```
International Council for the


Digitalization sponsored
by Thünen-Institut

\section*{REPORT OF THE ARCTIC FISHERIES WORKING GHOUP}

Copenhagen, 21-28 September 1982

This document is a report of a Working Group
of the International Counoil for the Exploration
of the Sea and does not necessarily represent the
views of the Council. Therefore, it should not
be quoted without consultation with the General
Secretary.
x) General Secretary, ICES, Palmgade 2-4, DK-1261 Copenhagen \(K\), Denmark.

\section*{TABLE OF CONTENTS}
Page
1. PARTICIPANTS ..... 1
2. TERMS OF REFERENCE ..... 1
3. EFFORT IN TRAWL FISHERIES ..... 1
4. NORTH-EAST ARCTIC COD ..... 1
4.1 Status of the Fisheries ..... 1
4.2 Virtual Population Analysis ..... 2
4.3 Projection of Catch and Stock Size ..... 5
4.4 Effects of 1983 TACs on Spawning Stock Biomass and Medium-Term Projection of Spawning Stock Biomass ..... 6
4.5 Stock and Recruitment Relationship ..... 7
5. NORTH-EAST ARCTIC BADDOCK ..... 8
5.1 Status of the Fisheries ..... 8
5.2 Virtual Population Analysis ..... 8
5.3 Catch Projection ..... 10
5.4 Effects of the 1983 TACs on Spawning Stock Biomess ..... 11
5.5 By-Catch of Haddock in the Cod Fishery ..... 11
6. ABUNDANCE AND OCCURRENCE OF COD AND HADDOCK IN THE AREA AROUND SPITSBERGEN ..... 11
6.1 Cod ..... 11
6.2 Haddock ..... 12
6.3 Future Prospects ..... 12
6.4 Statement by Drs. Babayan and Mukhin ..... 12
7. DEFICIENCIES IN THE DATA BASE ..... 12
REFPERENCES ..... 13
Tables 1 - 27 ..... 15
Figures 1 - 24 ..... 39
1. PARTICIPANTS
V K Babayan
H P Cornus
A Hylen
B W Jones
A I Mukhin
K Randa
C J Rørvik
A Schumacher(Chairman)

USSR
Federal Republic of Germany Norway
United Kingdom
USSR
Norway
Norway
Federal Republic of Germany
2. TERMS OF REFERENCE

At the 69th Statutory Meeting, the Council decided (C.Res.1981/2:27:17):
"that the Arctic Fisheries Working Group should meet at ICES headquarters from 21-28 September 1982 to assess catch options for 1983 for cod and haddock in Sub-areas I and II, and to specify deficiencies in data required for the assessments".
In addition, the Royal Norwegian Ministry of Fisheries requested a statement from ICES on the abundance and occurrence of cod and haddock in the areas around Spitsbergen in recent years, including an evaluation of the prospects for the immediate future.
This request has been included into the terms of reference of the Working Group by ACFM.
Furthermore, on 6 September 1982 the Council received the following official request from USSR: " JSSR Ministry of Fisheries kindly requests a statement from ICES on the effects of spawning cod fishery on the spawning stock biomass reproductive capability and a year class strength for Arcto-Norwegian cod including the medium-term prospects".
This question was also considered by the Working Group.
3. EFFORT IN TRAWL FISHERIES

In recent years the proportion of the catches taken by trawlers has been declining. Catches by trawls and other gears are given in Table 1. In previous years, estimates of total trawler effort in English trawler units have been calculated. A review of English catch per unit effort data in the North-East Arctic fishery has been made by Burd (1982). With the decline in the amount of fishing by English trawlers, their oatch per unit effort data are no longer considered representative. English cpue is correlated with Norwegian or USSR cpue in Sub-area I but not with Norwegian data for Division IIa. As this latter area now accounts for about half the cod catch, a transformation from English to alternative effort units cannot be made for the trawl fishery on the total stock. An alternative approach has been to calculate total trawl effort in Norwegian fresh-fish-trawler units and the results are given in Table 2.
4. NORTH-EAST ARCTIC COD
4.1 Status of the Fisheries (Tables 3-6)

The revised figure for cod landings in 1980 is 380434 tonnes, which is 1275 tonnes less than the preliminary figure used in the previous Working Group report (C.M.1982/Assess:1). This is 9566 tonnes less than the 1980 TAC of 390000 tonnes (Murman cod included).

Provisional figures for 1981 indicate an increase of 18096 tonnes to a level 398530 tonnes, which was close to the 400000 tonnes anticipated by the Working Group at its 1981 meeting and well in excess of the TAG of 300000 tonnes. The catches in Sub-area I continued to decline and reached a level of 136350 tonnes. The catches in Division IIa and IIb increased by 46030 tonnes and 4387 tonnes, respectively.
Expected total landings for 1982 were estimated to be 366000 tonnes compared to the TAC of 300000 tonnes. For assessment purposes this catch was split into regions by countries and gears in order to establish the appropriate age compositions.
Since 1974 an increasing part of the total catch has been taken in Division IIa, reaching a level of \(62 \%\) in 1981 compared with \(11 \%\) in 1974. This is a combined effect of a more westward distribution of fish since 1978 due to hydrographical changes, poor year classes among the younger age groups, and reduced fishing effort in Sub-area. I and Division IIb.
Catch per unit effort for the trawler fleets continued to decline in the period 1976-79 in Sub-area I and Division IIa. This trend was reversed in 1980. Preliminary data indicate a decrease in 1981. In Division IIb the catch per unit effort continued to decline in the period 1974-78. This trend was reversed in 1979 and later it has been fluctuating. However, the figures since 1978 have been calculated from limited data.

For conventional gears fishing in Division IIa the catch per unit effort continued to decline in the period 1978-80. This trend was reversed in 1981. From 1981 to 1982 cpue decreased for gill-nets. For long-lines and hand-lines it more than doubled in the same years, The different trend for the two gear types was due to the high rate of maturation in 1982 of the 1975 and 1976 year classes. These fish were too small to be caught by gill-nets with the normal mesh size, but they were, however, highly vulnerable to the long-lines and hand-lines.
4.2 Virtual Porulation Analysis
4.2.1 Agge compcsitions

Age compositions for 1980 were revised and preliminary data were available for 1981. In addition, estimated age compositions for the expected landings in 1982 were prepared.
For 1980, age compositions were available for landings by the Federal Republic of Germany, Norway and USSR. Landings by other countries were assumed to have the same age compositions as the USSR landings. For 1981, age corposition data were again available for the Federal Repuhlic of Germany, Norway and USSR. For other countries in Sub-area I and Division IIa age compositions were based on those of Norwegian tra: fishing outside the 12 m zone. For Division IIb age compositions for other countries were derived by pro-rating the USSR age compositions. For 1982 the procedure was the same as for 1981, using the age compositions which were obtained in the first half of 1982 except for Division IIb, where age compositions for Norwegian scouting vessels have been applied.

It should be noted that the USSR age compositions for Division IIb in 1982 were derived from catches of research vessels which were fishing with standard commercial trawls in shallower areas than the main fishing fleet.
These catch at age data were used as input data for the VPA. A value of 0.2 was used for the natural mortality coefficient.
4.2.2 Age at maturity

For determination of the spawning stock size it is important to know the proportion of mature individuals in each age group. In its previous assessments, the Working Group has taken the mature part of the stock to be all fish of age 8 and older. The Group considered, however, that it would be more realistic to use a maturity ogive as recommended by ACFM. The published data were discussed.

The discussion involved papers by Rollefsen (1954), Garrod (1967), Hylen and Dragesund (1973), Hylen and Nakken (1982) and Ponomarenko (1968, 1980; 1981, 1982). The maturity ogives from these publications are summarized in Table 7. An analysis indicated that during the last 40 years (from 1942 to 1981) there has been a slight trend of decreasing age at first maturity, In the 1940 s and 1950 s , the age at \(50 \%\) maturity was about 10.5 years, but by the end of the 1970 s this age had reduced to 8.5 years. It should be pointed out also that the average age at maturity of 8.5 years remained relatively stable during the period 1966 to 1981: Recent Norwegian investigations carried out in 1982 showed a sharp change in the average age at maturity with \(50 \%\) maturity at about 6.5 years. In the case of the 1975 year class ( 7 year olds), this phenomenon was supported by preliminary data by Ponomarenko (1982) according to which about \(30 \%\) of this year class were mature. Because of the apparent trend in the maturity ogives with time the Group decided that it would be preferable not to use a single ogive for the whole historic period but to use a series of ogives which reflected the observed trend. The ogives adopted for the various time periods are given in Table 8. For the period from 1980 there was a large difference between the data of Ponomarenko for the years 1980-81 and those of Hylen and Nakken for 1982. It was not clear whether this was due to methodology or to a real change in age at maturity in 1982; which may or may not be maintained into the future. The Group decided for 1982 to use an average of the two sets of data, and for 1981 and for the prediction period to use an average giving double weighting to the Ponomarenko data; It is recommended that age at maturity data for the earlier years should be made available in more detail, and that any weight at age data for past years should be provided: On the basis of the data available at the 1983 Working Group meeting; a revision of the maturity ogive towards a more detailed analysis will be undertaken.

\subsection*{4.2.3 Survey data}

Bottom trawl surveys
Data were taken from reports of the Norwegien groundfish surveys in the Barents Sea (Dalen et al., 1982) and in the Svalbard area (Randa and Smedstad, 1982), and Working Group members provided data from the USSR groundfish survey in the Barents Sea and the Norwegian Sea for the period 1979-82. These surveys give estimates of the relative abundance of cod, and these are given in Tables 9, 10 and 11:

Acoustic surveys
The Norwegian acoustic surveys are summarized in Hylen and Nakken (1982) and include surveys in the Barents Sea (Dalen et al.; 1982); the Lofoten area (Godø et al., 1982) and the More area (Godo et al., 1982). These surveys give estimates of the absolute numbers of cod in the different year classes; In order to get a total stock estimate, Hylen and Nakken (1982) have converted the results for the younger age groups in the groundfish survey in the svalbard area
(Randa and Smedstad, 1982) to absolute numbers using a swept area method assuming a swept area of 0.0405 szuare nautical miles for a standard haul and a catchability coefficient of 1.0 . The faper also takes into account the catches in the first two months of 1982. The figures in Table 12 differ somewhat from those given by Hylen an Nakken (1982) due to the figures in that paper being based on \(a\). preliminary run of the data in the Svalbard area.

\section*{Young figh surveys}

Data from the international 0-group fish survey were taken from Anon. (1982) giving the 0-group index for cod. This index of year class abundance was recalculated ky Randa (1982). Results from the USSR young fish surveys were provided by Working Group members. The recalculated 0 -group indices and the updated USSR indices are given in Table 13.

\subsection*{4.2.4 Fishing mortalities}

To obtain values of fishing mortality in 1982 for input into the VPA, a set of \(F\) at age estimates were obtained using estimates of stock size at the beginning of 1982 derived from Norwegian surveys (Hylen and Nakken, 1982). The resultant values of \(F\) were used in a trial VPA, which showed that for the youngest and oldest age groups there were large differences between the 1982 F values from the survey data and the calculated values for earlier years. Such differences could not be accounted for by any known changes in the fisheries. The Group had, therefore, to consider the possibility that the oldest and youngest age groups were not well estimated in the surveys.
For the older age groups the most important fisheries are those using conventional gears. In the first run the partitioned f values for this group of gears for age groups 9-12 appeared particularly low for 1982 compared with earlier years. The effort data for these gears are not good, but effort is believed to have been relatively constant since the number of boats using these gears has not changed significantly in recent years. Therefore, the 1982 F values were ajuusted to be approximately on the same level as the Fs in 1979-80 (Figure l). The resulting spawning stock was found to be in good agreement with the development of the cpue of long-line in the spawning fishery (see Table 6 and Figure 2).

For age groups 3 and 4 there was some evidence from the partitioned \(F\) values for the Norwegian trawlers that the surveys gave \(F\) values which were too high. Also the survey F value on 3-and 4-year olds gave year class strengths for the 1978 and 1979 year classes, which were inconsistent with the estimates from the USSR young fish surveys. The 1982 F values for the 4 year olds were, therefore, calibrated by the USSR young fish survey estimates of year class strength: For the 3 year olds, ratios of 3 to 4 year old fiah abundance was determined from both the Norwegian and USSR groundfish surveys in 1982 (Tables 9-11). These ratios were applied to the stock number of 4 year olds to give estimates of the stock of 3 year olds. The resultant values were averaged and were used to determine the corresponding value of \(F\).
The resulting Fs for 1982 are given in Table 15. Figures 3-7 show the partitioned Fs for different fisheries and cpue versus biomass, and Figure 8 shows the resulting exploitation pattern of the total fishery in 1982 compared to the average for 1978-81.

F values for 1982 determined as described above have been used to initiate the VPA. Maturity ogives derived as described in Section 4.2 .2 have been used in the spawning stock biomass calculations, but no sums of products (SOPs) corrections have been applied. Input data and calculated fishing mortalities, stock numbers and stock biomass ere given in Tables 14-16. The historic trends in fishing mortality, recruitment and spawning stock biomass are plotted in Figure 9, B-D.
4.3 Projection of Catch and Stock Size

The parameters used for calculating catches in 1983 and stock sizes in 1984 are given in Table 17. According to the sum of products check, which resulted in a deviation of only \(3.7 \%\), no revision of the weight at age data was required. The exploitation pattern from the 1981 assessment has been adjusted according to the \(F\) at age array developed for 1982 by taking the average of the two sets of data, slightly smoothed.

