8.3.2 Salmon (Salmo salar) in subdivisions 22-31 (Baltic Sea, excluding Gulf of Finland)

ICES stock advice

ICES advises that new data (landings and surveys) available for this stock do not change the perception of the stock status. Therefore, the advice for this stock in 2017 is the same as the advice for 2016. The assessment was not updated in 2016, but some information on catches in 2015 is provided.

ICES advises that when the maximum sustainable yield (MSY) approach is applied, total commercial sea catch in 2017 should not exceed 116000 salmon. Applying the same catch proportions estimated to have occurred in 2014, this catch would be split as follows: 10% unwanted catch (previously referred to as discards) and 90% wanted catch (77% reported, 7% unreported, and 6% misreported). Setting a TAC under a discard ban needs to take account of wanted and unwanted catch. In setting the TAC, consideration should also be given to expected unreporting and misreporting levels in 2017.

ICES advises that management of salmon fisheries should be based on the status of individual river stocks. Fisheries on mixed stocks that cannot target only river stocks with a healthy status, present particular threats to stocks that do not have a healthy status. Fisheries in open-sea areas or coastal waters are more likely to pose a threat to depleted stocks than fisheries in estuaries and rivers. Effort in these mixed-stock fisheries has been reduced to low levels and should not increase.

Salmon stocks in the rivers Rickleån, Kågeälven, and Öreälven in the Gulf of Bothnia, Emån in southern Sweden, and in several rivers in the southeastern Main Basin are especially weak. These stocks need longer-term, stock-specific rebuilding measures, including fisheries restrictions in estuaries and rivers, habitat restoration, and removal of physical barriers. In order to maximize the potential recovery of these stocks, exploitation should not increase along their feeding and spawning migration routes at sea. The offshore fishery in the Main Basin catches all weak salmon stocks on their feeding migration. The coastal fishery catches weak stocks from northern rivers when the salmon pass the Åland Sea and the Gulf of Bothnia on their spawning migration.

Stock development over time

To evaluate the status of the wild stocks, ICES uses the smolt production relative to the potential smolt production capacity (PSPC) on a river-by-river basis. Based on the 29 rivers in subdivisions 22-31 assessed in the 2015 assessment, the probability that the smolt production has reached 50% of the PSPC in 2014 is above 70% for 12 rivers, between 30% and 70% for 10 rivers, and below 30% for 7 rivers (Table 8.3.2.9). The probability that the smolt production has reached 75% of PSPC in 2014 is above 70% for four of the 29 rivers. With a few exceptions, the rivers in the northern Baltic Sea area present a better status than the southern ones.

The 2015 assessment indicates that the total wild smolt production has increased tenfold in assessment units (AUs) 1-2 since the Salmon Action Plan was adopted in 1997 (Figure 8.3.2.1). The smolt production in AUs 3 and 4 has remained at around the same level. The strong spawning runs in 2012, 2013, and 2014, will likely result in increased smolt production in the near future. Despite the overall increase in wild smolt production, the decline in post-smolt survival from the late 1980s until the mid-2000s (Figure 8.3.2.2) has impacted fishing possibilities. Some indications of improvement in postsmolt survival have been noticed in recent years.

Smolt production in AU 5, assessed by expert judgement, has been low (Figure 8.3.2.1). However, based on recent parr density data, some increase may be expected in the near future. A range of problems in the freshwater environment play a significant role in explaining the poor status of stocks in the southern Baltic rivers.

The harvest rate of salmon has decreased considerably since the beginning of the 1990s (Figure 8.3.2.1).

Figure 8.3.2.1 Salmon in subdivisions 22-31. Top and middle rows: Smolt production (time-series) and PSPC (horizontal solid line) for AUs 1-4 (median estimate for the entire unit and 90% probability intervals). Bottom left: Smolt production relative to PSPC for AU 5 (median estimate across the wild rivers and 90% probability interval); values on the vertical axis denote percentages. Bottom right: harvest rates in offshore (by fishing season) and coastal (by calendar year) fisheries.

Catch options

Because the new data (landings and surveys) available for this stock did not change the perception of the stock an updated stock assessment was not performed. As a result no additional catch options are provided for 2017.

