## 8 Blue Whiting - Subareas I-IX, XII and XIV

Blue whiting (Micromesistius poutassou) is a small pelagic gadoid that is widely distributed in the eastern part of the North Atlantic. The highest concentrations are found along the edge of the continental shelf in areas west of the British Isles and on the Rockall Bank plateau where it occurs in large schools at depths ranging between 300 and 600 meters but is also present in almost all other management areas between the Barents Sea and the Strait of Gibraltar and west to the Irminger Sea. Blue whiting reaches maturation at $2-7$ years of age. Adults undertake long annual migrations from the feeding grounds to the spawning grounds. Most of the spawning takes place between March and April, along the shelf edge and banks west of the British Isles. Juveniles are abundant in many areas, with the main nursery area believed to be the Norwegian Sea. See the stock Annex for further details on stock biology.

### 8.1 ICES advice in 2013

ICES notes that SSB has almost doubled from 2010 ( 2.9 million tonnes) to 2013 ( 5.5 million tonnes) and is well above Bpa ( 2.25 million tonnes). This increase is due to the lowest Fs in the time-series in 2011 and 2012, in combination with increased recruitment since 2010.
ICES advises on the basis of the management plan agreed by Norway, the EU, the Faroe Islands, and Iceland (target $\mathrm{F}=0.18$ ) that landings in 2014 should be no more than 948 950 tonnes.

### 8.2 The fishery in 2013

The total catch was 626036 tonnes while the agreed TAC was 643000 tonnes. The main fisheries on blue whiting were targeting spawning and post-spawning fish in the EU region, International waters west of Porcupine Bank/Rockall Bank areas, west of Scotland and the Faroese region (Figure 8.3.1.2-8.3.1.3). Most of the catches (91\%) were taken in the first two quarters of the year. The multi-national fleet currently targeting blue whiting consists of several types of vessels but the bulk of the catch is caught with large pelagic trawlers. Thirteen countries reported blue whiting landings in 2013. Specific details from some of these fisheries are provided below. Even though the majority of the blue whiting quotas for most national fleets are landed in the first half of the year, detailed information on the timing and location of catches in the current year are not always available by the time of the WGWIDE meeting.

### 8.2.1 Denmark

Danish landings of blue whiting in 2013 were just 2167 tonnes as the main part of the Danish quota was swapped with other species.

### 8.2.2 Germany

The vessels targeting blue whiting belong to the pelagic freezer trawler fleet and are owned by a Dutch company and operating under German flag. Depending on season and the economic situation these vessels are targeting other pelagic species in European and international waters. This fleet consists of four large pelagic freezer-trawlers with power ratings between 4200 and 12000 hp and crews of about 35 to 40 men. The vessels are purpose built for pelagic fisheries. The catch is pumped into large storage tanks filled with cool water to keep the catch fresh until it is processed. Total landings
increased from 278 tonnes in 2011 to 6238 tonnes in 2012 to 11418 tonnes in 2013. The majority of catches was taken in areas VIa,b and VIIc.

### 8.2.3 Faroe Islands

The reported landings of blue whiting from Faroese vessels were 85768 tonnes in 2013. Approximately $98 \%$ of the blue whiting was caught within the Faroese EEZ and $2 \%$ in international waters. The majority ( $96 \%$ ) of the blue whiting fishery occurred near the southern boundary of the Faroese EEZ in winter and early spring, January to May, and began again in December. In March, however, the catches were taken in international waters west of the British Isles. Later in the year scattered catches (4 \%) were taken as bycatch in the herring and mackerel fisheries in the northern part of the Faroese EEZ. The fishing fleet consists of seven large trawlers/purse-seiners and one factory freezer utilizing pelagic trawls.

### 8.2.4 Iceland

The Icelandic landings in 2013 amounted around 105000 t . Around $92 \%$ of the catches were taken in the Faroes EEZ during April and May, and 3\% there in December. The remaining catches were taken in the Icelandic EEZ during July-December. A negligible amount was taken in international waters. The catches in the Icelandic EEZ were mainly from a mixed fishery with mackerel and Norwegian spring-spawning herring.

### 8.2.5 Ireland

The Irish Fishery in 2013 took place mainly in the first quarter, with a catch of 12428 t landed. In quarter two 777 t was landed. The fishery was concentrated on spawning aggregations to the west and northwest of Ireland. The majority of the catch was from VIIc (6813 t), VIa (2731 t) and VIb (2583 t), followed by small catches in VIIk (930 t) and VIIb (148t). Fifteen vessels participated in the fishery.

### 8.2.6 Netherlands

The Dutch catches of blue whiting in 2013 were mostly taken in the period FebruaryMay, with some catches in November-December, mainly in area VIa and VIIc by freezer trawlers. The total catch was 51600 tonnes. The majority of the catch ( $>95 \%$ ) was recorded from 18 fishing trips. The remaining catches ( $<5 \%$ ) are by-catch in the fisheries directed to other pelagic species. Estimated discards of blue whiting in 2013 are $1 \%$ in weight originating from non-directed fisheries.

### 8.2.7 Norway

After the coastal states agreement in 2012 and quota transfers in other international agreements, the Norwegian TAC for 2013 was set to 189132 t (up to 144408 t could be taken in the EU zone). The majority of the Norwegian catches ( 186000 t ) were taken in a directed pelagic trawl fishery west of the British Isles and south of the Faroe Islands during the first half of the year. The remaining catches were mainly taken by the industrial trawl fleet (which uses both pelagic and demersal trawls) in the Norwegian deeps and Tampen area (east of $4^{\circ} W$ ).

### 8.2.8 Russia

Two Russian trawlers operated in the Faroese area since the beginning of the year until February 11, and then on March 20-21. Five other vessels started to work here on April 3. The number of trawlers increased gradually to 18 but decreased to 2 in May.

The fishery was finished in that area on June 22 and resumed on December 22. In the first half of July, 11 trawlers were operating in the central part of Norwegian Sea when later in October one vessel carried out the directed BW fishery until the total catch in the international waters closed to the allowed value 48879 t . Majority of this amount refers to the spring fishery in the spawning area west of British islands. That fishery was from February 7 to April 4. The total Russian landings of blue whiting in 2013 were 120674 tonnes.

### 8.2.9 Spain

The Spanish blue whiting fishery is carried out mainly by bottom pair trawlers in a directed fishery (approx. one third of the fleet) and by single bottom otter trawlers in a by-catch fishery (approx. two thirds of the fleet). The fleet operates throughout the year. Small quantities are also caught by longliners. These coastal fisheries have trip durations of 1 or 2 days and catches are for human consumption. Thus, coastal landings are driven mainly by market forces, and are rather stable. The Spanish fleet has decreased from 279 vessels in the early 1990s to 135 vessels in 2008. After a period of decreasing trend, Spanish landings increased in 2013 to a total landing of 15273 tonnes, and $99 \%$ of it was obtained in Spanish waters.

### 8.2.10 Portugal

Blue whiting is commonly caught as by-catch by the Portuguese bottom-trawl fleets targeting finfish and crustaceans, which comprises around 100 vessels under 30 meters long. Some vessels of the artisanal fishing fleet also catch blue whiting as by-catch, although this is mostly discarded it is rarely used for human consumption in Portugal and there is no market demand for industrial transformation. Total landings in 2013 were about 2056 tonnes.

### 8.2.11 UK

The whole catch, 13498 tonnes was obtained in the first half of 2013. The vessels from Northern Ireland caught 1232 tonnes in the area VIIk. The Scottish trawlers operated in VIa-b and VIIc landing 8166 tonnes. The rest of the catch was taken by English trawlers in the same areas in the 2 nd quarter.

### 8.2.12 France

The total French catch in 2013 was 8981 tonnes, and $80 \%$ of it was obtained in the first half of year west of the British Isles.

### 8.3 Input to the assessment

### 8.3.1 Catch data

Total landings in 2013 were about 626036 tonnes. Total catches in 2013 were provided by members of the WG. The data provided as catch by rectangle represented more than $96 \%$ of the total WG catch in 2013. Total catch by country for the period 1988 to 2013 is presented in Table 8.3.1.1.

After a minimum of 104000 tonnes in 2011, catches increased to around 384000 tonnes in 2012 and around 626000 tonnes in 2013. The spatial and temporal distribution in 2013 (Figure 8.3.1.1, 8.3.1.2 and 8.3.1.3 and Table 8.3.1.2), is quite similar to the distribution in previous years. The majority of catches is coming from the spawning area, but compared to previous years, the 2013 catches have a much larger contribution from

Division Vb (Figure 8.3.1.4 and 8.3.1.5). The temporal allocation of catches has been relatively stable in recent years (Figure 8.3.1.6) however with an increase of the proportion of catches from the second quarter that was also observed in 2013. In the first two quarters catches are taken over a broad area while later in the year catches are mainly taken further north in sub-area II and in the North Sea (Division IVa) and Division V. The proportion of landings originating from the Norwegian Sea has been decreasing steadily over the recent period to less than $10 \%$ of the total catch in 2013.

### 8.3.1.1 Discards

Discards of blue whiting are thought to be small. Most of these discards are by-catch in fisheries not directed to blue whiting. Most of the blue whiting is caught in directed fisheries for reduction purposes.

Discards information for blue whiting in 2013, are presented in Table 8.3.1.1.1. Only a few countries have supplied quantitative discards information for 2013.

The main fishing nations, Faroe Islands, Iceland, Norway and Russia have already a discard ban in place and discards are assumed zero or negligible.

Germany and Netherlands presented a discard percentage of 1 and $2 \%$ (respectively) in the total amount of catches. Discards estimates from Germany are based on a single trip operation in ICES Division VIIj in a fishery directed on horse mackerel.

The $99.8 \%$ of blue whiting French landings are mainly from one industrial boat targeting the species to producing surimi. Although no information is available by observer programmes on this fishery, the industry confirms that there are no discards. Discards could however occur at a very low level, in case of the total catch is too low to process the fish or if other species are mixed with blue whiting.

Blue whiting discards in Portugal are relatively high and mostly due to by-catch and a reduced market-demand. In 2013, the discards were around 700 ton, corresponding to $25 \%$ of the total Portuguese catches.

The discard scenery observed in Spain is similar, with a $26 \%$ of the blue whiting total catches being discarded. By-catch, undersized fish, and market-demand dynamics are the driving forces to discard this species in Spain.

The Portuguese and Spanish landings contribute by less than $2.8 \%$ of the total international landings. At a stock level, discards are considered negligible as most of the blue whiting landings are from directed fisheries for reduction purposes by nations where a discards ban already is in force.

### 8.3.1.2 Sampling intensity

Sampling intensity for blue whiting from the commercial catches by fishery and quarter is shown in Table 8.3.1.2.1, while detailed information on the number of samples, number of fish measured, and number of fish aged by country and quarter is given in Table 8.3.1.2.2 and are presented and described by year, country and area in section 1.3 (Quality and Adequacy of fishery and sampling data). In total 915 samples were collected from the fisheries in 2013. 111079 fish were measured and 14633 were aged. Sampled fish were not evenly distributed throughout the fisheries (Table 8.3.1.2.2). Considering the proportion of samples per catch, the most intensive sampling took place in the mixed fishery with one sample for every 62 tonnes, followed by the southern fishery of Spain and Portugal. Here one sample was taken for every 69 tonnes, and lastly the directed fishery where there was one sample for every 1028 tonnes caught. In this context it should be noted that implementation of the EU Collection of Fisheries

Data, Fisheries Regulation 1639/2001, requires EU Member States to take a minimum of one sample for every 1000 t landed in their country. As can be seen, no sampling data were submitted by France and UK (England, Wales and Northern Ireland), all with relatively small landings. Sampling intensity for age and weight of herring and blue whiting are made in proportion to landings according to CR 1639/2001 and apply to EU member states. For other countries there are no guidelines. Current precision levels of the sampling intensity are unknown and the group recommends reviewing the sampling frequency and intensity on a scientific basis and provide guidelines for sampling intensity.

### 8.3.1.3 Length and age compositions

Data on the combined length composition of the 2013 commercial catch by quarter of the year from the directed fisheries in the Norwegian Sea and from the stock's main spawning area were provided by the Faroes, France, Germany, Iceland, Ireland, the Netherlands, Norway, Russia and Scotland (Table 8.3.1.3.1). Length composition of blue whiting varied from 10 to 46 cm , with $95 \%$ of fish ranging from $21-36 \mathrm{~cm}$ in length, a size range similar to that observed last year. The mean length in the fishery was 28.6, which is 0.5 cm smaller than last year, confirming the decreasing trend in the mean length observed last year, after a period of increasing trend in the mean length observed in recent years.

Length compositions of the blue whiting catch and by-catch from "mixed fisheries" in the Norwegian Sea and the North Sea and Skagerrak were presented by Norway (Table 8.3.1.3.2). The catches of blue whiting from the mixed industrial fisheries consisted of fish with lengths of $18-38 \mathrm{~cm}$ with $95 \%$ of fish ranging from $19-34 \mathrm{~cm}$. The mean length was $23.6 \mathrm{~cm}, 5 \mathrm{~cm}$ shorter than last year.

The Spanish and Portuguese length distribution of catches showed a length range of $13-40 \mathrm{~cm}$ with $95 \%$ of fish ranging from 16 to 28 cm (Table 8.3.1.3.3). This distribution is similar as last year. The mean length was $22.1,0.8 \mathrm{~cm}$ shorter than the previous year.

The combined age composition for the directed fisheries in the Northern area, i.e. the spawning area and the Norwegian Sea, as well as for the by-catch of blue whiting in "other fisheries" and for landings in the Southern area, were assumed to represent the overall age composition of the total landings for the blue whiting stock. The InterCatch program was used to calculate the total international catch-at-age, and to document how it was done. The catch numbers-at-age used in the stock assessment are given in Table 8.3.1.3.4. The calculation of mean age assigns an age of 10 to all fish in the plus group. Therefore in years of high plus group abundance the mean age could be significantly underestimated. The mean age of the catch (and stock) has been increasing in the period 2001-2010, followed by a drop in 2011, due to the relatively high catches of one and two groups this year. There was also a high increase to a mean age of 5 years in 2013.

Catch proportions at age plotted in Figure 8.3.1.3.1. Strong year classes can be clearly seen in the early 1980s, 1990 and the late 1990s. Poor recruitment over the recent period is clearly seen in the decreasing proportion of younger fish. This pattern was different in 2011 onwards, where stronger year classes can also be observed.
Catch curves made on the basis of the international catch-at-age (Figure 8.3.1.3.2) indicate a consistent decline in catch number by cohort and thereby reasonably good quality catch-at-age data, especially for year classes since 1995.

### 8.3.1.4 Weight at age

Table 8.3.1.4.1 and Figure 8.3.1.4.1 show the mean weight-at-age for the total catch during 1983-2013 used in the stock assessment. Compared to the 2007 mean weights, the values from the succeeding years are higher for most ages, which show that the decreasing trend in mean weight for the period 1995-2005 (2007) has ended.