The exploitation pattern emerging from this procedure is believed to reflect the reduction in total trawl effort in recent years. Since no increase in trawl effort is expected to take place in 1983 and the next few years, these relative fishing mortalities are used in the projections.
The size of the 1980 and 1981 year classes at age 3 have been estimated on the basis of the USSR young fish survey. Both these indices are very low (Table 13), indicating that these year classes are very poor and are, therefore, taken as 100 million cod at age 3 , the conservative level for poor year classes used by the Working Group in previous assessments. The estimate of the strength of the 1982 year class of 600 milli on cod at age 3 , which are expected to recruit to the fishery in 1985, was derived from the ICES 0-group survey (Table 13). Observations reported from the 1982 USSR egs- and larval survey as well as indications of improved environmental conditions confirm that the 1982 year class might be stronger than the preceding ones. The increase in spawning stock biomass in 1982 due to the contribution of the 1975 year class might also have contributed. to the production of a good year class in 1982. The estimate of this year class does not affect the projection for 1983 and only marginally the medium-term projection of the spawning stock biomass for 1986 and 1987.
The results of the catch projection are given in Figure lo. In the text table below, management options for 1983 related to the reference points on the \(Y / R\) curve (see Figure 10) and to certain levels of catch and spawning stock biomass in 1983 and 1984 respectively are given.

\section*{Management Options}

SPECIES: NORTH-EAST ARCTIC COD
Area: ICES Sub-areas I and II
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{1982} & \multirow[t]{2}{*}{Management option for 1983} & \multicolumn{4}{|c|}{1983} & \multicolumn{2}{|r|}{2984} \\
\hline Stock biom.
\[
(3+)
\] & \[
\begin{aligned}
& \text { Spawn. } \\
& \text { stock } \\
& \text { biom. } x \text { ) }
\end{aligned}
\] & \[
\bar{F}_{(5-10)} \mid
\] & \[
\begin{gathered}
\mathrm{xx}) \\
\text { Catch } \\
(3+)
\end{gathered}
\] & & \begin{tabular}{l}
Stock \\
biom. \\
(3+)
\end{tabular} & Spawn. stock biom. \(x\) ) & \[
\frac{F}{F}(5-10)
\] & \[
\begin{array}{|l}
\mathrm{xx}) \\
\mathrm{Catch} \\
(3+)
\end{array}
\] & Stoch biom (3+) & Spawn. stock biom. \(x\) ) \\
\hline \multirow[t]{5}{*}{1408} & \multirow[t]{5}{*}{377} & \multirow[t]{5}{*}{.508} & \multirow[t]{5}{*}{366} & \(\mathrm{F}_{0.1}\) & \multirow[t]{5}{*}{1272} & \multirow[t]{5}{*}{372} & . 14 & 122 & 1380 & 525 \\
\hline & & & & \(\mathrm{F}_{\text {max }}\) & & & .245 & 204 & 1280 & 470 \\
\hline & & & & \(\mathrm{F}_{83}=\mathrm{F}_{82}\) & & & . 51 & 380 & 1080 & 365 \\
\hline & & & & \[
\begin{aligned}
& \text { TAC } 1983 \\
& =300
\end{aligned}
\] & & & .38 & 300 & 1180 & 420 \\
\hline & & & & \[
\begin{aligned}
& \text { SSB } 1984 \\
& =380 .
\end{aligned}
\] & & & . 46 & 350 & 1120 & 380 \\
\hline
\end{tabular}

Weights in thousands of tonnes.
x) From maturity ogive.
\(x x\) ) Expected catch estimated by the Wa.

\subsection*{4.4 Effects of 1993 TACs on Snawning Stock Biomass and Medium-Term Projection of Spownine Stock Biomass}

The revised estimate of spawning stock biomass (SSB) (see Section 4.6) indicates that its minimum target level is in the order of about 400000 tonnes compared to 500000 tonnes in previous assessments (ICES, C.M.1979/G:20). The early maturation of the 1975 year class observed in 1981 and 1982 has increased the SSS from the very low level of 131000 tonnes in 1980 to 258000 tonnes and 377000 tonnes at the beginning of 1981 and 1982, respectively.

Although the 1982 SSB level is close to the minimum target level, it should be noted that the 1975 year class is followed by a series of at least 6 relatively poor year classes. As a consequence, the present level of spawning atock biomass can only be maintained into 1984 , if the level of exploitation in 1983 does not exceed \(r(5-10)=0.46\). Increasing this level of spawning stock biomass to 400000 tonnes in 1984 and maintaining it at that level in the following years would require a fishing mortality of 0.40 in 1984 followed by a gradual reduction in fishing mortality up to at least 1986 (see text table on next page).

Calculated SSB in 1983-87 at the beginning of the year and calculated catch 1982-84 at constant levels of exploitation. (Catch figures for 1985-87 are dependent on recruiting year classes beyond 1981 and are, therefore, not given in the text table.)
\(\bar{F}\) refers to \(\bar{F}(5-10)\), weights are given in thousand tonnes.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Manage- } \\
& \text { ment } \\
& \text { strat- } \\
& \text { egy }
\end{aligned}
\]} & \multicolumn{2}{|l|}{\(\mathrm{F}_{0.1}=0.14\)} & \multicolumn{2}{|l|}{\(\bar{F}_{\max }=0.245\)} & \multicolumn{2}{|l|}{\(\bar{F}=0.3\)} & \multicolumn{2}{|l|}{\(\overline{\mathrm{F}}=0.4\)} & \multicolumn{2}{|l|}{\(\overline{\mathrm{F}}=0.5\)} & \multicolumn{2}{|l|}{\(S S B=400\)} \\
\hline & \multirow[t]{2}{*}{SSB} & \multirow[t]{2}{*}{Catch} & \multirow[t]{2}{*}{SSB} & \multirow[t]{2}{*}{F} \\
\hline Year & & & & & & & & & & & & \\
\hline 1983 & 372 & 122 & 372 & 204 & 372 & 243 & 372 & 310 & 372 & 372 & 372 & 0.40 \\
\hline 1984 & 542 & 149 & 470 & 226 & 445 & 257 & 401 & 300 & 363 & 330 & 400 & 0.38 \\
\hline 1985 & 656 & & 530 & & 475 & & 391 & & 323 & & 400 & 0.33 \\
\hline 1986 & - 756 & & 558 & & 478 & & 364 & & 280 & & 400 & 0.31 \\
\hline 1987 & 831 & & 568 & & 470 & & 338 & & 250 & & 400 & \\
\hline
\end{tabular}

\subsection*{4.5 Stock and Recruitment Relationship}

Until this meeting, the Working Group had used a 'knife-edge' type of maturity pattern for the calculation of spawning stock biomass. This assumed fish of age 7 and younger to be immature and fish of 8 and older to be mature. This year, in order to improve the estimates of spawning stock biomass, a series of maturity ogives were used (see Section 4.2.2). In addition, an examination of the sums of products (SOPs) check showed large discrepancies for the earlier years of the historic series. A single set of weight at age data have been used for the whole period 1946-1982. In reality, it is likely that the weights at age have been changing over the years. Examination of the mean weight of 10 year old cod (relative to 1947-50) and the mean SOPs discrepancy (relative to 1947-50) showed a linear relationship with time (Figure li). It was considered likely that the main source of the SOPs error was due to changes in the weight at age in the stock, and consequently the computed spawning stock biomass was corrected for the SOPs discrepancy. The combined effects of the changes in the maturity at age data and the SOPs corrections of weight at age data can be seen in Figure 12, where the new estimates of spawning stock biomass can be compared with the previous values.
The corrected spawning stock biomass data have been used together with the current estimates of the numbers of recruits at three years old to calculate a new stock/recruitment relationship (Table 18 and Figure 13). The line on the graph was fitted by the method of Ricker (1975) using the general relationship
\[
R=a \cdot P \cdot \exp (-b P)
\]
where \(R=\) number of 3 year old recruits (millions)
\(P=\) parent spawning stock biomass (thousands of tonnes)
Transformation to a linear relationship gives
\[
\ln R-\ln =\ln a-b P
\]
which can be written in the form \(Y=A+B X\) by replacing \(\ln R-\ln P\) by \(Y\), \(P\) by \(X, \ln a\) by \(A\) and \(-b\) by \(B\). The calculated regression gives values of
\(A=1.3346, B=-0.0017\), and \(r=0.6\). Retransformation gives values of \(a=3.7985\) and \(b=0.0017\) which gives a stock/recruitment relationship for the North-East Arctic cod of
\[
R=3.7985 P \cdot \exp (-0.0017 P)
\]

As with previous stock/recruitment plots for the North-East Arctic cod, the revised data show a considerable scatter of points about the fitted line. The curve indicates that maximum recruitment should be produced from a spawning stock biomass of about 600000 tonnes. It would be preferable to prevent the spawning stock biomass falling below 400000 tonnes to reduce the probability of poor recruitment.
5. NORTH-EAST ARCTIC HADDOCK
5.1 Status of the Fisheries (Tables 19 to 21)

Final figures for the eatch of haddock of 87889 tonnes in 1980 differ only alightly from the figure given in the previous Working Group report (C.M.1982/Assess:l). The preliminary figure for 1981 of 76837 tonnes shows a decrease from 1980 of about 11000 tonnes (12\%).
In the previous Working Group report total landings of haddock for 1981 were estimated as 78000 tonnes, this is only about 1200 tonnes less than the reported figure for that year. For the first time in the period for which data are available was the catch of haddock in Division IIa higher than in Sub-area I. This might be due to the more westerly distribution of the fish as well as to the fact that a great proportion of the haddock stock consists of spawning fish exploited mainly in Division IIa.
Expected total catches of haddock in 1982 are estimated as 49000 tonnes, and for the reasons given above, the catch in Division IIa is expected to be higher than in Sub-area I.

The upward trend in catch per unit effort of Norwegian trawlers in Sub-area I, which was observed since 1977, discontinued in 1982, since a great proportion of the stock has reached the age of maturity, particularly the good year classes 1975 and 1976. These fish migrate to the spawning areas in Division IIa and the further increase in cpue in that area might be explained by this migration.
5.2 Virtual Population Analysis (VPA)
5.2.1 Age compositions (Table 22)

Catches in numbers per age group were revised for 1980 according to changes in the catch data and revised age compositions for the Norwegian catches. The data for 1981 given in the previous report, which had been based only on the first six months' sampling, were updated for the total annual sampling.

For 1982 projections of the total annual catch by age were made from the data available for the first half of the year from Norway, USSR and the Federal Republic of Germany.
5.2.2 Ace at maturity

In the earlier assessments, the Working Group has taken the mature part of the stock to be all fish of age six and older. In order to obtain a more realistic estimate of the mature part of the stock, it was decided to apply a maturity ogive for the estimate of the spawning stock biomass.

Only two geries of data (Sonina, 1982 and Smtersdal, 1954) were available for haddock, but since these are similar the data published by

Smtersdal (1954) are used (Table 25). The Working Group noted that such a limited material is not sufficient, particularly in view of possible trends in tire, but even the application of a standard maturity ogive is considered as an improvement compared to the previous approach. It is recommended that existing material should be made available in more detail and further sampling be undertaken.

\section*{\(5 \cdot 2.3\) \\ Fishing mortality in 1982}

In the initial run the input Fs for 1982 were chosen so that the stock size and composition in 1980 was equal to that emerging from the ACFM re-assessment in 1981. This resulted in a very unusual exploitation pattern in 1932, which could not be explained by changes in the fishery. Therefore, the input exploitation pattern for 1982 was chosen so that it became close to the average exploitation pattern for the years 1978-81 (Figure 14). Because of the change in the hydrographical climate in 1978 , the years prior to 1978 were not included in the comparison of the fishing patterns. The fishing mortalities on the age groups 7 and older were finally taken to be 0.13 . The reason for choosing this \(F\) at age array is as follows:
Figure 15 shows the relation between the unweighted average fishing mortalities on the 4-6 year olds in Sub-area I and the effort in the same area (1973-82). Both sets of data are derived from the Norwegian trawlers. The Fs generated by the Norwegian trawlers were extracted from the total Fs using the catch by number ratio for each year (1973-82) and age group (3-14). The effort data for the respective areas are derived by dividing the catch (in tonnes) by the Norwegian trawlers by the Norwegian cpue data (Table 2l).
Figure 16 shows essentially the same relation as Figure 15 but for Sub-area II these figures both indicate that the relationships are different for the period 1973-77 and more recent years. This might indicate that the cooling of the ocean affected the relations between effort and fishing mortality, in particular in Sub-area \(I\). Therefore, F of 0.13 seems reasonable for ages of 7 and older in 1982. The exploitation pattern for 1982 (Figure 14) generated an exploitation pattern on the \(5-9\) year olds in 1982 for the Norwegian trawl fishery in Sub-area II that is fairly close to the average for 1978-81 (Figure 17).
As a further check on the input values of the fishing mortalities, the assessments of cod and haddock were compared, as was also done in last year's report. As the trawl catches of haddock are mostly a by-catch in the cod fisheries, this is a legitimate procedure.
In Figure 18 the average fishing mortality on the \(5-7\) years old haddock in Sub-area II (mainly derived from Division IIa) is compared with the fishing mortality of cod in Division IIa. The catch ratio of the two species in the total trawl fisheries is compared with the estimated biomass ratio as derived from the final runs (see Figure 19). Although the 1982 point is within the variance of the previous points, Figures 18 and 19 indicate that the estimate of the cod biomass may be slightly too low or the estimated biomass of haddock is somewhat high, or a combination of these cases.
Taking into account the preliminary status of the 1982 data, the Group concluded that approximating the exploitation pattern to the average for \(1978-81\) and taking \(F=0.13\) on the 7 years and older were consistent with the available data.

