begin{aligned} & 56.71 \\ & (216) \end{aligned}$	$\begin{array}{r} 56.72 \\ (98) \end{array}$	$\begin{gathered} 56.92 \\ (36) \end{gathered}$		56.15 (208)	56.21 (175)	56.30 (174)	$\begin{aligned} & 56.74 \\ & (500) \end{aligned}$	56.81 (229)	(0)
1971	$\begin{array}{r} 56.79 \\ (87) \end{array}$	$\begin{gathered} 56.65 \\ (190) \end{gathered}$	$\begin{gathered} 56.68 \\ (37) \end{gathered}$	$\begin{gathered} 56.65 \\ (20) \end{gathered}$		56.37 (577)	56.34 (383)	56.35 (188)	56.72 (619)	56.70 (257)	56.89 (9)
1972	56.77 (172)	$\begin{array}{r} 56.71 \\ (86) \end{array}$	$\begin{array}{r} 56.73 \\ (44) \end{array}$	56.89 (9)	${ }^{2}$	56.26 (363)	56.27 (173)	(112)	56.69 (303)	$\begin{aligned} & 56.80 \\ & (125) \end{aligned}$	(0)
1973	$\begin{array}{r} 56.70 \\ (92) \end{array}$	$\begin{aligned} & 56.83 \\ & (106) \end{aligned}$	$\begin{gathered} 56.73 \\ (26) \end{gathered}$	$\begin{gathered} 56.87 \\ (38) \end{gathered}$	先	56.31 (542)	56.27 (229)	56.46 (70)	56.81 (246)	$\begin{aligned} & 56.71 \\ & (217) \end{aligned}$	$\begin{array}{r} 56.67 \\ (6) \end{array}$
1974	$\begin{array}{r} 56.75 \\ (84) \end{array}$	$\begin{array}{r} 56.76 \\ (88) \end{array}$	$\begin{gathered} 56.75 \\ (171) \end{gathered}$	\uparrow		56.13 (384)	56.29 (118)	个	56.71 (217)	56.75 (314)	(0)
1975	$\begin{array}{r} 56.67 \\ (18) \end{array}$	$\begin{aligned} & 56.59 \\ & (323) \end{aligned}$	Not y recru		- - -	56.27 (239)	$\stackrel{\text { Not ye }}{\text { recrui }}$		$\begin{gathered} 56.70 \\ (109) \end{gathered}$	$\begin{aligned} & 56.75 \\ & (173) \end{aligned}$	(0)
1976	$\begin{aligned} & 56.56 \\ & (153) \end{aligned}$	\leftarrow							(0)	56.36 (25)	(0)
1977									$\begin{gathered} 56.82 \\ (34) \end{gathered}$	$\begin{gathered} 56.60 \\ (25) \end{gathered}$	(0)

Table 6.2. Herring. Total catches in North Irish Sea (Division VIIa), 1967-78 (includes

Country	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978 ${ }^{\text {² }}$
France	-	-	-	558	1815	1224	254	3194	813	651	85	174
Ireland	118	68	2328	3933	3131	2529	3614	5894	4790	3205	3331	2371
Netherlands	-	-	-	-	,	260	143	1116	630	16989	1500	981)
UK	7145	8389	9821	17912	21861	23337	18587	27489	18244	16401	11498	8432^{1}
USSR	-	-	-	-	-	-	-	945	26	-		
Total	7263	8457	12149	22403	26807	27350	22598	38638	24503	21246	15414	11075

3) Proliminary. 1) Includes 68.5 tonnes of spring-spawned herring.

Table 6.3. Herring. Total catch by stock in North Irish Sea, 1967-78.

Country	1967		1968		1969		1970		1971		1972	
	1	2	1	2	1	2	1	2	1	2	1	2
France Ireland	-	-118	-	- 68	-	$2 \overline{328}$	558	3 \quad -	1815 	3 131	1224	2529
lands	-	-	-	-	-	-	-	-	-	-	260	-
UK	5885	1260	7645	744	9139	682	15.629	2283	18758	3103	19308	4029
Total Manx	5885		7645		9139		16187		$20 \quad 573$		20792	
Total Mourne	1378		812		3010		6216		6234		6558	

(cta.)