The weight-at-age for the stock is assumed to be the same as the weight-at-age for the catch.

### 8.3.2 Information from the fishing industry

No comprehensive information has been received from the fishing industry this year.

### 8.3.3 Maturity and natural mortality

Blue whiting natural mortality and proportion of maturation-at-age is shown in Table 8.3.3.1. See the Stock Annex for further details. A new working document shows a higher proportion mature for age 1 (from $11 \%$ to $22 \%$ ) and slightly higher for ages 2 6 (Heino, 2014, WD to WGWIDE 2014). These values have not fully been evaluated by the WG and as the assessment is an update assessment they have not been used in this year's assessment.

### 8.3.4 Fisheries independent data

### 8.3.4.1 International Blue Whiting spawning stock survey

## Background and status

The International Blue Whiting Spawning Stock Survey (IBWSS) is carried out on the spawning grounds west of the British Isles in March-April. The survey started in 2004 and is carried out by Norway, Russia, the Faroe Islands and the EU. This international survey, allowed for broad spatial coverage of the stock as well as a relatively dense amount of trawl and hydrographical stations. The survey is coordinated by WGIPS (ICES CM 2014/ SSGESS:01).

Use of this survey in stock assessment
Indices of age 3-8 from the IBWSS survey have been used in the assessment since 2007.

## Quality of the survey

WGIPS decided that in 2014, the survey design should follow the principle of the one used during the two previous surveys. The focus was still on a good coverage of the shelf slope in areas II and III. However, given the increasing stock biomass observed over recent years, it was expected that the distribution was more extended over the whole survey area as well. In previous years when larger stock sizes were observed (2004-2011), blue whiting aggregations were distributed more evenly over the whole survey area, including the Rockall Bank and Rockall Trough. Therefore, the survey design in 2014 was to allocate more effort in these areas as well. The design was the same as in the previous two years and the design is based on variable transect spacing, ranging from 30 nmi in areas containing less dense aggregation (e.g. subarea I, south Porcupine), to 7.5 nmi in the core survey area (subarea III, Hebrides). To ensure transect coverage was not replicated, transects were allocated systematically with a random start location.

Due to acceptable - good weather conditions throughout the survey period, the survey resulted in high quality coverage of the stock. Transects of all vessels were consistent in spatial coverage and timing, delivering full coverage of the respective distribution areas within 14 days
A post-cruise meeting held in Torshavn 22-24 April 2014 compiled a joint survey report. This will be reviewed in the next WGIPS meeting. The post-cruise meeting concluded that the estimate is a valid extension of the survey time series.
Uncertainties in spawning stock estimates based on bootstrapping of available data have been assessed again in 2014 (Figure 8.3.4.1.1 A). At present, only one source of uncertainty is considered namely the spatio-temporal variability in acoustic re-cordings. The overall trend indicates a continued decrease year-on-year in biomass from 2007 - 2011 for this stock. The uncertainty around the decline in biomass from 2008 to 2011 is more than could be accounted for from spatial heterogeneity alone and is regarded as statistically significant. The biomass estimate from 2010 was omitted in the assessment process due to coverage problems in the survey and a resulting possibility of biomass underestimation. The 2014 estimate shows a slightly decreasing trend in biomass again when compared to the previous two years.

The International spawning stock survey shows good internal consistency for the main age groups in the fishery (Figure 8.3.4.1.1 B).

## Results

The distribution of acoustic backscattering densities for blue whiting for the last 4 years is shown in Figure 8.3.4.1.2. The highest concentrations of blue whiting were recorded in the Hebrides area but the observed biomass there was $37 \%$ less than in the previous year. Due to the perceived later northward migration of the stock as compared to 2013 the centre of gravity was located further south within the northern Porcupine Bank area. This area saw an increase in biomass of $310 \%$ as compared to 2013. Compared to the last year, more high density aggregations were found on the Rockall Bank. The blue whiting spawning stock estimates based on the international survey are given in Table 8.3.4.1.1

The estimated total abundance of blue whiting for the 2014 international survey on the spawning grounds was 3.25 million tonnes, representing an abundance of $31.1 \times 109$ individuals. The spawning stock was estimated at 3 million tonnes and $26.4 \times 109$ individuals. In comparison to the results in 2013, there is a decrease ( $-3 \%$ ) in the observed stock biomass and a related increase in stock numbers ( $+15 \%$ ).
The stock biomass within the survey area is dominated by age classes 3,4 , and 5 and 1 years of the 2010, 2009, 2008 and 2013 year classes respectively. The main contribution ( $76 \%$ ) to the spawning stock biomass was the age groups 4, 3, 5 and 6 .
Mean length $(27 \mathrm{~cm})$ and weight $(104.6 \mathrm{~g})$ are lower than in 2013 and in previous years. This can be attributed to the increasing contribution of young fish to the total stock biomass (Figure 8.3.4.1.3). A positive signal of 3 and 4-year old fish (strong 2010 \& 2011 year classes) continues to be observed across all areas and the 2009 and 2010 year classes are now considered fully recruited to the spawning stock. Signs of a potentially strong 2013 year class could be seen in the survey. However, it is too early to predict the magnitude of that year class yet with any degree of accuracy until it can be confirmed in upcoming surveys.

### 8.3.4.2 International ecosystem survey in the Nordic Seas

## Background and status

The international ecosystem survey in the Nordic Seas (IESNS) is aimed at observing the pelagic ecosystem with particular focus on Norwegian spring-spawning herring and blue whiting (mainly immature fish) in the Norwegian Sea. Estimates in 20002014 are available both for the total survey area and for a "standardized" survey area (Figure 8.3.4.2.1). The latter is more meaningful as the survey coverage has been rather variable in the non-standard areas. However, the historical time series has not been recalculated using the new TS-value for blue whiting, thus the estimates are not directly comparable. The new TS-value gives estimates of roughly $1 / 3$ of the old cal-culations (i.e. around 3.1 times the current values corresponds to the old value).
The survey is carried out in May since 1995 by the Faroes, Iceland, Norway, and Russia, and since 1997 (except 2002 and 2003) the EU. The high effort in this survey with such a broad international participation allowed for broad spatial coverage as well as a relatively dense net of trawl and hydrographic stations.

Since 2005 this survey has extended into the Barents Sea where the main focus of investigations has been young herring. Low numbers of blue whiting found in the Norwegian bottom trawl survey in this area suggest that this gap would not signifi-cantly change the estimate for blue whiting. The survey is coordinated by WGIPS (ICES CM 2014/ SSGESS:01).

Use of this survey in stock assessment
After the benchmark in February 2012 (ICES 2012b) it was decided to not use this survey in the assessment, but it is used as basis for a qualitative estimate of recruitment

## Results for blue whiting

The total biomass of blue whiting registered during the May 2014 survey was 0.63 million tons, which is somewhat less than the biomass estimate in 2013. The stock estimate in number for 2014 is 8.9 billion, which is approximately the same number as in 2012 estimate. The decrease in biomass without a decrease in abundance is caused by more young fish in the stock. Age one is dominating the estimate whereas in 2013 the 1group was more or less absent. The estimate of 1-group in 2014 is 3.7 billion compared to only 0.6 billion in 2013. The number of 2 year olds was lower than in 2013, 2.5 billion compared to 6.3 billion. These results confirm the weak 2012 year class and suggest that the 2013 year class is stronger. This year class constituted to $41 \%$ of the total number and $26 \%$ of the total biomass.

An estimate was also made from a subset of the data or a "standard survey area" between $8^{\circ} \mathrm{W}-20^{\circ} \mathrm{E}$ and north of $63^{\circ} \mathrm{N}$, which has been used as an indicator of the abundance of blue whiting in the Norwegian Sea because the spatial coverage in this area provides a coherent time-series with adequate spatial coverage. This standard survey area estimate is used as an abundance index in WGWIDE. The age-disaggregated total stock estimate in the "standard area" is presented in Table 8.3.4.2.1, showing that the blue whiting in this index area was dominated by fish at age 2 in terms of numbers and age 3 in terms of biomass, i.e. the youngest fish (age 1) is mostly found outside the "standard survey area".

The distribution of blue whiting in 2014 was similar to 2013, but the strong concentration found in the north eastern corner of the Norwegian Sea in 2013 was absent in 2014. The main concentrations were observed both in connection with the continental slopes of Norway and south and southwest Iceland and in the open sea in the southern part
of the Norwegian Sea (Figure 8.3.4.2.1). It should be noted that the spatial survey design was not intended to cover the whole blue whiting stock during this period.
Age and length distributions from the last five years are shown in Figure 8.3.4.2.2.

### 8.3.4.3 Norwegian bottom trawl survey in the Barents Sea (BS-NoRu-Q1(Btr))

## Background and status

Norway has conducted bottom trawl surveys targeting cod and other demersal fish in the Barents Sea since late 1970s. From 1981 onwards there have been systematically designed surveys carried out during the winter months (usually late January-early March) by at least two Norwegian vessels. In some years the survey has been conducted in co-operation with Russia. Blue whiting are regularly caught as a by-catch species in these surveys, and have in some years been among the numerically dominant species (Heino et al., 2003). This survey has in earlier years given the first reliable indication of year class strength of blue whiting.
Most of the blue whiting catches (or samples thereof) have been measured for body length, but very few age readings are available (from 2004 onwards otoliths are systematically collected). The existing age readings suggest that virtually all blue whiting less than 19 cm in length belong to 1-group and that while some 1-group blue whiting are larger, the resulting underestimation is not significant. An abundance index of all blue whiting and putative 1-group blue whiting from 1981 onwards is given in Table 8.3.4.3.1 and follows methods described in Heino et al. (2003).

In 2014 1-group blue whiting were again found in this survey, but not at the same level as in 2012. The catch rate was ranked as the seventh highest in the time series.
Use of this survey in blue whiting assessment
The survey is not used in the assessment, but as basis for a qualitative estimate of recruitment.

### 8.3.4.4 Other surveys

The stock Annex provides information and time series from surveys covering just a small fraction of the stock area. The International Survey in Nordic Seas and adjacent waters in July-August (IESSNS) is an expansion of the Norwegian Sea summer survey (Stock Annex), however the coverage and main focus has changed. Blue whiting is not main target, but the survey gives useful information of the stock in this period. This survey started in 2009.

### 8.4 Stock assessment

Blue whiting was benchmarked February 2012 (ICES 2012b) and the SAM model (Nielsen and Berg, 2014) was chosen as the default assessment model for the stock. ICES has classified the assessment this year as an update assessment, and no new methods were applied at this year's WG. The results from the SAM model were however compared with the results from methods previously applied for the stock (SMS and XSA). The two models gave similar results. This report will just present the results from the SAM method.

The configuration of the SAM model (see the Stock annex for details) is the same as agreed during the Benchmark WK (ICES 2012b). Residuals from the catch at age observation and survey indices are shown in figure 8.4.1. The catch residuals for 2012-2013 show a tendency for a higher observed catch of older fish than estimated by the model.

The SAM model allows a gradually change in exploitation pattern, however it might not fully adapt to the changes in the individual years. Residuals from the IBWSS survey showed a "year effect" with higher indices for ages 3-7 than estimated by the model using all data sources. This however, is often seen time series from acoustic surveys. The IBWSS residuals for 2014 show a tendency to overestimate the age $3-4$ and underestimate age 5-8.

The diagnostic output from the SAM model is limited. There is only 13 parameter estimated within the model of which the uncertainties of catch and survey observations are shown in Table 8.4.2. The CV of the catch and survey observations of the main age groups in the fishery are low for both catch observations (0.15) and suvey (0.22-0.29). The fit for other age groups is also quite good. Compared to noise estimated last year the observation noise for catches is practically the same, while the noise for the survey is shlightly lower.

Figure 8.4.2 presents estimated F at age and exploitation pattern for the whole time series. There are no abrupt changes in the exploitation pattern from 2010 to 2013, even though the landings in 2011 were just $19 \%$ of the landings in 2010, which might have given a different fishing practice. The estimated rather stable exploitation pattern might be due to the use of correlated random walks for $F$ at age with a high estimated correlation coefficient (0.98).

The retrospective analysis shows a stable estimate of F and SSB (Figures 8.4.3). The use of the SAM option for correlated random walks for F at age (and a high estimated correlation coefficient at 0.98 ) limits the changes in exploitation pattern when a new year's data are added to the time series, which probably stabilize the estimate of F and SSB. Recruitment in the terminal year is determined from catch data and an assumption on random walk in recruitment as there is no survey indices for age 1 and 2 . This gives variable recruitment estimate in the terminal year, but the available short time series indicates that recruitment estimates have been in the range of the final (more converged) model estimate.

Stock summary results with added $95 \%$ confidence limits (Figure 8.4.4 and Table 8.4.5) show a decreasing trend in fishing mortality since 2004, with a historical low F in 2011 at 0.04 , and an increase in $F$ to 0.161 in 2013. Recruitment decreased substantially in the period 2000-2009 with a resulting strong decreasing SSB up to 2010 . SSB has almost doubled from 2010 ( 2.9 million tonnes) to 2014 ( 5.5 million tonnes) and is estimated to be above Bpa. The year classes 2005-2008 are at historic low levels, but information from catches and survey show an increase in recruitment since 2009. However, the uncertainty around the recruitment in the most recent year is high. The rather high estimates are however confirmed by qualitative analysis of recruitment indices from surveys not used in the SAM assessment.

### 8.5 Final assessment

Input data are catch numbers at age (Table 8.3.1.4.1), mean weight-at-age in the stock and in the catch (Table 8.3.3.1) and natural mortality and proportion mature in Table 8.3.3.2. Applied survey data are presented in Table 8.3.4.1.1.

This is the third year that the SAM model has been applied for this stock. The model settings can be found in the Stock annex.

The model was run until 2013. The SSB January $1^{\text {st }}$ in 2014 is estimated from survivors and estimated recruits (with an assumption of random walks for recruitment, which in this case give recruitment in 2014 as estimated for 2013). $11 \%$ of age-group 1 is assumed
mature thus the recruitment influences the size of SSB. The key results are presented in Tables 8.4.3-8.4.4 and summarized in Table 8.4.5 and Figure 8.4.4. Residuals of the model fit are shown in Figures 8.4.1.

### 8.6 State of the Stock

SSB has almost doubled from 2010 ( 2.9 million tonnes) to 2014 ( 5.5 million tonnes) and is clearly above Bpa ( 2.25 million tonnes). This increase is due to historical low F since 2011 in combination with a higher recruitment (age 1) since 2010. The uncertainty around the recruitment in the most recent year is high.

The year classes 2005-2008 are in the very low end of the historical recruitments, but recruitment since 2009 and 2010 year class are estimated higher. Information on the 2012 and 2013 year classes is uncertain, but the level is confirmed from qualitative analysis of survey indices.