The results of the VPA are given in Tables 23 and 24. The time series of spawning stock biomass since 1950 derived from maturity ogive and
corrected for SOPs discrepancies are given in Figure 20 in comparison to the biomass of fish at age six and older, which was used in the past as an index of spawning stock biomass. Historic trends in fishing mortality, recruitment and spawning stock biomass are plotted in Figure 21, B-D.

\subsection*{5.3 Catch Projection}

The parameters used for calculating catches for 1983 and resulting stock sizes in 1984 are given in Table 25. No changes have been made in the average weight per age group used in the previous assessment, since these parameters have been revised at the May 1980 meeting of the Working Group.
The exploitation pattern emerging from the estimated \(F\) at age array for 1982 was slightly adjusted on ages 7 and 8, since the fishery is expected to concentrate on these abundant age groups (year classes 1975 and particularly 1976). This adjustment accounts for expected future developments in the fishery, i.e., reduced trawl effort and increased efficiency in the fishery with conventional gears.
Recruitment of the 1980 and 1981 year classes has been estimated from the USSR young fish survey and the ICES international 0-group survey, respectively (Table 26). The indices derived from these surveys indicate that both these year classes are very poor and consequently a figure of 50 million haddock was used in the catch prediction.
The results of the catch projection are given in Figure 22. In the text table below, three management options are listed, which are related to reference points on the \(Y / R\) curve (see Figure 22) as well as to the level of fishing mortality in 1982. These options have to be evaluated in the light of the comments made in the following section.

Management Options

SPECIES: HADDOCK
Area: ICES Sub-areas I and II
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{1982} & \multirow[b]{2}{*}{Management option for 1983} & \multicolumn{4}{|c|}{1983} & \multicolumn{2}{|r|}{1984} \\
\hline \[
\begin{aligned}
& \text { Stock } \\
& \text { biom. } \\
& (3+)
\end{aligned}
\] & Spawn. stock biom. \({ }^{x}\) & \(\bar{F}_{(4-7)}\) & \[
\begin{aligned}
& \mathrm{xx}) \\
& \text { Catch } \\
& (3+)
\end{aligned}
\] & & \[
\begin{aligned}
& \text { Stoch } \\
& \text { biom } \\
& (3+)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Spawn. } \\
& \text { stock } \\
& \text { biom. }
\end{aligned}
\] & \[
F(4-7)
\] & \[
\begin{gathered}
\mathrm{xx}) \\
\text { Catch } \\
(3+)
\end{gathered}
\] & \[
\begin{gathered}
\text { Stock } \\
\text { biom } \\
(3+)
\end{gathered}
\] & Spawn. stock biom. \({ }^{x}\) \\
\hline 428 & 256 & . 142 & 49 & \(F_{0.1}\) & 411 & 285 & . 18 & 56 & 390 & 265 \\
\hline & & & & \(\mathrm{F}_{\text {max }}\) & & & . 39 & 92 & 335 & 215 \\
\hline & & & & \[
\begin{aligned}
& F_{1983} \\
& =F_{1982}
\end{aligned}
\] & & & . 14 & 45 & 405 & 290 \\
\hline
\end{tabular}

Weights in thousands of tonnes.
\(x\) ) From maturity ogive.
xx) Expected catch estimated by the Working Group.

6.1 Cod

Catch statistics are available separately for the Svalbard area (Division IIb). Landings reached a minimum of 10000 tonnes in 1979 but have since been increasing and a catch of about 25000 tonnes is expected in 1982 (Table 3).
Age composition data are available for Division IIb separately. In addition, the Group had the results of a Norwegian groundfish stock survey (Hylen and Nakken, 1982). The groundfish survey provided an estimate of cod in the svalbard area at the beginning of 1982. Fishing mortality can be calculated by VPA, using age composition data for Division IIb catches only. However, such estimates of \(F\) on the older age groups will be biassed due to migration. For the immature age groups the problem is to obtain values of \(F\) for input into VPA for 1982 and for the oldest age group in each year. The estimates of stock numbers at the beginning of 1982 from the groundfish survey provided a means to calibrate the VPA. F values input for 1982 for age groups 2 to 6 were used, which gave estimates of stock numbers equal to those obtained by the groundfish survey. For the older age groups, the input \(F\) values were the same as were used in the VPA for the total Arcto-Norwegian stock. The results of the VPA are summarised in Table 27, but these should be interpreted with care. For the immature age groups in 1982, the estimates of F will be valid only if the groundfish survey has correctly estimated the stock size. For earlier years, the results will not be entirely free from bias due to migration. A

Norwegian acoustic survey of the Svalbard area was made in 1976 (Dalen, Rorvik and Smedstad, 1977). Estimates of stock numbers from this survey, projected forward to the beginning of 1977, can be compared with the estimates of stock numbers calculated by VPA for 1977. Agreement is reasonably good for age groups 5 to 7 , but for the younger age groups the estimates from the survey are much lower than from VPA. Data of numbers caught per 100 ton-hours fishing by United Kingdom trawlers (Burd, 1982) have been plotted against stock numbers calculated by VPA (Figure 23). A fairly good relationship is obtained for age groups 4 and 5 .

\subsection*{6.2 Haddock}

Both commercial catch data and groundfish survey results indicate that the stock of haddock in the Spitsbergen area is at a very low level. The available data are inadequate for any assessment to be attempted for the Svalbard area alone.
6.3 Future Prospects
6.3.1 Cod

Figure 24 shows a plot against time of stock abundance from VPA of age groups 2-6 combined, and the catches of \(2-6\) year olds. The fluctuations relate to the abundance of recruiting year classes. Recruitment in recent years as estimated for Division IIb from international \(0-g r o u p\) surveys and from USSR young fish surveys (Table I3) has been poor, although there is some hope that the 1982 year class may be more abundant. The VPA can give only a general indication of the stock situation in Division IIb, but there can be no doubt that the stock of immature cod is at a low level and for the foreseeable future the only hope for an improvement in the stock situation is the possibility of better recruitment from the 1982 year class.
6.3 .2 Haddock

There are no indications so far of any prospect of improvement in the haddock stock at Spitsbergen.
6.4 Statement by Drs Rabayan and Mukhin

The Soviet scientists considered it inappropriate to discuss the cod in Division IIb separately from the rest of the stock of North-East Arctic cod. They mentioned that unpublished mark-recapture data at PINRO show a migration between Division IIb and Sub-area I for young fish. This material is under preparation, and it is intended to present it to the Working Group next year.
7. IEFICIENCIES IN THE DATA BASE

The Working Group is still faced with the problem of splitting catches without age composition using age composition from other fleets and areas. The text table shows the percentage of the catch in Sub-area I and Divisions IIa and IIb and total reported without age composition.

COD
HADDOCK
\begin{tabular}{ccccc} 
& \multicolumn{4}{c}{ COD } \\
& SA I & Div.IIa & Div.IIb & Tatal \\
\hline 1980 & 7.5 & 6.1 & 50.3 & 8.2 \\
1981 & 6.4 & 4.8 & 88.7 & 8.9
\end{tabular}
\begin{tabular}{cccc} 
SA I & Div.IIa & Div.IIb & Total \\
\hline 2.7 & 7.4 & - & 4.5 \\
1.0 & 4.3 & 100 & 3.3
\end{tabular}

From this table it is seen that this problem is greatest in Division IIb for cod, where the catch in both 1980 and 1981 amount to about 15000 tonnes, and in 198225000 tonnes are expected to be taken. The following countries have taken substantial catches (more than 1000 tonnes) in 1982, for which no length or age composition data have been provided:
\begin{tabular}{lrl} 
Faroe Islands & 12825 & tonnes \\
France & 2600 & " \\
Spain & 14500 & \(" 1\) \\
United Kingdom & 5260 & \("\)
\end{tabular}
'Further work should be done to improve fisheries-independent data for stock abundance estimates on both cod and haddock. The aurveys should cover the total area of distribution for both species. The surveys should aim at obtaining absolute biomass estimates instead of relative indices of abundance. It would be preferable 2 if all bottom-trawl surveys use a stratified random survey design allowing for proper statistical treatment.

The Working Group also feels that the biological data, such as the maturation ogive, should be revised each year and asks for data on this subject to be presented. The Working Group also feels the need to revise the mean weight at age data used for both cod and hadiock. Data should be made available both for the present situation and for the historical record. (See Sections 4.2 .2 and 5.2.2.)

If possible, the different laboratories doing age readings on Arctic cod and haddock should try to calibrate their readings to see if any differences exist.

\section*{REFERENCES}

Anon. 1970. Report of the meeting of the North-East Arctic Fisheries Working Group, 1967. ICES, Coop.Res.Rep., Ser.A, No.16:1-29.

Anon. 1982. Preliminary report of the international 0-group fish survey in the Barents Sea and adjacent waters in August-September 1982. ICES, Doc. C.M.1982/G:44 (mimeo.).

Burd, A C. 1982. English catch per unit effort data in the North-East Arctic cod fishery. ICES, Doc. C.M.1982/G:6 (mimeo.).

Dalen, J, Hylen, A, Nakken, O, Randa, K and Smedstad, O M. 1982. Norwegian investigations on young cod and haddock in the Barents Sea during the winter 1982. ICES, Doc. C.M.1982/G:41 (mimeo.).

Dalen, J, Rarvik, C J and Smedstad, O M. 1977. Bunnfiskundersøkelser ved Bjerneya og Vest-Spitsbergen hesten 1976. Fisken Hav., 1977 (4): 29-51.

Garrod, D J. 1967. Population dynamics of the Arcto-Norwegian cod. J.Fish. Res. Bd Canada, 24:145-190.

Godø, 0 R, Nakken, 0 , Raknes, A and SunnanA, K. 1982. Acoustic estimates of spawning cod off Lofoten and Mare in 1982. ICES, Doc. C.M.1982/G:62 (mimeo.).

Hylen, A and Dragesund, 0. 1973. Recruitment of young Arcto-Norwegian cod and haddock in relation to parent stock size. Rapp.P.-v.Cons. int.Explor.Mer, 164:58-68.

Hylen, A and Nakken, 0. 1982. Stock size of North-East Arctic cod estimated from acoustic survey data 1982. ICES, Doc. C.M.1982/G:61 (mimeo.).

Ponomarenko, V P. 1968. The influence of the fishery upon the stock and recruitment of the Barents Sea cod. Trudy PINRO, 23:310-362.

Ponomarenko, V P, Ponomarenko, I Ya. and Yaragina, N.A. 1980. Growth and maturation of the Lofoten-Barents Sea cod. ICES, Doc. C.M.1980/G:25 (mimeo.).

Ponomarenko, I Ya, and Yaragina, N A. 1981. Relation between mature and immature specimens among cod of different ages and sizes in 1978-80. ICES Doc. C.M.1981/G:22 (mimeo.).

Ponomarenko, I Ya. 1982. Portion of mature cod specimens and sex ratio in different age and length groups within the 60s and 70s. ICES Doc. C.M.1982/G:18 (mimeo.).

Randa, K. 1982. Recruitment indices for the Arcto-Norwegian cod for the period 1965-1979 based on the international 0-group fish surveys. ICES DOC. C.M.1982/G:34 (mimeo.).

Randa, \(K\) and Smedstad, 0 M. 1982. The Norwegian groundfish survey at Bear Island and West-Spitsbergen in the autumn 1981. ICES Doc. C.M.1982/G:42 (mimeo.).

Ricker, W E. 1975. Computation and interpretation of biological statistics of fish populations. Bull.Fish.Fes. Bd Can., 191:382 p.

Rollefsen, G. 1954. Observations on the cod and cad fisheries of Lofoten. Rapp.P.-v. Réun.Cons.perm.Int.Explor.Mer, 136:40-47.

Sonina, M A. 1981. The ratio of mature and immature haddock in the Barents Sea and Norwegian Sea. ICES, Doc. G.M.1981/G:23 (mimeo.).

Setersdal, G. 1954. Some investigations on the Arcto-Norwegian haddock. ICES, Doc- C.M.1954/47 (mimeo.).