Note
1 = Manx stock 2 = Mourne stock \#) Preliminary

Table 6.4. Manx stock herring. Catch in number $\times 10^{-6}$.

Rings	1	2	3	4	5	6	7	8 and $8+$	Total 2 to $8+$
1965	0.31	20.78	6.78	1.03	0.46	0.63	0.41	0.39	30.48
1966	0.18	3.89	7.91	1.88	0.33	0.27	0.18	0.07	14.53
1967	1.02	17.82	4.79	7.61	1.80	0.38	0.20	0.40	33.00
1968	0.44	24.46	11.29	2.68	4.33	0.70	0.06	0.29	43.81
1969	0.19	22.84	14.25	6.24	2.47	1.97	0.42	0.02	48.21
1970	0.75	25.24	27.89	13.24	9.42	2.88	2.66	0.31	81.64
1971	4.98	54.36	21.91	18.68	9.67	3.41	1.74	1.16	110.93
1972	3.64	41.76	26.05	11.28	13.15	6.46	1.96	1.27	101.93
1973	1.75	18.74	22.74	10.69	5.52	4.07	2.09	1.40	65.28
1974	12.95	95.95	32.55	19.41	9.65	4.09	4.55	1.03	167.23
1975	5.63	38.94	36.61	9.44	6.17	4.11	1.89	1.34	98.50
1976	9.34	47.46	17.38	13.62	3.88	2.41	2.32	1.07	88.14
1977	13.98	33.04	20.29	5.85	3.92	1.16	0.81	1.02	66.09
1978	3.64	32.41	11.41	6.18	1.44	1.24	0.57	0.35	53.60

Table 6.5. Mourne stock herring. Catch in number $\times 10^{-6}$.

Rings	0	1	2	3	4	5	6	7	8	$8+$
Year										
1969	48.1	18.2	7.7	1.0	0.0	0.0	0.0	0.0	0.0	0.0
1970	161.5	23.7	3.6	1.4	0.0	0.0	0.0	0.0	0.0	0.0
1971	100.3	47.4	33.1	12.9	1.1	0.4	0.5	0.2	0.2	0.03
1972	78.4	37.0	14.9	0.9	1.9	0.6	0.3	0.7	0.1	0.3
1973	50.2	40.4	14.0	15.5	0.8	1.4	1.0	0.5	1.0	0.2
1974	57.9	30.3	13.6	7.2	5.1	1.0	0.9	0.6	0.2	0.4
1975	20.3	27.7	9.3	2.8	1.4	1.7	0.1	0.2	0.2	0.1
1976	10.4	25.4	8.7	3.4	1.6	0.7	0.4	0.1	0.1	0.1
1977	26.4	16.3	6.0	2.4	0.9	0.6	0.3	0.1	0.1	0.0
1978	20.8	11.9	4.5	2.0	0.6	0.3	0.1	0.1	0.0	0.0

Table 6.6. North Irish Sea. Catch of herring in number $\left(10^{-6}\right)$ by year and by age in the industrial fishery.

Age (rings)	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978
0	48.1	161.5	100.3	78.4	50.2	57.9	20.3	10.4	26.4	20.8
1	18.2	23.7	30.3	28.8	29.7	19.0	21.6	11.7	13.3	7.1
2	7.7	3.6	3.5	1.8	0.6	2.3	1.5	0.1	0.3	0.2
3	1.0	1.4	0.4	0.3	0.5	0.8	0.6	-	-	-
Total	75.0	190.2	134.5	109.3	81.0	80.0	44.0	22.2	40.0	28.1
Total in tons	2210	3796	2715	2251	1913	2190	1573	779	1174	739
N/kg	33.9	50.1	49.5	48.6	42.3	36.5	28.0	28.5	34.0	38.0

Table 6.7. Manx stock herring. Estimates of F from VPA, 1967 to 1977, with various input F for 1978.

