7 Golden redfish (Sebastes norvegicus) in Subareas 1 and 2

Multiyear advice

Following a three-year advice cycle, this stock was assessed in 2016 with advice nominally covering 2017-2019. There is no updated assessment in 2017. This report presents new data available and reproduce the latest assessment (2016) for information. It is anticipated that there will be a new assessment and advice after the next benchmark, planned for 2018.

7.1 Status of the Fisheries

7.1.1 Recent regulations of the fishery

A description of the historical development of the fishery and regulations is found in the Stock Annex for this stock. The Stock Annex was last updated in February 2012.

Prior to 1 January 2003 there were no regulations particularly for the S. norvegicus fishery, and the regulations aimed at S. mentella had only marginal effects on the S. norvegicus stock. After this date, all directed trawl fishery for redfish (both S. norvegicus and S. mentella) outside the permanently closed areas were forbidden in the Norwegian Economic Zone north of $62^{\circ} \mathrm{N}$ and in the Svalbard area. When fishing for other species it was legal to have up to 15% redfish (both species together) in round weight as bycatch per haul and on board at any time. Until 14 April 2004 there were no regulations of the other gears/fleets fishing for S. norvegicus. After this date, a minimum legal catch size of 32 cm has been set for all fisheries, with the allowance to have up to 10% undersized (i.e. less than 32 cm) specimens of S. norvegicus (in numbers) per haul. In addition, a time-limited moratorium (up to 8 months) was enforced in the conventional fisheries (gillnet, longline, handline, Danish seine) except for handline vessels less than 11 meters. Since 2015 all directed fisheries with conventional gears have been forbidden (except for the smaller handline vessels), and from 2016 trawling outside 12 nm is allowed to have up to 20% by weight of redfish in each catch and upon landing. When trawling inside 12 nm , it is permitted to have up to 10% bycatch. It is generally prohibited to fish for redfish with conventional gears north of $62^{\circ} \mathrm{N}$. The ban does not, however, apply to vessels less than 15 meters fishing with handline during1 June - 31 August. When fishing with conventional gears for other species, it is permitted to have up to 10% by weight of redfish. Vessels less than 21 meters can still have up to 30% by weight of redfish in the period 1 August to 31 December. Bycatch of redfish is calculated in live weight per week.

7.1.2 Landings prior to 2016 (Tables 7.1-7.4, D1 \& D2, Figures 7.1-7.2)

Nominal catches of S. norvegicus by country for Sub-areas 1 and 2 combined, and for each Sub-area and Division are presented in Tables 7.1-7.4. The total landings for both S. norvegicus and S. mentella are presented in section 6 (Tables 6.12 and 6.13). The sources of information used are catches reported to ICES, NEAFC, Norwegian authorities (foreign vessels fishing in the Norwegian economic zone) or direct reporting to the AFWG. Where catches are reported as Sebastes sp., they are split into S. norvegicus and S. mentella by AFWG experts based on available information and prior knowledge. Landings of S. norvegicus showed a decrease from a level of $23000-30000 \mathrm{t}$ in 1984-1990 to a stable level of about 16 $000-19000 \mathrm{t}$ in the years 1991-1999. Since then the landings have decreased further, and the total landings figures for S. norvegicus in 2003-2013 have been low but remarkably stable, between 5500 8000 t . In 2014 the landings decreased to 4436 t , followed by a further decrease in 2015 with landings of 3633 t , mainly due to stronger regulations. This trend has reversed in 2016 with provisional figures indicating catches of 6060 t . The time-series of S. norvegicus landings is given in Figure 7.1.

The Norwegian landings are presented by gear and month/year in Figures 7.2a,b. Reported landings continued to decrease in 2015 and were then at the lowest level since the World War II. Since 2015 only
bycatches of S. norvegicus are allowed except for a limited amount caught by vessels less than 15 meters fishing with handline during 1 June31 August.

The reported Russian catches of S. norvegicus have been around 600-900 t since 2001, while ten other countries together usually report catches of about or less than 300-500t per year (Table 7.1). The bycatch of redfish (Sebastes spp.) in the Norwegian Barents Sea shrimp fisheries during 1983-2015 were dominated by S. mentella, and hence influenced the S. norvegicus to a much lesser extent. However, these bycatches probably inflicted an extra mortality on S. norvegicus in the coastal areas before the sorting grid was enforced in 1990. From 1 January 2006, the maximum legal bycatch of redfish juveniles in the international shrimp fisheries in the northeast Arctic has been reduced from ten to three redfish per 10 kg shrimp.

Information describing the splitting of the redfish landings by species and area is given in the Stock Annex.

7.1.3 Expected landings in 2017

New regulations have been designed and implemented in the Norwegian coastal fisheries with conventional gears in 2016. No directed fishery is allowed, but the bycatch-regulations are currently rather liberal with vessels less than 21 meters being allowed to have up to 30% by weight of redfish in the period 1 August - 31 December, and calculated in live weight per week. No further reduction in the catches is hence expected. The total landings in 2017 are expected to be about the same as in 2016, i.e. about 6000 t .

7.2 Data Used in the Assessment (Table 0.1 and Figure E2)

An overview of the sampling levels (by season, area and gear) of the data used in the assessment is presented in Figure E2 for 2013. Although Table 0.1 (see Section 0) shows a reasonably good total sampling level for this stock, the number of different boats sampled and the gear and area coverage should be improved.

7.2.1 Catch at length and age (Table 7.5)

Age composition data for 2015 were only provided by Norway, accounting for 70% of the total landings. Other countries were assumed to have the same relative age distribution and mean weight as Norway. The updated catch in numbers-at-age matrix is shown in Table 7.5. Catch at length data were available from Norway in 2015 (Figure 7.3).

7.2.2 Catch weight at Age (Table 7.6)

Weight-at-age data for ages 7-24+ were available from the Norwegian landings in 2015, and revised for 2014. Variations in the weight-at-age of young individuals (<10 years) must be considered with caution as these numbers are derived from only a small number of aged individuals.

7.2.3 Maturity-at-age (Table E4, Figure 7.7a-b)

A maturity ogive has previously not been available for S. norvegicus, and knife-edge maturity-at-age 15 (age 15 as 100% mature) had hence been assumed. Maturity-at-age and length is available from Norwegian surveys and landings, as reported in Table E4 and presented in Figure 7.7a. The maturity ogive modelled by Gadget is presented (Figure 7.7b). This analysis shows that 50% of the fish are mature at age 12.

7.2.4 Survey results (Tables E1a,b-E2a,b-E3, Figures 7.4a,b-7.5a,b)

The results from the following research vessel survey series were evaluated by the Working Group:

Winter Norwegian Barents Sea (Division 2.a) bottom-trawl survey (BS-NoRu-Q1 (BTr)) from 1986 to 2016 (joint with Russia some of the years since 2000) in fishing depths of $100-500 \mathrm{~m}$. Length compositions for the years 1986-2016 are shown in Table E1a and Figure 7.4a. Age compositions for the years 1992-2015 are shown in Table E1b and Figure 7.4b. This survey covers important nursery areas for the stock.

Norwegian Svalbard (Division 2.b) bottom-trawl survey (August-September) from 19852015 in fishing depths of $100-500 \mathrm{~m}$ (depths down to 800 m incl. in the swept-area). Since 2005 this is part of the Ecosystem survey (Eco-NoRu-Q3 (BTr)). Length compositions for the years 1985-2015 and age compositions for the years 1992-2008 and 2012 and 2013 are shown in Table E2a and E2b, respectively. This survey covers the northernmost part of the species' distribution. Insufficient number of age readings in 2009 and 2011, and no age samples collected in 2010 did not allow for updating the age composition in these years.

Data on length and age from both these surveys have been combined and are shown in Figures 7.5a,b.
Age disaggregated catch rates (numbers $/ \mathrm{nm}^{2}$ averaged for all stations within subareas and finally averaged, weighted by subarea, for the total surveyed area) of Sebastes norvegicus from the Norwegian Coastal and Fjord survey in 1995-2010 from Finnmark to Møre (NOcoast-Aco-Q4) (Table E3). The estimated catch rates in 2008 and 2009 were particularly high due to one trawl station with an exceptional high catch. Updating of table E3 is discontinued. The data are no longer used as input to the Gadget analytical assessment as described in the stock annex.

The bottom-trawl surveys covering the Barents Sea and the Svalbard areas show that the abundance indices over the commercial size range ($>25 \mathrm{~cm}$) were relatively stable up to 1998 but declined to lower levels afterwards. Abundance of prerecruits ($<25 \mathrm{~cm}$) has steadily decreased since 1991 and has dropped to very low levels after 2000 (Figure 7.4a). An increase in the number of prerecruits is visible from 2008 onwards. Although this could originally partly result from taxonomic misidentification, the confirmation of increased numbers for individuals of size 15 cm and greater gives some confidence that at least some of the increasing numbers are S. norvegicus.