### 8.7 Biological reference points

As a response to a special request from NEAFC, ICES re-evaluated in May 2013 (ICES advice, 2013) the reference points for the stock. ICES concluded that Blim and Bpa should remain unchanged. Fpa and Flim were undefined. Equilibrium stochastic simulations have been used to give a new value for Flim $=0.48$. On the basis of this and the uncertainty in the assessment, a corresponding value for $\mathrm{Fpa}=0.32$ was derived. Currently MSY advice is based on a management strategy evaluation which used F0.1 as a proxy for FMSY and an MSY Btrigger = Bpa. The new simulations provide estimates of FMSY $=0.30$. There are no scientific reasons to reduce MSY Btrigger below Bpa, and no estimates of MSY Btrigger are above Bpa. Under these circumstances it is proposed that Bpa be retained as MSY Btrigger for the MSY framework.
In a new request from NEAFC, June 2013, ICES was requested to confirm the suggested reference points, more specifically to confirm:
a) That the value of F0.1 is considered to be 0.22 rather than 0.18 , as stated in the advice of September 2012
b) That the value of Fmsy is considered to be 0.30 rather than 0.18 , as stated in the advice of September 2012

ICES confirmed (ICES advice October 2013) that the value of F0.1 is currently estimated to be 0.22 . ICES advises that the value of FMSY is considered to be 0.30 and this replaces the F0.1 proxy for FMSY of 0.18 from the advice of September 2012.

The present reference points and their technical basis are:

| Reference point | Blim | Bpa | Flim | Fpa |
| :--- | :--- | :--- | :--- | :--- |
| Value | 1.5 mill t | 2.25 mill. t | 0.48 | 0.32 |
| Basis | Bloss | Blim exp $\left(1.645^{*}\right.$ <br> $\sigma)$, with $\sigma=0.25$.  | Equilibrium <br> stochastic <br> simulations, <br> (ICES advice, <br> $2013)$ | Based on Flim <br> and assessment <br> uncertainties <br> (ICES advice, <br> 2013) |


| Reference point | FMAX | F0.1 | FMSY | MSY Btrigger |
| :--- | :--- | :--- | :--- | :--- |
| Value | NA | 0.22 | 0.30 | 2.25 mill. t |
| Basis | FMAX is poorly <br> defined | Yield per recruit <br> (ICES advice, | Equilibrium <br> stochastic <br> simulations, <br> (ICES advice, | Bpa |
|  |  | 2013 and |  |  |
|  |  | WGWIDE, 2013) |  |  |

### 8.8 Short term forecast

### 8.8.1 Recruitment estimates

The benchmark WKPELA in February 2012 concluded that the available survey indices should be used in a qualitative way to estimate recruitment, rather than using them in a strict quantitative model framework. The WGWIDE has followed this rec-ommendation and investigated several survey time series indices with the potential to give quantitative or semi-quantitative information of blue whiting recruitment. The investigated survey series were standardized by dividing with their mean and are shown in Figure 8.8.1.1.

The International Ecosystem Survey in the Nordic Seas (IESNS) only partially covers the known distribution of recruitment from this stock. Both the 1-group (2013 year class) and 2-group (2012 year class) indices from the survey in 2013 were near the middle of the historical range.
The International Blue Whiting Spawning Stock Survey (IBWSS) is not designed to give a representative estimate of immature blue whiting. However, the 1-group indices appear to be fairly consistent with corresponding indices from older ages. The 1-group (2013 year class) index from the survey in 2014 were the highest in the time series.

The Norwegian bottom trawl survey in the Barents Sea (BS-NoRu-Q1(Btr)) in Febru-ary-March 2014, showed that 1-group blue whiting was present and the index was close to the mean value in the time series (Table 8.3.4.3.1). This index should be used as a presence/absence index, in the way that when blue whiting is present in the Barents Sea this is usually a sign of a strong year-class (Heino et al. 2008), as all known strong year classes have been strong also in the Barents Sea.
The Icelandic bottom trawl survey (March) has a time series from 1996 to present. This survey is aimed at demersal species, but blue whiting juveniles are caught as bycatch. Some signals in recruitment are evident in the time series. The recruitment index of age 1 fish was obtained by a cut-off length at 22 cm . The 1-group estimate in 2014 (2013 year class) was the highest observed in the time series.

The Faroese Plateau spring (March) bottom trawl survey has a time series from 1994 to present. While this survey is not specifically aimed at blue whiting, nor has it been used in any assessments, there are some signals in recruitment evident in the time series. An index (number per trawl hour) was created based on a length split at 22 cm as an estimate of the abundance of age 1 blue whiting. The 1-group estimate in 2014 (2013 year class) was the highest observed in the time series.

In conclusion, the indices from available survey time series indicate that the 2012 year class is around or lower than average. Moreover, the new information regarding the 2011 year class suggests that this is above average. The WG therefore decided to use the estimate from the assessment for the 2011 year class (approximately at the 70th
percentile), and the geometric mean of the whole period (1981-2011) for the 2012 yearclass. The 2013 year classes is assumed to be strong from the survey series and the WG deceided to use the 75th percentile as input (26.94 billion at age 1 in 2014). No information is available for the 2014 and 2015 yearclasses and the geometric mean of the whole period (1981-2011) was used for these yearclasses ( 13.77 billion at age 1 in 2015 and 2016) (Table 8.8.1.1).

### 8.8.2 Short term forecast

The SAM model provides uncertainty of fishing mortality and stock numbers in the final year estimates which only can be fully applied in a stochastic short-term forecast. The default stochastic projections applied for SAM assessments are carried out by projecting the final year's SAM estimates of stock numbers $(\log (N))$ and fishing mortality $(\log (F))$. Using the variance-covariance matrix of those estimates, a high number (1000) of replicates of the initial stock numbers and fishing mortalities are randomly drawn, such that the variance and co-variance between stock N and F are maintained. Due to additional information affecting recruitment (qualitative use of recruitment indices from surveys not used by SAM), the initial stock estimate for age 1 and age 2 can optionally be changed by an input factor. The 1000 replicates are then simulated forward according to the management options. The presented forecast result in the option table is finally derived from the median of the 1000 replicates.

Compared to a deterministic forecast the stochastic forecast gives slightly higher estimates of TAC and SSB. For this year's advice the TAC for 2015 is estimated $4-5 \%$ higher and SSB in 2016 8-9\% higher. The difference is due to the assumed log-normal distributed stock number. The median of the projected stock $N$ is unbiased compared to the stock N from a deterministic forecast, but the median of quantities like yield and SSB, which is the sum of several age groups N weighted by e.g. F , mean weight and proportion mature, will be higher. The difference increases by increasing uncertainty of the initial stock numbers used for the forecast.

The default stochastic forecast has been applied for the last two years. For this year however, a deterministic version was applied for advice. The MSE evaluation (ICES advice 2014) used a deterministic forecast in the evaluation. The conclusion, that a HCR with target $\mathrm{F}=0.30$ is precautionary is sensitive to the choice of forecast model. With a TAC estimated 4-5\% lower in the MSE than actually applied in the MSE will give a too high target F for precautionary management. Due to time constraint it is not possible to correct the MSE and re-estimate a precautionary target F. Therefore the WGWIDE concluded to use the other alternative, to use a deterministic forecast this year.

### 8.8.2.1 Input

Table 8.8.2.1.1 lists the input data for the short term predictions. Mean weight at age in the stock and mean weight in the catch are the same and are calculated as three year averages (2011-2013). Selection (exploitation pattern) is based on average F in the most recent three years. The proportion mature for this stock is assumed constant over the years and values are copied from the assessment input.
Recruitment (age 1) in 2012 is assumed as estimated by the SAM model. Recruitment in 2013 is assumed to be somewhat lower than the SAM estimate and is thus assumed at the long term average (GM 1981-2011). The recruitment in 2014 is believed to be stronger and is thus assumed to be at the $75^{\text {th }}$ percentile of SAM the estimated recruitment 1981-2011. The recruitment in 2015 and 2016 are assumed at the long term average (GM 1981-2011).

The "Agreed Records of conclusion of fisheries consultations between the European Union, the Faroe Islands, , Iceland and Norway on the management of blue-whiting in the North East Atlantic in 2014" a limitation of 1200000 tonnes of blue whiting in 2014 was set in accordance to the management plan. Information from the WG members indicates a full quota uptake in 2014. F in 2014 is calculated on the basis of this TAC.

### 8.8.2.2 Output

A range of predicted catch and SSB options from the deterministic short term forecast used for advice are presented in Table 8.8.2.2.1. For comparison the stochastic forecast is presented in Table 8.8.2.2.2.

The existing management plan has a target F of 0.18 which applies once SSB is above $\mathrm{B}_{\mathrm{pa}}$ ( 2.250 million tonnes) on the $1^{\text {st }}$ January of the year in which the TAC is to be set. SSB in 2015 is estimated to be 5.7 million tonnes (above $B_{p a}$ ) such that $F$ in 2015 should be 0.18 . This will lead to a TAC in 2015 of 840000 tonnes (an decrease of $30 \%$ ). This is expected to lead to an SSB of 5.904 million tonnes in 2015, which is high above $B_{p a}$.
The option table provides TAC calculation for F in the range 0.18 to 0.32 (Fpa). All of them will produce a SSB in 2016 higher than Bpa.
Following the ICES MSY framework implies fishing mortality to be at FMSY $=0.30$ which will give a TAC in 2015 at 1.326 million tonnes ( $11 \%$ increase).

### 8.9 Comparison with previous assessment and forecast

Comparison of the final assessment results from the last 6 years (Figure 8.9.1) show stable and consistent output, except for the 2010 assessment. In 2010 the survey results from the IBWSS 2010 survey were applied, which gave a too low stock estimate and a corresponding too high F. An evaluation of the survey coverage led to a later exclusion of the 2010 observations.

This year's assessment gave a decrease in SSB for 2013. This is mainly due to the applied mean weight at age, where the last year's estimate of SSB for 2013 was calculated using the 2012 set of mean weight. Appling the observed mean weight available this year, the calculated SSB 2013 decreases.

### 8.10 Quality considerations

The assessment shows a low to moderate uncertainty of the absolute estimate of F and SSB, and a higher uncertainty on the recruiting year-classes. The assessment presented this year should be considered to be at the same quality as the assessment presented last year with respect to the absolute estimates of stock metrics, and certain in the conclusion on the steep decline in F in the most recent two years and an increase in SSB. Recruitment (age 1) is estimated significantly higher in 2011-2014 than in the years (2007-2009) with the historically low recruitments.

The quality of age readings of blue whiting was evaluated at a workshop (WKARBLUE) on age reading of blue whiting which took place in Bergen, Norway, from 10-14 June 2013 chaired by Jane Amtoft Godiksen and Manuel Meixide. Blue whiting otoliths have proven to be quite difficult to age, and though guidelines has been constructed, the experience of the reader determines the interpretation of the otolith structure. This strongly indicates that biased readings might have been present in many cases for the historical data used in the assessment, even for experienced agereaders. It is therefore recommended to have regular exchanges and workshops in order to improve the agreement between readers. WKARBLUE recommends a new
workshop in 2017, and the survey group recommended that the age readers look closer into a discrepancy problem for ages $1-3$ in the 2014 blue whiting age reading material. It is therefore recommended that an age reading workshop will be held as soon as possible.
The population structure of blue whiting in the NE Atlantic appears to be more complex than the current single-stock structure used for management purposes. The ICES SIMWG (Stock Identification Methods Working Group) has concluded "Blue whiting in the NE Atlantic should be considered as two stock units: Northern and Southern". WGWIDE therefore recommends that during the next "Age Reading Workshop for Blue Whiting", otoliths from the whole distribution area of this stock should be collected to perform shape analysis, aiming to clarify the blue whiting stock structure composition.

Assessment results for blue whiting are highly dependent on the quality of the only survey that covers the spawning stock (IBWSS). A post-cruise meeting compiled a joint survey report (Anon 2014) where it was concluded that the quality of the survey was high this year. The post-cruise meeting noted that the favourable weather conditions allowed the five survey vessels to successfully cover the entire planned area within the time available and achieved good containment of the stock. Estimated uncertainty around the mean acoustic density is low and comparable to the previous two years.

The assessment model SAM was applied for the third time for blue whiting. The two assessment models (SMS and XSA) previously applied for the stock gave a similar result as SAM and a consistent picture of the state of the stock.

### 8.11 Management considerations

The assessment shows a low to moderate uncertainty of the absolute estimate of F and SSB, and a higher uncertainty on the recruiting year-classes. SSB and F are estimated from a fairly good quality catch data and from only one survey giving information on the spawning stock (IBWSS). It is essential that this survey be maintained and it is important to maintain good geographical survey coverage within the agreed time window to avoid increases in assessment uncertainty. A continuous lack of one or more vessels (Norway did not take part of the 2013 survey) will put the survey quality at risk. Due to good planning and favourable weather conditions the implementation of the survey in 2014 resulted in good quality data.
Recruitment (age 1) is estimated significantly higher in 2011-2014 than in the years (2007-2009) with the historically low recruitments. Information from surveys and the fishery suggest a good recruitment in 2014 as well.

### 8.12 Ecosystem considerations

An extensive overview of ecosystem considerations relevant for blue whiting can be found in the stock annex. A more general overview of the pelagic complex in the NE Atlantic can be found in Chapter 1 of this report.

### 8.13 Regulations and their effects

Existing TAC are based on annual agreement between the "Coastal States" EU, Norway, Iceland and the Faroe Island. No minimum landing size is associated with blue whiting.

### 8.13.1 Management plans and evaluations

A meeting was held in 2008 (Anon, 2008) at which a number of potential management strategies for blue whiting were examined through simulations. Following this meeting a new management plan was proposed by the Coastal States. The full text of this plan is also presented in the stock annex. ICES was requested by the coastal states to evaluate this proposed management plan and this evaluation was carried out by WGWIDE in 2008. ICES considers that this plan is precautionary if fishing mortality in the first year is immediately reduced to the fishing mortality that is implied by the harvest control rule. The reduction to $\mathrm{F}=0.18$ was followed by managers for setting the 2010 TAC. Likewise an $\mathrm{F}=0.05$ according to the management plan was applied for 2011. The full text of the management plan is presented in the stock annex.

In May 2013 ICES answered (ICES advice May 2013) a request from NEAFC to review a potential new HCR function:

ICES considered that the current management plan is precautionary. A number of alternative $F$ targets in the range of $0.1-0.35$ were evaluated for the current harvest control rule (HCR) form and found to be precautionary up to an F target of 0.32 (corresponding to Fpa), with only a minimal increase in mean TAC for F targets above 0.3.

Inclusion of catch stabilization mechanisms have been tested in the current HCR and are considered precautionary as they do not increase the probability of SSB< Blim above 0.05 . Over the entire time period examined there are no significant differences in catch either with or without the stabilizers.