Table 1 Tctal nominal catches (thousand tonnes) by trawl and other gear for each area
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{ICES areas} & \multicolumn{4}{|c|}{Sub-Area I} & \multicolumn{4}{|c|}{Division IIa} & \multicolumn{2}{|l|}{Division IIb} \\
\hline & \multicolumn{2}{|c|}{Cod} & \multicolumn{2}{|l|}{Haddock} & \multicolumn{2}{|c|}{Cod} & \multicolumn{2}{|r|}{Haddock} & Cod & Hiaddock \\
\hline Year & Irawl & Others & Trawi & Others & Trawl & Others & Trawl & Others & Trawl & Irawl \\
\hline 1967 & 238.0 & 84.8 & 73.8 & 34.3 & 38.7 & 90.0 & 20.5 & 7.5 & 121.1 & 0.4 \\
\hline 1968 & 588.1 & 54.4 & 98.1 & 42.9 & 44.2 & 118.3 & 31.4 & 8.6 & 269.2 & 0.7 \\
\hline 1969 & 633.5 & 45.9 & 41.3 & 47.7 & 119.7 & 135.9 & 33.1 & 7.1 & 262.3 & 1.3 \\
\hline 1.970 & 524.5 & 79.4 & 36.7 & 22.8 & 90.5 & 153.3 & 20.2 & 6.4 & 85.6 & 0.5 \\
\hline 1971 & 253.1 & 59.4 & 27.3 & 29.0 & 74.5 & 245.1 & 15.0 & 6.6 & 56.9 & 0.4 \\
\hline 1972 & 158.1 & 38.9 & 193.4 & 27.8 & 49.9 & 285.4 & 34.4 & 7.6 & 33.0 & 2.2 \\
\hline 1973 & 459.0 & 33.7 & 241.2 & 42.5 & 39.4 & 172.4 & 13.9 & 9.4 & 88.2 & 13.0 \\
\hline 1974 & 677.0 & 46.5 & 133.1 & 25.9 & 41.0 & 83.2 & 39.9 & 7.1 & 254.7 & 15.1 \\
\hline 1975 & 526.3 & 35.4 & 103.5 & 18.2 & 33.7 & 86.6 & 34.6 & 9.7 & 147.4 & 9.7 \\
\hline 1976 & 466.5 & 60.2 & 77.7 & 16.4 & 112.3 & 124.9 & 28.1 & 9.5 & 103.5 & 5.6 \\
\hline 1977 & 471.5 & 66.7 & 57.6 & 14.6 & 100.9 & 156.2 & 19.9 & 8.6 & 110.0 & 9.5 \\
\hline 1978 & 360.4 & 57.9 & 53.9 & 10.1 & 117.0 & 146.2 & 15.7 & 14.8 & 17.3 & 1.0 \\
\hline 1979 & 161.5 & 33.7 & 47.8 & 16.0 & 114.9 & 120.5 & 20.3 & 18.9 & 8.1 & 0.6 \\
\hline 1980 & 133.3 & 35.4 & 30.5 & 23.7 & 83.7 & 115.6 & 14.8 & 18.9 & 12.5 & 0.1 \\
\hline 1981 & 90.9 & 45.1 & 19.0 & 17.9 & 77.4 & 167.9 & 20.9 & 18.7 & 17.2 & 0.5 \\
\hline \(1982^{\text {Fr }}\) & 54.9 & 52.6 & 8.1 & 13.8 & 61.7 & 172.0 & 13.9 & 13.3 & 24.7 & - \\
\hline
\end{tabular}

Table \(2 C O D\) and \(H A D D O C K\) catches (thousand tonnes) and total trawl effort in Norwegian units
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline AREAS & \multicolumn{3}{|c|}{SUB-AREA I} & \multicolumn{3}{|c|}{DIVISION IIa} & DIVISION IIb & Total \\
\hline Year & \[
{ }^{\text {CPVE }} \times 10^{-3}
\] & \[
\begin{aligned}
& \mathrm{ct} \\
& \times 10^{-3}
\end{aligned}
\] & \[
\text { Trawl }_{x 10} \text { effort }
\] & \[
\begin{aligned}
& \mathrm{CPOE}_{-3} \\
& \times 10^{-3}
\end{aligned}
\] & \[
\left\lvert\, \begin{aligned}
& \mathrm{ct} \\
& \mathrm{x} 10^{-3}
\end{aligned}\right.
\] & \[
\begin{aligned}
& \text { Trawl effort } \\
& \times 10^{-3}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ct} \\
& \times 10^{-3}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Trawl } \\
& \text { effort } \\
& \times 10^{-5}
\end{aligned}
\] \\
\hline 1972 & 0.96 & 351.5 & 366.15 & 1.17 & 84.3 & 72.05 & 35.2 & 473.59 \\
\hline 1973 & 1.40 & 700.2 & 500.14 & 1.09 & 53.3 & 48.90 & 101.2 & 622.78 \\
\hline 1974 & 2.02 & 810.1 & 401.04 & 1.70 & 80.9 & 47.59 & 269.8 & 584.48 \\
\hline 1975 & 2.08 & 629.8 & 302.79 & 1.80 & 68.3 & 37.94 & 130.8 & 404.57 \\
\hline 1976 & 1.96 & 544.2 & 277.65 & 1.93 & 140.4 & 72.75 & 109.1 & 406.24 \\
\hline 1977 & 1.65 & 529.1 & 320.67 & 1.30 & 120.8 & 92.92 & 119.5 & 489.64 \\
\hline 1978 & 1.50 & 414.3 & 276.20 & 1.26 & 132.7 & 105.32 & 18.3 & 394.28 \\
\hline 1979 & 1.21 & 209.3 & 172.98 & 1.24 & 135.2 & 109.03 & 8.7 & 289.13 \\
\hline 1980 & 1.92 & 163.8 & 85.31 & 1.49 & 98.5 & 66.11 & 12.6 & 158.69 \\
\hline 1981 & 2.06 & 109.9 & 53.35 & 1.39 & 98.3 & 70.72 & 17.7 & 134.62 \\
\hline 1982 \({ }^{\text {\% }}\) & (2.12) & 63.0 & 29.72 & (1.83) & 75.6 & 41.31 & (24.7) & (83.69) \\
\hline
\end{tabular}
* CPUE figures mainly for the first 3 months of the year

Table 3 COD. Total nominal catch (tonnes) by fishing areas (landings of Norwegian coastal COD not included).
\begin{tabular}{|c|c|c|c|c|}
\hline Year & Sub-area I & Division IIb & Division IIa & Total catch. \\
\hline 1960 & 375327 & 91599 & 155116 & 622042 \\
\hline 1961 & 409694 & 220508 & 153019 & 783221 \\
\hline 1962 & 548621 & 220797 & 139848 & 909266 \\
\hline 1963 & 547469 & 111768 & 117100 & 776337 \\
\hline 1964 & 206883 & 126114 & 104698 & 437695 \\
\hline 1965 & 241489 & 103430 & 100011 & 444930 \\
\hline 1966 & 292253 & 56653 & 134805 & 483711 \\
\hline 1967 & 322798 & 121060 & 128747 & 572605 \\
\hline 1968 & 642452 & 269160 & 162472 & 1074084 \\
\hline 1969 & 679373 & 262254 & 255599 & 1197226 \\
\hline 2970 & 603855 & 85556 & 243835 & 933246 \\
\hline 1971 & 312505 & 56920 & 319623 & 689048 \\
\hline 1972 & 197015 & 32982 & 335257 & 565254 \\
\hline 1973 & 492716 & 88207 & 211762 & 792685 \\
\hline 1974 & 723489 & 254730 & 124214 & 1102433 \\
\hline 1975 & 561701 & 147400 & 120276 & 829377 \\
\hline 1976 & 526685 & 103533 & 237245 & 867463 \\
\hline 1977 & 538231 & 109997 & 257073 & 905301 \\
\hline 1978 & 418265 & 27293 & 263157 & 698715 \\
\hline 1979 & 195166 & 9923 & 235449 & 440538 \\
\hline 1980 & 168671 & 12450 & 199313 & 380434 \\
\hline 1981* & 136350 & 16837 & 245343 & 398530 \\
\hline
\end{tabular}
*) Provisional figures

Expected Catches
\begin{tabular}{|l|l|l|l|l|}
\hline 1982 & 107000 & 25000 & 234000 & 366000 \\
\hline
\end{tabular}

Table 4 CCD. Nominal catch (tonnes, whole weight) by countries (landings of Norwegian coastal cod not included). (Sub-area I and Divisions IIa and IIb combined.)

Data provided by Working Group members.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & \[
\begin{aligned}
& \text { Faroe } \\
& \text { Islands }
\end{aligned}
\] & France & \[
\begin{aligned}
& \text { German } \\
& \text { Dem.Rep. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Germany } \\
& \text { Fed.Rep. }
\end{aligned}
\] & Norway & Poland & \[
\begin{gathered}
\text { United } \\
\text { Kingdom }
\end{gathered}
\] & OSSR & Others & \[
\begin{aligned}
& \text { Totalail } \\
& \text { countripo }
\end{aligned}
\] \\
\hline 1950 & 3305 & 22321 & & 9472 & 231997 & 20 & 141175 & 213400 & 351 & 622042 \\
\hline 1961 & 3934 & 13755 & 3921 & 8129 & 268377 & - & 158113 & 325780 & 1212 & 793221 \\
\hline 1962 & 3109 & 20482 & 1532 & 6503 & 225615 & - & 175020 & 476760 & 245 & 909255 \\
\hline 1963 & - & 18318 & 129 & 4223 & 205056 & 108 & 129779 & 417964 & - & 775577 \\
\hline 1964 & - & 8634 & 297 & 3202 & 149878 & - & 94549 & 180550 & 585 & 437695 \\
\hline 1965 & - & 526 & 91 & 3670 & 197085 & - & 89962 & 152780 & 816 & 444930 \\
\hline 1966 & - & 2967 & 228 & 4284 & 203792 & - & 103012 & 169300 & 121 & 483704 \\
\hline 1967 & - & 664 & 45 & 3632 & 218910 & - & 87008 & 262340 & 6 & 572505 \\
\hline 1968 & - & - & 255 & 1073 & 255611 & - & 140387 & 676758 & - & 107400.4 \\
\hline 1969 & 29374 & - & 5907 & 5343 & 305241 & 7856 & 231066 & 612215 & 133 & 1197225 \\
\hline 1970 & 26265 & 44245 & 12413 & 9451 & 377606 & 5153 & 181481 & 276632 & - & 933245 \\
\hline 1971 & 5877 & 34772 & 4998 & 9726 & 407044 & 1512 & 80102 & 144802 & 215 & 689048 \\
\hline 1972 & 1393 & 8915 & 1300 & 3405 & 394181 & 892 & 58382 & 96653 & 166 & 565287 \\
\hline 1973 & 1916 & 17028 & 4684 & 16751 & 285184 & 843 & 78 808 & 387195 & 276 & 792685 \\
\hline 1974 & 5717 & 46028 & 4860 & 78507 & 287276 & 9898 & 90894 & \(540801^{1)}\) & 38453 & 1102434 \\
\hline 1975 & 11309 & 28734 & 9981 & 30037 & 277099 & 7435 & 101834 & \(343580{ }^{1}\) ) & 19368 & 829377 \\
\hline 1976 & 11511 & 20941 & 8946 & 24369 & 344502 & 6986 & 89061 & \(343057^{1)}\) & 18030 & 857453 \\
\hline 1977 & 9167 & 15414 & 3463 & 12763 & 388982 & 1084 & 86781 & \(369876^{1)}\) & 17771 & 905301 \\
\hline 1978 & 9092 & 9394 & 3029 & 5434 & 363088 & 566 & 35449 & 267 138 \({ }^{1}\) ) & 5525 & 698715 \\
\hline 1979 & 6320 & 3046 & 547 & 2513 & 294821 & 15 & 17991 & 105846 & 9439 & 440538 \\
\hline 1980 & 9981 & 1705 & 233 & 1921 & 232242 & 3 & 10366 & 115194 & 8789 & 360434 \\
\hline 1981 \({ }^{\text {\% }}\) & 12825 & 2600 & 298 & 2227 & 277818 & - & 5262 & 83000 & 14500 & 393530 \\
\hline
\end{tabular}

\footnotetext{
\# Provisional figures
}
1) Murman cod included
- 19 -

Table 5 COD. Catch per unit effort
(tonnes, round fresh)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{Sub-area 1} & \multicolumn{3}{|l|}{Division IIb} & \multicolumn{3}{|l|}{Division IIa} \\
\hline Year & Norway \({ }^{1)}\) & U.K. \({ }^{2}\) & USSR \({ }^{3}\) & Norway \({ }^{1)}\) & U.K. \({ }^{2)}\) & USSR \({ }^{3)}\) & Norway \({ }^{1)}\) & U.K. \({ }^{2)}\) & Norw \(=y^{4)}\) \\
\hline 1960 & & 0.075 & 0.42 & & 0.105 & 0.31 & & 0.067 & 3.5 \\
\hline 2961 & & 0.079 & 0.38 & & 0.129 & 0.44 & & 0.058 & \(3 .-\) \\
\hline 1962 & & 0.092 & 0.59 & & 0.133 & 0.74 & & 0.066 & 4.1 \\
\hline 1963 & & 0.085 & 0.60 & & 0.098 & 0.55 & & 0.066 & \(3 .:\) \\
\hline 1964 & & 0.058 & 0.37 & & 0.092 & 0.39 & & 0.070 & 4.8 \\
\hline 1965 & & 0.066 & 0.39 & & 0.109 & 0.49 & & 0.066 & 2.5 \\
\hline 1966 & & 0.074 & 0.42 & & 0.078 & 0.19 & & 0.067 & 4.: \\
\hline 1967 & & 0.081 & 0.53 & & 0.106 & 0.87 & & 0.052 & 3.5 \\
\hline 1968 & & 0.110 & 1.09 & & 0.173 & 1.21 & & 0.056 & 5.: \\
\hline 1969 & & 0.113 & 1.00 & & 0.135 & 1.17 & & 0.094 & 5. 5 \\
\hline 1970 & & 0.100 & 0.80 & & 0.100 & 0.80 & & 0.066 & 6.4 \\
\hline 1971 & & 0.056 & 0.43 & & 0.071 & 0.16 & & 0.062 & 10.6 \\
\hline 1972 & 0.90 & 0.047 & 0.34 & 0.59 & 0.051 & 0.18 & 2.08 & 0.055 & 11.5 \\
\hline 1973 & 1.05 & 0.057 & 0.56 & 0.43 & 0.054 & 0.57 & 0.71 & 0.043 & \(6 . \varepsilon\) \\
\hline 1974 & 1.75 & 0.079 & 0.90 & 1.94 & 0.106 & 0.77 & 1.19 & 0.028 & 3.4 \\
\hline 1975 & 1.82 & 0.077 & 0.85 & 1.67 & 0.100 & 0.43 & 1.36 & 0.033 & 3.4 \\
\hline 1976 & 1.69 & 0.060 & 0.66 & 1.20 & 0.081 & 0.30 & 1.69 & 0.035 & \(3 . \varepsilon\) \\
\hline 1977 & 1.54 & 0.052 & 0.50 & 0.91 & 0.056 & 0.25 & 1.16 & 0.044 & 5.C \\
\hline 1978 & 1.37 & 0.062 & 0.37 & 0.56 & 0.044 & 0.08 & 1.12 & 0.037 & 7.2 \\
\hline 1979 & 0.85 & 0.046 & 0.36 & 0.62 & - & 0.06 & 1.06 & 0.042 & 6.4 \\
\hline 1980 & 1.47 & - & 0.36 & 0.41 & - & \(0.16{ }^{5)}\) & 1.27 & - & 5.6 \\
\hline 1981 & 1.42 & - & 0.41 & (0.96) & - & 0.07 & 1.02 & - & 6.2 \\
\hline 1982 \({ }^{\text {Fi) }}\) & 1.68 & - & \(0.25{ }^{6}\) & & & & 1.30 & & 6.4 \\
\hline
\end{tabular}
*) Projected figures
1) Norwegian data - tonnes per 1000 tonne-hours fishing
2) United Kingdom data - tonnes per 100 tonne-hours fishing
3) USSR data - tonnes per hour fishing
4) Norwegian data - tonnes per gill-net boat week in Lofoten
5) Data from redfish fishery in Division IIb, cod is by-catch
6) Cod and haddock combined for Jan.-June (Proportion of haddock is about 10\%)

Table
COL.