7.3 Assessment with the GADGET model

7.3.1 Description of the model

Since AFWG2005, the GADGET model has been used for this stock, first with experimental runs, and then as analytical assessments following its adoption by WKRED (2012) benchmark (ICES CM 2012/ACOM:48). The stock has a three-year advice cycle, and advice was updated in 2016. We therefore do not present updated assessment for 2017, however the results and comments from the 2016 are presented here in full, both for reference and in order to ensure that all data and model results are available in a single document as a basis for the planned benchmark in 2018. Note that the natural mortality estimate (M) was changed from 0.1 to 0.05 in 2012, and results are thus not directly comparable with earlier years. The advice given in 2016 nominally applies for 2017-2019. However, it is likely that a new assessment and advice will be presented following a benchmark planned for 2018.

The GADGET model used for the assessment of S. norvegicus in areas 1 and 2 is closely related to the GADGET model that currently is used by the ICES North-Western WG on S. norvegicus (Björnsson and Sigurdsson 2003). The functioning of a Gadget model, including parameter estimation and data used for tuning, is described in Bogstad et al. (2004) and in the stock annex for S. norvegicus. In brief, the model is a single species forward simulation age-length structured model, split into mature and immature components. There are two commercial fleets (a gillnet fleet and a combined trawl and other gears fleet), and one survey used in the model. Growth and fishing selectivity are assumed constant over time, and recruitment is estimated on annual basis (no SSB-recruit relationship).

The weighting scheme for combining the different datasets into a single likelihood score is a method where weights are selected so that the catch and survey data have approximately equal contribution to the overall likelihood score in the optimized model, and that each dataset within each group gives approximately equal contributions to each other. This ensures that both noise and bias (actually divergence from the consensus) are taken account of in the weighting of datasets. The parameters in the model are estimated using a combination of Simulated Annealing (wide area search) and Hooke and Jeeves (local search) repeated in sequence until a converged solution is found.

7.3.2 Data used for tuning

- Quarterly catch in tonnes from two commercial fishing fleets, i.e. Norwegian gillnet and 'all others', to 2015.
- Quarterly length distribution of total international commercial landings from two commercial fishing fleets, i.e. Norwegian gillnet and 'all others' to 2015. Due to late data submissions, there is one year time-lag in the inclusion of length distributions from other countries than Norway.

Quarterly age-length keys from the same fishing fleets, up to 2015
Length disaggregated survey indices from the Barents Sea (Division 2.a) bottom-trawl survey (February) from 1990-2015 (Table E1a)

Age-length keys and aggregated survey indices from the same survey up to 2015 (Table E1b)

7.3.3 Assessment results using the Gadget model

The text table below compares the results from this year's Gadget model with previous years for two reference years 1990 and 2003. Note that the natural mortality in the model was changed in 2012, meaning that results from the 2012-2015 assessments are not directly comparable with earlier years.

	Total stock (3+) by 1 JANUARY 1990 (TONS)	Mean weight in stock 1990 (KG)	SSB (15+) by 1 JANUARY 1990 (TONS)	Total stock (3+) BY 1 JANUARY 2003 (TONS)	Mean weight $\begin{aligned} & \text { IN STOCK } \\ & 2003 \text { (KG) } \end{aligned}$	SSB (15+) bY 1 JANUARY 2003^{1} (TONS)
WG 2006	179313	0.39	64019	71013	0.71	38927
WG 2007	163536	0.35	66712	64240	0.64	43096
WG 2008	158851	0.35	64838	74717	0.78	47693
WG 2009	149763	0.34	66153	73673	0.77	51683
WG 2010	152419	0.34	58774	80073	0.79	55995
WG 2011	148727	0.33	56271	80808	0.78	55810
$\begin{aligned} & \text { WG } 2 \\ & 2012 \end{aligned}$	109021	0.43	48308	55229	0.80	40030
$\begin{aligned} & \text { WG } 2 \\ & 2013 \end{aligned}$	111216	0.37	47620	50151	0.79	33400
$\begin{aligned} & \text { WG } 2 \\ & 2014 \end{aligned}$	111850	0.37	48861	56090	0.93	39050
$\begin{aligned} & \text { WG } 2 \\ & 2015 \end{aligned}$	113840	0.37	49800	59510	0.91	41960

Since WG2007 based on modelled maturation and not 15+, dataseries used for estimation of maturity modified in 2010

The natural mortality in the model was reduced from 0.1 to 0.05 in 2012. This reduced overall numbers and biomass, and increased mean weight. Results are therefore not directly comparable with earlier years.

The general patterns in the stock dynamics of S. norvegicus are similar to those modelled for the past several years (Figure 7.10). The overall stock numbers and biomass continue to show a decline, with possible good year classes recruited in recent years. Mature biomass and numbers are in steady decline, while modelled immature numbers and biomass show signs of beginning to improve - although this is not yet reflected in the catch data on the older fish,

As in previous reports it should be noted that it is possible that the improved recruitment signal from the 2003 yearclass may be due to misidentification of small S. mentella (which is a larger stock and has had good recent recruitment) as S. Norvegicus, and the model has repeatedly revised down the estimate of this recruitment, although not to zero. The largest of these fish are now in the 35-40 cm length category, and have been tracked through multiple survey years. However they are not yet showing up in the catch data, although the model prediction is that they are large enough to begin to enter the fishery. It is therefore still unclear to what extent this recruitment signal is genuine. Assuming the recruitment to be genuine, albeit smaller than originally estimated initially gives the possibility for stabilizing or even starting to recover the stock with improved management. A second, larger, recruitment peak exists from the 2009 yearclass (showing up as age 3 in 2012). This should be considered highly uncertain, as species identification on these smallest fish is difficult. It should therefore be stressed that the exact size of the recruitment events, and the extent to which they will impact on the SSB, remains uncertain.

The most important conclusions to be drawn from the current assessment using the Gadget model are:

The recruitment to the stock has been very poor for a long period, and especially prior to 2005 (Figure 7.9)

There has been somewhat better estimated recruitment in recent years, although still below the longterm average. The exact level is still somewhat uncertain. There may also be a second pulse of good recruitment, however this is still highly uncertain, and will need to be tracked for some years to reduce this uncertainty.

The estimated fishing mortality (F12-19) declined between 1990 and 2005 and steadily increased since 2005, briefly stabilized between 2010 and 2011, and increased again in 2012 and 2013. The current mortality is estimated to 0.27 (Figure 7.8), well above a sustainable level for a redfish species. This estimate is based on the 2003 yearclass being a good one, and the estimate would be higher if this is not the case.

According to the model the total-stock biomass (3+) of S. norvegicus has decreased from about 151000 tonnes in 1992-1993 to around 20000 tonnes in 2015 (Figure 7.10, Table 7.8). Due to the improved recent recruitment the total biomass is beginning to stabilize, although the SSB is continuing to decline.

The spawning-stock biomass of S. norvegicus has decreased from a maximum of about 55 thousand tonnes in 1996 to barely 10 thousand tonnes in 2015 (Figure 7.10, Table 7.8). This reduction is primarily the result of prolonged low recruitment, combined with excessively high fishing pressure. Although this continues to decline, the rate of that decline is starting to slow, based on the estimated strong 2003 year class.

It should be noted that there is a strong retrospective pattern in the assessment model, with mature biomass consistently revised upwards and F downwards between years (figure 7.11). This may relate to the partial coverage of the stock by the survey (and especially the lack of coverage of mature fish in the survey), or due to errors in species identification. The 7 years Mohn's rho index on F is -0.88 , indicating a strong tendency to revise downwards. The revision between years does not change the picture of a declining SSB at a low level, and not does it result in the terminal year estimate being higher than the previous terminal year. There is no strong retrospective pattern in the juvenile biomass, suggesting that it may be fisheries data that is driving the pattern in SSB. An experimental retrospective run excluding the survey offers support for this, showing similar trends in mature SSB stock, and similar retrospective patterns. Note that not all years in this experimental run converged, so this does not represent an alternative assessment. This lack of retrospective in the juvenile biomass also indicates that the estimates of a period of poor recruitment are robust to the identified retrospective trend in the SSB. Consequently, we conclude that this is something which should be considered further in the next benchmark. Ideally one would want survey coverage of the mature individuals in order to get level information on this fraction of the stock. However, given the strong downward trend which is not changed by the revisions, the similar pattern seen in the "no survey" model, and the confirmation of these trends from the WKRED production model, the retrospective patterns should not affect the current advice of "zero directed catch, minimize bycatch".

7.4 State of the stock

Survey observations and Gadget assessment update confirm previous diagnostics that this stock is currently in a very poor situation. This is confirmed by the production model run as a check at WKRED, which produced similar trends. Indications are that the SSB is continuing to fall. This has led to an upwards trend resulting in a level of F which may place an increasing burden on an already poorly performing stock. Furthermore, in the absence of a substantial population of fish in the $10-18$ age range, the fishery has become increasing concentrated on the oldest (18 years and older) individuals, reducing the reproductive capacity of the stock.