Initial evaluations indicate that a number of options for the newly proposed HCR form (with increasing F at high biomass) have been found to be precautionary. However, these preliminary evaluations are not considered sufficiently robust. Based on the results presented, ICES suggests that a small subset of such rules should be selected and tested further with greater rigour before they are judged suitable for precautionary management. This suggestion led to a new request from NEAFC to evaluate a specified HCR. The conclusion of this new evaluation was not finalised during the WGWIDE meeting

Testing of banking and borrowing scenarios showed very little impact of either extreme banking or borrowing. Allowing a maximum of $10 \%$ to be banked or borrowed any year is considered precautionary when used with the existing HCR.
In October 2013 ICES answered (ICES advice October 2013) a request from NEAFC to elaborate the advice from May. ICES confirmed the advice from May. The request proposes also a new multistage HCR with two optional values for a slope parameter that determine the target F as function of SSB. The results of the evaluations showed that the HCRs gave similar performance with both values and no differences could be seen in the plots of SSB and F. The increase in F at high biomass leads to greater catch variability and $4 \%$ higher yields over the 40-year period simulated (particularly during periods of high recruitment). The multistage HCR leads to higher interannual variability (IAV) in TAC during the period of declining stock as recruitment changes from the high to the low regime. IAV for the multistage HCR is $33 \%$ compared to $25 \%$ for the F target of 0.22 .

No international agreement has been obtained with respect a specific HCR to be used for a new management plan for blue whiting. The TAC for 2014 was set to 1.2 million tons equivalent to an F of around 0.23 .

### 8.14 References

Anon. 2014. Report of the International Blue Whiting Spawning Stock Survey. (IBWSS), spring 2014.

Heino. 2014. Revising the maturity ogive for blue whiting. Working document to WGWIDE 2014.
ICES 2014. Report of the Working Group of International Pelagic Surveys (WGIPS). ICES CM 2014/SSGESS:01.
ICES 2012b. Report of the Benchmark Workshop on Pelagic Stocks (WKPELA 2012) 13-17 February 2012 Copenhagen, Denmark. ICES CM 2012/ACOM:47

ICES advice 2013. NEAFC request to ICES to evaluate the harvest control rule element of the long-term management plan for blue whiting. Special request, Advice May 2013. Section 9.3.3.1 of ICES advice Book 9.

ICES advice 2013. NEAFC request to ICES to evaluate the extra harvest control rule options for the long-term management plan for blue whiting, Advice October 2013. Section 9.3.3.7 of ICES advice Book 9 .

Nielsen, A., and Berg, C.W. 2014. Estimation of time-varying selectivity in stock assessments using state-space models. Fisheries Research, 158: 96-101.

Table 8.3.1.1. Blue whiting landings (tonnes) by country for the period 1988-2013, as estimated by the Working Group.

| Country | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Denmark | 18941 | 26630 | 27052 | 15538 | 34356 | 41053 | 20456 | 12439 | 52101 | 26270 | 61523 | 64653 | 57686 | 53333 | 51279 | 82935 |
| Estonia |  |  |  |  | 6156 | 1033 | 4342 | 7754 | 10982 | 5678 | 6320 |  |  |  |  |  |
| Faroes | 79831 | 75083 | 48686 | 10563 | 13436 | 16506 | 24342 | 26009 | 24671 | 28546 | 71218 | 105006 | 147991 | 259761 | 205421 | 329895 |
| France |  | 2191 |  |  |  | 1195 |  | 720 | 6442 | 12446 | 7984 | 6662 | 13481 | 13480 | 14688 | 14149 |
| Germany | 5546 | 5417 | 1699 | 349 | 1332 | 100 | 2 | 6313 | 6876 | 4724 | 17969 | 3170 | 12655 | 19060 | 17050 | 22803 |
| Iceland |  | 4977 |  |  |  |  |  | 369 | 302 | 10464 | 68681 | 160430 | 260857 | 365101 | 287336 | 501493 |
| Ireland | 4646 | 2014 |  |  | 781 |  | 3 | 222 | 1709 | 25785 | 45635 | 35240 | 25200 | 29854 | 17825 | 22580 |
| Japan |  |  |  |  | 918 | 1742 | 2574 |  |  |  |  |  |  |  |  |  |
| Latvia |  |  |  |  | 10742 | 10626 | 2582 |  |  |  |  |  |  |  |  |  |
| Lithuania |  |  |  |  |  | 2046 |  |  |  |  |  |  |  |  |  |  |
| Netherlands | 800 | 2078 | 7750 | 17369 | 11036 | 18482 | 21076 | 26775 | 17669 | 24469 | 27957 | 35843 | 46128 | 73595 | 37529 | 45832 |
| Norway | 233314 | 301342 | 310938 | 137610 | 181622 | 211489 | 229643 | 339837 | 394950 | 347311 | 560568 | 528797 | 533280 | 573311 | 571479 | 834540 |
| Poland | 10 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Portugal | 5979 | 3557 | 2864 | 2813 | 4928 | 1236 | 1350 | 2285 | 3561 | 2439 | 1900 | 2625 | 2032 | 1746 | 1659 | 2651 |
| Spain | 24847 | 30108 | 29490 | 29180 | 23794 | 31020 | 28118 | 25379 | 21538 | 27683 | 27490 | 23777 | 22622 | 23218 | 17506 | 13825 |
| Sweden *** | 1229 | 3062 | 1503 | 1000 | 2058 | 2867 | 3675 | 13000 | 4000 | 4568 | 9299 | 12993 | 3319 | 2086 | 18549 | 65532 |
| UK (England)**** |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| UK (Scotland) | 5183 | 8056 | 6019 | 3876 | 6867 | 2284 | 4470 | 10583 | 14326 | 33398 | 92383 | 98853 | 42478 | 50147 | 26403 | 27382 |
| USSR / Russia * | 177521 | 162932 | 125609 | 151226 | 177000 | 139000 | 116781 | 107220 | 86855 | 118656 | 130042 | 178179 | 245198 | 315478 | 290068 | 355319 |
| TOTAL | 557847 | 627447 | 561610 | 369524 | 475026 | 480679 | 459414 | 578905 | 645982 | 672437 | 1128969 | 1256228 | 1412927 | 1780170 | 1556792 | 2318935 |

Table 8.3.1.1 (continued). Blue whiting landings (tonnes) by country for the period 1988-2013, as estimated by the Working Group.

| Country | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Denmark | 89500 | 41450 | 56979 | 48659 | 18134 | 248 | 140 | 165 | 340 | 2167 |
| Estonia | ** |  |  |  |  |  |  |  |  |  |
| Faroes | 322322 | 266799 | 321013 | 317859 | 225003 | 58354 | 49979 | 16405 | 43290 | 85768 |
| France |  | 8046 | 18009 | 16638 | 11723 | 8831 | 7839 | 4337 | 9799 | 8978 |
| Germany | 15293 | 22823 | 36437 | 34404 | 25259 | 5044 | 9108 | 278 | 6239 | 11418 |
| Iceland | 379643 | 265516 | 309508 | 236538 | 159307 | 120202 | 87942 | 5887 | 63056 | 104918 |
| Ireland | 75393 | 73488 | 54910 | 31132 | 22852 | 8776 | 8324 | 1195 | 7557 | 13205 |
| Japan |  |  |  |  |  |  |  |  |  |  |
| Latvia |  |  |  |  |  |  |  |  |  |  |
| Lithuania |  |  | 4635 | 9812 | 5338 |  |  |  |  |  |
| Netherlands | 95311 | 147783 | 102711 | 79875 | 78684 | 35686 | 33762 | 4595 | 26526 | 51635 |
| Norway | 957684 | 738490 | 642451 | 539587 | 418289 | 225995 | 194317 | 20539 | 118832 | 196246 |
| Poland |  |  |  |  |  |  |  |  |  |  |
| Portugal | 3937 | 5190 | 5323 | 3897 | 4220 | 2043 | 1482 | 603 | 1955 | 2056 |
| Spain | 15612 | 17643 | 15173 | 13557 | 14342 | 20637 | 12891 | 2416 | 6726 | 15274 |
| Sweden *** | 19083 | 2960 | 101 | 467 | 4 | 3 | 50 | 1 | 4 | 199 |
| UK (England + Wales) | 2593 | 7356 | 10035 | 12926 | 14147 | 6176 | 2475 | 27 | 2866 | 4100 |
| UK (Northern Ireland) |  |  |  |  |  |  |  |  |  | 1232 |
| UK (Scotland) | 57028 | 104539 | 72106 | 43540 | 38150 | 173 | 5496 | 1331 | 6305 | 8166 |
| USSR / Russia * | 346762 | 332226 | 329100 | 236369 | 225163 | 149650 | 112553 | 45841 | 88303 | 120674 |
| Greenland*** |  |  |  |  |  |  |  |  |  | 2133 |
| Unallocated |  |  |  |  |  |  |  |  | 3499 |  |


| TOTAL | 2377568 | 2026953 | 1968456 | 1612330 | 1246465 | 635639 | 523832 | 103592 | 385297 | 626036 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

* From 1992 only Russia
** Reported to the EU but not to the ICES WGNPBW. (Landings of 19,467 tonnes)
*** Estimates from Sweden and Greenland: are not included in the Catch at Age Number
**** From 2012

Table 8.3.1.2. Blue whiting total landings by country and area for 2013 in tonnes, as estimated by the Working Group.


* Note: the value for area IXa is summed across CN, CS and S subdivisions of this area.

Table 8.3.1.3. Blue whiting total landings of by quarter and area for 2013 in tonnes, as estimated by the Working Group.

| Area | 1 | 2 | 3 | 4 | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IIa | 844 | 9699 | 11439 | 5346 | 27328 |
| IIb |  |  | 239 | 683 | 922 |
| IIIa |  |  | 74 | 15 | 89 |
| IVa | 165 | 3304 | 4750 | 371 | 8590 |
| IVb |  | 16 | 25 | 29 | 70 |
| IVc |  |  |  |  | 0 |
| IXa | 580 | 1740 | 1984 | 749 | 5053 |
| Va | 29 | 1119 | 1822 | 354 | 3324 |
| Vb | 39025 | 168874 | 487 | 18525 | 226911 |
| VIa | 3249 | 84672 | 86 | 1 | 88008 |
| VIb | 36185 | 10505 |  |  | 46690 |
| VIIb | 5286 | 1199 |  |  | 6485 |
| VIIc | 109801 | 3207 |  |  | 113009 |
| VIIg |  |  |  |  | 0 |
| VIIh |  |  |  |  | 0 |
| VIIIa | 4 | 7 | 44 | 1081 | 1136 |
| VIIIb | 14 | 13 | 13 | 629 | 669 |
| VIIIc | 1785 | 2061 | 3534 | 4672 | 12051 |
| VIIId | 1 | 0 | 327 | 356 | 685 |
| VIIj | 4 | 252 | 10 | 30 | 296 |
| VIIk | 84084 |  |  |  | 84084 |
| XII | 253 |  |  |  | 253 |
| XIVa |  |  | 174 |  | 174 |
| XIVb | 8 |  |  | 2 | 10 |
| Total | 281318 | 286669 | 25009 | 32842 | 625837 |

Table 8.3.1.1.1. Blue whiting total catches (tonnes), total landings (tonnes) and discards (tonnes) for 2013.

| Country | Catches | Landings | Discards | \% Discards | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Denmark | 2167 | 2167 | - | no sampling, discard assumed zero |  |
| Faroe Islands | 85768 | 85768 | - | no sampling, discard assumed zero | Discard ban in place |
| France* | 8978 | 8978 | - | no discards |  |
| Germany** | 11655 | 11418 | 237 | 2\% | Discards due to by-catch |
| Iceland | 104918 | 104918 | - | no sampling, discard assumed zero | Discard ban in place |
| Ireland | 13205 | 13205 | - | 0 |  |
| Netherlands | 51750 | 51635 | 115 | 1\% |  |
| Norway | 196246 | 196246 | - | no sampling, discard assumed zero | Discard ban in place |
| Portugal ${ }^{* * *}$ | 2756 | 2056 | 700 | 25\% | Discards mainly reason: by-catch/market-forces/offer-demand dynamics |
| Russia | 120674 | 120674 | - | no sampling, discard assumed zero | Discard ban in place |
| Spain**** | 20680 | 15274 | 5406 | 26\% | Discards mainly reason: by-catch/market-forces/offer-demand dynamics/undersized fish |
| UK (England + Wales) |  | 4100 | non available |  |  |
| UK (S cotland) |  | 8166 | non available |  |  |
| UK (Northern Ireland) |  | 1232 | non available |  |  |

* Working Document (Tetard, 2014)
** Working Document (Ulleweit, 2014)
*** Working Document (Prista et al. 2014)
**** Working Document (Pérez et al. 2014)

Table 8.3.1.2.1. Sampling intensity for blue whiting from the commercial catches by fishery in 2013.

| Quarter | Fisheries | Directed | Mixed* | Southern | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | No. of |  |  |  |  |
| 1 | samples | 217 | 39 | 48 | 304 |
|  | WG Catch | 278509 | 277 | 2532 | 281318 |
|  | No. Of |  |  |  |  |
| 2 | samples | 229 | 12 | 82 | 323 |
|  | WG Catch | 279489 | 3358 | 3821 | 286669 |
|  | No. of |  |  |  |  |
| 3 | samples | 48 | 87 | 58 | 193 |
|  | WG Catch | 14764 | 4699 | 5546 | 25009 |
|  | No. of |  |  |  |  |
| 4 | samples | 33 | 0 | 62 | 95 |
|  | WG Catch | 27199 | 212 | 5431 | 32842 |
| Total No. of samples |  | 527 | 138 | 250 | 915 |
| $\begin{array}{\|l} \hline \begin{array}{l} \text { Total WG } \\ \text { Catch } \end{array} \\ \hline \end{array}$ |  | 599961 | 8546 | 17329 | 625837 |
| tonnes per sample |  | 1138 | 62 | 69 | 684 |

* Norwegian mixed fishery only.