Catch per unit effort. Data from the Lofoten fishery are given in gutted weight with head off.
\begin{tabular}{|c|c|c|c|}
\hline \multirow{3}{*}{Year} & \multicolumn{3}{|c|}{Norwegian vessels} \\
\hline & \multicolumn{3}{|l|}{Catch (kg per man per day worked in the Lofoten fishery (Division IIa))} \\
\hline & Gill-net & Long-line & Hand-line \\
\hline 1960 & 77.8 & 148.3 & 56.7 \\
\hline 1961 & 101.5 & 141.1 & 75.5 \\
\hline 2962 & 94.9 & 234.4 & 57.8 \\
\hline 1963 & 80.8 & 116.3 & 56.2 \\
\hline 1964 & 104.5 & 62.1 & 51.5 \\
\hline 1965 & 81.8 & 78.3 & 68.4 \\
\hline 1966 & 121.8 & 131.9 & 72.6 \\
\hline 1967 & 107.9 & 245.4 & 120.7 \\
\hline 1968 & 158.0 & 184.6 & 61.5 \\
\hline 1969 & 170.6 & 200.4 & 142.8 \\
\hline 1970 & 180.3 & 304.3 & 127.6 \\
\hline 1971 & 334.3 & 510.7 & 192.7 \\
\hline 1972 & 318.7 & 400.1 & 110.2 \\
\hline 1973 & 189.7 & 366.5 & 112.1 \\
\hline 1974 & 96.3 & 146.4 & 63.9 \\
\hline 1975 & 122.0 & 188.3 & 96.1 \\
\hline 1976 & 131.4 & 258.4 & 134.8 \\
\hline 1977 & 173.2 & 279.6 & 143.5 \\
\hline 1978 & 237.6 & 381.7 & 134.6 \\
\hline 1979 & 201.3 & 306.0 & 125.1 \\
\hline 1980 & 169.9 & 207.8 & 100.9 \\
\hline 1981 & 217.0 & 327.9 & 109.6 \\
\hline 1982 & 199.1 & 753.4 & 252.0 \\
\hline
\end{tabular}

Table 7. North-East Arctic COD. Published maturity ogives
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline SOURCE: & 1 & 2 & 3 & 4 & 5 & 3 & 6 & 6 & 5 & 7 \\
\hline PERIOD: & 1942-52 & 1958-66 & 1966-78 & 1965-69 & 1975-76 & 1977-78 & 1977-80 & 1978-9 & 1980-81 & 1982 \\
\hline Age & \multicolumn{10}{|c|}{Percentage mature} \\
\hline 3 & & & & & & & & & & \\
\hline 4 & & & 1 & & & & 1 & 1 & & 5 \\
\hline 5 & & & 2 & & 1 & 1 & 1 & 1 & 2 & 10 \\
\hline 6 & & & 5 & & 5 & 3 & 4 & 6 & 6 & 34 \\
\hline 7 & 3 & 7 & 13 & 7 & 11 & 12 & 13 & 19 & 17 & 65 \\
\hline 8 & 10 & 26 & 31 & 20 & 21 & 32 & 38 & 36 & 36 & 82 \\
\hline 9 & 24 & 42 & 57 & 42 & 42 & 56 & 62 & 70 & 61 & 92 \\
\hline 10 & 42 & 55 & 74 & 63 & 80 & 69 & 67 & 75 & 79 & 100 \\
\hline 11 & 61 & 68 & 85 & 84 & 90 & 81 & 71 & 81 & 90 & 200 \\
\hline 12 & 79 & 79 & 85 & 98 & 92 & 82 & 80 & 82 & 92 & 100 \\
\hline 13 & 92 & 87 & 91 & 100 & 98 & 86 & 60 & 86 & 98 & 100 \\
\hline 14 & 99 & 92 & 100 & 100 & 96 & 100 & & 100 & 96 & 100 \\
\hline 15+ & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline
\end{tabular}

Source of data:

\footnotetext{
1) Rollefsen 1954
2) Ponomarenko 1968
P) Ponomarenko 1980
4) Hylen and Dragesund 1973
}
5) Ponomarenko 1982
6) Ponomarenko 1981
7) Hylen and Nakken 1982

Table 8 North-East Arctic COD. Maturity ogives used in the assessment.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline PERIOD & 1946-52 & 1953-58 & 1959-66 & 1967-69 & 1970-76 & 1977-80 & 1981 & 1982 & 1983 \\
\hline Age & \multicolumn{9}{|c|}{Percentage mature} \\
\hline 3 & & & & & & & & & \\
\hline 4 & & & & & & 1 & 2 & & 2 \\
\hline 5 & & & & & & 1 & 5 & 6 & 5 \\
\hline 6 & & & & & 2 & 4 & 15 & 20 & 15 \\
\hline 7 & 3 & 5 & 7 & 7 & 9 & 13 & 33 & 41 & 33 \\
\hline 8 & 10 & 18 & 26 & 20 & 21 & 35 & 51 & 59 & 51 \\
\hline 9 & 24 & 33 & 42 & 42 & 42 & 62 & 71 & 77 & 71 \\
\hline 10 & 42 & 48 & 55 & 68 & 72 & 80 & 86 & 90 & 86 \\
\hline 11 & 61 & 65 & 68 & 84 & 87 & 90 & 93 & 95 & 93 \\
\hline 12 & 79 & 79 & 79 & 98 & 95 & 95 & 94 & 96 & 94 \\
\hline 13 & 92 & 90 & 87 & 100 & 99 & 99 & 99 & 99 & 99 \\
\hline 14 & 99 & 96 & 92 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline 15+ & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline
\end{tabular}

Table 9. COD. Results from the Norwegian groundfish survey in the Barents Sea. Stratified mean catch in number caught per hour of trawling.
\begin{tabular}{|l|r|r|r|r|r|r|r|r|r|r|r|r|}
\hline & \multicolumn{9}{|c|}{ YEA R C LA S S } \\
Year & 1981 & 1980 & 1979 & 1978 & 1977 & 1976 & 1975 & 1974 & 1973 & 1972 & 1971 & TOTAL \\
\hline 1981 & & 0.8 & 13.9 & 10.8 & 21.4 & 43.1 & 48.1 & 6.1 & 1.4 & 0.3 & 0.6 & 143.1 \\
1982 & 0.2 & 0.9 & 15.9 & 20.2 & 21.1 & 15.9 & 15.6 & 1.3 & 0.2 & 0.0 & & 91.1 \\
\hline
\end{tabular}

Table 10. COD. Results from the Norwegian groundfish survey in the Svalbard area 1981. Stratified mean catch in number caught per hour of trawling.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{11}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & & & & \\
\hline 1981 & 0.1 & 8.0 & 12.8 & 4.4 & 1.2 & 3.7 & 4.1 & 0.4 & 0.2 & 1.2 & 36.6 \\
\hline
\end{tabular}

Table 11. COD. Results from the USSR groundfish surveys in the Barents Sea and the Norwegian Sea. Mean catch in numbers caught per hour of trawling.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multicolumn{6}{|l|}{AGE} & \multirow[b]{2}{*}{TOTAL} \\
\hline & 3 & 4 & 5 & 6 & 7 & 8 & \\
\hline 1979 & 5.9 & 33.8 & 9.8 & 4.3 & 2.9 & 2.1 & 59 \\
\hline 1980 & 5.0 & 3.8 & 10.6 & 2.9 & 1.0 & 1.2 & 25 \\
\hline 1981 & 5.3 & 3.9 & 2.2 & 4.8 & 0.8 & 0.5 & 17 \\
\hline 1982 & 3.1 & 2.9 & 1.7 & 0.4 & 1.1 & 0.5 & 10 \\
\hline
\end{tabular}

Data provided by Working Group members

Table 12. COD. Stock numbers in millions at 1 January 1982 from ICES C.M.1982/G:61 (Eylen and Nakken)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
\hline 1 & 4 & 81 & 105 & 103 & 95 & 154 & 23 & 12 & 6 & 3 & 2 & 1 \\
\hline
\end{tabular}

Table 13 COD Year class strength. Number per hour trawling
for USSR Young Fish Surveys is for 3 year old fish
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year Class} & \multicolumn{3}{|l|}{USSR Survey No. per hour trawling} & \multirow[t]{2}{*}{\begin{tabular}{l}
USSR \\
assessment
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
O-group survey index \\
(Logarithmic) \\
All areas Division IIb
\end{tabular}}} & Virtual Population No. of 3 year olds \(\times 10^{-6}\) F \\
\hline & Sub-area I & Division IIb & Mean & & & & \(\mathrm{M}=0.2\) \\
\hline 1957 & 12 & - 16 & 13 & - Average & & & 791 \\
\hline 1958 & 16 & 24 & 19 & + Average & & & 919 \\
\hline 1959 & 18 & 14 & 16 & + Average & & & 730 \\
\hline 1960 & 9 & 19 & 13 & Poor & & & 473 \\
\hline 1961 & 2 & 2 & 2 & Poor & & & 340 \\
\hline 1962 & 7 & 4 & 6 & Poor & & & 779 \\
\hline 1963 & 21 & 120 & 76 & Rich & & & 1582 \\
\hline 1964 & 49 & 45 & 46 & Rich & & & 1294 \\
\hline 1965 & \(<1\) & <1 & <1 & Very poor & 0.01 & 0.00 & 177 \\
\hline 1966 & 2 & <1 & 1 & Very Poor & 0.03 & 0.01 & 115 \\
\hline 1967 & 1 & \(<1\) & 1 & Very Poor & 0.06 & 0.00 & 197 \\
\hline 1968 & 7 & 1 & 5 & Poor & 0.02 & 0.01 & 405 \\
\hline 1969 & 11 & 6 & 9 & Poor & 0.31 & 0.21 & 1016 \\
\hline 1970 & 74 & 86 & 76 & Rich & 2.54 & 2.10 & 1818 \\
\hline 1971 & 37 & 24 & 32 & Average & 0.38 & 0.42 & 524 \\
\hline 1972 & 53 & 17 & 40 & Average & 0.62 & 0.14 & 620 \\
\hline 1973 & 74 & 5 & 46 & Rich & 1.33 & 0.10 & 616 \\
\hline 1974 & 6 & 1 & 4 & Poor & 0.35 & 0.01 & 372 \\
\hline 1975 & 93 & 4 & 62 & Rich & 0.97 & 0.08 & 794 \\
\hline 1976 & 4 & \(<1\) & 3 & Poor & 0.15 & 0.00 & 241 \\
\hline 1977 & 2 & 1 & 1 & Poor & 0.51 & 0.24 & (175) \\
\hline 1978 & <1 & 3 & 2. & Poor & 0.28 & 0.36 : & (257) \\
\hline 1979 & <1 & 8 & -3 & Poor & 0.44 & \(0.68{ }^{\circ}\) & (190) \\
\hline 1980 & (<1) & (<1) & (<1) & Poor & 0.17 & 0.23. & \\
\hline 1981
1982. & (<1) & ( 1 ) & (<1) & Poor & 0.17
0.73 & 0.14
0.37 & \\
\hline
\end{tabular}
() = estimated
*) USSR Murman cod included for 1974-1978

Table 14. North-East Arctic COD.