There are indications that new recruits may have entered the population in recent years as noted in previous AFWG reports. The estimated immature biomass is now beginning to increase, and the rate
of decline of SSB is reducing. However, the total level of this recruitment is still uncertain, and it will be several years before these will fully recruit to the fishery and the spawning stock. Rebuilding of this stock is therefore dependent on protecting both the existing SSB and any fish recruiting to the SSB. Note that this is a category 2 stock, and thus the exact values of both stock and F are uncertain, although the trends are clearly defined.

Sebastes norvegicus is currently on the Norwegian Redlist as a threatened (EN) species according to the criteria given by the International Union for Conservation of Nature (IUCN).

Red-listing is understood to mean that a species (or stock) is at risk of extinction. ICES convened two workshops in 2009. The first Workshop WKPOOR1 (ICES CM 2009/ACOM:29) addressed methods for evaluating extinction risk, and outlined approaches that could support advice on how to avoid potential extinction. The second Workshop WKPOOR2 (ICES CM 2009/ACOM:49) applied the results of the first workshop to four stocks selected as being of interest to Norway and ICES.

There are three general methods for evaluating extinction risk: (1) screening methods, such as the IUCN redlisting criteria; (2) simple population viability analysis (PVA) based on time-trends; and (3) age structured population viability analysis. None of the methods are considered reliable for accurately estimating the absolute probability of extinction, but they may be useful to evaluate the relative probability of extinction between species or between management options.

Simulations were performed on the Sebastes norvegicus stock using the Gadget model at WKRED. An assumption was made that the recruitment observed over the last 10 years would apply in the future, with recruitment independent of the spawning biomass. This indicated that, at stability, the population could sustain an annual catch of around 1,500 tonnes, a finding which was in line with the Schaefer model estimates conducted during WKRED. Separate simulations done by WKPOOR2 indicate that a constant catch above about 6500 tonnes will lead to a progressive reduction of the stock, and a collapse within $10-15$ years if recruitment remains low. However, small changes in recruitment and other parameters that enter the assessment will alter these limits. It should be noted that the fish currently in and entering the fishery are from a period of poor recruitment, and that the stock would need to be stabilized before a catch as large as 1500 tonnes could be safely taken.

7.4.1 Biological reference points

The ability to set biological reference points was examined at WKRED (2012). It was not possible to accurately define a SSB-recruitment relationship, or the productivity level of the stock. In addition, there was considerable uncertainty over recent levels of recruitment (due to possible species misidentification and inconsistent signals in the winter survey). As a result, it was not considered possible to set target reference points for this stock at that time. There is now greater confidence in the recruitment event in 2003. One could therefore consider the associated SSB the previous year (2002) as a lower reference point (Bloss that led to good recruitment), which would give a value of just over 40,000 tonnes. This year-class is seen in multiple years of the winter survey, and now shows up as a bimodal length distribution, with low values visible in the mid length ranges representing the extended period of poor recruitment prior to 2003. However, the model predicts that this year-class should have begun to enter the fishery, while the available fisheries biological sampling data does not show any upturn in the youngest ages caught. This may be due to poor sampling of the smallest fraction of the catch or a change in selectivity since there were last abundant fish of this size. However, it may also be that the signal in the survey is misidentified S. mentella. Consequently, we do not present a calculation for Blim $/ \mathrm{B}_{\mathrm{pa}}$ here. Rather, we recommend that this be considered at the planned 2018 benchmark, by which time the 2003 year-class will have entered the fishery more strongly. The benchmark is also recommended to take a broader look at available survey data, which should also help confirm (or refute) this good year-class. $\mathrm{B}_{\lim }$ and B_{pa} are thus currently undefined for this stock. We note that the SSB is currently at the lowest observed value in the time period of the model, and the stock should thus be considered below any potential reference level. Therefore this lack of a formal $\mathrm{B}_{\mathrm{lim}} / \mathrm{B}_{\mathrm{pa}}$ does not affect
the perception of the stock as below safe limits, nor impact on the advice or management of the stock in the short term.

A maximum exploitation rate of 5% has been suggested sustainable for long lived species like Sebastes spp. when the stocks show no sign of reduced reproductive potential (corresponding to keeping SPR at 60% of the level when no fishing occurs; see chapter 7.8 and Dorn 2002). If we take this to imply a preliminary $\mathrm{F}_{\mathrm{lim}}$ of 0.05 , then this gives a F_{pa} of 0.036 ($0.05 / 1.4$). However, this should be considered further at the next benchmark. Based on the selection curves for the fleets, a reasonable approximation of the fishable biomass would be the mature biomass. The modelling at WKRED, using both Gadget and a Schaefer model, suggested around 1500 t as the sustainable yield at average recent recruitment levels, once the stock has recovered from its current low level. At present a recovery strategy is required rather than MSY fishing.

7.4.2 Management advice

AFWG considers that the current catch level is several times higher than can be sustained by the stock, given the ongoing downwards trend in mature biomass. AFWG therefore recommends that current area closures and low bycatch limits should be maintained. No directed fishery should be conducted on this stock at the moment, and the percent legal bycatch should be set as low as possible for other fisheries to continue. There will be no directed fishery for S. norvegicus in 2015 except for a small-scale fishery with handline that is expected to catch less than 100 tonnes in 2015. The current bycatch regulations are, however, in general too liberal to further constrain the catch as would be required for the stock to recover.

7.4.3 Implementing the ICES Fmsy framework

As a long lived species, S. norvegicus has many year classes contributing to the population, and consequently a relatively stable stock level from year-to-year. This makes it relatively simple to manage to some proxy of MSY (e.g. F0.1) provided adequate measures can be implemented to reduce fishing pressure to an appropriate level. It should be noted that the current fishery $(\mathrm{F}(12-19)=0.27)$ is well above the suggested F_{pa} of 5% of the stock (Section 7.6). The main focus should therefore be on reducing total F to no higher than $\mathrm{F}_{\text {pa. }}$. The current priority is to stabilize the stock and prevent further decline, only then could a recovery strategy and eventually an MSY fishery be implemented. The recent upturn in immature biomass gives some hope that such recovery may be possible, given light fishing pressure.

During the ICES Workshop on Implementing the ICES Fmsy framework (WKFRAME, ICES CM2010/ACOM:54), the closely related beaked redfish Sebastes mentella stock in Sub-areas 1 and 2 was used as a case study for a data limited situation. The results of this Workshop refer also to Sebastes norvegicus in the Barents Sea, where the AFWG is faced with a data limited situation. WKFRAME recommends that the bounds for FMSY proxies should be evaluated in function of the YPR and SPR curves, and that the reproductive capacity of the S. mentella (in this case S. norvegicus) stock be at least above 30% of the SPR at $\mathrm{F}=0$. The YPR curve left of the plateau can be used as lower bound (F0.1 proxy) and a prescribed per-cent SPR as upper bound. The WKFRAME also illustrates by examples why it is informative and important to carry out sensitivity analyses, particularly assumptions regarding natural mortality, selection pattern, growth (density-dependence) and maturity. The WG did some preliminary analyses of the sensitivity of F0.1 for different natural mortalities. Compared with S. mentella, Fo.1 for S. norvegicus is much less sensitive towards changes in natural mortality

During WKRED 2012, the yield-per-recruit (YPR) was calculated by adding recruitment in a single year. Repeat runs were made using a range of values for F, with the results shown in Figure E1. It should be noted that there is no spawning stock-recruitment relationship in the model, rather these calculations assume a constant annual recruitment. Consequently, the model may over-predict yield at higher fishing levels, because these levels will lead to a larger reduction in SSB than in overall stock. The yields presented here should therefore be considered an upper bound (especially at higher fishing levels). The
highest yield obtained is at $\mathrm{F}_{\max }=0.15$, but from a rather flat topped curve. $\mathrm{F}_{0.1}$ (the point at which the slope is 10% of the slope at the origin, a typical precautionary proxy for $\mathrm{F}_{\mathrm{MSY}}$) is around $\mathrm{F}_{0.1}=0.08$. Other proxy values are certainly possible. Using a constant annual recruitment of 2.6 million individuals with the above fishing mortalities gives the corresponding sustainable yields.

For $F_{\max }=0.15$ the sustainable yield at (then) current recruitment is 1500 tonnes per year
For $\mathrm{F}_{0.1}=0.08$ the sustainable yield at (then) current recruitment is 1400 tonnes per year
However, it should be stressed that these are average values for $\mathrm{F}_{\text {MSY }}$ and yield at the currently estimated recruitment level and for healthy stock. The stock is currently depleted, and recruitment has for a long period prior to the late 2000s been lower than the recent average. Consequently, the stock cannot currently sustain these levels of catches and recover at the same time, and a recovery strategy is required first.