Five fishing scenarios were considered in the 2015 advice for 2016. Scenario 1 corresponded to the same total commercial catch at sea as the total advised by ICES for 2015 (116 000 salmon). Scenarios 2 and 3 represented a 20\% increase and a 20% decrease in catch, respectively, compared with Scenario 1. Scenario 4 followed the EU Commission's proposal for a multiannual plan for Baltic salmon (EU, 2011). Two options were presented under Scenario 4: (a) F=0.1
that covered the commercial catch at sea; (b) $\mathrm{F}=0.1$ that covered total (commercial and recreational) catch at sea. Both of these options (4a and 4b) are calculated based on the PFA estimates from the 2015 assessment (ICES, 2015; stock size at the beginning of 2016). Scenario 5 illustrated stock development under no fishing, neither at sea nor in rivers.

The outlook table for 2017 (Table 8.3.2.1) splits the total commercial catch at sea into similar components as in previous years using the proportions estimated to have occurred in 2014: wanted catch reported (77\%), wanted catch unreported (7%), wanted catch misreported (6\%), and unwanted catch (10%; this is the catch that would be discarded if discarding was allowed). The 10% unwanted catch is the sum of 3% (undersized salmon) and 7% (seal-damaged salmon). Sealdamaged salmon is always dead, whereas a proportion of the undersized salmon would survive if it were discarded. All scenarios assume additional recreational catches at sea that constitute 14% of the total (commercial + recreational) sea catch, based on the available data for 2014, and a constant harvest rate on returning salmon in rivers.

Table 8.3.2.1 Salmon in subdivisions 22-31. The catch options.

Scenario	Commercial catch (thousands of fish) at sea in subdvisions 22-31 in 2017					
	Total commercial catch at sea	Wanted catch Reported	Unwanted catch (dead + alive)		Wanted catch Unreported	Wanted catch Misreported
			Undersized	Seal damaged		
1	116	89.3	3.5	8.1	8.1	7.0
2	139	107.0	4.2	9.7	9.7	8.3
3	93	71.6	2.8	6.5	6.5	5.6
4(a)	96.495	74.301	2.895	6.755	6.755	5.790
4(b)	82.600	63.602	2.478	5.782	5.782	4.956
5	0	0	0.0	0	0	0
Scenario	Recreational catch at sea 2017	$\begin{gathered} \hline \text { Total sea catch (comm. } \\ + \text { recr.) } 2017 \\ \hline \end{gathered}$	River 201			
1	19	135		39		
2	23	162		36		
3	15	108		43		
4(a)	15.708	112.203		42		
4(b)	13.446	96.046		44		
5	0	0		0		

All values in the table are in thousands of fish.

* Spawners in 2017 are not available because the assessment was not updated.

MSY approach

Based on the 2015 assessment (ICES, 2015), figures 8.3.2.4a-b present the river-specific annual probabilities of meeting 75% of the PSPC under each scenario for the 15 wild rivers of AUs $1-4$ included in the stock projections. Table 8.3.2.9 shows these probabilities for year 2021 (for stocks in AUs 1-3) or 2020 (for stocks in AU 4), which is approximately one full generation ahead from now. The results indicate relatively small differences between scenarios 1-4; only Scenario 5 (zero fishing) is clearly different. There are, however, differences between rivers, with some of them having a much lower probability of reaching 75% of the PSPC. Rivers Emån (southern Sweden) and Simojoki, Rickleån, and Öreälven (Gulf of Bothnia) have the lowest probabilities. However, Rickleån and Öreälven are showing positive trends under most scenarios.

Figure 8.3.2.5a-b displays estimated smolt production in the past and projected future smolt production under Scenario 1. For all rivers except Emån and Mörrumsån, smolt production in 2020-2021 is expected to remain around current levels or to increase.

Given that the perception about current stock status has not changed markedly over the last two years, Scenario 1, corresponding to the commercial catch at sea advised last year, is still considered to provide the upper limit for exploitation under the MSY approach. This corresponds to a total commercial sea catch not exceeding 116000 salmon in 2017.

Stock projections have not been conducted for Kågeälven (AU 2), Testeboån (AU 3), and stocks in AU 5. The majority of these stocks are regarded as weak and several have shown decreasing trends during the last decade. Mixed-stock fisheries pose a special problem in managing these stocks. Effort in these fisheries has been reduced to low levels and
should not increase. The reasons for the low productivity of southern stocks is not entirely clear but may, at least partly, be caused by conditions in the freshwater environment (ICES, 2014, 2015). Special actions (not only fishery-related) for these stocks are required in addition to the TAC.