Catch in numbers ( 1000 ) from VPA.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1966 & 1967 & 1968 & 1964 & 1970 & 1971 & 1972 & 1973 & \multicolumn{2}{|l|}{1974} \\
\hline 3 & 55937 & 34467 & 3709 & 2317 & 7164 & 7754 & 35336 & 294262 & 91855 & \\
\hline 4 & 55044 & 160U48 & 174535 & 2454 ) & 10792 & 13739 & 45431 & 131493 & 437377 & \\
\hline 5 & 34676 & 69235 & 267967 & 238511 & 25813 & 11831 & 26832 & 61001 & 21.3772 & \\
\hline 6 & 42539 & 22461 & 107451 & 181239 & 137829 & 9527 & 12 U89 & 20569 & 47006 & \\
\hline 7 & 37169 & 2.6295 & 26707 & 79363 & 9042 l & 59291 & 7418 & - 7248 & 12050 & \\
\hline 8 & 18500 & 25139 & 10399 & 26989 & 31920 & 52003 & 34005 & \$328 & 4370 & \\
\hline 9 & 5477 & 11323 & 1129\% & 13463 & 8933 & 12193 & 22315 & 19131 & 2523 & \\
\hline 10 & 1495 & 2324 & 3057 & 5092 & 3244 & 2434 & 4572 & 4494 & 2607 & \\
\hline 11 & 380 & 637 & 657 & 1913 & 1232 & 762 & 1215 & 677 & 2127 & \\
\hline \(1 ?\) & 403 & 316 & 122 & 414 & 260 & 415 & 33 & 195 & 322 & \\
\hline 13 & 77 & 225 & 124 & 171 & 116 & 144 & 315 & 81 & 151 & \\
\hline 14 & 9 & 40 & 70 & 23 & 34 & 42 & 121 & 59 & 83 & \\
\hline \(15+\) & 10 & 14 & 40 & 40 & 35 & 25 & 4 C & 55 & 62 & 1 \\
\hline tural & 251976 & 352174 & 012679 & 574026 & 323102 & 170067 & 191622 & 347596 & 867805 & N \\
\hline & 1975 & 1470 & 1977 & 1976 & 1979 & 7900 & 1481 & 14ヶ2 & & \\
\hline 3 & 452 sl & 85337 & 59594 & 78922 & 86 LC & 3911 & 3460 & 3461 & & \\
\hline 4 & 59748 & 114341 & 100604 & 454 iv & 77484 & 170150 & 94,56 & 21267 & & \\
\hline 5 & 226646 & 7499 \% & 130335 & 8.3495 & 43677 & 81986 & \(2 \cos 8\) & 21329 & & \\
\hline 6 & 118507 & 118230 & 52925 & 30823 & 31943 & 415461 & 03549 & 33282 & & \\
\hline 7 & 29522 & 47872 & 61821 & 25417 & 10815 & 17664 & 21886 & 45311 & & \\
\hline 8 & 9353 & 13902 & 23330 & 31821 & 6274 & 7442 & 9940 & 7274 & & \\
\hline 9 & 2617 & 4151 & 5654 & 940 & 16974 & 3518 & 4269 & 2541 & & \\
\hline 10 & 1535 & 436 & 152.1 & 1227 & 1785 & 3190 & 1311 & 532 & & \\
\hline 11 & 1428 & 553 & 612 & 913 & 427 & 678 & 382 & 223 & & \\
\hline 12 & 575 & 442 & 271 & 446 & 103 & 79 & 109 & 151 & & \\
\hline 13 & 231 & 139 & 122 & 748 & 59 & 24 & 37 & 46 & & \\
\hline 14 & 15 & 20 & 92 & 46 & 33 & 20 & 3 & 1 & & \\
\hline 15+ & 57 & 53 & 54 & 51 & 45 & 8 & 1 & 5 & & \\
\hline total & 496126 & 46>940 & 490951 & 339604 & 20023.4 & 175669 & 135227 & 14:4411 & & \\
\hline
\end{tabular}

\section*{Table 15．North－Fest Arctic COD．}

Fishing mortalities from VPA（ \(M=0.2\) ）．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & 1400 & 1967 & 1400 & 1409 & 1470 & \(1 \times 71\) & リゾ & 1475 & 1974 & \\
\hline & 2 & L．W4） & L．LSt & L． 12.4 & 1． 123 & 1． 141 & 13.121 & 1．109 & \(1.1 \% 0\) & t． 214 & \\
\hline & 4 & U．144 & 0.152 & U．ど10 & U． 221 & U．14？ & U．i．13 & U．107 & 0.149 & 0.440 & \\
\hline & 5 & 1.21 ？ & L． \(1 \times 1\) & C． 4 ijs & 1．481 & L．S＊ & i． 2 ？is & 1．dys： & 1.253 & 6.537 & \\
\hline & 6 & U． 519 & 1． 2 ¢9？ & U．408 & u．bsi & U．5\％1 & 0.730 & U．Sok & －．39？ & U． 347 & \\
\hline & 7 & 6.405 & 1.428 & 1.46 & L．\(\because 6 \%\) & L． 614 & \(4.51 \%\) & 1．514 & （．41） & L． 445 & \\
\hline & 0 & 0.306 & U．000 & U．S？L & U．971 & 6.831 & 1．323 & U． 007 & 4.636 & L． 423 & \\
\hline & 8 & （．68） & C． x 5 & 1.104 & 1.132 & c．95y & － 1.932 & 1.117 & 1．6．11 & L． 4 48 & \\
\hline & 111 & 0.704 & U． 7 ．\({ }^{0}\) & u．ips & U．944 & 11.970 & 0.771 & 1．cis？ & －．173 & U．957 & \\
\hline & 11 & 0．460 & 1．36\％ & 1.535 & 1．12． & L． 036 & c．niy & 1.210 & 1.576 & C． 413 & \\
\hline & 12 & 0.010 & \％．Sxy & U．332 & －．762 & U．43？ & U．401 & U．104 & 4.635 & U．041 & \\
\hline & 12 & 1.616 & L． 804 & 1.151 & 1.77 .1 & 4.460 & C． 474 & 1．10： & 1.341 & 1.739 & 1 \\
\hline & 14 & U．370 & 13.750 & U． 740 & u．ntio & C． 540 & 0.340 & H．Y＇u & U．31u & U． 7 lu & 0 \\
\hline & \(15+\) & ［．37］ & c．154 & 1.74 L & l．ost & C． 240 & U． 345 & 6．816 & 1.314 & 4.70 L & a \\
\hline \(F 1\) & s－í），（！ & 0． 20 ？ & 1.217 & U．340 & u．79\％ & L．72．3 & U．） 30 & U． 207 & 4．306 & U． 555 & \\
\hline & & \(1 \times 75\) & 1970 & 1477 & 1975 & 1979 & 1980 & \(1>01\) & 140 ？ & & \\
\hline & 3 & \[
\begin{aligned}
& \text { L. } 4.34 \\
& 0.211
\end{aligned}
\] & 1.105
0.313 & 1.125
4.904 & L． 110 & C． 64. & 0． 025 & 1． 4.15 & 1.151 & & \\
\hline & 5 & 1.522 & 0．313 & 1.304
1.354 & U．20\％ & 4.154 & 4.143 & 4.477 & U．12 & & \\
\hline & 6 & U．711 & 0.373 & U．000 & －．x6u & U．330 & 0.352 & 1.178
4.315 & 1.251 & & \\
\hline & 7 & 1.714 & c． 695 & 1．0\％ & L． 854 & \(0.0 \times 2\) & L． 651 & L．018 & 1.391 & & \\
\hline & 8 & 1.703 & 13． 38.5 & 0.940 & U． 941 & U．781 & U．750 & U．Yi） 7 & 0.4311 & & \\
\hline & 9 & 1.614 & L． 774 & 1.214 & 1．278 & 1． 664 & L． 946 & \(1.4 \times 3\) & 1.751 & & \\
\hline & 10 & 0.406 & 0.451 & U．7nc & 1.1014 & 0.424 & 1.134 & 1.258 & 4.750 & & \\
\hline & 11 & 1.115 & l． 513 & 1.00 & 1.742 & 1.316 & 1.214 & 1.292 & 1.756 & & \\
\hline & 12 & 0.081 & U． 654 & U． 236 & 1.312 & 1.184 & 0.907 & 6．029 & U．750 & & \\
\hline & 13 & 1.255 & C． 34 ？ & L． 61 ： & 2.144 & － 6.586 & 1． 53 & 2.440 & 1.60 l & & \\
\hline & 14 & 0.500 & 1］．430 & 0.4 Cou & U．530 & 11.564 & 0.560 & U． 540 & 4.446 & & \\
\hline & \(15+\) & （：867 & 1.43 L & L．4．4） & L．5．l & 0.56 u & ． 0.56 L & 1.340 & 1.441 & & \\
\hline F \({ }^{\text {c }}\) & s－1u），（s & 0.017 & 0.044 & 4.830 & 0.934 & 4.718 & 0.711 & U．su7 & U． 56 & & \\
\hline
\end{tabular}

Table 16．North－East Arctic COD．
Stock size in numbers（＇000）from VPA at 1 Jamary． Biomass unit：tonnes．
（The biomass estimates are not corrected for SOP discrepancies．）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & 1900 & 1 yol & \(1 \% 60\) & 1403 & 147u & 1971 & 1417 & 1973 & 1974 \\
\hline 2 & 1）83ッ41 & 1295s54 & 17114 & 11221\％ & 14\％？ & 464917 & 1115353 & 1317734 & 523818 \\
\hline 4 & 623016 & 1245190.5 & 1 L2．772 & \(155 y 2 u\) & とソ793 & 1s497． & 324303 & 74＊630 & 1223285 \\
\hline 5 & 199356 & \(45 y y 14\) & 353470 & 6，342．77 & ¢4191 & 63796 & 114450 & 224．350 & 530293 \\
\hline \(t\) & 147005 & 132414 & 314185 & 40\％33 & 340502 & 49：33 & 41360 & 093．3 & 129235 \\
\hline 7 & 114446 & 42：20． & 3.355 & 161275 &  & 101731 & 32244 & 23142 & 38511 \\
\hline 0 & 46046 & 30S？ 5 & 44221 & \(4 \times 554\) & 01245 & 1614\％ & すold？ & 19283 & 12486 \\
\hline 9 & 11224 & 21705 & ？ \(205 \%\) & 215？ & 13726 & 2174 & 3 3ッら3 & 22441 & 83.44 \\
\hline 16 & 3211 & 4034 & 9730 & yeza & 2001 & 4933 & 7 l & 962.4 & y 886 \\
\hline 11 & 1129 & 1294 & 1734 & 3 cos & 2354 & 1762 & 18 si & 1691 & \(\leq 863\) \\
\hline 12. & \(4>7\) & 235 & \(44 \%\) & 6.31 & 012 & 1234 & 162 & 453 & 778 \\
\hline 13 & 1.15 & 42： & 190 & 237 & 311 & 432 & 046 & 319 & 197 \\
\hline 14 & S2 & 85 & 140 & 51 & 102 & 16 L & 220 & 243 & 180 \\
\hline \(15+\) & 248 & 29 & 90 & 12 ？ & 92 & 45 & 72 & 22.6 & 134 \\
\hline tutal & 2127506 & 329\％031 & 2334760 & 1053322． & 16374．74 & 402633 & 1653517 & 2494567 & 2401000 \\
\hline SFAWN．ST． & 29276 & 31336 & \(3218 \%\) & 545 \({ }^{\text {c }}\) & 54773 & 52592 & 43306 & 34927 & 23904 \\
\hline Total Biom． & 3028463 & 3856483 & 3980021 & 3419435 & 2427779 & 1870350 & 2051996 & 2971617 & 3069018 \\
\hline SSB & \[
147768
\] & 175059 & 185914 & 222216 & 257826 & 270861 & 256070 & 196833 & 152846 \\
\hline & 1475 & 1976 & 1477 & 19\％\％ & 1974 & 1936 & 1401 & \(19: 2\) & 1983 \\
\hline 3 & 02u045 & 610413 & s\％usiu & 744744 & 24ubi4 & 175607 & 256048 & \multicolumn{2}{|l|}{14123U＊＊＊＊＊＊＊＊＊＊} \\
\hline 4 & 340178 & 45680 & 42．1799 & 267941 & 574210 & 1 ¢ F 194 & 139502 & 207691 & 140930 \\
\hline 5 & －19003 & 22.4590 & 274432 & 149351 & 178346 & 41447 & \(1594 \times 1\) & 115947 & 151379 \\
\hline 0 & 250032 & 2.76193 & 110292 & 1u11su & 64142 & 1 1 ¢893 & 237549 & ， 3584 & 07555 \\
\hline 7 & 6374 & 142335 & 136714 & 47941 & 31715 & 41284 & 51642 & 13．373 & 48414 \\
\hline 8 & 20204 & 23194 & 4238\％ & 20\％u2 & 10021 & 13367 & 172 LC & 22.41 & 85240 \\
\hline 9 & 636 & 3196 & 8084 & 1467 & 1311\％ & 6224 & \(5 * 42\) & 5246 & 12143 \\
\hline 16 & 4507 & 2．3．s & 3095 & 2.142 & 3210 & 51192 & 1 yc & 1499 & 2029 \\
\hline 11 & 316 & 2346 & 1472 & 1175 & 63 L & 1145 & 1うら5 & 46， 1 & 425 \\
\hline 12 & 1270 & 854 & 1414 & 654 & 106 & 150 & 255 & 312 & 178 \\
\hline 13 & 349 & 520 & 28\％ & 918 & 143 & 4 L & 43 & 111 & 121 \\
\hline 14 & 28 & 31 & 340 & 128 & 97 & óo & 11 & 3 & 50 \\
\hline \(15+\) & 70 & 166 & 186 & 136 & 115 & 2 C & 4 & 15 & 1 C \\
\hline rotal． & 1432143 & 17540112 & 1309122 & 1492543 & 1130634 & Y43844 & 371731 & 783633 & \\
\hline SPAW：H．ST． & 254 LU & 7.9796 & 56985 & blus & 36465 & 34423 ， & 81647 & 147863 & \\
\hline Total Biom． & 2734444 & － 2513463 & 2164050 & 1913362 & 1565160 & 1482778 & 1454414 & 1418003 & \\
\hline ．－．SSB & 137308 & 146226 & 246604 & 237233 & 163688 & 130768 & 258316 & 376993 & \\
\hline
\end{tabular}

Teble 17. North-East Arctic COD.
Input data for catch predictions.