Input year	F						Effort
1978	0.20	0.25	0.30	0.35	0.40	0.45	
1977	0.41	0.49	0.55	0.61	0.66	0.70	2208
1976	0.63	0.69	0.73	0.77	0.80	0.82	2471
1975	0.76	0.79	0.81	0.82	0.84	0.84	2770
1974	0.87	0.89	0.90	0.90	0.91	0.91	4083
1973	0.40	0.41	0.41	0.41	0.41	0.41	1362
1972	0.58	0.58	0.58	0.58	0.58	0.58	1958
1971	0.58	0.58	0.58	0.58	0.58	0.58	2699
1970	0.45	0.45	0.45	0.45	0.45	0.45	1455
1969	0.27	0.27	0.27	0.27	0.27	0.27	1151
1968	0.34	0.34	0.34	0.34	0.34	0.34	1395
1967	0.37	0.37	0.37	0.37	0.37	0.37	851
Correlation r^{2}	0.8300	0.8555	0.8544	0.8381	0.8189	0.8010	
r	0.911	0.925	0.924	0.915	0.905	0.895	
N		11	11	11	11	11	
Intercept		0.1412	0.1393				
Slope		0.000192	0.0001				

Table 6.8 Manx Stock herring. Fishing mortalities by year and by age (from VPA, $M=0.10$)

Table 6.9 Manx Stock Herring. Stock size in numbers ($\times 10^{-6}$)
(Input $F_{2}^{8} 1978=0.30$)

		1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978
Age	1	98.81	128.15	95.04	140.92	126.06	93.08	194.07	98.16	120.85	104.57	159.56	(79.13)
	2	64.86	28.44	115.54	85.82	126.79	110.03	80.76	173.94	76.50	103.99	85.73	131.10
	3	20.52	41.79	56.83	82.87	53.73	63.65	59.84	55.25	66.11	32.18	48.95	46.15
	4	21.27	14.02	27.11	37.91	48.56	28.02	32.82	32.50	19.03	25.0	12.59	24.99
	5	3.74	12.04	10.14	18.61	21.76	26.43	14.62	19.53	10.96	8.24	9.66	5.82
	6	.50	1.68	6.79	6.84	7.94	10.61	11.40	7.98	8.49	4.04	3.77	5.01
	7	.63	.09	.86	4.28	3.46	3.99	3.46	6.45	3.33	3.77	1.37	2.31
	$8+$.51	.38	.03	.38	1.36	1.49	1.74	1.14	1.51	1.22	1.21	0.47
Size age ≥ 2													

Table 6.10. Mourne stock herring. Fishing mortalities by year and by age.

Age (rings) Year	1969	1970	1971	1972	1973	1974	1975	1976	$1977^{\text {II }}$	Mean 1971-76
0	0.51	0.94	0.87	0.76	0.67	0.79	0.36	0.23	0.75	0.61
1	$?$	0.46	0.71	0.83	1.05	1.02	1.01	0.93	0.60	0.93
2	$?$	$?$	2.25	0.44	0.79	1.18	0.92	0.93	0.52	1.09
3	$?$	$?$	1.21	0.29	1.02	1.14	0.71	0.92	0.63	0.88
4	$?$	$?$	0.29	0.46	0.41	1.06	0.64	1.01	0.61	0.65
5	$?$	$?$	0.23	0.25	0.68	1.16	1.21	0.60	1.31	0.69
6	$?$	$?$	0.18	0.26	0.69	1.10	0.22	0.84	0.42	0.55
7	$?$	$?$	0.27	0.31	0.79	1.06	0.52	0.57	0.69	0.59
8	$?$	$?$	0.33	0.12	0.86	0.99	0.82	1.07	1.26	0.70
$\bar{F}_{\text {w }}$ (0-8 rings)	$?$	$?$	0.98	0.70	0.82	0.92	0.67	0.63	0.66	
$\overline{\mathrm{~F}}_{\mathrm{w}}(1-8$ rings)	$?$	$?$	1.09	0.64	0.96	1.08	0.96	0.92	0.59	

Table 6.11. Mourne stock herring. Stock size in numbers ($\mathrm{x} 10^{-6}$)
(from Cohort analysis).