Management plan

According to the management plan proposed by the EC, fishing mortality should not exceed $F=0.1$. The plan does not specify exactly how to interpret $F=0.1$, or whether this value covers the total catch at sea or only the commercial part of this catch. Different fisheries occur at different points in time and space, and many fisheries catch only maturing salmon. Hence, any catch calculation based on $F=0.1$ is only approximate. ICES calculated the 2016 catch option by calculating the abundance at sea on September 1st for 1-sea-winter (1SW) fish and on July 1st for multi-sea-winter (MSW) fish, accounting for natural mortality from the start of the year, and then applying the exploitation rate.

Assuming that $F=0.1$ covers only the commercial catch at sea (Scenario 4(a)), this corresponds to a total commercial catch at sea not exceeding 96495 salmon in 2016.

Assuming that $\mathrm{F}=0.1$ covers the total catch at sea (Scenario 4(b)), this corresponds to a total commercial catch at sea not exceeding 82600 salmon in 2016.

ICES has not evaluated the EC's proposed management plan for consistency with the precautionary approach and MSY.

Basis of the advice

Table 8.3.2.2 Salmon in subdivisions 22-31. The basis of the advice.

Advice basis	MSY approach using the 2015 assessment
Management plan	EC proposal (EU, 2011), not formally adopted.

Quality of the assessment

The overall quality of the assessment for AU 1-4 stocks was considered to be good last year (ICES, 2015). The assessment was not updated in 2016.

Issues relevant for the advice

There is considerable uncertainty about the amount of salmon discarded and even greater uncertainty about the proportion that survives when discarded. Seal-damaged salmon are all dead, but there is also uncertainty on the amount of seal-damaged salmon. The values used in this advice represent the current available knowledge and are based on data from a variety of sources (such as logbooks, interviews with fishers, agreed sampling schemes with skippers, or Data Collection Framework (DCF) sampling data), but these data are generally sparse. Expert judgement has been applied when no data are available or to supplement the sparse data. Because of this uncertainty, current estimates of discards should be considered only as an order of magnitude and not as precise estimates.

Recent efforts to re-establish self-sustaining salmon stocks in "potential" rivers, where salmon stocks have been extirpated in the past, present exceptional challenges to management. The numbers of spawners in the "potential" rivers are likely to be particularly low following initial re-introductions, and productivity is likely to be lower than average. The considerations presented in this advice for the existing weak salmon stocks (e.g. habitat restorations, fishery restrictions, etc.) also apply to re-established stocks.

Salmon harvest rates are presently rather low compared to in the past. This implies that natural processes, mainly postsmolt and adult natural mortalities, will have a high relative impact on the resulting chances of reaching the management objective. The prevalence of the M74 syndrome decreased in the mid-1990s and remained at a low level until 2015, with the most recent data suggesting an increase in the last year (ICES, 2016a). The present advice has not taken into account this recent increase of M74.

Exploitation in the Main Basin offshore fisheries affects possibilities for recovery of the Gulf of Finland salmon stocks as Gulf of Finland salmon is partly caught in the Main Basin. The future development in the longline fishery in the Main Basin is, thus, also important for the recovery rate of salmon stocks in the Gulf of Finland.

Reference points

To evaluate the state of the stock, ICES uses the smolt production relative to 50% and 75% of the natural production capacity (potential smolt production capacity; PSPC) on a river-by-river basis. 75% of the PSPC reference is based on the MSY approach (ICES, 2008a, 2008b), whereas 50% of the PSPC has no formal status as a reference point in ICES but is widely considered an interim objective for weak stocks. PSPC is therefore also included as part of the stock status evaluation.

Basis of the assessment

ICES uses five assessment units for salmon in the Baltic Main Basin and the Gulf of Bothnia (Figure 8.3.2.6). The division of stocks into units is based on biological and genetic characteristics. Stocks of a particular unit are assumed to exhibit similar migration patterns. It can therefore be assumed that they are subject to the same fisheries, experience the same exploitation rates, and could be managed in the same way (e.g. using coastal management measures might improve the status of all stocks in a specific assessment unit). Even though stocks of AUs 1-3 have the highest current smolt productions and, therefore, have an important role in sustaining economically viable fisheries, the stocks in AUs 4 and 5 contain a relatively high proportion of the overall genetic variability of Baltic salmon stocks.

Table 8.3.2.3 Salmon in subdivisions 22-31. Assessment areas.