Table 8.3.1.2.2 Blue whiting. Total landings, No. of samples, No. of fish measured and No. of fish aged by country and quarter for 2013.

| Country | Quarter | Landings (t) | No. Samples | No. Fish Measured | No. Fish Aged |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Denmark | 1 | 84 | 2 | 59 | 59 |
|  | 2 | 1760 | 1 | 53 | 53 |
|  | 3 | 273 |  |  |  |
|  | 4 | 50 |  |  |  |
|  | Total | 2167 | 3 | 112 | 112 |
| Faroe Islands | 1 | 36170 | 3 | 235 | 200 |
|  | 2 | 30177 | 3 | 410 | 299 |
|  | 3 | 2690 | 1 | 50 | 20 |
|  | 4 | 16730 | 2 | 150 | 125 |
|  | Total | 85768 | 9 | 845 | 644 |
| France | 1 | 5073 |  |  |  |
|  | 2 | 2103 |  |  |  |
|  | 3 | 366 |  |  |  |
|  | 4 | 1436 |  |  |  |
|  | Total | 8978 | 0 | 0 | 0 |
| Germany | 1 | 6403 |  |  |  |
|  | 2 | 4938 | 29 | 2033 | 155 |
|  | 3 | 14 |  |  |  |
|  | 4 | 64 |  |  |  |
|  | Total | 11418 | 29 | 2033 | 155 |
| Iceland | 1 | 35 | 1 | 97 | 50 |
|  | 2 | 98506 | 34 | 1752 | 2593 |
|  | 3 | 2694 |  |  |  |
|  | 4 | 3683 | 2 | 200 | 100 |
|  | Total | 104918 | 37 | 2049 | 2743 |
| Ireland | 1 | 12428 | 11 | 3751 | 900 |
|  | 2 | 777 |  |  |  |
|  | 3 | 0 |  |  |  |
|  | 4 | 0 |  |  |  |
|  | Total | 13205 | 11 | 3751 | 900 |
| Netherlands | 1 | 23191 | 70 | 11263 | 1749 |
|  | 2 | 27764 | 5 | 827 | 125 |
|  | 3 | 0 |  |  |  |
|  | 4 | 680 |  |  |  |
|  | Total | 51635 | 75 | 12090 | 1874 |
| Norway | 1 | 156320 | 99 | 3140 | 544 |
|  | 2 | 34705 | 28 | 2254 | 596 |
|  | 3 | 4699 | 87 | 2467 | 200 |
|  | 4 | 521 |  |  |  |
|  | Total | 196246 | 214 | 7861 | 1340 |
| Portugal | 1 | 143 | 9 | 705 | 269 |
|  | 2 | 580 | 8 | 852 | 279 |
|  | 3 | 987 | 3 | 351 | 93 |
|  | 4 | 346 | 3 | 197 | 84 |
|  | Total | 2056 | 23 | 2105 | 725 |
| Russia | 1 | 30488 | 64 | 12212 | 692 |
|  | 2 | 77212 | 140 | 27958 | 2161 |
|  | 3 | 8728 | 47 | 11016 | 801 |
|  | 4 | 4246 | 29 | 5765 | 484 |
|  | Total | 120674 | 280 | 56951 | 4138 |
| Spain | 1 | 2389 | 39 | 3765 | 471 |
|  | 2 | 3242 | 74 | 7741 | 274 |
|  | 3 | 4558 | 55 | 5930 | 529 |
|  | 4 | 5085 | 59 | 4887 | 492 |
|  | Total | 15274 | 227 | 22323 | 1766 |
| UK (England + Wales) | 1 |  |  |  |  |
|  | 2 | 4100 |  |  |  |
|  | 3 |  |  |  |  |
|  | 4 |  |  |  |  |
|  | Total | 4100 | 0 | 0 | 0 |
| UK (Scotland) | 1 | 7362 | 6 | 827 | 178 |
|  | 2 | 804 | 1 | 132 | 58 |
|  | 3 |  |  |  |  |
|  | 4 |  |  |  |  |
|  | Total | 8166 | 7 | 959 | 236 |
| UK (Northern Ireland) | 1 | 1232 |  |  |  |
|  | 2 |  |  |  |  |
|  | 3 |  |  |  |  |
|  | 4 |  |  |  |  |
|  | Total | 1232 | 0 | 0 | 0 |
|  | Grand Total | 625837 | 915 | 111079 | 14633 |

Table 8.3.1.3.1. Blue whiting landings in numbers ('000) by length group ( cm ) and quarter for the directed fishery in 2013

| Length (cm) | Quarter $1$ | Quarter 2 | Quarter 3 | Quarter 4 | All year |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 |  |  |  |  |  |
| 6 |  |  |  |  |  |
| 7 |  |  |  |  |  |
| 8 |  |  |  |  |  |
| 9 |  |  |  |  |  |
| 10 |  |  | 13 |  | 13 |
| 11 |  |  | 63 |  | 63 |
| 12 |  |  | 254 |  | 254 |
| 13 |  |  | 390 |  | 380 |
| 14 |  |  | 456 |  | 444 |
| 15 |  |  | 5665 | 1 | 5652 |
| 16 | 314 |  | 12453 | 82 | 12835 |
| 17 | 2535 | 281 | 11323 | 97 | 14224 |
| 18 | 5876 | 3314 | 5292 | 51 | 14461 |
| 19 | 8858 | 9922 | 1098 | 97 | 19900 |
| 20 | 11666 | 28609 | 282 | 509 | 40705 |
| 21 | 18894 | 30875 | 847 | 2209 | 50868 |
| 22 | 60107 | 41471 | 2108 | 4299 | 101850 |
| 23 | 79347 | 66012 | 3691 | 6580 | 148195 |
| 24 | 62396 | 108991 | 5558 | 7622 | 175360 |
| 25 | 71377 | 108331 | 5252 | 7797 | 181412 |
| 26 | 123554 | 111253 | 3515 | 6138 | 223079 |
| 27 | 210961 | 125266 | 1831 | 4985 | 311743 |
| 28 | 191392 | 119038 | 1136 | 3078 | 281605 |
| 29 | 137182 | 109059 | 853 | 2044 | 227473 |
| 30 | 135909 | 150096 | 1029 | 1821 | 266625 |
| 31 | 112469 | 167888 | 1089 | 1458 | 260429 |
| 32 | 117856 | 178831 | 1268 | 2104 | 278192 |
| 33 | 92798 | 142778 | 951 | 1432 | 218036 |
| 34 | 86647 | 117239 | 761 | 1591 | 188386 |
| 35 | 58070 | 69166 | 571 | 1051 | 116644 |
| 36 | 29130 | 26169 | 317 | 606 | 51722 |
| 37 | 19617 | 13680 | 190 | 323 | 30893 |
| 38 | 11045 | 4769 | 63 | 202 | 14386 |
| 39 | 2629 | 2305 | 25 | 40 | 4923 |
| 40 | 2695 | 673 | 13 |  | 3122 |
| 41 | 599 | 328 | 13 |  | 940 |
| 42 | 140 | 688 |  |  | 828 |
| 43 | 8 | 322 |  | 20 | 350 |
| 44 | 78 | 322 |  |  | 400 |
| 45 | 5 |  |  |  | 5 |
| 46 |  | 322 |  |  | 322 |
| 47 |  |  |  |  |  |
| 48 |  |  |  |  |  |
| 49 |  |  |  |  |  |
| 50 |  |  |  |  |  |
| 51 |  |  |  |  |  |
| 52 |  |  |  |  |  |
| 53 |  |  |  |  |  |
| 54 |  |  |  |  |  |
| 55 |  |  |  |  |  |
| TOTAL numbers | 1654153 | 1737997 | 68369 | 56238 | 3246720 |

Table 8.3.1.3.2. Blue whiting landings in numbers ('000) by length group ( cm ) and quarter for the mixed fishery in 2013.

| Length (cm) | Quarter 1 | Quarter 2 | Quarter 3 | Quarter 4 | All year |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 |  |  |  |  |  |
| 6 |  |  |  |  |  |
| 7 |  |  |  |  |  |
| 8 |  |  |  |  |  |
| 9 |  |  |  |  |  |
| 10 |  |  |  |  |  |
| 11 |  |  |  |  |  |
| 12 |  |  |  |  |  |
| 13 |  |  |  |  |  |
| 14 |  |  |  |  |  |
| 15 |  |  |  |  |  |
| 16 |  |  |  |  |  |
| 17 |  |  |  |  |  |
| 18 | 29 |  |  |  | 29 |
| 19 | 117 | 1 |  |  | 118 |
| 20 | 427 | 2 | 1 |  | 430 |
| 21 | 494 | 16 | 6 |  | 516 |
| 22 | 310 | 52 | 23 |  | 385 |
| 23 | 139 | 110 | 47 |  | 296 |
| 24 | 64 | 114 | 47 |  | 225 |
| 25 | 20 | 99 | 34 |  | 153 |
| 26 | 10 | 58 | 21 |  | 89 |
| 27 | 18 | 18 | 8 |  | 44 |
| 28 | 18 | 7 | 8 |  | 33 |
| 29 | 8 | 10 | 9 |  | 27 |
| 30 | 20 | 10 | 15 |  | 45 |
| 31 | 12 | 17 | 11 |  | 40 |
| 32 | 23 | 15 | 18 |  | 56 |
| 33 | 23 | 18 | 13 |  | 54 |
| 34 | 33 | 13 | 11 |  | 57 |
| 35 | 39 | 21 | 9 |  | 69 |
| 36 | 20 | 5 | 5 |  | 30 |
| 37 | 2 | 3 | 4 |  | 9 |
| 38 |  |  | 1 |  | 1 |
| 39 |  |  |  |  |  |
| 40 |  |  |  |  |  |
| 41 |  |  |  |  |  |
| 42 |  |  |  |  |  |
| 43 |  |  |  |  |  |
| 44 |  |  |  |  |  |
| 45 |  |  |  |  |  |
| 46 |  |  |  |  |  |
| 47 |  |  |  |  |  |
| 48 |  |  |  |  |  |
| 49 |  |  |  |  |  |
| 50 |  |  |  |  |  |
| 51 |  |  |  |  |  |
| 52 |  |  |  |  |  |
| 53 |  |  |  |  |  |
| 54 |  |  |  |  |  |
| 55 |  |  |  |  |  |
| TOTAL numbers | 1826 | 589 | 291 |  | 2706 |

Table 8.3.1.3.3. Blue whiting landings in numbers ('000) by length group (cm) and quarter for the southern fishery in 2013.

| Length (cm) | $\begin{gathered} \text { Quarter } \\ 1 \end{gathered}$ | $\begin{gathered} \text { Quarter } \\ 2 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Quarter } \\ 3 \end{gathered}$ | Quarter 4 | All year |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 |  |  |  |  |  |
| 6 |  |  |  |  |  |
| 7 |  |  |  |  |  |
| 8 |  |  |  |  |  |
| 9 |  |  |  |  |  |
| 10 |  |  |  |  |  |
| 11 |  |  |  |  |  |
| 12 |  |  |  |  |  |
| 13 |  |  |  |  |  |
| 14 | 2 |  |  |  | 2 |
| 15 | 1327 | 3 | 979 |  | 2309 |
| 16 | 5670 | 223 | 840 |  | 6734 |
| 17 | 7358 | 974 | 2278 | 38 | 10648 |
| 18 | 6353 | 2946 | 2435 | 140 | 11874 |
| 19 | 2741 | 5726 | 3663 | 1668 | 13798 |
| 20 | 1384 | 6204 | 7121 | 4947 | 19656 |
| 21 | 1136 | 7111 | 10903 | 9550 | 28699 |
| 22 | 1590 | 7250 | 14991 | 11160 | 34990 |
| 23 | 1662 | 5936 | 10853 | 11564 | 30016 |
| 24 | 2417 | 5565 | 8124 | 9525 | 25631 |
| 25 | 1779 | 4155 | 4546 | 5972 | 16453 |
| 26 | 1565 | 2940 | 2983 | 3589 | 11077 |
| 27 | 1042 | 1692 | 1523 | 1632 | 5888 |
| 28 | 920 | 1164 | 1304 | 1571 | 4959 |
| 29 | 737 | 661 | 675 | 680 | 2753 |
| 30 | 472 | 347 | 614 | 367 | 1800 |
| 31 | 298 | 162 | 279 | 172 | 911 |
| 32 | 233 | 50 | 117 | 214 | 615 |
| 33 | 196 | 35 | 26 | 57 | 314 |
| 34 | 114 | 20 | 30 | 27 | 191 |
| 35 | 16 | 13 | 7 | 17 | 52 |
| 36 | 43 | 2 | 3 | 16 | 63 |
| 37 |  | 1 |  |  | 1 |
| 38 | 36 |  | 1 | 5 | 42 |
| 39 |  | 3 |  | 2 | 6 |
| 40 |  |  |  |  |  |
| 41 |  |  |  |  |  |
| 42 |  |  |  |  |  |
| 43 |  |  |  |  |  |
| 44 |  |  |  |  |  |
| 45 |  |  |  |  |  |
| 46 |  |  |  |  |  |
| 47 |  |  |  |  |  |
| 48 |  |  |  |  |  |
| 49 |  |  |  |  |  |
| 50 |  |  |  |  |  |
| 51 |  |  |  |  |  |
| 52 |  |  |  |  |  |
| 53 |  |  |  |  |  |
| 54 |  |  |  |  |  |
| 55 |  |  |  |  |  |
| TOTAL numbers | 39092 | 53183 | 74297 | 62911 | 229483 |

Table 8.3.1.4.1. Blue whiting. Catch at age numbers (millions)

| Year/Age | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1981 | 258 | 348 | 681 | 334 | 548 | 559 | 466 | 634 | 578 | 1460 |
| 1982 | 148 | 274 | 326 | 548 | 264 | 276 | 266 | 272 | 284 | 673 |
| 1983 | 2283 | 567 | 270 | 286 | 299 | 304 | 287 | 286 | 225 | 334 |
| 1984 | 2291 | 2331 | 455 | 260 | 285 | 445 | 262 | 193 | 154 | 255 |
| 1985 | 1305 | 2044 | 1933 | 303 | 188 | 321 | 257 | 174 | 93 | 259 |
| 1986 | 650 | 816 | 1862 | 1717 | 393 | 187 | 201 | 198 | 174 | 398 |
| 1987 | 838 | 578 | 728 | 1897 | 726 | 137 | 105 | 123 | 103 | 195 |
| 1988 | 425 | 721 | 614 | 683 | 1303 | 618 | 84 | 53 | 33 | 50 |
| 1989 | 865 | 718 | 1340 | 791 | 837 | 708 | 139 | 50 | 25 | 38 |
| 1990 | 1611 | 703 | 672 | 753 | 520 | 577 | 299 | 78 | 27 | 95 |
| 1991 | 267 | 1024 | 514 | 302 | 363 | 258 | 159 | 49 | 5 | 10 |
| 1992 | 408 | 654 | 1642 | 569 | 217 | 154 | 110 | 80 | 32 | 12 |
| 1993 | 263 | 305 | 621 | 1571 | 411 | 191 | 107 | 65 | 38 | 17 |
| 1994 | 307 | 108 | 368 | 389 | 1222 | 281 | 174 | 90 | 79 | 31 |
| 1995 | 296 | 354 | 422 | 465 | 616 | 800 | 254 | 160 | 60 | 42 |
| 1996 | 1893 | 534 | 632 | 537 | 323 | 497 | 663 | 232 | 98 | 83 |
| 1997 | 2131 | 1519 | 904 | 578 | 296 | 252 | 282 | 407 | 104 | 169 |
| 1998 | 1657 | 4181 | 3541 | 1045 | 384 | 323 | 303 | 264 | 212 | 86 |
| 1999 | 788 | 1549 | 5821 | 3461 | 413 | 207 | 151 | 153 | 69 | 140 |
| 2000 | 1815 | 1193 | 3466 | 5015 | 1550 | 514 | 213 | 151 | 58 | 140 |
| 2001 | 4364 | 4486 | 2962 | 3807 | 2593 | 586 | 170 | 97 | 77 | 66 |
| 2002 | 1821 | 3232 | 3292 | 2243 | 1824 | 1647 | 344 | 169 | 103 | 143 |
| 2003 | 3743 | 4074 | 8379 | 4825 | 2035 | 1117 | 400 | 121 | 20 | 27 |
| 2004 | 2156 | 4426 | 6724 | 6698 | 3045 | 1276 | 650 | 249 | 75 | 37 |
| 2005 | 1427 | 1519 | 5084 | 5871 | 4450 | 1419 | 518 | 249 | 100 | 55 |
| 2006 | 413 | 940 | 4206 | 6151 | 3834 | 1719 | 506 | 181 | 68 | 37 |
| 2007 | 167 | 307 | 1795 | 4211 | 3867 | 2353 | 936 | 321 | 130 | 89 |
| 2008 | 409 | 179 | 545 | 2917 | 3263 | 1919 | 736 | 316 | 113 | 127 |
| 2009 | 61 | 156 | 232 | 595 | 1596 | 1157 | 592 | 252 | 89 | 49 |
| 2010 | 350 | 223 | 160 | 208 | 646 | 992 | 703 | 257 | 70 | 44 |
| 2011 | 163 | 102 | 64 | 54 | 70 | 116 | 120 | 55 | 26 | 13 |
| 2012 | 240 | 352 | 663 | 142 | 107 | 203 | 364 | 357 | 212 | 158 |
| 2013 | 228 | 508 | 849 | 897 | 463 | 224 | 321 | 398 | 344 | 384 |