Table 7.1 Sebastes norvegicus in Sub-areas 1 and 2. Nominal catch (\mathbf{t}) by countries in Sub-area 1 and Divisions 2.a and 2.b combined.

2013	83	353	1	45	8	1	-	3771	36	797	-		493	19	5609
2014	67	219	6	20	29	-	1	3053	5	806	-	Denmark	211	21	4436
2015	76	53	24	211	35	-	-	2488	-	664	2	1	57	17	3629
$2016{ }^{1}$	190	72	62	59	71	-	-	4606	-	864	2	7	104	22	6060

${ }^{1}$ Provisional figures.
${ }^{2}$ Includes former GDR prior to 1991.
${ }^{3}$ USSR prior to 1991.
${ }^{4}$ Includes UK (E\&W) since 2000.

Table 7.2 Sebastes norvegicus in Sub-areas 1 and 2. Nominal catch (\mathbf{t}) by countries in Sub-area 1.

$\frac{\underset{\sim}{\underset{~}{㐅}}}{2}$		$\begin{aligned} & n \\ & 2 \\ & \underset{y}{n} \\ & \end{aligned}$		$$				$\begin{aligned} & \text { n } \\ & \underset{y}{2} \\ & \underset{\sim}{2} \\ & \underset{\sim}{u} \\ & \underset{\sim}{\sim} \end{aligned}$		$\begin{aligned} & \text { Z } \\ & \text { 亿 } \\ & \text { U } \end{aligned}$			$\begin{aligned} & \frac{1}{4} \\ & \frac{1}{2} \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{n}{s} \\ & \sqrt[n]{2} \\ & \hline \end{aligned}$		$\frac{z}{4}$		$\stackrel{\stackrel{n}{\ni}}{\stackrel{y}{\ni}}$	$\begin{aligned} & \frac{1}{\gtrless} \\ & \stackrel{6}{6} \end{aligned}$
1989	-		-		-		-		-		1763	-		110	-		4	-	1877
1990	5		-		-		-		-		1263	-		14	-		-	-	1282
1991	-		-		-		-		-		1993	-		92	-		-	-	2085
1992	-		-		-		-		-		2162	-		174	-		-	-	2336
1993	24		-		-		-		-		1178	-		330	-		-	-	1532
1994	12		-		72		-		4		1607	-		109	-			-	1804
1995	19		-		1		-		1		1947	-		201	-		1	-	2170
1996	7		-		-		-		-		2245	-		131	-		3	-	2386
1997	3		-		-		5		-		2431	-		160	-		2	-	2601
1998	78		-		5		-		-		2109	-		308	-		30	-	2530
1999	35		-		18		9		14		2114	-		360	-		11	-	2561
2000	-		-		1		-		16		1983	-		146	-			12	2159
2001	4		-		11		-		-		1053	-		128	-			16	1212
2002	15		1		5		-		-		693	-		220	-			9	943
2003	15		-		-		1		-		815	-		140	-			4	975
2004	7		-		-		-		-		1237	-		213	-			12	1469
2005	10		1		-		-		-		1002	-		61	-			4	1078
2006	46		-		-		-		-		690	-		136	-			-	872
2007	15		-		12		15		-		1034	-		49	2			20	1147
2008	45		7		2		-				634	3		49	-			15	755
2009	-		-		3		2		6		701	30		19	-			24	768
2010	58		-		-		-		-		497	-		21	1			6	583
2011	24		-		-		2		1		674	-		7	-			-	708
2012	17		-		3		1		9		546	-		27	-			18	623
2013	28		2		1		-		+		574	-		41	-		Poland	4	651
2014	59		10		6		17		4		403	-		26	-		2	17	543
2015	57		4		9		211		13		514	-		51	2		2	10	872
$2016{ }^{1}$	161		7		4		59		51		781	-		136	2		2	60	1264

${ }^{1}$ Provisional figures.
${ }^{2}$ Includes former GDR prior to 1991.
${ }^{3}$ USSR prior to 1991.
${ }^{4}$ Includes UK (E\&W) since 2000.
${ }^{+}$Less than 1 t

Table 7.3 Sebastes norvegicus in Sub-areas 1 and 2. Nominal catch (t) by countries in Division 2.a.

$\underset{\underset{\sim}{\underset{\sim}{u}}}{\stackrel{\sim}{4}}$		$\begin{aligned} & \text { 山 } \\ & \substack{\text { 2 } \\ \text { 2 }} \end{aligned}$	$\begin{aligned} & \sum_{2}^{N} \\ & \sum_{\underset{\sim}{x}}^{u} \\ & \hline \end{aligned}$		$\begin{aligned} & \underset{y}{\underset{y}{u}} \\ & \underline{U} \end{aligned}$	$\begin{aligned} & \text { 문 } \\ & \underline{\underset{u}{x}} \end{aligned}$					$\begin{aligned} & \frac{2}{1} \\ & i \\ & i n \end{aligned}$			2 2 0 0	
1989	3	784	412	-		-	-	18,833	-	912	-	93^{2}	-	-	21,037
1990	273	1,684	387	-		-	-	22,444	-	392	-	261	-	-	25,441
1991	152	706	678	-		-	-	13,835	-	534	-	268	10	-	16,183
1992	35	1,294	211	614		-	-	10,536	-	404	-	206	2	-	13,302
1993	115	871	473	14		-	-	11,959	77	940	-	431	1	-	14,881
1994	10	697	654	5		-	-	13,330	90	1,030	-	129	-	-	15,945
1995	8	732	328	5		1	1	11,466	2	405	-	158	9	-	13,115
1996	27	671	448	34		-	-	13,329	51	449	5	223	98	-	15,335
1997	-	974	438	18		5	-	11,708	61	1,199	36	162	22	-	14,623
1998	-	494	116	33		19	-	14,326	6	1,078	51	85	52	-	16,260
1999	-	35	210	38		7	-	14,598	3	976	7	122	34	-	16,030
2000	17	13	159	22		-	-	11,038	16	658	-		61	-	11,984
2001	33	30	227	17		1	-	8,002	6	612	1		103	-	9,031
2002	45	30	37	31	3	-	-	7,761	18	192	2		32	-	8,151
2003	94	9	122	35	4	-	89	5,970	6	264			130	-	6,722
2004	12	4	68	20	30	-	33	4,872	5	396	3		58	-	5,500
2005	37	9	60	36	8	-	48	4,855	56	265	8		48	-	5,430
2006	60	8	35	44	31	3	21	4,404	59	293	9		39	-	5,006
2007	119	15	55	69	68	13	20	4,101	70	599	3		35	-	5,168
2008	229	56	28	71	27	6	2	4,456	68	450	4		70	-	5,467
2009	70	1	55	79	60	-	1	4,543	17	500	-		7	-	5,333
2010	113	51	31	72	22	-	-	5,414	26	287	2		38	1	6,056

2011	-	51	9	49	20	-	1	3,942	-	695	2		13	-	4,782
2012	49	182	33	57	13	2	2	3,599	1	427	-	Denmark	33	-	4,398
2013	55	343	-	45	8	-	-	3,076	9	475	-	1	466	-	4,478
2014	8	209	-	3	25	-	1	2,465	2	559	-	-	178	-	3,449
2015	18	49	15	-	22	-	-	1,946	-	439	-	-	47	12	2,549
$2016{ }^{1}$	29	65	58	-	20	-	-	2,280	-	545	-	-	43	8	3,050

${ }^{1}$ Provisional figures.
${ }^{2}$ Includes former GDR prior to 1991.
${ }^{3}$ USSR prior to 1991.
${ }^{4}$ Includes UK (E\&W) since 2000

Table 7.4 Sebastes norvegicus in Sub-areas 1 and 2. Nominal catch (\mathbf{t}) by countries in Division 2.b.