Assessment unit	Name	Salmon rivers included
1	Northeastern Bothnian Bay stocks	On the Finnish-Swedish coast from Perhonjoki northward to the river Råneälven, including River Tornionjoki.
2	Western Bothnian Bay stocks	On the Swedish coast between Lögdeälven and Luleälven.
3	Bothnian Sea stocks	On the Swedish coast from Dalälven northward to Gideälven and on the Finnish coast from Paimionjoki northwards to Kyrönjoki.
4	Western Main Basin stocks	Rivers on the Swedish coast in ICES subdivisions 25-29.
5	Eastern Main Basin stocks	Estonian, Latvian, Lithuanian, and Polish rivers.

Table 8.3.2.4 Salmon in subdivisions 22-31. The basis of the assessment.

ICES stock data category	1 (ICES, 2016b)
Assessment type	Bayesian state-space model for a majority of rivers in AUs 1-4; assessment by expert judgement for AU 5 and a new wild river in AU 3. Uncertainties about estimated quantities from the Bayesian model are expressed as probability distributions.
Input data	Commercial removals (international landings and effort by fishery, wild and reared proportions, tag returns); recreational catch; estimated unreported and misreported catch; spawner counts in some rivers, parr densities from all rivers, smolt counts in some rivers.
Discards and bycatch	Included in the assessment (estimates based partly on data and partly on expert evaluation).
Indicators	None
Other information	Latest benchmark was in 2012 (IBP Salmon; ICES, 2012).
Working group	Assessment Working Group on Baltic Salmon and Trout (WGBAST)

The PSPC is estimated based on a combination of expert knowledge and spawner/smolt estimates (based on river-specific stock-recruit relationships) which are derived by fitting the assessment model to the data. The assessment model updates the estimates of smolt production historically and the PSPC for each river.

Information from stakeholders

There is no available information.

History of the advice, catch, and management

Table 8.3.2.5 Salmon in subdivisions 22-31 (Main Basin and Gulf of Bothnia). ICES advice for salmon, landings, total catches, and agreed TACs; all numbers in thousands of fish. Landings and total catch figures for 2015 are preliminary.

Year	ICES advice	Predicted catch corresponding to advice	TAC	Landings ^ at sea	Catch^^ at sea	River catch
1987	No increase in effort	-		729	957	11
1988	Reduce effort			543	716	13
1989	TAC	850		755	1001	18
1990	TAC			861	1179	28
1991	Lower TAC	-		630	857	27
1992	TAC	688		619	845	26
1993	TAC	500	650	549	753	25
1994	TAC	500	600	454	630	21
1995	Catch as low as possible in offshore and coastal fisheries	-	500	501	758	27
1996	Catch as low as possible in offshore and coastal fisheries	-	450	486	753	44
1997	Catch as low as possible in offshore and coastal fisheries	-	410	370	629	56
1998	Offshore and coastal fisheries should be closed	-	410	369	575	37
1999	Same TAC and other management measures as in 1998	410	410	313	588	37
2000	Same TAC and other management measures as in 1999	410	450	363	689	35
2001	Same TAC and other management measures as in 2000	410	450	388	634	39
2002	Same TAC and other management measures as in 2001	410	450	362	590	36
2003	Same TAC and other management measures as in 2002	410	460	350	614	29
2004	Same TAC and other management measures as in 2003	410	460	410	828	32
2005	Current exploitation pressure will not impair the possibilities of reaching the management objective for the stronger stocks.	-	460	293	504	39
2006	Current exploitation pressure will not impair the possibilities of reaching the management objective for the larger stocks. Longterm benefits for the smaller stocks are expected from a reduction of the fishing pressure, although it is uncertain whether this is sufficient to rebuild these stocks to the level indicated in the Salmon Action Plan.	-	460	196	304	24
2007	ICES recommends that catches should not increase.	324	429	182	296	30
2008	ICES recommends that catches should be decreased in all fisheries.	-	364	136	171	58
2009	ICES recommends no increase in catches of any fisheries above the 2008 level for SDs 22-31.	-	310	172	296	41
2010	TAC for SDs 22-31	133	294	141	258	23
2011	TAC for SDs 22-31	120	250	144	222	25
2012	TAC for SDs 22-31	54	123	128	170	63
2013	TAC for SDs 22-31	54	109	106	145	51
2014	TAC for SDs 22-31, corresponding to reported commercial sea landings assuming discards, unreporting, and misreporting as in 2012 (corresponding total commercial sea removals are given in brackets)	78 (116*)	107	110	134	55
2015	Total commercial sea catch for SDs 22-31 (estimates of the split of the catch in 2013 into: unwanted, wanted and reported, wanted and unreported, wanted and misreported, are given in brackets).	$\begin{array}{r} 116 \text { (11\%, 68\%, } \\ 10 \%, 11 \%) \end{array}$	96	97	161	64
2016	Total commercial sea catch for SDs 22-31 (estimates of the split of the catch in 2014 into: unwanted, wanted and reported, wanted and unreported, wanted and misreported, are given in brackets).	$\begin{array}{r} 116(10 \%, 77 \%, \\ 7 \%, 6 \%) \end{array}$	96			
2017	Total commercial sea catch for SDs 22-31 (estimates of the split of the catch in 2014 into: unwanted, wanted and reported, wanted and unreported, wanted and misreported, are given in brackets).	$\begin{array}{r} 116(10 \%, 77 \%, \\ 7 \%, 6 \%) \end{array}$				