$\qquad$

Table 8.3.1.4. Blue whiting landings (tonnes) from the main fisheries, 1988-2013, as estimated by the Working Group.

| Area | $\begin{gathered} \text { Norwegian Sea } \\ \text { fishery (SAs } \\ 1+2 \text {; Divs. Va, } \\ \text { XIVa-b) } \end{gathered}$ | Fishery in the spawning area (SA XII; Divs. Vb, VIa-b, VIIa-c) | Directedand mixed fisheries in the North Sea (SA IV; Div. IIIa) | Total northern areas | Total southern areas (SAs VIII+IX; Divs. VIId-k) | Grand total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1988 | 55829 | 426037 | 45143 | 527009 | 30838 | 557847 |
| 1989 | 42615 | 475179 | 75958 | 593752 | 33695 | 627447 |
| 1990 | 2106 | 463495 | 63192 | 528793 | 32817 | 561610 |
| 1991 | 78703 | 218946 | 39872 | 337521 | 32003 | 369524 |
| 1992 | 62312 | 318081 | 65974 | 446367 | 28722 | 475089 |
| 1993 | 43240 | 347101 | 58082 | 448423 | 32256 | 480679 |
| 1994 | 22674 | 378704 | 28563 | 429941 | 29473 | 459414 |
| 1995 | 23733 | 423504 | 104004 | 551241 | 27664 | 578905 |
| 1996 | 23447 | 478077 | 119359 | 620883 | 25099 | 645982 |
| 1997 | 62570 | 514654 | 65091 | 642315 | 30122 | 672437 |
| 1998 | 177494 | 827194 | 94881 | 1099569 | 29400 | 1128969 |
| 1999 | 179639 | 943578 | 106609 | 1229826 | 26402 | 1256228 |
| 2000 | 284666 | 989131 | 114477 | 1388274 | 24654 | 1412928 |
| 2001 | 591583 | 1045100 | 118523 | 1755206 | 24964 | 1780170 |
| 2002 | 541467 | 846602 | 145652 | 1533721 | 23071 | 1556792 |
| 2003 | 931508 | 1211621 | 158180 | 2301309 | 20097 | 2321406 |
| 2004 | 921349 | 1232534 | 138593 | 2292476 | 85093 | 2377569 |
| 2005 | 405577 | 1465735 | 128033 | 1999345 | 27608 | 2026953 |
| 2006 | 404362 | 1428208 | 105239 | 1937809 | 28331 | 1966140 |
| 2007 | 172709 | 1360882 | 61105 | 1594695 | 17634 | 1612330 |
| 2008 | 68352 | 1111292 | 36061 | 1215704 | 30761 | 1246465 |
| 2009 | 46629 | 533996 | 22387 | 603012 | 32627 | 635639 |
| 2011 | 20599 | 72279 | 7524 | 100401 | 3191 | 103592 |
| 2012 | 24391 | 324545 | 5678.346 | 354614 | 29401.78 | 384016 |
| 2013 | 31759 | 481356 | 8749 | 521864 | 103973 | 625837 |

Table 8.3.3.1. Blue whiting: Individual mean weight $(\mathbf{K g})$ at age in the catch

| Year/Age | Age 1 | Age 2 | Age 3 | Age 4 | Age 5 | Age 6 | Age 7 | Age 8 | Age 9 | Age 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1981 | 0.052 | 0.065 | 0.103 | 0.125 | 0.141 | 0.155 | 0.170 | 0.178 | 0.187 | 0.213 |
| 1982 | 0.045 | 0.072 | 0.111 | 0.143 | 0.156 | 0.177 | 0.195 | 0.200 | 0.204 | 0.231 |
| 1983 | 0.046 | 0.074 | 0.118 | 0.140 | 0.153 | 0.176 | 0.195 | 0.200 | 0.204 | 0.228 |
| 1984 | 0.035 | 0.078 | 0.089 | 0.132 | 0.153 | 0.161 | 0.175 | 0.189 | 0.186 | 0.206 |
| 1985 | 0.038 | 0.074 | 0.097 | 0.114 | 0.157 | 0.177 | 0.199 | 0.208 | 0.218 | 0.237 |
| 1986 | 0.040 | 0.073 | 0.108 | 0.130 | 0.165 | 0.199 | 0.209 | 0.243 | 0.246 | 0.257 |
| 1987 | 0.048 | 0.086 | 0.106 | 0.124 | 0.147 | 0.177 | 0.208 | 0.221 | 0.222 | 0.254 |
| 1988 | 0.053 | 0.076 | 0.097 | 0.128 | 0.142 | 0.157 | 0.179 | 0.199 | 0.222 | 0.260 |
| 1989 | 0.059 | 0.079 | 0.103 | 0.126 | 0.148 | 0.158 | 0.171 | 0.203 | 0.224 | 0.253 |
| 1990 | 0.045 | 0.070 | 0.106 | 0.123 | 0.147 | 0.168 | 0.175 | 0.214 | 0.217 | 0.256 |
| 1991 | 0.055 | 0.091 | 0.107 | 0.136 | 0.174 | 0.190 | 0.206 | 0.230 | 0.232 | 0.266 |
| 1992 | 0.057 | 0.083 | 0.119 | 0.140 | 0.167 | 0.193 | 0.226 | 0.235 | 0.284 | 0.294 |
| 1993 | 0.066 | 0.082 | 0.109 | 0.137 | 0.163 | 0.177 | 0.200 | 0.217 | 0.225 | 0.281 |
| 1994 | 0.061 | 0.087 | 0.108 | 0.137 | 0.164 | 0.189 | 0.207 | 0.217 | 0.247 | 0.254 |
| 1995 | 0.064 | 0.091 | 0.118 | 0.143 | 0.154 | 0.167 | 0.203 | 0.206 | 0.236 | 0.256 |
| 1996 | 0.041 | 0.080 | 0.102 | 0.116 | 0.147 | 0.170 | 0.214 | 0.230 | 0.238 | 0.279 |
| 1997 | 0.047 | 0.072 | 0.102 | 0.121 | 0.140 | 0.166 | 0.177 | 0.183 | 0.203 | 0.232 |
| 1998 | 0.048 | 0.072 | 0.094 | 0.125 | 0.149 | 0.178 | 0.183 | 0.188 | 0.221 | 0.248 |
| 1999 | 0.063 | 0.078 | 0.088 | 0.109 | 0.142 | 0.170 | 0.199 | 0.193 | 0.192 | 0.245 |
| 2000 | 0.057 | 0.075 | 0.086 | 0.104 | 0.133 | 0.156 | 0.179 | 0.187 | 0.232 | 0.241 |
| 2001 | 0.050 | 0.078 | 0.094 | 0.108 | 0.129 | 0.163 | 0.186 | 0.193 | 0.231 | 0.243 |
| 2002 | 0.054 | 0.074 | 0.093 | 0.115 | 0.132 | 0.155 | 0.173 | 0.233 | 0.224 | 0.262 |
| 2003 | 0.049 | 0.075 | 0.098 | 0.108 | 0.131 | 0.148 | 0.168 | 0.193 | 0.232 | 0.258 |
| 2004 | 0.042 | 0.066 | 0.089 | 0.102 | 0.123 | 0.146 | 0.160 | 0.173 | 0.209 | 0.347 |
| 2005 | 0.039 | 0.068 | 0.084 | 0.099 | 0.113 | 0.137 | 0.156 | 0.166 | 0.195 | 0.217 |
| 2006 | 0.049 | 0.072 | 0.089 | 0.105 | 0.122 | 0.138 | 0.163 | 0.190 | 0.212 | 0.328 |
| 2007 | 0.050 | 0.064 | 0.091 | 0.103 | 0.115 | 0.130 | 0.146 | 0.169 | 0.182 | 0.249 |
| 2008 | 0.055 | 0.075 | 0.100 | 0.106 | 0.120 | 0.133 | 0.146 | 0.160 | 0.193 | 0.209 |
| 2009 | 0.056 | 0.085 | 0.105 | 0.119 | 0.124 | 0.138 | 0.149 | 0.179 | 0.214 | 0.251 |
| 2010 | 0.052 | 0.064 | 0.110 | 0.154 | 0.154 | 0.163 | 0.175 | 0.187 | 0.200 | 0.272 |
| 2011 | 0.055 | 0.079 | 0.107 | 0.136 | 0.169 | 0.169 | 0.179 | 0.189 | 0.214 | 0.270 |
| 2012 | 0.041 | 0.072 | 0.098 | 0.140 | 0.158 | 0.172 | 0.180 | 0.185 | 0.189 | 0.203 |
| 2013 | 0.051 | 0.077 | 0.094 | 0.117 | 0.139 | 0.162 | 0.185 | 0.188 | 0.198 | 0.197 |
| arith. mean | 0.050 | 0.076 | 0.101 | 0.123 | 0.145 | 0.164 | 0.183 | 0.198 | 0.216 | 0.251 |

Table 8.3.3.2. Blue whiting natural mortality and proportion of maturation-at-age

| AGE | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7 - 1 0 +}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Proportion <br> mature | 0.00 | 0.11 | 0.40 | 0.82 | 0.86 | 0.91 | 0.94 | 1.00 |
| Natural <br> mortality | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |

Table 8.3.4.1.1 Blue whiting age composition (millions) from the IBWSS for 2004-2014.

| Year\Age | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0 +}$ | Total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2004 | 1559 | 5650 | 11086 | 14353 | 5426 | 1785 | 1007 | 635 | 367 | 40 | 41908 |
| 2005 | 1159 | 1427 | 6034 | 8178 | 8526 | 2657 | 646 | 233 | 105 | 1 | 28967 |
| 2006 | 1010 | 1775 | 10332 | 12504 | 5338 | 2570 | 798 | 261 | 95 | 0 | 34685 |
| 2007 | 552 | 855 | 5270 | 10606 | 8001 | 4501 | 2348 | 810 | 308 | 135 | 33461 |
| 2008 | 301 | 566 | 1440 | 5668 | 6516 | 3845 | 2122 | 1050 | 248 | 299 | 20943 |
| 2009 | 245 | 620 | 373 | 2057 | 5066 | 4181 | 2037 | 516 | 125 | 15 | 15238 |
| $2010^{*}$ | 580 | 648 | 212 | 452 | 982 | 2264 | 2456 | 1242 | 352 | 47 | 9311 |
| 2011 | 202 | 2617 | 942 | 912 | 1647 | 2301 | 1767 | 1221 | 430 | 31 | 12075 |
| 2012 | 1178 | 1832 | 6678 | 1013 | 544 | 1343 | 2077 | 1444 | 1078 | 1025 | 18393 |
| 2013 | 502 | 1682 | 7056 | 7776 | 3122 | 1287 | 1327 | 1515 | 867 | 1892 | 27026 |
| 2014 | 2886 | 1502 | 8396 | 7771 | 5927 | 1468 | 532 | 536 | 599 | 1468 | 31085 |

* The quality of the survey was regarded as not satisfactory

Total stock biomass (kt)

| Year | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| TSB (1000t) | 3612 | 2557 | 3357 | 3583 | 2458 | 1981 | 1266 | 1578 | 2219 | 3347 | 3251 |


| 2008 | 1440 | 5668 | 6516 | 3845 | 2122 | 1050 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table 8.3.4.2.1. Estimated blue whiting stock numbers from the International Norwegian Sea ecosystem survey, 2000-2014. The estimates are for the standard area, north of $63^{\circ} \mathrm{N}$ and between $8^{\circ} \mathrm{W}$ $20^{\circ} \mathrm{E}$.

| Year\Age | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | Total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2000* | 48927 | 3133 | 3580 | 1668 | 201 | 5 |  |  |  |  |  | 57514 |
| $2001^{*}$ | 85772 | 25110 | 7533 | 3020 | 2066 |  |  |  |  |  |  | 123501 |
| $2002^{*}$ | 15251 | 46656 | 14672 | 4357 | 513 | 445 |  | 15 |  | 6 |  | 81915 |
| $2003^{*}$ | 35688 | 21487 | 35372 | 4354 | 639 | 201 | 43 | 3 |  |  | 97787 |  |
| $2004^{*}$ | 49254 | 22086 | 13292 | 8290 | 1495 | 533 | 83 | 39 |  |  |  | 95072 |
| $2005^{*}$ | 54660 | 19904 | 13828 | 4714 | 1886 | 326 | 103 | 43 | 8 | 3 | 11 | 95486 |
| $2006^{*}$ | 570 | 18300 | 15324 | 6550 | 1566 | 384 | 246 | 80 | 47 | 2 | 8 | 43077 |
| $2007^{*}$ | 21 | 552 | 5846 | 3639 | 1674 | 531 | 178 | 49 | 19 |  |  | 12509 |
| $2008^{*}$ | 29 | 75 | 534 | 2151 | 715 | 287 | 116 | 44 |  |  |  | 3951 |
| $2009^{*}$ | 0 | 14 | 56 | 617 | 963 | 621 | 296 | 84 | 13 |  |  | 2664 |
| $2010^{*}$ | 0 | 0 | 0 | 10 | 107 | 165 | 68 | 96 |  |  | 446 |  |
| $2011^{*}$ | 1447 | 3138 | 1 | 43 | 204 | 226 | 431 | 120 | 84 |  |  | 5694 |
| 2012 | 9425 | 3142 | 427 | 153 | 87 | 169 | 98 | 31 |  |  |  | 13532 |
| 2013 | 241 | 5723 | 457 | 81 | 22 | 42 | 62 | 125 | 102 | 26 | 42 | 6938 |
| 2014 | 1402 | 1966 | 1024 | 438 | 97 | 33 | 28 | 50 | 37 | 22 | 11 | 5112 |

* Using the old TS-value. To compare the results with 2012 all values should be divided by approximately 3.1

Table 8.3.4.3.1 1-group indices of blue whiting from the Norwegian winter survey (late Januaryearly March) in the Barents Sea. (Blue whiting $<19 \mathrm{~cm}$ in total body length which most likely belong to 1-group.)

| Catch Rate |  |  |
| :---: | :---: | :---: |
| Year | All | $<19 \mathrm{~cm}$ |
| 1981 | 0.13 | 0 |
| 1982 | 0.17 | 0.01 |
| 1983 | 4.46 | 0.46 |
| 1984 | 6.97 | 2.47 |
| 1985 | 32.51 | 0.77 |
| 1986 | 17.51 | 0.89 |
| 1987 | 8.32 | 0.02 |
| 1988 | 6.38 | 0.97 |
| 1989 | 1.65 | 0.18 |
| 1990 | 17.81 | 16.37 |
| 1991 | 48.87 | 2.11 |
| 1992 | 30.05 | 0.06 |
| 1993 | 5.8 | 0.01 |
| 1994 | 3.02 | 0 |
| 1995 | 1.65 | 0.10 |
| 1996 | 9.88 | 5.81 |
| 1997 | 187.24 | 175.26 |
| 1998 | 7.14 | 0.21 |
| 1999 | 5.98 | 0.71 |
| 2000 | 129.23 | 120.90 |
| 2001 | 329.04 | 233.76 |
| 2002 | 102.63 | 9.69 |
| 2003 | 75.25 | 15.15 |
| 2004 | 124.01 | 36.74 |
| 2005 | 206.18 | 90.23 |
| 2006 | 269.2 | 3.52 |
| 2007 | 80.38 | 0.16 |
| 2008 | 17.03 | 0.04 |
| 2009 | 4.5 | 0.01 |
| 2010 | 3.3 | 0.08 |
| 2011 | 1.48 | 0.01 |
| 2012 | 127.89 | 126.83 |
| 2013 | 39.54 | 2.33 |
| 2014 | 31.95 | 25.2 |

Table 8.4.1. Blue Whiting: Survey indices used in the assessment.