Year Age (rings)	1969	1970	1971	1972	1973	1974	1975	1976	1977 ${ }^{\text {3n) }}$	1978*)
0	126	278	181	154	108	111	70	52	52	?
1	?	68	98	69	65	50	46	44	38	23
2	?	?	39	44	27	21	16	15	16	20
3	?	?	19	4	25	11	6	6	5	9
4	?	?	4	5	3	8	3	3	2	3
5	?	?	2	3	3	2	3	2	1	1
6	?	?	3	1	2	1	0	1	1	0
7	?	?	1	3	1	1	0	0	0	0
8	?	?	1	0	2	0	0	0	0	0
Total stock in numbers. (0-8 rings)	?	?	348	283	236	205	144	123	115	?
Total stock in numbers (1-8 rings)	?	?	167	129	128	94	74	71	63	56
Total stock biomass (tonnes) (1-8 rings)	?	?	18433	14824	15716	11245	7867	7599	6742	7215

\#) Inefficient estimates (Data proved by Working Group members.)

Country	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978 ${ }^{\text {a }}$
	IVa West										
Denmark	-	-	-	-	-	-	5.3	0.5	0.6	0.1	-
Faroe Islands	-	-	-	-	-	-	0.2	12.9	2.5	0.4	-
France	-	-	-	-	-	-	-	-	-	$+$	-
German Dem.Rep.	-	-	-	-	-	-	-	-	-	$+$	-
Germany, Fed.Rep. of	-	-	-	-	-	+	-	-	+	0.6	-
Netherlands	+	+	+	+	+	+	+	+	+	+	-
Norway	-	-	-	0.9	2.2	-	-	1.5	29.9	16.0	1.3
Poland	-	-	-	-	+	+	-	0.3	-	-	-
Sweden	-	-	-	-	-	1.0	2.2	11.0	+	0	-
UK (England)	13.0		-	+		0.2	-	-	-	0	-
UK (Scotland)	13.0	12.4	3.8	15.0	29.8	49.4	41.2	9.4	12.7	26.9	16.9
USSR	-	-	-	-	-	-	1.0	1.3	1.2	+	-
Total	13.0	12.4	3.8	15.9	32.0	50.6	49.9	36.9	46.9	44.0	18.2
IVa East (North Sea stock)											
Denmark	-	-	-	-	-	-	-	-	0.2	0.1	-
Norway	-	-	-	-	-	-	-	-	1.9	0.7	0.1
UK (Scotland)	-	-	-	-	-	-	-	-	+	0	-
Total	-	-	-	-	-	-	-	-	2.1	0.8	0.1
IVb West											
Belgium									+	0	-
Denmark	8.6	9.9	14.4	47.0	55.4	106.6	104.4	57.5	44.1
Faroe Islands	-	-	-		-	-	4.0	30.0	42.9	1.8	
France	1.0	-	-	-	-	-	-		-	+	-
German Dem.Rep.	$+$	-	-	-	-	-	1.7	4.5	6.4	0.7	-
Netherlands	+	2.0	+	+	$+$,	-	-	-		-
Norway Poland	+	-	-	-	4.1	3.4	9.5	145.7	73.0	5.5	56.2
Sweden	+	-	-	-	+	-	-	9.1	10.5 7.9	0	-
UK (England)	2.6	3.3	11.2	25.5	21.8	34.6	25.5	32.5	49.7	51.9	53.9
UK (Scotland)	13.4	22.0	9.5	7.2	3.6	2.9	8.6	4.9	18.1	10.9	14.8
USSR	-	-		1.2	0.8	17.9	32.9	47.8	50.4	1.6	14.8
Total	17.0	27.3	29.3	43.8	44.7	105.8	137.7	381.1	362.3	123.9	169.0

a)Preliminary figures as reported. + = less than 0.1. \ldots = No data available. $-=$ Magnitude known to be nil.