${ }^{\wedge}$ Total reported catches including recreational catches. ${ }^{\wedge}$ Estimated total catches including discards, mis- and unreporting. *Value corresponds to total commercial sea removals, including reported landings, unreporting, misreporting, and dead discards.

History of catch and landings

The salmon fishery has changed considerably since the beginning of the 1990 s (tables 8.3.2.7 and 8.3.2.8, Figure 8.3.2.7). The very high exploitation rate in the offshore and coastal fisheries has decreased successively due to, e.g. (1) regulatory measures such as closed areas and changes in the opening time of fishery; additionally, reduced national quotas since 2012 have restricted salmon catch in some countries, (2) marketing restrictions on large salmon in certain countries due to high dioxin levels, and (3) increased seal damage to catches and gears. The driftnet ban in 2008 decreased offshore catches in 2008 to the lowest value recorded since 1972. However, changes in the application of dioxin regulations in 2009, increases in market price for salmon, and reduced opportunities for income in other fisheries resulted in an increase in offshore longline fishing from 2008 to 2010. Offshore exploitation has thereafter decreased and is now even lower than in 2008. Despite less restrictive dioxin regulations since 2009, these regulations are still suppressing some of the fisheries.

Table 8.3.2.6 Salmon in subdivisions 22-31. Catch distribution in 2015.

Catch distribution	Total removal (dead catch) (2015) was 943 t (including also non-commercial and river catches), where 91% were nominal landings (commercial and non-commercial in sea and in rivers), 4\% estimated dead discards, and 5\% estimated unreported and misreported landings.

Table 8.3.2.7 Salmon in subdivisions 22-31 (Main Basin and Gulf of Bothnia). Nominal landings of Baltic salmon in round fresh weight and in numbers: landings from rivers, coast, and offshore; total; commercial (in numbers) from coast and offshore combined; agreed TAC for subdivisions 22-31.

Year	Rivers		Coast		Offshore		Total		Coast and offshore*	TAC
	thousand tonnes	thousand fish	thousand fish	thousand fish						
1993	0.11		0.83		2.57		3.52		676	650
1994	0.10		0.58		2.25		2.93		584	600
1995	0.12		0.67		1.98		2.77		553	500
1996	0.21	35	0.77	168	1.73	366	2.71	570	456	450
1997	0.28	45	0.80	149	1.50	282	2.58	476	396	410
1998	0.19	30	0.59	104	1.52	314	2.30	449	334	410
1999	0.17	30	0.59	104	1.23	256	1.99	391	286	410
2000	0.18	30	0.52	100	1.45	313	2.15	442	312	450
2001	0.16	30	0.57	121	1.19	262	1.92	413	355	450
2002	0.14	28	0.59	126	1.03	234	1.75	388	336	450
2003	0.12	28	0.43	113	1.00	235	1.56	376	327	460
2004	0.13	25	0.77	161	1.11	247	2.01	433	365	460
2005	0.17	31	0.61	118	0.86	175	1.64	323	254	460
2006	0.10	19	0.40	71	0.63	124	1.12	213	172	460
2007	0.14	23	0.35	69	0.55	111	1.04	204	159	429
2008	0.26	45	0.46	92	0.21	43	0.93	180	109	364
2009	0.18	32	0.55	113	0.27	56	1.00	201	138	310
2010	0.11	18	0.37	66	0.35	71	0.84	155	118	294
2011	0.17	20	0.37	66	0.33	73	0.87	159	122	250
2012	0.33	50	0.45	72	0.29	53	1.06	175	108	123
2013	0.26	39	0.45	68	0.21	38	0.92	146	87	109
2014	0.32	43	0.42	74	0.19	36	0.93	153	85	107
2015**	0.31	49	0.32	71	0.16	26	0.79	146	81	96

[^0]Table 8.3.2.8 Salmon in subdivisions 22-31 (Main Basin and Gulf of Bothnia). The table shows total catches (from sea, coast, and river) of salmon, in numbers, in the whole Baltic (subdivisions 22-32), split into: nominal catches by country, discards (including seal-damaged salmon), and unreported catches (PI = probability interval = 90\% since $2001=$ 95% before then). Discards and unreported catches for the years 2001-2015 are estimated by a different method and different expert-elicited coefficient factors than for the years 1993-2000. Catch figures for 2015 are preliminary.