LIST OF INPUT VARIABLES BY AGE GKOUP:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline AGE & STOCK SI2E & F-PATTERN & M & Maturity OGIVE & WEIGHT IN THE CATCH & WEIGHT IN THE STOCK \\
\hline 3 & 100000.00 & 0.1300 & 0.200 & 0.0000 & 0.6500 & 0.6500 \\
\hline 4 & 148930.00 & 0.2700 & 0.200 & 0.0200 & 1.0000 & 1.0000 \\
\hline 5 & 150379.00 & 0.4700 & 0.200 & 0.0500 & 1.5500 & 1.5500 \\
\hline 6 & . 67555.00 & . 0.7100 & 0.20 .0 & 0.1500 & 2.3500 & 2.3500 \\
\hline 7 & 48414.00 & 0.9300 & 0.200 & 0.3300 & 3.4500 & 3.4500 \\
\hline 8 & 85240.00 & 1.1700 & 0.200 & 0.5100 & 4.7000 & 4.7000 \\
\hline 9 & 12143.00 & 1.3400 & 0.200 & 0.7100 & 6.1700 & 6.1700 \\
\hline 10 & 2029.00 & 1.4000 & 0.200 & 0.8600 & 7.7000 & 7.7000 \\
\hline 11 & 425.00 & 1.3700 & 0.200 & 0.9300 & 9.2500 & . 9.2500 \\
\hline 12 & 178.00 & 1.2400 & 0.200 & 0.9400 & 10.8500 & 10.8500 \\
\hline 13 & 121.00 & 1.0700 & 0.200 & 0.9900 & 12.5000 & 12.5000 \\
\hline 14 & 50.00 & 0.8800 & 0.200 & 1.0000 & 13.9000 & 13.9000 \\
\hline \(15+\) & 10.00 & 0.8800 & 0.200 & 1.0000 & 15.0000 & 15.0000 \\
\hline
\end{tabular}

Table 18 COD biomass (8+). Spawning stock biomass from maturity ogives and recruitment at age 3, originating from the spawning stock for 1946 tol976 (79).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(x 10^{3} t\) & \(\times 10^{3} \mathrm{t}\) & \(\mathrm{x} 10^{3} \mathrm{nos}\). & & \(\times 10^{3} \mathrm{t}\) & \(\times 10^{3} t\) & \(\times 10^{3} \mathrm{nos}\). \\
\hline Year & B (8+) & Sp. Stock & Recruitment & Year & B (8+) & Sp. Stock & Recruitment \\
\hline 1946 & 4094 & 1244 & 468 & 1965 & 214 & 97 & 170 \\
\hline 1947 & 3383 & 1073 & 710 & 1966 & 341 & 139 & 112 \\
\hline 1948 & 2351 & 843 & 1090 & 1967 & 460 & 154 & 197 \\
\hline 1949 & 1773 & 621 & 1192 & 1968 & 440 & 178 & 405 \\
\hline 1950 & 1611 & 549 & 1593 & 1969 & 473 & 194 & 1016 \\
\hline 1951 & 1479 & 463 & 644 & 1970 & 471 & 251 & 1821 \\
\hline 1952 & 1195 & 327 & 273 & 1971 & 683 & 303 & 528 \\
\hline 1953 & 920 & 322 & 440 & 1972 & 68 & 276 & 633 \\
\hline 1954 & 842 & 293 & 805 & 1973 & 399 & 225 & 640 \\
\hline 1955 & 887 & 307 & 497 & 1974 & 238 & 157 & 369 \\
\hline 1956 & 1010 & 312 & 685 & 1975 & 218 & 123 & 794 \\
\hline 1957 & 942 & 289 & 791 & 1976 & 233 & 150 & 243 \\
\hline 1958 & 1028 & 307 & 919 & 1977 & 313 & 246 & (165) \\
\hline 1959 & 870 & 346 & 731 & 1978 & 407 & 238 & (117) \\
\hline 1960 & 613 & 295 & 474 & 1979 & 240 & 176 & (89) \\
\hline 1961 & 523 & 258 & 339 & 1980 & 199 & 127 & \\
\hline 1962 & 477 & 204 & 778 & 1981 & 226 & 285 & \\
\hline 1963 & 379 & 142 & 1584 & 1982 & 233 & 391 & \\
\hline 1964 & 243 & 98 & 1293 & & & & \\
\hline
\end{tabular}

Table 19 EADDOCK. Total nominal catch (tonnes) by fishing areas. (Data provided by Working Group members)
\begin{tabular}{|c|c|c|c|c|}
\hline Year & Sub-area I & Diviaion IIb & Division Ila & Total \\
\hline 1960 & 125675 & 1854 & 27925 & 155454 \\
\hline 1961 & 165165 & 2427 & 25642 & 193234 \\
\hline 1962 & 160972 & 1727 & 25189 & 187 Eミ9 \\
\hline 1963 & 124774 & 939 & 21031 & 146714 \\
\hline 1964 & 79056 & 1109 & 18735 & 98900 \\
\hline 1965 & 98505 & 939 & 18640 & \(1180: 9\) \\
\hline 1966 & 124115 & 1614 & 34892 & 160621 \\
\hline 1967 & 108066 & 440 & 27980 & 1364 É5 \\
\hline 1968 & 140970 & 725 & 40031 & 181726 \\
\hline 1969 & 88960 & 1341 & 40208 & 130509 \\
\hline 1970 & 59493 & 497 & 26611 & 86601 \\
\hline 1971 & 56300 & 435 & 21567 & \(783 \mathrm{C2}\) \\
\hline 1972 & 221183 & 2155 & 41979 & 265317 \\
\hline 1973 & 283728 & 12989 & 23348 & 320065 \\
\hline 1974 & 159037 & 15068 & 47033 & 221139 \\
\hline 1975 & 121686 & 9726 & 44330 & 175742 \\
\hline 1976 & 94064 & 5649 & 37566 & 137279 \\
\hline 1977 & 72159 & 9547 & 28452 & 110158 \\
\hline 1978 & 63965 & 979 & 30478 & 95422 \\
\hline 1979 & 63841 & 615 & 39167 & \(1036 \pm 3\) \\
\hline 1980 & 54205 & 68 & 33616 & 87889 \\
\hline 1981* & 36851 & 455 & 39531 & 76837 \\
\hline
\end{tabular}
*Provisional figures
Expected catches
\begin{tabular}{|c|c|c|c|c|}
\hline 1982 & 22000 & - & 27000 & 49000 \\
\hline
\end{tabular}

Table 20 HADDOCK, Mominal catch (tonnes) by countries.
(Sub-area I and Divisions IIa and IIb cembined)
(Data provided by Working Group members)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & \begin{tabular}{l}
Faroe \\
Islande
\end{tabular} & France & \[
\begin{gathered}
\text { German } \\
\text { Dem.Rep. }
\end{gathered}
\] & Germany Fed.Rep. & Norway & Poland & O.K. & USSR & Others & Total \\
\hline 1950 & 172 & - & - & 5597 & 47263 & - & 45459 & 57025 & & \\
\hline 1951 & 295 & 220 & - & 6304 & 60852 & & 39650 & 85345 & 125 & 155651 \\
\hline 1952 & 83 & 409 & - & 2895 & 54567 & & 37485 & 85345 & 558 & 193234 \\
\hline 1963 & 17 & 363 & - & 2554 & 59955 & - & 19809 & 63526 & & 187438 \\
\hline 1964 & - & 209 & - & 1482 & 38695 & & & 52 & & 146224 \\
\hline 1965 & - & 225 & - & 1568 & 60447 & & 14653 & 43870 & 250 & 99158 \\
\hline 1966 & - & 1072 & 11 & 2098 & 60447 & - & 14345 & 41750 & 242 & 118578 \\
\hline 1967 & - & 1208 & 3 & 1705 & 82090 & - & 27723 & 48710 & 74 & 161778 \\
\hline 1968 & - & - & - & 1867 & 51954 & - & 24158 & 57346 & 23 & 136397 \\
\hline 1969 & 2 & - & 309 & 1490 & 64076 & - & 40129 & 75654 & - & 101726 \\
\hline 1970 & 541 & - & -656 & & 67549 & - & 37234 & 24211 & 25 & 130820 \\
\hline 1971 & 日1 & - & 16 & & 36716 & - & 20423 & 26802 & - & 87257 \\
\hline 1972 & & & & 896 & 45715 & 43 & 16375 & 15778 & 3 & 78905 \\
\hline 1972 & 137 & - & 829 & 1433 & 46700 & 1433 & 17166 & 196224 & 2231 & 266153 \\
\hline 1973 & 1212 & 3214 & 22 & 9534 & 86767 & 434 & 32408 & 186534 & 2501 & 322626 \\
\hline 1974 & 925 & 3601 & 454 & 23409 & 66164 & 3045 & 37663 & \(78548^{1)}\) & 7348 & 221157 \\
\hline 1975 & 299 & 5191 & 437 & 15930 & 55966 & 1080 & 28677 & \(65015^{1)}\) & 3163 & 175758 \\
\hline 1976 & 537 & 4459 & 348 & 16660 & 49492 & 986 & 16940 & \(42485{ }^{1)}\) & 5358 & 137265 \\
\hline 1977 & 213 & 1510 & 144 & 4798 & 40118 & - & 10778 & ( \(52210^{1)}\) & 287 & 110158 \\
\hline 1978 & 466 & 1411 & 369 & 1521 & 39955 & 1 & 5766 & 45 895 \({ }^{1)}\) & 38 & 95422 \\
\hline 1979 & 343 & 1198 & 10 & 1948 & 66849 & 2 & 6454 & 26365 & 454 & 103623 \\
\hline \({ }_{1980}{ }_{\text {198 }}{ }^{\text {² }}\) & 497
381 & 226 & 15 & 1365 & 61886 & - & 2948 & 20706 & 246 & 87889 \\
\hline 1981 & 381 & 100 & 22 & 2396 & 58856 & - & 1682 & 13400 & - & 76837 \\
\hline
\end{tabular}

\footnotetext{
F Provisional figures
1) Murman haddock included
}

\section*{Table 21 HADDCCK}

Cetch per unit effort
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{2}{|l|}{Sub-area I} & \multicolumn{2}{|l|}{Division IIb} & \multicolumn{2}{|l|}{Division IIa} \\
\hline & Norway \({ }^{1)}\) & U.K. \({ }^{2)}\) & Norway \({ }^{1)}\) & U.K. \({ }^{\text {2) }}\) & Norway \({ }^{1)}\) & U.K. \({ }^{\text {2) }}\) \\
\hline 1960 & & 33 & & 2.8 & & 34 \\
\hline 1961 & & 29 & & 3.3 & & 36 \\
\hline 1962 & & 23 & & 2.5 & & 42 \\
\hline 3963 & & 13 & & 0.9 & & 33 \\
\hline 1964 & & 18 & & 1.6 & & 18 \\
\hline 1965 & & 18 & & 2.0 & & 18 \\
\hline 1966 & & 17 & & 2.8 & & 34 \\
\hline 1967 & & 18 & & 2.4 & & 25 \\
\hline 1968 & & 19 & & 1.0 & & 50 \\
\hline 1969 & & 13 & & 2.0 & & 42 \\
\hline 1970 & & 7 & & 1.0 & & 31 \\
\hline 1971 & & 8 & & 3.0 & & 25 \\
\hline 1972 & 0.06 & 14 & 0.02 & 23.0 & 0.09 & 18 \\
\hline 1973 & 0.35 & 22 & 0.18 & 20.0 & 0.39 & 20 \\
\hline 1974 & 0.27 & 20 & 0.09 & 15.0 & 0.51 & 74 \\
\hline 1975 & 0.26 & 15 & 0.06 & 4.0 & 0.44 & 60 \\
\hline 1976 & 0.27 & 10 & + & 3.0 & 0.24 & 38 \\
\hline 1977 & 0.11 & 4 & + & 0.2 & 0.14 & 16 \\
\hline 1978 & 0.13 & 5 & + & 4.0 & 0.14 & 15 \\
\hline 1979 & 0.36 & - & 0.07 & - & 0.18 & - \\
\hline 1980 & 0.45 & - & + & - & 0.22 & - \\
\hline 1981 & 0.64 & - & - & - & 0.37 & - \\
\hline \(1982{ }^{\text {F }}\) & 0.44 & - & - & - & 0.53 & - \\
\hline
\end{tabular}
*) \({ }^{\text {Provisional figure }}\)
1) Norwegian data - tonnes per 1000 tonne-hours fishing
\({ }^{2)}\) United Kingdom data - tonnes per 100 tonne-hours fishing

Table 22. North-East Arctic HADDOCX.