Table 7.1 (Continued).

Country	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	$1978{ }^{\text {a) }}$
IVb East											
Denmark	18.1	18.5	16.2	19.9	28.8	93.9	104.0	215.2	201.1	126.8	161.0
German Dem.Rep.	-	-	-	-	-	-	-	0.4	-	0.7	
Germany, Fed.Rep.of	16.7	6.3	7.6	5.1	1.7	11.0	17.5	0.5	1.7	4.3	-
Norway	-	-	-	-	-	-	-	-	5.1	0	29.8
Sweden	-	-	-	-	-	-	-	-	-	1.5	-
Total	34.8	24.8	23.8	25.0	30.5	104.9	121.5	216.1	207.9	133.3	190.8
IVc											
Belgium	0.4	0.4	0.6	0.1	0.1	0.2	+	+	-	0	-
Denmark	-	-	-	-	-	-	0.9	3.9	0.3	1.4	-
France	+	0.1	+	+	-	+	0.3	0.1	-	+	-
German Dem.Rep.	-	-	-	-	-	-	-	-	0.1	+	-
Germany, Fed.Rep.of	-	-	+	$\overline{-}$	+	-	-	-	-	0.4	-
Netherlands	1.0	1.6	1.5	1.0	0.4	+	+	0.2	-	0	-
Norway	6	-	-	-	-	-	-	-	-	-	0.2
UK (England)	6.2	4.2	3.9	0.2	+	0.8	3.4	2.9	0.7	0.2	0.0
USSR	-	-	-	-	-	-	+	+	0.2	-	-
Total	7.6	6.3	6.0	1.3	0.5	1.0	4.6	7.1	1.3	2.0	0.2
Total North Sea											
Belgium	0.4	0.4	0.6	0.1	0.1	0.2	$+$	+	+	$+$	$+$
Denmark	18.1	18.5	24.8	29.8	43.2	140.9	165.6	326.2	306.6	179.9	205.1
Faroe Islands	-	-	-	-	-	-	4.2	42.9	45.4	2.2	-
France	1.0	0.1	+	+	-	+	0.3	0.1	-	+	-
German Dem.Rep.	-	-	$\overline{7}$	-	- 7	- 0	1.7	4.9	6.5	1.4	-
Germany, Fed.Rep.of	16.7	6.3	7.6	5.1	1.7	11.0	17.5	0.5	1.7	5.3	-
Netherlands	1.0	3.6	1.5	1.0	0.4	+	+	0.2	+	+	-
Norway	-	-	-	0.9	6.3	3.4	9.5	147.2	109.9	22.2	87.6
Poland	+	-	-	-	+	$+$	-	9.4	10.5	+	-
Sweden	-	-	-	-	-	1.0	2.2	11.0	7.9	1.5	-
UK (England)	8.8	7.5	15.1	25.7	21.8	35.6	28.9	35.4	50.4	52.1	53.9
UK (Scotland)	26.4	34.4	13.3	22.2	33.4	52.3	49.8	14.3	30.8	37.8	31.7
USSR	-	-		1.2	0.8	17.9	33.9	49.1	51.8	1.6	-
Total	72.4	70.8	62.9	86.0	107.7	262.3	313.6	641.2	621.5	304.0	378.3

Table 7.2. North Sea sprat catch in 1974-77. Numbers caught per age group x 10^{6} in each three-month period.