Year	Country									reported	Discard		Estimated misreported catch**	Total unreported catches***		Total catches	
	Denmark	Estonia	Finland	Germany	Latvia	Lithuania	Poland	Russia	Sweden	total	median	PI		median	95\% PI	median	PI
1993	111840	5400	248790	6240	47410	2320	42530	9195	202390	676115	95162	57550-146900	4100	136604	44110-307000	930761	810200-1088100
1994	139350	1200	208000	1890	27581	895	40817	5800	158871	584404	74979	45150-116300	16572	126716	51191-267771	805001	706471-936071
1995	114906	1494	206856	4418	27080	468	29458	7209	161224	553113	76541	46060-118500	64046	173150	98095-310945	821265	723545-948445
1996	105934	1187	266521	2400	29977	2544	27701	6980	206577	649821	97938	58360-152200	62679	196649	103608-368478	967938	846478-1128678
1997	87746	2047	245945	6840	32128	879	24501	5121	147910	553117	81897	46910-130500	85861	202355	121361-353661	858277	752661-999961
1998	92687	1629	154676	8379	21703	1069	26122	7237	166174	479676	67571	41080-103800	60378	157603	92777-275177	720768	636677-830077
1999	75956	2817	129276	5805	33368	1298	27130	5340	139558	420548	61785	36980-95760	122836	209558	150425-317635	706612	629835-807135
2000	84938	4485	144260	8810	33841	1460	28925	5562	165016	477297	71015	39450-115200	159251	261698	190230-397350	828764	735850-955850
2001	90388	3285	122419	7717	29002	1205	35606	7392	153197	450211	39170	35910-43290	126100	219900	193300-275400	686800	659600-743400
2002	76122	3247	104856	5762	21808	3351	39374	13230	140121	407871	36540	33410-40520	115000	204200	178500-258400	628700	602400-683900
2003	108845	2055	99364	5766	11339	1040	35800	4413	117456	386078	41400	37380-46520	143200	233100	205400-295100	638600	610000-701800
2004	81425	1452	130415	7087	7700	704	17650	5480	195662	447575	41290	37260-46830	254400	388500	345900-483200	854400	810900-950900
2005	42491	1721	113378	4799	5629	698	22896	3069	146581	341262	29290	27020-32290	110900	193900	170500-241700	546100	522200-594500
2006	33723	1628	64679	3551	3195	488	22207	1002	98663	229136	21610	20110-23510	46900	96350	83010-122600	333300	319700-359900
2007	16145	1315	75270	3086	5318	537	18988	1408	96605	218672	17780	16600-19310	54300	105000	91340-131600	329600	315600-356500
2008	7363	1890	80919	4151	2016	539	8650	1382	92533	199443	10240	9577-11140	3300	42320	32510-59590	244300	234400-261700
2009	16072	2466	78080	2799	2741	519	10085	584	107241	220587	14860	13040-17850	62900	121900	105400-153400	347300	330700-379600
2010	29637	1941	44523	1520	1534	427	5774	491	80518	166365	12770	10970-15760	65500	111400	98280-137600	282000	268600-308600
2011	21064	2030	49567	1850	1271	546	6204	470	89978	172980	11940	10770-13660	33500	73540	63400-91970	249800	239400-268600
2012	23175	2680	73447	1362	1056	568	5689	412	84332	192721	9895	9078-10980	12200	50050	41200-64170	245600	236600-259800
2013	24657	2291	56393	1430	2083	1210	5412	387	67082	160157	12730	10850-14650	14000	40220	33510-51180	203100	196300-214200
2014	24482	2076	69135	1264	1878	582	3118	418	62680	165633	10030	8427-11650	6800	28370	22710-37530	195900	190100-205100
2015	19355	2566	62495	2034	1839	2661	3896	406	62608	157860	10500	8099-10390	4300	25860	19940-36250	190600	179100-195500

The data for 1993-1994 include subdivisions 24-32; the catches in subdivisions $22-23$ are normally less than one tonnes. From 1995 data include subdivisions $22-32$.
In 1993 the Faroe Islands caught 3200 individuals, which is included in the total Danish catches.
** Corresponds only to Polish catch.
*** Including also the estimated misreported catch.