$\underset{\sim}{\sim}$		$\begin{aligned} & \underset{\sim}{u} \\ & \substack{\underset{\sim}{4}} \end{aligned}$			$\begin{aligned} & \text { O} \\ & \text { 릉 } \end{aligned}$	$\begin{aligned} & \underset{\substack{0 \\ \underline{u} \\ \underline{y}}}{ } \end{aligned}$		$\begin{aligned} & \text { z} \\ & \text { z̀ } \\ & \text { ì } \end{aligned}$		$\begin{aligned} & \frac{n}{n} \\ & \stackrel{\rightharpoonup}{n} \\ & \stackrel{n}{x} \end{aligned}$	$\begin{aligned} & \frac{2}{k} \\ & \text { in } \\ & \hline \end{aligned}$			$\begin{aligned} & \text { n } \\ & \text { d } \\ & \text { d } \end{aligned}$	$\begin{gathered} \stackrel{\rightharpoonup}{\star} \\ \stackrel{\rightharpoonup}{\circ} \end{gathered}$
1989	-	-	-	-				66	-	242	-	-	-	-	308
1990	-	-	-	1				210	-	$\begin{aligned} & 115 \\ & 7 \end{aligned}$	-	-	-	-	1368
1991	-	-	303	-				44	-	426	-	-	-	-	773
1992	-	-	319	9				2	5	180	2	35	-	-	552
1993	-	-	177	-				-	-	43	8	10	-	-	238
1994	-	-	282	-				18	-	60	4	6	1	-	371
1995	-	-	187	-				103	7	33	-	-	-	-	330
1996	4	-	51	-				27	5	136	76	3	-	-	302
1997	-	-	20	-				43	-	225	-	-	-	-	288
1998	-	-	10	-				105	-	246	-	3	-	-	364
1999	-	-	-	-				38	-	355	-	2	-	-	395
2000	-	-	-	-				10	-	308	-	-	-	-	318
2001	-	-	-	-				79	1	223	-	-	-	-	303
2002	-	-	-	-				107	16	420	1		5	-	549
2003	-	-	-	-				68	-	75	-		-	-	143
2004	-	-	-	-				124	-	113	-		-	-	237
2005	-	-	13	-				2281	-	288	-		-	-	529
2006	5	-	-	-				1211	10	284	-		-	-	1510
2007	12	-	-	-				649	155	242	-		-	-	1057
2008	-	-	-	-				126	1	250	-		-	-	377
2009	-	-	-	-				207	-	179	-		-	-	386
2010	-	-	-	-				83	22	257	-		-	-	342
2011	-	2	-	-	1	-	-	65	25	217	4		-	48	362
2012	21	-	35	-	1	8	3	102	16	227	-		49	34	496
2013	-	9	-	-	-	1	-	120	27	281	-		23	19	480
2014	-	-	-	-	-	-	-	185	3	221	-	Den mark	16	19	444
2015	-	-	-	-	-	-	-	28	-	175	-	1	-	3	207
$\begin{aligned} & 2016 \\ & 1 \end{aligned}$	-	-	-	-	-	-	-	1544	-	183	-	7	-	7	1746

${ }^{1}$ Provisional figures.
${ }^{2}$ Includes former GDR prior to 1991.
${ }^{3}$ USSR prior to 1991.
${ }^{4}$ Includes UK (E\&W) since 2000.

Table 7.5. Sebastes norvegicus in Sub-areas 1 and 2. Catch numbers-at-age (in thousands).

Year/Age	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	+GP	Total Num.	Tons LAND.
1992	5	22	78	114	394	549	783	1718	3102	2495	2104	1837	998	858	688	547	268	3110	19670	16185
1993	0	24	193	359	406	1036	1022	1523	2353	1410	1655	1678	745	716	534	528	576	3482	18240	16651
1994	46	7	292	640	816	1930	2096	2030	1601	2725	2668	1409	617	733	514	256	177	1508	20065	18120
1995	60	85	230	672	908	1610	2038	2295	1783	1406	785	563	670	593	419	368	250	3232	17967	15616
1996	9	119	313	361	879	1234	1638	2134	1675	1614	1390	952	679	439	560	334	490	3135	17955	18043
1997	9	98	156	321	686	1065	1781	2276	2172	1848	1421	851	804	608	511	205	334	2131	17277	17511
1998	28	51	206	470	721	968	1512	1736	1582	1045	1277	970	1018	846	443	764	486	3389	17512	19155
1999	78	593	855	572	1006	1230	1618	1480	1612	1239	1407	1558	1019	394	197	459	174	2131	17622	18986
2000	4	13	70	245	902	958	1782	1409	2121	2203	1715	753	483	458	132	230	224	895	14597	14460
2001	23	23	44	199	347	482	1120	1342	1674	1653	1243	568	119	183	154	112	135	254	9675	10547
2002	14	36	71	143	414	686	1199	1943	1377	1274	1196	388	313	99	104	117	113	253	9740	9643
2003	22	25	30	44	204	359	705	1687	1338	1071	937	481	367	146	84	51	18	69	7637	7841
2004	19	47	46	65	198	277	504	590	677	963	1059	787	436	169	183	108	79	186	6390	7320
2005	40	55	94	80	165	173	393	779	741	916	926	743	376	210	189	129	111	220	6338	7037
2006	45	32	56	70	245	204	201	809	549	779	794	747	496	332	310	188	165	397	6419	7348
2007	15	21	31	68	138	306	448	495	523	637	892	616	510	396	225	322	170	630	6443	7306
2008	1	4	14	12	49	139	265	366	361	443	442	538	547	479	281	223	144	1032	5342	6557
2009	0	0	1	3	9	31	144	245	272	270	416	391	536	431	332	332	266	954	4633	6261
2010	0	0	0	9	8	36	92	336	437	489	420	336	610	537	498	319	317	884	5328	7744
2011	0	0	0	0	2	5	64	305	469	269	317	228	382	295	252	234	257	1010	4089	5852
2012	1	0	3	12	1	3	39	227	285	296	205	174	226	308	268	293	306	1226	3871	5517
2013	0	8	23	34	9	20	51	241	362	429	228	168	151	273	350	236	184	1117	3884	5609
2014	1	2	7	8	8	15	27	50	67	205	198	148	169	186	165	159	215	1228	2858	4436
$2015{ }^{1}$	0	0	6	17	27	44	29	97	113	129	171	148	160	117	99	96	222	1173	2649	3633

${ }^{1}$ Provisional figures.

Table 7.6. Sebastes norvegicus in Sub-areas 1 and 2. Catch weights at age (kg).

Year/Age	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	+GP
1992	0.18	0.29	0.48	0.42	0.50	0.59	0.58	0.65	0.65	0.71	0.82	0.84	0.94	1.02	1.03	1.15	1.27	1.27
1993	0.2	0.33	0.36	0.43	0.51	0.51	0.64	0.64	0.76	0.86	0.89	0.98	1	1.03	1.21	1.03	1.2	1.14
1994	0.25	0.37	0.38	0.49	0.51	0.64	0.74	0.76	0.86	0.95	1.03	1.07	1.11	1.16	1.15	1.13	1.02	1.36
1995	0.33	0.43	0.64	0.61	0.59	0.65	0.74	0.79	0.84	0.92	1.12	1.01	1.01	1.21	1.14	1.09	1.3	1.01
1996	0.22	0.49	0.56	0.65	0.71	0.81	0.84	0.88	0.96	1	1.02	1.01	1	1.03	1.04	1.14	1.09	1.16
1997	0.23	0.51	0.53	0.74	0.72	0.78	0.8	0.86	0.91	0.99	1.16	1.18	1.21	1.34	1.28	1.54	1.19	1.29
1998	0.37	0.21	0.47	0.62	0.67	0.77	0.77	0.85	1.05	0.96	1.25	1.28	1.3	1.23	1.87	1.46	1.73	1.29
1999	0.14	0.26	0.44	0.57	0.69	0.78	0.86	1.04	1.07	1.12	1.18	1.71	1.09	1.18	1.04	1.34	1.18	1.34
2000	0.19	0.24	0.32	0.44	0.53	0.64	0.73	0.84	0.96	1.11	1.25	1.32	1.53	1.06	1.29	1.32	1.12	1.2
2001	0.15	0.26	0.45	0.55	0.58	0.67	0.8	0.89	1.01	1.14	1.33	1.43	1.62	1.6	1.47	2	2.7	2.31
2002	0.17	0.25	0.33	0.42	0.54	0.67	0.72	0.84	0.98	1.09	1.2	1.3	1.44	1.78	1.68	1.88	2.12	1.84
2003	0.19	0.22	0.31	0.39	0.49	0.58	0.69	0.84	0.96	1.05	1.29	1.36	1.65	1.74	2.09	1.85	2.3	2.38
2004	0.21	0.26	0.36	0.45	0.51	0.59	0.68	0.8	0.96	1.07	1.22	1.34	1.57	1.67	1.75	2.09	1.9	2.04
2005	0.16	0.21	0.36	0.45	0.52	0.58	0.68	0.82	0.94	1.03	1.16	1.36	1.46	1.51	1.67	1.91	2.23	2.27
2006	0.13	0.15	0.28	0.41	0.51	0.58	0.66	0.74	0.83	1	1.14	1.27	1.39	1.46	1.37	1.47	1.64	2.03
2007	0.15	0.21	0.33	0.39	0.5	0.59	0.65	0.77	0.9	1	1.09	1.27	1.42	1.32	1.53	1.47	1.69	1.81
2008	0.41	0.55	0.55	0.57	0.52	0.58	0.65	0.81	0.9	1.07	1.14	1.36	1.51	1.81	1.99	2.01	2.26	1.93
2009	-	-	0.62	0.55	0.54	0.51	0.77	0.88	0.9	1.06	1.16	1.25	1.36	1.53	1.59	1.66	1.72	1.55
2010	-	-	-	0.33	0.46	0.79	0.71	0.85	0.95	1.11	1.24	1.38	1.45	1.6	1.71	2	1.78	1.86
2011	0.36	-	-	-	0.54	0.52	0.72	0.91	1.08	1.14	1.21	1.45	1.40	1.43	1.53	1.59	1.73	1.85
2012	0.40	0.38	0.51	0.71	0.60	0.88	0.69	0.87	0.95	1.04	1.14	1.19	1.35	1.52	1.38	1.54	1.51	1.79
2013	-	0.35	0.37	0.48	0.47	0.57	0.69	0.88	0.97	1.10	1.19	1.20	1.31	1.38	1.37	1.59	1.81	1.99
2014	0.39	0.36	0.39	0.41	0.56	0.61	0.72	0.87	0.95	1.07	1.14	1.28	1.46	1.35	1.49	1.62	1.67	1.92
$2015{ }^{1}$	-	0.35	0.37	0.51	0.51	0.60	0.66	0.88	0.93	1.03	1.15	1.18	1.23	1.34	1.50	1.49	1.48	1.64

${ }^{1}$ Provisional figures.