IBWSS

|  | Age 3 | Age 4 | Age 5 | Age 6 | Age 7 | Age 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2004 | 11086 | 14353 | 5426 | 1785 | 1007 | 635 |
| 2005 | 6034 | 8178 | 8526 | 2657 | 646 | 233 |
| 2006 | 10332 | 12504 | 5338 | 2570 | 798 | 261 |
| 2007 | 5270 | 10606 | 8001 | 4501 | 2348 | 810 |
| 2008 | 1440 | 5668 | 6516 | 3845 | 2122 | 1050 |
| 2009 | 373 | 2057 | 5066 | 4181 | 2037 | 516 |
| 2010 | -1 | -1 | -1 | -1 | -1 | -1 |
| 2011 | 942 | 912 | 1647 | 2301 | 1767 | 1221 |
| 2012 | 6678 | 1013 | 544 | 1343 | 2077 | 1444 |
| 2013 | 7056 | 7776 | 3122 | 1287 | 1327 | 1515 |
| 2014 | 8396 | 7771 | 5927 | 1468 | 532 | 536 |

Table 8.4.2. Blue Whiting: Estimated observation noise.

|  |  | log(observation noise) <br> Index |
| :--- | :---: | :--- |
| Catch | 1 | $\sim \mathbf{C V}$ |$|$| Catch | 2 | 0.42 |
| :--- | :--- | :--- |
| Catch | $3-8$ | 0.28 |
| Catch | $9-10$ | 0.15 |
| IBWSS | 3 | 0.43 |
| IBWSS | $4-6$ | 0.39 |
| IBWSS | $7-8$ | 0.22 |

Table 8.4.3. Blue whiting. Estimated fishing mortalities.

| Year $\backslash$ Age | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $9+$ | F37 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1981 | 0.070 | 0.118 | 0.174 | 0.218 | 0.262 | 0.346 | 0.375 | 0.477 | 0.488 | 0.275 |
| 1982 | 0.057 | 0.095 | 0.140 | 0.178 | 0.208 | 0.278 | 0.303 | 0.383 | 0.389 | 0.222 |
| 1983 | 0.067 | 0.112 | 0.164 | 0.209 | 0.243 | 0.334 | 0.362 | 0.451 | 0.452 | 0.262 |
| 1984 | 0.082 | 0.133 | 0.198 | 0.255 | 0.301 | 0.414 | 0.440 | 0.543 | 0.540 | 0.322 |
| 1985 | 0.085 | 0.136 | 0.207 | 0.271 | 0.330 | 0.444 | 0.465 | 0.572 | 0.567 | 0.343 |
| 1986 | 0.110 | 0.172 | 0.266 | 0.364 | 0.453 | 0.587 | 0.614 | 0.756 | 0.749 | 0.457 |
| 1987 | 0.098 | 0.152 | 0.242 | 0.337 | 0.421 | 0.550 | 0.572 | 0.699 | 0.684 | 0.424 |
| 1988 | 0.097 | 0.149 | 0.248 | 0.339 | 0.437 | 0.581 | 0.583 | 0.704 | 0.678 | 0.438 |
| 1989 | 0.110 | 0.169 | 0.296 | 0.399 | 0.508 | 0.669 | 0.682 | 0.816 | 0.779 | 0.511 |
| 1990 | 0.112 | 0.170 | 0.309 | 0.419 | 0.529 | 0.685 | 0.726 | 0.851 | 0.815 | 0.534 |
| 1991 | 0.020 | 0.030 | 0.068 | 0.106 | 0.178 | 0.213 | 0.240 | 0.224 | 0.201 | 0.161 |
| 1992 | 0.054 | 0.083 | 0.156 | 0.215 | 0.269 | 0.338 | 0.363 | 0.418 | 0.402 | 0.268 |
| 2013 | 0.030 | 0.047 | 0.071 | 0.140 | 0.193 | 0.234 | 0.284 | 0.314 | 0.366 | 0.353 |

Table 8.4.4. Blue Whiting. Estimated stock numbers at age (million).

| Year $\backslash$ Age | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1981 | 4013 | 3563 | 4718 | 2037 | 2461 | 2087 | 1651 | 1807 | 1463 | 3227 |
| 1982 | 5417 | 2946 | 2639 | 3269 | 1540 | 1403 | 1200 | 945 | 899 | 2187 |
| 1983 | 21232 | 4278 | 1993 | 1790 | 1852 | 1171 | 955 | 810 | 545 | 1520 |
| 1984 | 20625 | 16453 | 2744 | 1289 | 1274 | 1356 | 781 | 521 | 425 | 1029 |
| 1985 | 10089 | 15173 | 10724 | 1572 | 779 | 909 | 759 | 444 | 252 | 737 |
| 1986 | 7018 | 6517 | 9811 | 5891 | 1011 | 481 | 497 | 407 | 227 | 516 |
| 1987 | 8589 | 4887 | 4123 | 6696 | 2566 | 419 | 247 | 244 | 163 | 296 |
| 1988 | 6224 | 6524 | 3389 | 2879 | 3715 | 1253 | 207 | 117 | 95 | 176 |
| 1989 | 8495 | 4538 | 5015 | 2511 | 2150 | 1630 | 374 | 98 | 50 | 116 |
| 1990 | 17505 | 5885 | 2917 | 2671 | 1478 | 1213 | 594 | 140 | 38 | 73 |
| 1991 | 9295 | 14798 | 4172 | 1769 | 1488 | 850 | 534 | 185 | 41 | 38 |
| 1992 | 7181 | 7741 | 13125 | 3338 | 1238 | 782 | 463 | 290 | 101 | 43 |
| 1993 | 5283 | 5278 | 5471 | 10069 | 2318 | 968 | 504 | 274 | 160 | 80 |
| 1994 | 7393 | 3649 | 3693 | 3392 | 6756 | 1527 | 767 | 350 | 181 | 140 |
| 1995 | 9781 | 5593 | 3138 | 2531 | 2769 | 3783 | 1012 | 521 | 214 | 190 |
| 1996 | 29006 | 7527 | 3997 | 2294 | 1521 | 1776 | 2211 | 623 | 297 | 238 |
| 1997 | 45947 | 22499 | 5604 | 2498 | 1370 | 1010 | 993 | 1168 | 303 | 300 |
| 1998 | 28488 | 39153 | 17176 | 3482 | 1357 | 908 | 724 | 568 | 575 | 294 |
| 1999 | 21338 | 21596 | 29326 | 10756 | 1746 | 738 | 488 | 365 | 229 | 391 |
| 2000 | 37393 | 16240 | 16535 | 16079 | 4543 | 1147 | 477 | 304 | 162 | 307 |
| 2001 | 57887 | 30554 | 13270 | 11029 | 7580 | 1731 | 503 | 224 | 132 | 199 |
| 2002 | 49131 | 44902 | 19211 | 8049 | 5390 | 3510 | 777 | 285 | 104 | 158 |
| 2003 | 52746 | 40956 | 37920 | 14218 | 5163 | 2761 | 1189 | 305 | 96 | 100 |
| 2004 | 34518 | 40792 | 30892 | 22522 | 7557 | 2671 | 1336 | 568 | 137 | 87 |
| 2005 | 20379 | 26776 | 28205 | 18256 | 11117 | 3375 | 1106 | 510 | 218 | 95 |
| 2006 | 7641 | 15823 | 24643 | 21147 | 9989 | 4538 | 1394 | 462 | 212 | 130 |
| 2007 | 4235 | 5593 | 13111 | 17039 | 11206 | 5521 | 2327 | 777 | 240 | 179 |
| 2008 | 5257 | 3172 | 4466 | 11106 | 9742 | 5299 | 2202 | 968 | 338 | 216 |
| 2009 | 5833 | 3671 | 2461 | 3985 | 7167 | 5030 | 2424 | 942 | 428 | 257 |
| 2010 | 18403 | 5091 | 2500 | 2029 | 3570 | 4676 | 2967 | 1340 | 503 | 368 |
| 2011 | 25393 | 16240 | 3745 | 1823 | 1839 | 2733 | 2701 | 1475 | 838 | 520 |
| 2012 | 23347 | 20075 | 15203 | 2629 | 1180 | 1736 | 2637 | 2481 | 1278 | 1136 |
| 2013 | 15433 | 20075 | 15697 | 11195 | 2905 | 1203 | 1475 | 2041 | 1810 | 1823 |
| 2014 | 15433* | 12385 | 17505 | 12865 | 8032 | 1967 | 767 | 868 | 1336 | 2431 |

*Replaced by the 75\% percentile of recruitment 1981-2011 in forecast

Table 8.4.5. Blue whiting. Estimated recruitment in millions, total stock biomass (TBS) in $\mathbf{1 0 0 0}$ tonnes, spawning stock biomass (SSB) in 1000 tonnes, and average fishing mortality for ages $\mathbf{3}$ to $\mathbf{7}$ (F37).

| Year | Recruits | Low | High | TSB | Low | High | SSB | Low | High | F37 | Low | High |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1981 | 4013 | 2509 | 6419 | 3413 | 2782 | 4186 | 2917 | 2338 | 3638 | 0.275 | 0.217 | 0.349 |
| 1982 | 5417 | 3378 | 8687 | 2816 | 2325 | 3412 | 2318 | 1884 | 2851 | 0.222 | 0.176 | 0.279 |
| 1983 | 21232 | 13378 | 33695 | 3076 | 2518 | 3757 | 1899 | 1588 | 2272 | 0.262 | 0.212 | 0.325 |
| 1984 | 20625 | 13201 | 32224 | 3358 | 2711 | 4161 | 1849 | 1557 | 2194 | 0.322 | 0.263 | 0.394 |
| 1985 | 10089 | 6482 | 15705 | 3482 | 2867 | 4227 | 2233 | 1870 | 2667 | 0.343 | 0.283 | 0.417 |
| 1986 | 7018 | 4581 | 10751 | 3236 | 2753 | 3805 | 2381 | 2025 | 2800 | 0.457 | 0.379 | 0.550 |
| 1987 | 8589 | 5613 | 13144 | 2769 | 2359 | 3251 | 1916 | 1637 | 2243 | 0.424 | 0.351 | 0.513 |
| 1988 | 6224 | 4050 | 9566 | 2374 | 2029 | 2777 | 1614 | 1392 | 1870 | 0.438 | 0.362 | 0.529 |
| 1989 | 8495 | 5516 | 13084 | 2393 | 2027 | 2825 | 1550 | 1338 | 1797 | 0.511 | 0.423 | 0.617 |
| 1990 | 17505 | 11143 | 27500 | 2419 | 1959 | 2988 | 1338 | 1141 | 1570 | 0.534 | 0.432 | 0.660 |
| 1991 | 9295 | 5878 | 14699 | 3138 | 2474 | 3979 | 1727 | 1399 | 2132 | 0.268 | 0.211 | 0.342 |
| 1992 | 7181 | 4587 | 11243 | 3653 | 2928 | 4557 | 2528 | 2023 | 3160 | 0.233 | 0.183 | 0.297 |
| 1993 | 5283 | 3353 | 8325 | 3527 | 2865 | 4342 | 2610 | 2110 | 3229 | 0.209 | 0.165 | 0.265 |
| 1994 | 7393 | 4754 | 11495 | 3345 | 2762 | 4051 | 2498 | 2054 | 3039 | 0.195 | 0.155 | 0.245 |
| 1995 | 9781 | 6299 | 15189 | 3338 | 2788 | 3997 | 2281 | 1922 | 2706 | 0.249 | 0.201 | 0.309 |
| 1996 | 29006 | 18773 | 44816 | 3745 | 3074 | 4563 | 2176 | 1855 | 2553 | 0.307 | 0.249 | 0.377 |
| 1997 | 45947 | 29778 | 70896 | 5532 | 4382 | 6983 | 2466 | 2077 | 2927 | 0.300 | 0.246 | 0.367 |
| 1998 | 28488 | 18605 | 43622 | 7039 | 5694 | 8702 | 3753 | 3113 | 4525 | 0.415 | 0.343 | 0.503 |
| 1999 | 21338 | 13815 | 32959 | 7460 | 6159 | 9034 | 4597 | 3789 | 5578 | 0.358 | 0.295 | 0.434 |
| 2000 | 37393 | 24162 | 57869 | 7482 | 6225 | 8993 | 4299 | 3675 | 5030 | 0.470 | 0.390 | 0.567 |
| 2001 | 57887 | 37532 | 89281 | 9193 | 7535 | 11217 | 4690 | 4011 | 5485 | 0.454 | 0.377 | 0.547 |
| 2002 | 49131 | 31716 | 76108 | 10211 | 8348 | 12490 | 5304 | 4508 | 6241 | 0.492 | 0.408 | 0.593 |
| 2003 | 52746 | 34151 | 81466 | 12299 | 10199 | 14831 | 7189 | 6057 | 8531 | 0.462 | 0.384 | 0.555 |
| 2004 | 34518 | 21894 | 54422 | 10875 | 9137 | 12945 | 7053 | 6021 | 8262 | 0.533 | 0.442 | 0.643 |
| 2005 | 20379 | 12882 | 32239 | 8833 | 7368 | 10589 | 6212 | 5256 | 7343 | 0.504 | 0.413 | 0.616 |
| 2006 | 7641 | 4817 | 12119 | 8170 | 6848 | 9748 | 6306 | 5308 | 7492 | 0.418 | 0.340 | 0.515 |
| 2007 | 4235 | 2651 | 6767 | 6083 | 5104 | 7249 | 5061 | 4252 | 6023 | 0.421 | 0.335 | 0.529 |
| 2008 | 5257 | 3260 | 8475 | 4607 | 3802 | 5581 | 3817 | 3153 | 4620 | 0.381 | 0.296 | 0.491 |
| 2009 | 5833 | 3490 | 9747 | 3645 | 2915 | 4559 | 2931 | 2343 | 3667 | 0.237 | 0.180 | 0.312 |
| 2010 | 18403 | 11147 | 30382 | 4143 | 3206 | 5354 | 2914 | 2268 | 3744 | 0.181 | 0.136 | 0.242 |
| 2011 | 25393 | 15361 | 41977 | 5194 | 3919 | 6884 | 3009 | 2330 | 3885 | 0.040 | 0.030 | 0.053 |
| 2012 | 23347 | 13294 | 41002 | 6156 | 4716 | 8036 | 4078 | 3195 | 5204 | 0.104 | 0.081 | 0.135 |
| 2013 | 15433 | 6655 | 35789 | 7082 | 5306 | 9451 | 4960 | 3847 | 6396 | 0.161 | 0.122 | 0.213 |