Year	Months	Age group						
		0	1	2	3	4	5	6
1974	Jan-Mar	-	7620.0	7341.8	1043.2	198.7	40.3	-
	Apr-Jun	-	361.8	2083.5	148.6	26.1	4.7	-
	Jul-Sep	46.7	4909.8	1784.7	36.2	0.9	4.6	-
	Oct-Dec	1549.3	6172.9	865.1	74.5	10.6	7.2	-
1975	Jan-Mar	-	4096.6	14973.2	3929.0	233.7	14.1	-
	Apr-Jun	-	446.2	1163.2	68.9	6.5	-	-
	Jul-Sep	15.0	10588.1	5760.0	75.1	3.1	-	-
	Oct-Dec	675.2	6351.6	6122.5	660.2	57.3	4.4	-
1976	Jan-Mar	-	9360.9	9997.0	6678.0	373.0	6.2	1.4
	Apr-Jun	-	2017.2	964.6	740.1	40.9	0.8	-
	Jul-Sep	79.6	16536.4	599.5	40.1	-	-	-
	Oct-Dec	2780.4	8443.7	2659.4	612.7	37.1	-	-
1977	Jan-Mar	-	4197.2	11962.6	962.9	104.7	12.0	-
	Apr-Jun	-	540.3	670.9	52.7	1.5	-	-
	Jul-Sep	57.3	2803.1	3248.4	165.9	11.1	-	-
	Oct-Dec	1060.8	4705.0	3049.5	311.2	1.5	-	-
1978	Jan-Mar	-	2461.9	2839.3	3770.1	344.5		
	Apr-Jun	-	1077.5	123.8	3.2	0		
	Jul-Sep	6.3	17785.5	216.5	14.7	0.7		
	Oct-Dec	636.8	6932.7	3955.8	1159.0	214.9		
1979	Jan-Mar		2000	6000	2000			

Table 7.3. Total North Sea sprat catch 1974-78. Numbers caught per age group x 10^{-6} in each Division.

Area	Year	Age group						
		0	1	2	3	4	5	6
IVaW	1974	961.6	2963.1	693.0	112.0	12.2	-	-
	1975	267.2	2011.1	1025.4	363.6	11.1	2.2	-
	1976	938.5	2777.2	715.0	365.3	26.5	0.3	-
	1977	472.5	3354.4	1255.8	212.3	5.9		-
	1978	199.0	2312.2	226.9	175.0	15.7	-	
IVaE	1976	6.1	46.1	38.0	24.8	1.3	-	-
	1977	1.3	26.1	15.3	7.8		-	-
	1978	-	1.3	4.8	0.7	0.1	-	
IVbW	1974	609.4	6848.1	6033.4	1095.6	220.8	49.5	20.7
	1975	665.4	5110.0	17287.0	4396.0	282.7	17.0	-
	1976	1004.2	14903.6	12280.6	7586.0	423.0	6.7	1.4
	1977	480.8	3878.1	8538.4	1144.2	112.1	12.0	-
	1978	444.1	3839.6	4917.9	439.0	490.6	2.4	-
IVbE	1974	3.3	8486.7	4727.9	116.5	1.7	3.9	-
	1975	9.8	13169.0	9282.0	149.5	6.3	-	
	1976	911.2	18631.4	1193.1	94.9	0.2	-	0.01
	1977	163.5	4941.4	8779.7	108.4	-	-	-
	1978	-	23179.4	1977.5	370.1	56.1	-	-
IVc	1974	21.7	766.2	620.8	28.6	1.8	3.3	-
	1975	-	1182.4	499.1	45.8	1.8		-
	1976	-			gligible			
	1977	-	45.6	342.2	20.0	0.8	-	-
	1978	-	0.2	6.8	10.9	0.2	-	-
Total								
34401.8	1974	1596.0	19064.1	12075.1	1352.7	236.5	56.7	20.7
55784.4	1975	942.4	21472.5	28093.5	4954.9	301.9	19.2	
61975.4	1976	2860.0	36358.3	14226.7	8071.0	451.0	7.0	1.4
33918.6	1977	1118.1	12245.6	18931.4	1492.7	118.0	12.0	-
41543.2	1978	643.1	28257.6	7135.4	4947.0	560.1	-	-

Table 7.4. North Sea sprat. Quarterly stocks and fishing mortality (F). Quarterly $M=0.2$.