Table 7.7. Sebastes norvegicus in Sub-areas 1 and 2. Fishing mortalities as estimated by Gadget.

Table 7.8. Sebastes norvegicus in Sub-areas 1 and 2. Stock numbers, biomass, mean weight and maturity ogives as estimated by GADGET.

	total stock			mature			IMmATURE			RECRUIT AGE 3	$\begin{gathered} \text { САТСН } \\ \hline(1000 \mathrm{~T}) \end{gathered}$
YEAR	NUMBER	MEAN WT	BIomass	NUMBER	MEAN WT	BIOMASS	NUMBER	MEAN WT	BIOMASS		
	(MILLIONS)	(KG)	(1000T)	(MILLIONS)	(KG)		(MILLIONS)	(KG)	(1000T)	(MILLIONS)	
1986	380	0.36	137.80	92	0.76	69.8	287	0.24	68.05	4.43	30
1987	366	0.36	131.00	88	0.73	64.7	278	0.24	66.30	3.14	24
1988	348	0.36	126.07	85	0.70	60.0	262	0.25	66.05	2.30	26
1989	328	0.37	120.66	82	0.67	55.0	246	0.27	65.70	2.16	23
1990	311	0.37	113.84	79	0.63	49.7	232	0.28	64.11	2.33	28
1991	297	0.38	112.17	80	0.62	49.1	218	0.29	63.10	2.13	19
1992	283	0.40	112.51	82	0.62	50.8	202	0.31	61.67	1.74	16
1993	269	0.42	112.38	84	0.64	53.3	186	0.32	59.08	1.65	17
1994	251	0.44	110.34	84	0.66	55.1	167	0.33	55.19	1.24	18
1995	231	0.47	107.51	83	0.68	56.6	148	0.34	50.86	0.93	16
1996	209	0.50	104.14	81	0.71	57.8	128	0.36	46.33	0.58	18
1997	187	0.53	98.67	77	0.74	57.2	110	0.38	41.43	0.59	18
1998	165	0.55	91.29	72	0.76	54.9	93	0.39	36.39	0.39	19
1999	142	0.57	81.55	65	0.78	50.3	77	0.40	31.25	0.34	19
2000	123	0.60	73.46	58	0.80	46.5	64	0.42	26.97	0.26	14
2001	105	0.62	65.53	52	0.82	42.5	53	0.43	23.01	0.22	11
2002	93	0.67	62.55	49	0.86	42.3	44	0.46	20.26	0.13	10
2003	82	0.73	59.52	46	0.91	42.0	36	0.49	17.55	0.08	8
2004	72	0.79	56.36	43	0.97	41.4	29	0.52	14.96	0.09	7
2005	63	0.85	53.51	40	1.03	40.9	23	0.54	12.59	0.06	7
2006	62	0.81	50.21	36	1.09	39.7	26	0.41	10.53	0.77	7
2007	56	0.82	46.12	33	1.14	37.4	24	0.37	8.70	0.31	7
2008	49	0.85	42.01	29	1.20	34.8	20	0.36	7.24	0.09	7
2009	45	0.84	37.89	26	1.24	31.7	19	0.32	6.17	0.26	6
2010	42	0.81	34.17	22	1.28	28.7	19	0.28	5.48	0.32	8

	TOTAL STOCK			MATURE			IMMATURE			RECRUIT	Catch
YEAR	NUMBER	MEAN WT	BIOMASS	NUMBER	MEAN WT	BIOMASS	NUMBER	MEAN WT	BIOMASS	AGE 3	(1000T)
	(MILLIONS)	(KG)	(1000T)	(millions)	(KG)		(MILLIONS)	(KG)	(1000T)	(MILLIONS)	
2011	50	0.57	28.71	18	1.28	23.5	32	0.17	5.23	1.52	6
2012	75	0.35	26.00	16	1.24	20.0	59	0.10	6.02	3.05	6
2013	69	0.34	23.21	15	1.11	16.3	54	0.13	6.92	0.13	5.6
2014	62	0.33	20.65	14	0.94	12.7	49	0.16	7.98	0.03	4.4
2015	57	0.34	19.34	13	0.78	10.2	44	0.21	9.10	0.03	3.6

Table 7.8. continued

	Proportion mature
4	0.037136
5	0.064873
6	0.100898
7	0.147063
8	0.205177
9	0.276624
10	0.361776
11	0.459238
12	0.565117
13	0.672747
14	0.776436
15	0.859185
16	0.921533
17	0.961288
18	0.984072
19	0.994578
20	0.998589
21	0.999702
22	0.999953
23	0.999994
24	0.999999
25-30	1

Figure 7.1. Sebastes norvegicus in Sub-areas 1 and 2. Total international landings 1908-2016 (in thousand tonnes).

Figure 7.2a. Illustration of the seasonality in the different Norwegian S. norvegicus fisheries in 2003, 2015 and 2016, also illustrating how the current regulations are working.

Figure 7.2b. Interannual changes in the Norwegian catches by fleet of S. norvegicus fisheries (20032016).

Figure 7.3. Sebastes norvegicus. Length frequency of S. norvegicus reported from Norwegian catches in subarea 1, 2.a and 2.b in 2015, all gears combined.

Figure 7.4a. Sebastes norvegicus. Abundance indices disaggregated by length for the Norwegian bottom-trawl survey in the Barents Sea in winter 1986-2017 (ref. Table E2a). Top: absolute index values, bottom: relative frequencies.

Figure 7.4b. Sebastes norvegicus. Abundance indices (by age) from the Norwegian bottom-trawl surveys 1992-2016 in the Barents Sea (ref. Table E2b). Top: absolute index, bottom: relative frequencies. Horizontal line indicates the median age of the surveyed population.

Figure 7.5a. Sebastes norvegicus. Abundance indices disaggregated by length when combining the Norwegian bottomtrawl surveys 1986-2016 in the Barents Sea (winter) and at Svalbard (summer/fall). Top: absolute index values. Bottom: relative frequencies. Horizontal line indicates the median length in the surveyed population.

Figure 7.5b. Sebastes norvegicus. Abundance indices disaggregated by age. Combined Norwegian bottom-trawl surveys 1992-2016 in the Barents Sea (winter) and Svalbard survey (summer/fall). Top: absolute index values, bottom: relative frequencies. Horizontal line indicates median age of the surveyed population. In 2009-2011 and 2014-2015, there was insufficient number of age readings to derive numbers-at-age

Figure 7.6. Sebastes norvegicus in Sub-areas 1 and 2. Results from the Gadget assessment compared to the scientific survey. The Figure shows comparison of observed and modelled survey indices (total number scaled to sum=100 during the time period) - the traditional Barents Sea February survey Dots: survey indices. Plain lines: survey indices estimated by the model.

Figure 7.7a. Proportion maturity-at-age of S. norvegicus in subareas 1 and 2 derived from Norwegian commercial and survey data (Table E4). The proportions were derived from samples with at least five individuals.

Figure 7.7b. Sebastes norvegicus in Sub-areas 1 and 2. Estimates of maturity-at-age by Gadget. Input data have been proportions of S. norvegicus mature both at age and length as collected and classified from Norwegian commercial landings and surveys.

Figure 7.8. Sebastes norvegicus in subareas $1 \& 2$. Unweighted average fishing mortality of ages 1219 as estimated by Gadget in 2016 (solid line) and at the 2014 AFWG.

Figure 7.9. Sebastes norvegicus in Sub-areas 1 and 2. Estimates of abundance at age 3-6 by Gadget using two surveys as input. Gadget outputs provided in 2014 are shown as dotted line. Current results are shown as plain lines.