Table 8.8.1.1. Blue Whiting. Upper part: Recruitment candidates ( $\mathrm{R}_{1}$, number at age 1 , millions) to be used in the forecast section. Lower part: Geometric means of age $\mathbf{1}$ blue whiting from the final assessment run.

| Year | Number at age 1 |
| :--- | :--- |
| 2013 | 13770 |
| 2014 | 26940 |
| 2015 | 13770 |
| 2016 | 13770 |
| Year range | Geometric mean |
| $1981-1995,2006-2009$ | 7974 |
| $1981-2011$ | 13770 |
| $1996-2005$ | 35520 |

Table 8.8.2.1.1. Blue Whiting. Input to short term projection (median values for exploitation pattern and stock numbers).

Table X1. Blue Whiting. Input to short term projection.

| Age | Mean weight in the stock (kg) | Mean weight in the catch (kg) | Proportion mature | Natural mortality | Exploitation pattern | Stock numbers (millions) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.049 | 0.049 | 0.11 | 0.20 | 0.125 | 26939* |
| 2 | 0.076 | 0.076 | 0.40 | 0.20 | 0.188 | 11050** |
| 3 | 0.099 | 0.099 | 0.82 | 0.20 | 0.429 | 17505 |
| 4 | 0.131 | 0.131 | 0.86 | 0.20 | 0.670 | 12865 |
| 5 | 0.156 | 0.156 | 0.91 | 0.20 | 1.105 | 8032 |
| 6 | 0.168 | 0.168 | 0.94 | 0.20 | 1.321 | 1967 |
| 7 | 0.181 | 0.181 | 1.00 | 0.20 | 1.474 | 767 |
| 8 | 0.188 | 0.188 | 1.00 | 0.20 | 1.380 | 868 |
| 9 | 0.201 | 0.201 | 1.00 | 0.20 | 1.244 | 1336 |
| 10 | 0.223 | 0.223 | 1.00 | 0.20 | 1.244 | 2431 |

*Changed to 75\% percentile of recruitment 1981-2011.
${ }^{* *}$ Changed to match GM(1981-2011)

Table 8.8.2.2.1. Blue whiting. Deterministic forecast, used for the ICES advice
Basis: $\mathrm{F}(2014)=0.273$ (catch constraint $=1200=\mathrm{TAC}) . \mathrm{SSB}(2015)=5738 . \mathrm{R}(2013), \mathbf{R}(2015)$ and $\mathbf{R}(2016)$ $=G M(1981-2011)=13770$ million at age $1, R(2014)=75 \%$ percentile of recruitment 1981-2011 .

| Rationale | $\begin{aligned} & \text { Catch } \\ & 2015 \end{aligned}$ | Basis | F 2015 | $\begin{aligned} & \text { SSB } \\ & 2016 \end{aligned}$ | \% SSB <br> change 1 | \% TAC change2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Management plan $\mathrm{F}=0.18$ | 839.886 | Management Plan | 0.18 | 5904.242 | 3 | -30 |
| $\mathrm{F}=0.19$ | 882.497 |  | 0.19 | 5864.151 | 2 | -26 |
| $\mathrm{F}=0.20$ | 924.713 |  | 0.20 | 5824.446 | 2 | -23 |
| $\mathrm{F}=0.21$ | 966.538 |  | 0.21 | 5785.123 | 1 | -19 |
| $\mathrm{F}=0.22$ | 1007.975 |  | 0.22 | 5746.177 | 0 | -16 |
| $\mathrm{F}=0.23$ | 1049.030 |  | 0.23 | 5707.604 | -1 | -13 |
| $\mathrm{F}=0.24$ | 1089.705 |  | 0.24 | 5669.400 | -1 | -9 |
| $\mathrm{F}=0.25$ | 1130.007 |  | 0.25 | 5631.561 | -2 | -6 |
| $\mathrm{F}=0.26$ | 1169.938 |  | 0.26 | 5594.083 | -3 | -2 |
| $\mathrm{F}=0.27$ | 1209.502 |  | 0.27 | 5556.961 | -3 | 1 |
| $\mathrm{F}=0.22$ | 1248.704 |  | 0.28 | 5520.193 | -4 | 4 |
| $\mathrm{F}=0.29$ | 1287.547 |  | 0.29 | 5483.774 | -4 | 7 |
| $\mathrm{F}=0.30$ | 1326.035 |  | 0.30 | 5447.701 | -5 | 11 |
| $\mathrm{F}=0.31$ | 1364.173 |  | 0.31 | 5411.968 | -6 | 14 |
| Fpa 0.32 | 1401.963 | Fpa | 0.32 | 5376.574 | -6 | 17 |
| Flim 0.48 | 1962.330 | Flim | 0.48 | 4853.303 | -15 | 64 |
| MSY framework 0.30 | 1326.035 | Fmsy=0.30 | 0.30 | 5447.701 | -5 | 11 |
| Zero catch | 0 | $\mathrm{F}=0$ | 0.00 | 6696.989 | 17 | -100 |
| 0.50*F(2014) | 650.489 |  | 0.14 | 6082.598 | 6 | -46 |
| 1.00*F(2014) | 1222.488 |  | 0.27 | 5544.780 | -3 | 2 |
| $1.50 * \mathrm{~F}(2014)$ | 1726.900 |  | 0.41 | 5072.776 | -12 | 44 |
| 2.00*F(2014) | 2173.016 |  | 0.55 | 4657.393 | -19 | 81 |

Weights in thousand tonnes.

1) SSB 2016 relative to SSB 2015.
2) Catch 2015 relative to TAC 2014 (1200.000).

Table 8.8.2.2.2. Blue whiting. Stochastic forecast (NOT used for advice).
Basis: $F(2014)=0.266$ (catch constraint $=1200=T A C) . S S B(2015)=6066 . R(2013), R(2015)$ and $R(2016)$ $=G M(1981-2011)=13770$ million at age $1, R(2014)=75 \%$ percentile of recruitment 1981-2011 .

| Rationale | Catch 2015 | Basis | F 2015 | SSB 2016 | $\% \text { SSB }$ <br> change 1 | \% TAC change2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Management plan $\mathrm{F}=0.18$ | 884.578 | Management Plan | 0.18 | 6464.584 | 7 | -26 |
| $\mathrm{F}=0.19$ | 929.173 |  | 0.19 | 6421.030 | 6 | -23 |
| $\mathrm{F}=0.20$ | 973.024 |  | 0.20 | 6379.514 | 5 | -19 |
| $\mathrm{F}=0.21$ | 1017.094 |  | 0.21 | 6335.471 | 4 | -15 |
| $\mathrm{F}=0.22$ | 1059.853 |  | 0.22 | 6292.610 | 4 | -12 |
| $\mathrm{F}=0.23$ | 1102.983 |  | 0.23 | 6248.048 | 3 | -8 |
| $\mathrm{F}=0.24$ | 1145.596 |  | 0.24 | 6203.954 | 2 | -5 |
| $\mathrm{F}=0.25$ | 1187.505 |  | 0.25 | 6159.985 | 2 | -1 |
| $\mathrm{F}=0.26$ | 1229.191 |  | 0.26 | 6116.272 | 1 | 2 |
| $\mathrm{F}=0.27$ | 1270.822 |  | 0.27 | 6076.063 | 0 | 6 |
| $\mathrm{F}=0.22$ | 1312.301 |  | 0.28 | 6036.214 | -0 | 9 |
| $\mathrm{F}=0.29$ | 1353.018 |  | 0.29 | 5996.563 | -1 | 13 |
| $\mathrm{F}=0.30$ | 1393.140 |  | 0.30 | 5957.596 | -2 | 16 |
| $\mathrm{F}=0.31$ | 1433.369 |  | 0.31 | 5919.978 | -2 | 20 |
| Fpa 0.32 | 1472.969 | Fpa | 0.32 | 5882.726 | -3 | 23 |
| Flim 0.48 | 2067.402 | Flim | 0.48 | 5314.122 | -12 | 72 |
| MSY framework | 1393.140 | Fmsy=0.30 | 0.30 | 5957.596 | -2 | 16 |
| Zero catch | 0 | $\mathrm{F}=0$ | 0.00 | 7302.251 | 20 | -100 |
| $0.50 * F(2014)$ | 667.786 |  | 0.13 | 6670.156 | 10 | -44 |
| $1.00 * \mathrm{~F}(2014)$ | 1254.183 |  | 0.27 | 6092.236 | 0 | 5 |
| $1.50 * \mathrm{~F}(2014)$ | 1775.884 |  | 0.40 | 5588.546 | -8 | 48 |
| $2.00 * F(2014)$ | 2240.720 |  | 0.53 | 5147.044 | -15 | 87 |

Weights in thousand tonnes.

1) SSB 2016 relative to SSB 2015.
2) Catch 2015 relative to TAC 2014 (1200.000).


Figure 8.3.1.1 Blue whiting landings (tonnes) in 2013 presented by ICES area and country.


Figure 8.3.1.2. Total blue whiting catches (t) in 2013 by ICES rectangle. Catches below 10 t are not shown on the map. The catches on the map constitute close to $100 \%$ of the total catches.

Blue whiting Quarter 1


## Blue whiting Quarter 3



Blue whiting Quarter 2


Blue whiting Quarter 4


Figure 8.3.1.3. Blue whiting total catches ( $\mathbf{t}$ ) in 2013 by quarter and ICES rectangle. The catches on the maps constitute close to $100 \%$ of the total catches.

A


B


Figure 8.3.1.4. (A) Annual catch (tonnes) of blue whiting by fishery sub-areas from 1988-2013 and (B) the percentage contribution to the overall catch by fishery sub-area over the same period.


Figure 8.3.1.5. Distribution of total landings of blue whiting by ICES sub-area.


Figure 8.3.1.6. Distribution of total landings of blue whiting by quarter.

## Catch proportion at age for Blue whiting



Figure 8.3.1.3.1 Catch proportion at age of blue whiting in the International catch from 1981-2013.


Figure 8.3.1.3.2. Blue whiting. Age disaggregated blue whiting catch (numbers) plotted on log scale. The labels behind each panel indicate year classes. The grey dotted lines correspond to $\mathrm{Z}=0.6$.

## Catch weight at age



Figure 8.3.1.4.1. Mean catch weight $(\mathrm{kg})$ at age of blue whiting by year.


Figure 8.3.4.1.1 (A) Approximate $\mathbf{5 0 \%}$ and $\mathbf{9 5 \%}$ confidence limits for blue whiting biomass estimates. The confidence limits are based on the assumption that confidence limits for annual estimates of mean acoustic density can be translated to confidence limits of biomass estimates by expressing them as relative deviations from the mean values. These confidence limits only account for spatio-temporal variability in acoustic observations. (B) Internal consistency within the International blue whiting spawning stock survey. The upper left part of the plots shows the relationship between log index-at-age within a cohort. Linear regression line shows the best fit to the logtransformed indices. The lower-right part of the plots shows the correlation coefficient (r) for the two ages plotted in that panel. The background colour of each panel is determined by the $r$ value, where red equates to $\mathrm{r}=1$ and white to $\mathrm{r}<0$.


Figure 8.3.4.1.2. Schematic map of blue whiting acoustic density ( $\mathrm{sA}, \mathrm{m} 2 / \mathrm{nm} 2$ ) found during the spawning survey in spring 2011-2014.



Figure 8.3.4.1.3 Length (line) and age (bars) distribution of the blue whiting stock in the area to the west of the British Isles, spring 2010 (lower panel) to 2014 (upper panel). Spawning stock biomass and numbers are given.


Figure 8.3.4.2.1. Schematic map of blue whiting acoustic density ( $\mathrm{sA}, \mathrm{m} 2 / \mathrm{nm} 2$ ) found during the International Ecosystem survey in the Nordic Seas in spring 2009-2014.


Figure 8.3.4.2.2 Estimated length (line) and age (bar) distributions of blue whiting in the International Ecosystem Survey in the Nordic Seas in May-June for 2009-2014 based on the "standard survey area" between $8^{\circ} \mathrm{W}-20^{\circ} \mathrm{E}$ and north of $63^{\circ} \mathrm{N}$.


Figure 8.4.1 Blue Whiting. Standardized residuals from catch at age and the IBWSS survey. red (dark) bubbles show that the observed value is less than the expected value


Figure 8.4.2. Blue Whiting. $F$ at age and exploitation pattern ( $F$ scaled to mean $F$ all ages, and $F$ scaled to mean $F$ ages 3-7).


Figure 8.4.3 Blue Whiting. Retrospective analysis of SSB, F and recruitment (age 1) using the SAM model. The $\mathbf{9 5 \%}$ confidence interval is shown for the most recent assessment.


Figure 8.4.4 Blue whiting. SAM final run: Stock summary landings, recruitment (age 1), F and SSB. The graphs show the median value and the $95 \%$ confidence interval.


Figure 8.8.1.1. Blue whiting young fish indices from five different surveys and recruitment index from the assessment, standardized by dividing each series by their mean. BarSea - Norwegian bottom trawl survey in the Barents Sea, IESNS: International Ecosystem Survey in the Nordic Seas in May (1 and 2 is the age groups), IBWSS: Internationl Blue Whiting Spawning Stock survey (1 and 3 is the age groups), FO: the Faroese bottom trawl surveys in spring, IS: the Icelandic bottom trawl survey in spring, SAM: recruits from the assessment.


Figure 8.9.1. Blue whiting. Comparison of the 2009-2014 assessments.