	>	Stock x 10^{9}					Total biomass x $10^{6} t$	F				
		0	1	2	3	4		0	1	2	3	4
1974	1	-	167.8	31.6	2.5	0.3	0.71	-	0.052	0.297	0.614	1.299
	2	-	130.5	19.2	1.1	0.1	0.51	-	0.003	0.128	0.160	0.558
	3	150.5	106.5	13.8	0.8	+	1.37	0.000	0.052	0.154	0.053	0.032
	4	123.2	82.8	9.7	0.6	$+$	1.23	0.014	0.036	0.104	0.147	0.620
1975	1	-	99.5	62.2	7.2	0.4	0.89	-	0.047	0.309	0.930	0.930
	2	-	77.7	37.4	2.3	0.1	0.58	-	0.006	0.035	0.033	0.054
	3	237.6	63.2	29.5	1.8	0.1	1.48	0.000	0.205	0.243	0.046	0.033
	4	194.5	42.2	19.0	1.4	0.1	1.24	0.004	0.182	0.441	0.711	1.312
1976	1	-	158.6	28.8	10.0	0.6	0.79	-	0.067	0.484	1.341	1.256
	2	-	121.4	14.5	2.1	0.1	0.46	-	0.019	0.076	0.481	0.410
	3	165.6	97.6	11.0	1.1	0.1	1.32	0.001	0.207	0.062	0.042	0.000
	4	135.5	64.9	8.4	0.9	0.1	1.09	0.023	0.155	0.425	1.591	1.118
1977	1	-	108.4	45.5	4.5	0.1	0.72	-	0.044	0.343	0.267	1.693
	2	-	85.0	26.4	2.8	+	0.50	-	0.007	0.028	0.021	0.081
	3	236.5	69.1	21.0	2.3	+	1.42	0.000	0.046	0.187	0.084	1.429
	4	193.5	54.0	14.3	1.7	+	1.26	0.006	0.101	0.269	0.223	0.728
1978	1	-	157.5	40.0	8.9	1.1	0.85	-	0.017	0.082	0.628	0.413
	2	-	126.7	30.2	3.9	0.6	0.66	-	0.009	0.005	0.001	0.000
	3	61.7	102.8	24.6	3.2	0.5	1.17	0.000	0.212	0.010	0.005	0.002
	4	50.5	68.0	19.9	2.6	0.4	1.01	0.014	0.119	0.246	0.666	0.850

Table 7.5. North Sea sprat. Pelagic biomass from acoustic surveys.

	Biomass in thousand tonnes			
Year	1978		1979	
Month	Jan	Feb	Feb	
Ship	Scotia	Corella	Scotia	Corella
Scottish northeast coast	86		133	
English northeast coast	174	194		83
Wash		23	Not surveyed	
Calibration grid			20	23

Tiñ. 3.1 Celtic Sea Herring. Abundance of larvae< 10 mm with fitted normal curves

Fig. 3.2 Celtic Sea Herring. Adult Stock biomass (at 1 April) against Recruitment numbers (I ringers two years later)

Fig. 4.1 Division VIa Herring Adult stock biomass against recruitment numbers

Fig. 6.1 Mourne Stock Decline in 0-group Abundance

Fig. 7.1 North Sea Sprat.
Quarterly estimates of F for varying input F values as percentage of initial $F=0.28$ in 4 rincers quarter $4,1978$.

Fig. 7. 2 North Sea Sprat. Quarterly Biomass Estimates

Figure 7.3
North Sea sprat. Area of coverage of United Kingdom acoustic surveys. Cross-hatched area indicates the area of major Danish and Norwegian catches in the same periods.

[^0]: $\left.{ }^{\#}\right)_{\text {The General Secretary }}$, ICES,
 Charlottenlund Slot, 2920 Charlottenlund, DEMMARK

[^1]: 7.4 Estimates of Fishing Mortality and Recruitment

 With short-lived species like the sprat having a high natural mortality, the information derived from VPA or cohort analysis have a limited value. With fishing mortality being equal to natural mortality, the stock estimate is basically dependent on the value of M assumed. With age data only extending over 5 age groups and the reliability of the oldest age abundances being low (due to sampling), the annual VPA can only give an estimate of the stock of l year old fish with any accuracy. The analysis is also somewhat unrealistic in that it does not reflect the large fluctuations in fishing mortality generated between different