Total stock numbers (millions)	Total stock biomass (thousand tonnes)
Mature stock numbers (millions)	Mature stock biomass (thousand tonnes)
Immature stock numbers (millions)	Immature stock biomass (thousand tonnes)

Figure 7.10. Sebastes norvegicus in Sub-areas 1 and 2. Stock numbers (in thousands) and biomass (in tonnes) for the total stock (3+) (upper panel), and the fishable and mature stock (middle panel), and the immature stock (lower panel), as estimated by Gadget using two surveys as input. Gadget outputs provided in 2014 are shown as dotted lines. Current results are shown as plain lines.

Figure 7.11. 7 year retrospective plots for the S. norvegicus Gadget model.

Table E1a. Sebastes norvegicus in Sub-areas 1 and 2. Abundance indices - on length - from the bottom-trawl surveys in the Barents Sea (Division 2.a) in the winter 1986-2017 (numbers in millions). The area coverage was extended from 1993.

Year	5.0-9.9	$\begin{gathered} 10.0- \\ 14.9 \end{gathered}$	Length G		GROUP	(См)		$\begin{gathered} 40.0- \\ 44.9 \end{gathered}$	>45.0	Total
			$\begin{gathered} 15.0- \\ 19.9 \end{gathered}$	$\begin{gathered} 20.0- \\ 24.9 \end{gathered}$	$\begin{gathered} 25.0- \\ 29.9 \end{gathered}$	$\begin{gathered} 30.0- \\ 34.9 \end{gathered}$	$\begin{gathered} 35.0- \\ 39.9 \end{gathered}$			
1986	3.0	11.7	26.4	34.3	17.7	21.0	12.8	4.4	2.6	133.9
1987	7.7	12.7	32.8	7.7	6.4	3.4	3.8	3.8	4.2	82.5
1988	1.0	5.6	5.5	14.2	12.6	7.3	5.2	4.1	3.7	59.2
1989	48.7	4.9	4.3	11.8	15.9	12.2	6.6	4.8	3.0	112.2
1990	9.2	5.3	6.5	9.4	15.5	14.0	8.0	4.0	3.4	75.3
1991	4.2	13.6	8.4	19.4	18.0	16.1	14.8	6.0	4.0	104.5
1992	1.8	3.9	7.7	20.6	19.7	13.7	10.5	6.6	5.8	90.3
1993	0.1	1.2	3.5	6.9	10.3	14.5	12.5	8.6	6.3	63.9
1994	0.7	6.5	9.3	11.7	11.5	19.4	9.1	4.4	2.8	75.4
1995	0.6	5.0	13.1	11.5	9.1	15.9	17.2	10.9	4.7	88.0
1996	+	0.7	3.5	6.4	9.4	11.7	16.6	7.9	3.9	60.1
$1997{ }^{1}$	-	0.5	1.3	2.7	6.9	21.4	28.2	8.5	3.3	72.7
$1998{ }^{1}$	0.1	3.9	2.0	7.4	5.8	25.3	13.2	7.0	2.3	67.0
1999	0.2	0.9	2.1	4.0	4.6	6.4	6.0	5.3	3.5	33.0
2000	0.5	1.1	1.5	4.2	4.7	5.0	3.5	1.8	1.2	24.0
2001	0.1	0.4	0.4	2.4	5.8	5.6	5.0	3.5	1.8	25.0
2002	0.1	1.0	1.9	1.7	3.7	4.1	3.3	3.6	2.5	22.0
2003	0.0	0.5	1.2	1.5	4.3	3.8	2.7	3.3	2.9	20.2
2004	0.7	0.2	0.4	1.0	2.9	4.4	5.5	4.0	3.2	22.3
2005	+	0.1	0.2	0.4	1.1	2.0	3.7	4.6	4.3	16.4
2006	0.0	0.0	0.0	0.2	2.5	5.4	6.1	4.1	4.2	22.5
2007	0.0	0.1	0.5	0.1	1.0	4.0	5.4	5.9	4.9	21.9
2008	1.8	2.6	0.2	0.2	0.4	0.7	1.9	2.5	4.4	14.8
2009	0.0	0.0	0.1	0.0	0.0	0.4	1.7	3.7	6.6	12.7
2010	0.4	2.0	1.2	0.6	0.1	0.1	0.8	1.1	3.9	10.3
2011	0.3	3.1	2.1	0.3	0.4	0.1	0.3	2.3	5.2	14.1
2012	0.8	4.4	4.0	1.9	0.6	0.3	0.9	3.6	8.3	24.8
2013	0.0	7.4	4.9	4.0	1.6	0.4	0.9	0.8	3.7	23.8
2014	0.1	1.1	1.5	3.0	3.4	1.0	0.5	1.4	4.0	16.0
2015	0.1	0.9	1.5	3.1	2.6	2.0	0.5	0.7	3.4	14.8
2016	0.8	1.3	1.5	2.4	4.2	3.6	3.4	1.7	5.9	24.7
2017	0.4	1.4	1.0	1.4	5.7	9.3	7.3	3.1	6.5	36.1

1 - Adjusted indices to account for not covering the Russian EEZ in Subarea 1

Table E1b. Sebastes norvegicus in Sub-areas 1 and 2. Norwegian bottom-trawl indices - on age - from the annual Barents Sea survey in February 1992 - 2016 (numbers in thousands). The area coverage was extended from 1993 onwards.

	Age														
Year	3	4	5	6	7	8	9	10	11	12	13	14	15	$\begin{gathered} \text { TOTAL } 1 \text { - } \\ 15 \end{gathered}$	16+
1992	2295	4261	10760	2043	1474	13178	4230	6302	8251	3751	3865	3064	3568	67042	23300
1993	468	1218	1424	2020	979	5048	2968	4230	2142	4634	3338	2951	9148	40568	23300
1994	2951	4485	2573	3801	8338	3254	1297	7231	6443	248	10192	6341	2612	59766	15600
1995	2540	7450	6090	7150	5820	6590	5670	2000	4440	6500	4320	5330	6030	69930	18100
1996	310	1300	2340	3520	3660	8720	5650	3960	6590	5730	6230	4070	2950	55030	5100
1997	190	80	360	1320	2530	5370	10570	6840	5810	7390	8790	9740	1980	60980	11700
1998	2380	1930	850	660	1140	7090	6124	4962	4091	5190	8790	2730	2560	48487	18500
1999	737	916	1246	3469	1650	1826	1679	3084	2371	2953	3837	2132	1979	27879	5100
2000	490	720	900	1310	1800	2440	2020	2710	2090	940	1440	2940	430	20230	3800
2001	320	170	190	940	1360	2220	3110	2400	2690	2230	2180	1200	1370	20380	4600
2002	130	910	902	1590	544	1546	2153	1822	1900	2220	1073	1294	1730	17814	4200
2003	220	250	590	1080	680	1020	2910	1180	2250	1370	1530	840	1310	15230	5000
2004	780	100	100	90	240	540	1130	1260	1590	1740	1490	2570	1890	13520	8800
2005	39	85	107	110	321	524	669	497	697	820	1517	1905	1653	8944	7652
2006	0	0	0	24	52	1011	1641	1999	2246	1578	1550	3487	1444	15030	7666
2007	58	202	248	50	51	185	422	582	592	1747	1030	1127	1359	7652	14248
2008	2637	0	0	0	203	72	175	272	476	369	553	850	700	6306	6543
2009	0	0	0	0	85	0	14	77	192	358	1146	532	737	3141	9539
2010	0	0	16	1966	267	0	1450	35	0	117	268	285	494	5510	4779
2011	1832	1621	1529	163	148	0	343	0	122	0	204	107	903	7459	6624
2012	973	3187	5362	923	293	501	556	116	27	212	0	350	758	13256	9405
2013	1432	929	5194	2183	2757	2346	1031	250	0	378	117	250	0	18684	5112
2014	1108	215	1163	1188	2923	1812	992	559	69	0	297	67	402	10861	5163
2015	143	526	1106	954	1111	1955	2126	300	1043	487	537	143	51	10554	4173

AGE															
Year	3	4	5	6	7	8	9	10	11	12	13	14	15	$\begin{gathered} \text { Total 1- } \\ 15 \\ \hline \end{gathered}$	16+
2016	247	627	106	1123	428	1870	3365	1378	948	1255	2827	1536	479	16682	7268

$16+$ group is considered in the calculation since 2005. Values prior to this date were derived by subtracting the sum of abundance in groups 1-15 to the total abundance, available in Table E2a.

Table E2a. Sebastes norvegicus in Subarea 1 and 2. Abundance indices - on length - from the bottom-trawl survey in the Svalbard area (Division 2.b) in summer/fall 1985-2016 (numbers in thousands).