Input catch in mumbers ( 1000 ) for VPA.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & 1966 & 1467 & 1968 & 1969 & 19.70 & 1971 & 19,2 & 1973 & 1974 \\
\hline 3 & 26157 & 15916 & 657 & 152.4 & 23004 & 1974 & 230229 & 70264 & 9684 \\
\hline 4 & 22469 & 41373 & 67632 & 1963 & 2418 & 24354 & 22246 & 258773 & 41717 \\
\hline 5 & 62724 & 13503 & 41267 & 44526 & 1876 & 1256 & 47.349 & 24018 & 80111 \\
\hline 6 & 23840 & 25736 & 7748 & 18956 & 21995 & 918 & \(31 \% 6\) & 687 ? & 5827 \\
\hline 7 & \(5 \% 11\) & 8078 & 13594 & 5611 & 7948 & 9274 & 1046 & 41\% & 4138 \\
\hline 8 & 578 & 1617 & 5292 & 4923 & 1974 & 3156 & 6750. & 422 & 382 \\
\hline 4 & 435 & 218 & 655 & 1624 & 1978 & 820 & 2636 & 1680 & 617 \\
\hline 1 C & 18.3 & 176 & 182 & 315 & 726 & 1143 & タy 6 & 525 & 243 \\
\hline 11 & 736 & 153 & 101 & 43 & 106 & 369 & Yob & 146 & 435 \\
\hline 12 & 25 & 76 & 115 & 43 & 20 & 136 & 558 & \(\geq 41\) & 276 \\
\hline 13 & 8 & 27 & 10 & 14 & 52 & 27 & ) 3 & 68 & 458 \\
\hline \(14+\) & 7 & 7 & 19 & 2 & 14 & 4 & 42 & 13 & 143 \\
\hline total. & 147328 & 1.7080 & 139285 & 77542 & 02106 & 43248 & 3124レ9 & 363479 & 154315 \\
\hline & 1975 & 1970 & 1977 & 1976 & 1979 & 19 ¢ & 1401 & 1482 & \\
\hline 3 & 1 ULT & 15989 & 53967 & 47311 & 1754 & 627 & 486 & 995 & \\
\hline 4 & 14089 & 13444 & 22643 & 18812 & 35290 & 27870 & 2359 & 1440 & \\
\hline 5 & 33871 & -8L8 & \(736 \%\) & 4076 & 16645 & 21794 & 22153 & 2216 & \\
\hline 6 & 49712 & 20189 & 2580 & 1389 & 1429 & 2971 & 1 1006 & 11597 & \\
\hline 7 & 2.135 & \(4 \mathrm{CL44}\) & 7781 & 1626 & 812 & 256 & 1 LCT & 3191 & \\
\hline 8 & 1236 & 1247 & 11043 & 2590 & 546 & 504 & 106 & 770 & \\
\hline 9 & 92 & 1349 & 311 & 6715 & 1460 & 231 & 101 & 15 & \\
\hline 10 & 131 & 193 & 388 & 16 ? & 2310 & 842 & \(1 ?\) & 56 & \\
\hline 11 & 540 & 279 & 96 & 258 & 181 & 1299 & 328 & 91 & \\
\hline 12 & 147 & 052 & 101 & 3 & \(\checkmark 7\) & 111 & 335 & 434 & \\
\hline 13 & 53 & 331 & 84 & 74 & 2 & 35 & 27 & 253 & \\
\hline \(14+\) & 42 & 46 & 96 & 65 & 53 & 13 & 42 & 59 & \\
\hline TUTAL. & 112695 & 99170 & 117860 & 82587 & 7061 & 51556 & 38116 & 2117 & \\
\hline
\end{tabular}

\section*{Table 23. North-East Arctic HADDOCK.}

Fishing mortalities from VPA ( \(M=0.2\) ).


Table 24．North－East Arctic HADDOCK．
Stock size in numbers（ \({ }^{\prime} 000\) ）from VPA at 1 Jamuary．
Biomass unit：tonnes．
（The biomass estimates are not corrected for SOP discrepancies．）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 14 ch & 106\％ & 1960 & 1904 & 197u & 1417 & 1472 & 1973 & 1974 & \\
\hline 3 & 243．348 & 291111 & 1973 & 1721 L & 16416 & Y5317 & 1はごぐ㑑 & 29114.4 & 50569 & \\
\hline 4 & \(705 \pm 1\) & 1／9U4S & 225464 & 15604 & 1212.4 & 113631 & 86001 & －solis & 175272 & \\
\hline 5 & 156758 & 42541 & i Lo 124 & 1226．32 & 11116 & 9247 & 71126 & 42790 & 291844 & \\
\hline \(c\) & 61148 & 7：212 & 22110 & 44945 & ousss & 7328 & 3019 & 23137 & 15672 & \\
\hline 1 & 11294 & 24319 & 3605 & 11653 & 23421 & 2987\％ & 51，2 & 1759 & 11367 & \\
\hline ૪ & 1015 & 41； & 11450 & 1 5370 & 6301 & 17450 & 10157 & 2754 & 1 U 64 & \\
\hline 9 & 1349 & 314 & 1954 & 5 und & 8335 & －354 & 7454 & 7143 & 1967 & \\
\hline 1 L & 054 & 714 & 463 & 11113 & 2086 & 5 CLO & 2u3？ & 3746 & 4375 & \\
\hline 11 & \(36 \%\) & 591 & 423 & 210 & \(34 i\) & 154.5 & \(31 \times 3\) & 863 & 2594 & \\
\hline 12 & 147 & 130 & 131 & 7） & 130 & 2．94 & 436 & 1720 & 575 & \\
\hline 13 & 19 & os & 44 & 47 & 172 & リし & 12\％ & 288 & 1119 & \\
\hline \(14+\) & 17 & 17 & 40 & 7 & 93 & 13 & 1 L ？ & 53 & 346 & \\
\hline total & 252529 & 6114 A8 & 42372 & 23927 & 291550 & 277743 & 122 w81 & 101504 & \(553700^{\circ}\) & w \\
\hline SHAWN．ST． & 86354 & 34404 & \(4420 \%\) & 0754i & 74432 & 6U340 & 57581 & 71597 & 1 C3978 & \(\checkmark\) \\
\hline Total Blom． & 713770 & 713563 & 644190 & 477595 & 422987 & 385341 & 1031197 & 1050220 & 859406 & 1 \\
\hline SSB & 190294 & 202135 & 227128 & 220967 & 210696 & 180267 & 167817 & 151409 & 230768 & \\
\hline & 1475 & 1470 & 1977 & 1978 & 1974 & 1900 & 191 & 1982 & 1983 & － \\
\hline 3 & 49822 & 58242 & 13107 & 21：3：3 & 227312 & 28736 & 21894 & \multicolumn{2}{|l|}{55423＊＊＊＊＊＊＊＊＊＊} & \\
\hline 4 & 37597 & 31762 & 33112 & 37240 & 136255 & 171236 & \(22 \times 01\) & 15668 & 44478 & \\
\hline 5 & 106018 & 18165 & 13479 & 47.04 & 24993 & 79354 & 110546 & 10492 & 12348 & \\
\hline 6 & 159102 & 564 ？ 1 & 8770 & \(48 \times 2\) & 389 L & 1542 & 45867 & 77442 & 11366 & \\
\hline 7 & 5404 & 63035 & 27573 & 4864 & 2754 & 19U3 & 9024 & 27410 & 52960 & \\
\hline \(\varphi\) & 4735 & 2986 & 34354 & 15589 & \(\because 25\) & 1523 & 1354 & 6ソ54 & 26669 & \\
\hline 9 & 329 & 2007 & 1330 & 18220 & 14420 & 1576 & 195 & 946 & 4999 & \\
\hline 16 & 1 UL8 & 350 & \(1 \mathrm{L9S}\) & 819 & 4351 & 7210 & 1163 & 56 & 682 & \\
\hline 11 & 1758 & 167 & 193 & 549 & 517 & 3534 & 3149 & 822 & 364 & \\
\hline 15 & 1286 & y9 & 336 & 11 & 214 & 261 & 3441 & 3426 & 591 & \\
\hline 13 & 224 & 921 & 234 & 179 & 0 & 101 & 114 & 2205 & 2818 & \\
\hline \(14+\) & 390 & 12.5 & 273 & 157 & 153 & 43 & 1 is & 533 & 2126 & \\
\hline total & 363406 & 259114 & 254201 & 330093 & 423399 & 312100 & 230147 & \multicolumn{2}{|l|}{2094しら} & \multirow[t]{2}{*}{} \\
\hline SHAWN．ST． & 125718 & 11985？ & 71933 & 47154 & 41341 & 527：97． & 7324\％ & 86065 & & \\
\hline Total Biom． & 702291 & 523030 & 378312 & 373624 & 454933 & 454195 & 451670 & \multicolumn{2}{|l|}{428185} & \\
\hline SSB & 306195 & 335774 & 216642 & 252631 & 124776 & 140986 & 197030 & 255895 & & \\
\hline
\end{tabular}

Table 25. North-East Arctic HADDOCK.
Input data for catch predictions.

LISt of itipui variables by age ghour:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(A G E\)} & \multirow[b]{2}{*}{STOCK SIZE.} & \multirow[b]{2}{*}{F-PATTERN} & \multicolumn{2}{|r|}{maturity} & WEIGHT It: & WEIGHT IH \\
\hline & & & \(\cdots\) & OGIVE & THE CATCH & THE STUCK \\
\hline 3 & 50030.06 & C. 1300 & L. 200 & 1. ibuc & c. 0644 & C. 6600 \\
\hline 4 & 44415.00 & 0.6500 & U. 200 & 0.usuo & 1.0330 & 1.030 u \\
\hline 5 & 1234.UL & 1.040 C & C. 2 Ll & C.23しl & 1.7506 & 1.79 u \\
\hline 6 & 11 Suó. 00 & 1.1740 & U. 240 & 0.3500 & 2.3800 & 2.3800 \\
\hline 7 & 5290 U. UC & 1.120 l & c. 26 L & f. B ¢6し & 2.8600 & 2.3006 \\
\hline 3 & ? ن009. \({ }^{\text {a }}\) & U. 97411 & u. 200 & U.yiul & 3.3300 & 3.3304 \\
\hline 7 & 4999.04 & C. 8500 & L. 2 Ul & 1. Lucu & \(3.700^{4}\) & 3.7046 \\
\hline 10 & 602.00 & 4.8500 & U. 2 uv & 1. Uu00 & 4.410 L & 4.4104 \\
\hline 11 & 364.0 L & L. 850 C & L. 26 & 1. Uluc & 5.4000 & 5.4 UUU \\
\hline 12 & 591.013 & U.85ud & U.ȧ1u & 1. vucu & 0.700 G & 6.7000 \\
\hline 13 & 2813.00 & U. 35 Ul & 1. 26 & 1. Gute & 7.40 Cl & 7.4 UU0 \\
\hline \(14+\) & 2026.00 & U. 35 u & U.200 & 1. vuju & \%. ukou & 8. UuOu \\
\hline
\end{tabular}

Table 26 HADDOCK.
Year class strength. The mumber per hour trawling for
USSR Young Fish Surveyg is for 2 year old fish.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Year \\
class
\end{tabular} & USSR Survey No.per hour trawling Sub-area I & O-group survey index & Virtual population No. of 3 year olds \(\times 10^{-6 \pi x}\) \\
\hline 2957 & 9 & & 242 \\
\hline 1958 & 4 & & 110 \\
\hline 1959 & 14 & & 241 \\
\hline 1960 & 40 & & 276 \\
\hline 1961 & 50 & & 319 \\
\hline 1962 & 3 & & 100 \\
\hline 1963 & 9 & & 243 \\
\hline 1964 & 12 & & 291 \\
\hline 1965 & \(<1\) & 7 & 20 \\
\hline 1966 & <1 & \(<1\) & 17 \\
\hline 1967 & 13 & 42 & 164 \\
\hline 1968 & <1 & 8 & 96 \\
\hline 1969 & 69 & 82 & 1032 \\
\hline 1970 & 33 & 115 & 291 \\
\hline 1971 & 3 & 73 & 57 \\
\hline 1972 & 9 & 46 & 50 \\
\hline 1973 & 8 & 54 & 58 \\
\hline 1974 & 35 & 147 & 131 \\
\hline 1975 & 96 & 170 & 218 \\
\hline 1976 & 13 & 112 & 227 \\
\hline 1977 & 1 & 116 & (29) \\
\hline 1978 & <1 & 61 & (21) \\
\hline 1979 & \(<1\) & 69 & (55) \\
\hline 1980 & \(<1\) & 54 & \\
\hline 1981 & (<1) & 30 & \\
\hline 1982 & & 90 & \\
\hline
\end{tabular}
() = Estimated \(\quad \#=\) USSR Murman haddock included for 1974-77.

Table 21 North East Aretic COD Division IIb. Sumarised VPA results.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multirow[t]{2}{*}{\[
{ }^{F}(2-6)
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Stock size No. } \times 10^{3} \\
& \text { age }(2-6)
\end{aligned}
\]} & \multirow[t]{2}{*}{Biomass t. age (2-6)} & \multicolumn{3}{|c|}{Catches tonnes} \\
\hline & & & & Age (2-6) & Totel & \% \\
\hline 1967 & . 142 & 610026 & 652925 & 72798 & 98672 & 73.8 \\
\hline 1968 & . 342 & 423193 & 633857 & 166671 & 174118 & 95.7 \\
\hline 1969 & . 433 & 173867 & 295299 & 82266 & 122385 & 67.2 \\
\hline 1970 & . 213 & 104096 & 74034 & 11533 & 26614 & 43.3 \\
\hline 1971 & . 059 & 287314 & 52085 & 837 & 12648 & 6.6 \\
\hline 1972 & . 094 & 666884 & 177887 & 12605 & 20503 & 61.5 \\
\hline 1973 & . 149 & 583542 & 434188 & 67983 & 69070 & 98.4 \\
\hline 1974 & . 500 & 480929 & 479920 & 184634 & 186822 & 98.8 \\
\hline 1975 & . 456 & 282552 & 304124 । & 89385 & 94.792 & 94.3 \\
\hline 1976 & . 368 & 150761 & 176837 & 35598 & 45064 & 79.0 \\
\hline 1977 & . 118 & 95054 & 101604 & 57.908 & 68803 & 84.2 \\
\hline 1978 & . 283 & 30866 & 29141 & 5203 & 6955 & 74.8 \\
\hline 1979 & . 096 & 30591 & 23593 & 2473 & 2731 & 53.9 \\
\hline 1980 & . 265 & 47194 & 26276 & 4029 & 5562 & 72.4 \\
\hline 1981 & . 328 & 46372 & 32530 & 3961 & 5332 & 74.3 \\
\hline 1982 & . 692 & 33743 & 35253 & 19518 & 19826 & 98.4 \\
\hline
\end{tabular}





 (int Morwegian (units) ishthis ared

(
A

促









佂




促


Fitatara - \(60-\)



- 61 -

```