Summary of the assessment

Table 8.3.2.9 Salmon in subdivisions 22-31. Overview of the status of the Gulf of Bothnia and Main Basin stocks in terms of their probability of having reached 50% and 75% of the potential smolt production capacity in 2014 from the 2015 assessment (ICES, 2015). The probability values are classified in four groups: Above 90\%, between 70\% and 90\%, between 30% and 70%, and below 30%. For stocks in AUs $1-4$ (except Testeboån) the results are based on the assessment conducted in 2015. Results for Testeboån and AU 5 stocks are based on expert judgement and no precise probabilities can be presented for these stocks.

		Probability of reaching 50\% of PSPC					Probability of reaching 75\% of PSPC				
		Probability	Between 70\% Between 30\%				Probability	Above 90\%	Between 70\% Between 30\%		
Unit 1	Tornionjoki	0.69			X		0.16				X
	Simojoki	0.78		X			0.23				X
	Kalixälven	1.00	X				0.82		X		
	Råneälven	0.73		X			0.34			X	
Unit 2	Piteälven	1.00	X				0.96	X			
	Åbyälven	0.90		x			0.61			X	
	Byskeälven	0.97	X				0.72		X		
	Kågeälven	0.31			X		0.17				X
	Rickleån	0.00				X	0.00				X
	Sävarån	0.83		x			0.51			x	
	Ume/Vindelälven	0.98	X				0.57			X	
	Öreälven	0.37			X		0.15				X
	Lögdeälven	0.76		X			0.44			X	
Unit 3	Ljungan	0.74		X			0.46			X	
	Testeboån	n.a.			X		n.a.				x
Unit 4	Emån	0.00				X	0.00				X
	Mörrumsån	1.00	X				0.96	X			
Unit 5	Pärnu	n.a.				X	n.a.				X
	Salaca	n.a.		X			n.a.			X	
	Vitrupe	n.a.			x		n.a.				X
	Peterupe	n.a.			x		n.a.				x
	Gauja	n.a.			X		n.a.				X
	Daugava	n.a.			X		n.a.				X
	Irbe	n.a.			X		n.a.				X
	Venta	n.a.			X		n.a.				X
	Saka	n.a.				x	n.a.				x
	Uzava	n.a.				X	n.a.				x
	Barta	n.a.				X	n.a.				X
	Nemunas	n.a.				X	n.a.				X

Table 8.3.2.10 Salmon in subdivisions 22-31. River-specific probabilities of achieving 75\% of the PSPC in 2021 or 2020 (depending on the assessment unit) under the projection scenarios from the 2015 assessment (ICES, 2015). Probabilities greater than 0.70 are shaded green.

River	Probability of meeting 75\% of PSPC						
		Scenario					
			1	2	3	$4(\mathrm{a})$	$4(\mathrm{~b})$
Tornionjoki		0.55	0.51	0.59	0.58	0.60	0.81
Simojoki		0.16	0.13	0.21	0.22	0.23	0.52
Kalixälven		0.88	0.85	0.88	0.88	0.89	0.92
Råneälven		0.61	0.55	0.66	0.65	0.66	0.84
Piteälven	2021	0.88	0.86	0.90	0.87	0.90	0.93
Åbyälven	2021	0.74	0.72	0.78	0.76	0.78	0.87
Byskeälven	2021	0.80	0.80	0.86	0.85	0.85	0.90
Rickleån	2021	0.02	0.02	0.04	0.03	0.04	0.12
Sävarån	2021	0.65	0.65	0.70	0.69	0.70	0.81
Ume/Vindelälven	2021	0.89	0.88	0.90	0.90	0.91	0.91
Öreälven	2021	0.38	0.34	0.40	0.40	0.44	0.59
Lögdeälven	2021	0.68	0.64	0.68	0.68	0.72	0.81
Ljungan	2021	0.57	0.52	0.59	0.59	0.60	0.71
Mörrumsån	2020	0.70	0.69	0.73	0.73	0.75	0.88
Emån	2020	0.00	0.00	0.00	0.00	0.00	0.00

Figure 8.3.2.2 Salmon in subdivisions 22-31 (Main Basin and Gulf of Bothnia) from the 2015 assessment (ICES, 2015). Post-smolt survival for wild and hatchery-reared salmon. Posterior probability distribution (median and 90\% PI).

Figure 8.3.2.3 Salmon in subdivisions 22-31 from the 2015 assessment (ICES, 2015). Top panels: Annual abundances of 1-sea-winter salmon (1SW) available to the fisheries. Four months of adult natural mortality are taken into account (from 1 May until 1 September) to cover natural mortality during the fishing season after the post-smolt mortality phase. Bottom panels: Annual abundances of multi-sea-winter salmon (MSW) available to the fisheries. Six months of adult natural mortality are taken into account (from 1 January until 1 July) to cover natural mortality during the fishing season. The left panels are for wild salmon and the right panels for wild and reared salmon together. The predicted development in abundance following projection Scenario 1 is also indicated.

Figure 8.3.2.4a Salmon in subdivisions 22-31. Probabilities for stocks to meet an objective of 75% of potential smolt production capacity under different projection scenarios from the 2015 assessment (ICES, 2015). Fishing in 2017 mainly affects smolt production in the years 2020-2022 (not shown for 2022).

Figure 8.3.2.4b Salmon in subdivisions 22-31. Probabilities for stocks to meet an objective of 75% of potential smolt production capacity under different projection scenarios from the 2015 assessment (ICES, 2015). Fishing in 2017 mainly affects smolt production in the years 2020-2022 (not shown for 2022).

Figure 8.3.2.5a Salmon in subdivisions 22-31. Median values and 90\% probability intervals for smolt abundances in different rivers in projection Scenario 1 from the 2015 assessment (ICES, 2015). Fishing in 2017 mainly affects smolt production in the years 2020-2022 (not shown for 2022).

Figure 8.3.2.5b Salmon in subdivisions 22-31. Median values and 90\% probability intervals for smolt abundances in different rivers in projection Scenario 1 from the 2015 assessment (ICES, 2015). Fishing in 2017 mainly affects smolt production in the years 2020-2022 (not shown for 2022).

Figure 8.3.2.6 Salmon in subdivisions 22-31. Grouping of salmon stocks in six assessment units in the Baltic Sea. The genetic variability between stocks of an assessment unit is smaller than the genetic variability between stocks of different units. In addition, the stocks of a particular unit exhibit similar migration patterns.

Figure 8.3.2.7 Salmon in subdivisions 22-31. Total removals (dead catch) in numbers in the years 1987-2014: river catches (mainly recreational, but including also some commercial fishing) and removals at sea (split into commercial and recreational nominal landings, unreported and misreported landings, and dead discards). Commercial sea catch also includes recreational sea catch in 1987-2000.

Sources and references

EU. 2011. Proposal for a Regulation of the European Parliament and of the Council establishing a multiannual plan for the Baltic salmon stock and the fisheries exploiting that stock. COM/2011/0470 final - 2011/0206 (COD). http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52011PC0470.

ICES. 2008a. Baltic Sea. Report of the ICES Advisory Committee, 2008. ICES Advice 2008, Book 8. 133 pp.
ICES. 2008b. Report of the Workshop on the Baltic Salmon Management Plan Request (WKBALSAL), 13-16 May 2008 , ICES Headquarters, Copenhagen, Denmark. ICES CM 2008/ACOM:55. 61 pp.

ICES. 2012. Report of the Inter-Benchmark Protocol on Baltic Salmon (IBPSalmon). By correspondence 2012. ICES CM 2012/ACOM:41. 100 pp.

ICES. 2014. Report of the Baltic Salmon and Trout Assessment Working Group 2014 (WGBAST), 26 March-2 April 2014, Århus, Denmark. ICES CM 2014/ACOM:08. 347 pp.

ICES. 2015. Report of the Baltic Salmon and Trout Assessment Working Group 2015 (WGBAST), 23-31 March 2015, Rostock,Germany. ICES CM 2015/ACOM:08. 362 pp.

ICES. 2016a. Report of the Baltic Salmon and Trout Assessment Working Group (WGBAST), 30 March-06 April 2016, Klaipeda, Lithuania. ICES CM 2016/ACOM:09. 257 pp.
ICES 2016b. General context of ICES advice. In Report of the ICES Advisory Committee, 2016. ICES Advice 2016, Book 1, Section 1.2.

[^0]: *For comparison with TAC (includes only commercial catches, except for the years 1993-2000 when also recreational catches at sea are included).
 **Preliminary.