	Length group (cm)									
Year	$\begin{gathered} 5.0- \\ 9.9 \end{gathered}$	$\begin{gathered} 10.0- \\ 14.9 \end{gathered}$	$\begin{gathered} 15.0- \\ 19.9 \end{gathered}$	$\begin{gathered} 20.0- \\ 24.9 \end{gathered}$	$\begin{gathered} 25.0- \\ 29.9 \end{gathered}$	$\begin{gathered} 30.0- \\ 34.9 \end{gathered}$	$\begin{gathered} 35.0- \\ 39.9 \end{gathered}$	$\begin{gathered} 40.0- \\ 44.9 \end{gathered}$	>45.0	Total
$1985{ }^{1}$	-	1307	795	1728	2273	1417	311	142	194	8325
$1986{ }^{1}$	200	2961	1768	547	643	1520	639	467	196	8941
$1987{ }^{1}$	100	1343	1964	1185	1367	652	352	29	44	7060
$1988{ }^{1}$	500	1001	1953	1609	684	358	158	68	95	6450
1989	200	1629	2963	2374	1320	846	337	323	104	10100
1990	1700	3886	4478	4047	2972	1509	365	140	122	19185
1991	100	5371	5821	9171	8523	4499	1531	982	395	36420
1992	1700	10228	8858	5330	13960	12720	4547	494	346	58172
1993	200	10160	9078	5855	7071	4327	2088	1552	948	41284
1994	100	3340	5883	4185	3922	3315	1021	845	423	22985
1995	470	2000	9100	5070	3060	2400	1040	920	780	24840
1996	80	130	1260	2480	1030	480	550	990	400	7400
1997	0	810	1980	5470	5560	2340	590	190	450	17430
1998	180	2698	1741	4620	4053	1761	535	545	241	16403
1999	0	794	7057	3698	4563	2449	467	619	369	20017
2000	40	360	1240	1390	2010	760	400	160	390	6750
2001	10	110	790	1470	3710	4600	1880	680	370	13660
2002	0	0	64	415	459	880	620	565	519	3522
2003	90	90	108	83	525	565	447	760	769	3437
2004	0	0	10	50	650	740	670	430	190	2740
2005	0	45	0	30	315	384	307	159	274	1513
2006	0	0	70	64	167	376	473	735	1514	3398
2007	0	32	58	1003	1049	3875	4656	811	1267	12751
2008	7009	3573	175	21	42	142	475	162	529	12130
2009	227	1476	114	114	0	0	185	213	193	2522
2010	666	917	1506	522	0	117	172	0	985	4885
2011	0	0	681	33	0	0	0	131	568	1413
2012	0	85	1512	2138	2145	327	32	0	133	6372
2013	48	437	1971	3239	2564	412	152	33	392	9248
2014	47	0	316	130	223	443	208	0	452	1819
2015	0	0	0	206	193	276	768	0	651	2094
2016	0	0	136	128	916	944	756	234	417	3531

1 - Old trawl equipment (bobbins gear and 80 meter sweep length)

Table E2b. Sebastes norvegicus in Sub-areas 1 and 2. Norwegian bottom-trawl survey indices - on age - in the Svalbard area (Division $2 . b$) in summer/fall 1992-2016 (numbers in thousands). In 2009-2011 and 2014-2015, there was insufficient number of age readings to derive numbers-at-age.

							Age								
Year	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Total
1992	284	12378	5576	2279	371	2064	3687	5704	9215	6413	1454	1387	696	22	51530
1993	32	10704	5710	5142	1855	1052	1314	3520	2847	2757	2074	1245	844	119	39215
1994	429	1150	3418	2393	1723	1106	1714	1256	1938	1596	2039	484	550	319	20155
1995	600	1600	6400	5100	1800	2200	1800	700	700	400	700	500	400	500	23400
1996	40	110	+	560	1050	940	930	400	1050	280	320	590	160	70	6500
1997	320	490	+	480	1500	6950	2720	1680	800	1310	550	30	+	120	16950
1998	210	1817	881	202	1555	2187	4551	1913	1010	797	49	264	73	187	15696
1999	0	760	2893	1339	3534	1037	3905	2603	762	1663	481	361	258	152	19748
2000	40	20	400	350	840	480	730	1670	620	340	510	100	80	70	6250
2001	0	40	50	450	330	790	1760	1970	3300	1200	1810	150	660	430	12940
2002	0	0	+	+	65	160	204	326	364	614	442	328	15	0	2518
2003	30	30	30	+	108	+	219	263	126	259	306	199	248	411	2229
2004	0	0	0	+	+	20	360	120	430	160	410	360	370	200	2430
2005	0	45	0	0	0	30	48	228	138	187	194	93	105	109	1177
2006	0	0	23	23	23	21	22	21	84	0	84	279	194	376	1148
2007	0	33	19	19	19	764	764	525	0	0	21	1927	1927	1683	7702
2008	10583	44	88	44	11	11	0	42	88	13	13	118	63	174	11292
2009	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2011	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2012	0	28	121	2353	1836	1183	577	79	30	32	0	0	0	0	6239
2013	48	44	738	1298	1433	1097	2746	806	183	91	185	0	0	180	8849
2014	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2015	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2016	0	0	0	68	68	0	0	0	916	403	442	227	466	145	2734

Table E3. Sebastes norvegicus in Sub-area 1 and 2. Mean catch rates (Num/NM ${ }^{2}$) of Sebastes norvegicus from Norwegian Coastal Surveys (Division 2.a) in 1995-2010 within 100-350 m depth. Catch rates for the total area.

Length RANGE (См)	$\begin{aligned} & \dagger \\ & i \end{aligned}$	$\begin{aligned} & \text { o } \\ & i \\ & i \end{aligned}$	$\begin{aligned} & \pm \\ & \vdots \\ & 0 \end{aligned}$	$\begin{aligned} & 9 \\ & \frac{1}{1} \\ & \end{aligned}$	$\begin{aligned} & \underset{N}{N} \\ & \underset{N}{\prime} \end{aligned}$	$$	$\begin{gathered} \underset{\sim}{m} \\ \vdots \\ \vdots \end{gathered}$	$\begin{aligned} & \text { on } \\ & \underset{1}{1} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { } \\ & \text { i } \\ & \text { i } \end{aligned}$	$\begin{aligned} & \text { of } \\ & \underset{1}{1} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \text { t } \\ & \text { í } \\ & \text { in } \end{aligned}$	$\begin{aligned} & 0 \\ & n \\ & n \\ & n \\ & n \end{aligned}$	$\begin{aligned} & \text { J } \\ & \text { i } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{y}{x} \\ & \underset{y}{*} \end{aligned}$		$\begin{aligned} & \text { 돈 } \\ & \text { 長 } \\ & \# \\ & \text { \# } \end{aligned}$		
1995	0	41	118	59	54	38	69	214	157	21	2	1	0					
1996	0	34	87	124	151	67	210	415	209	64	0	0	0					
1997	0	4	9	12	64	112	96	178	190	45	2	1	0					
1998	0	0	0	4	12	16	17	110	96	18	3	0	0					
1999	0	0	19	242	160	34	43	151	117	15	4	2	0					
2000	0	0	2	13	7	10	30	160	155	30	4	0	0					
2001	0	0	2	11	14	22	15	83	160	30	2	0	0					
2002	0	0	0	0	2	6	29	259	213	26	4	1	0					
2003	0	0	6	10	43	66	49	219	225	55	6	1	2	123	160	1367	1053	43574
2004	0	1	3	6	21	66	35	351	552	42	3	1	0	104	130	1290	950	43574
2005	0	1	5	5	30	46	48	190	171	37	1	0	0	99	132	833	780	43574
2006	0	0	3	0	2	3	30	145	256	66	9	0	0	112	112	771	680	43574
2007	0	0	0	0	4	7	17	129	177	29	1	0	0	131	140	637	637	43574
2008	0	4	5	1	4	5	17	363	490	99	12	2	0	110	140	1156	850	43574
2009	0	0	8	3	10	19	45	808	945	109	14	1	0	109	127	2945	581	43574
2010	0	40	78	20	9	1	3	67	214	99	7	2	0	117	136	833	690	43574

Table E4. Proportion of maturity-at-age 5 - 30 in S. norvegicus in subareas 1 and 2 derived from Norwegian commercial and survey data. The proportions were derived from samples with at least five individuals.

Year	AGE5	AGE6	AGE 7	AGE8	AGE9	AGE10	AGE1 1	AGE 12	AGE13	AGE14	AGE15	AGE16	AGE1 7	AGE1 8
1992	0.00	0.00	0.09	0.15	0.31	0.22	0.21	0.20	0.22	0.26	0.30	0.44	0.45	0.47
1993	-	-	0.00	0.00	0.10	0.29	0.54	0.47	0.53	0.67	0.80	0.75	0.78	0.82
1994	0.00	0.00	0.03	0.05	0.28	0.28	0.32	0.70	0.79	0.91	0.94	0.85	0.92	1.00
1995	0.00	0.00	0.00	0.05	0.02	0.22	0.25	0.48	0.61	0.64	0.68	0.80	0.87	0.88
1996	0.00	0.05	0.14	0.13	0.22	0.38	0.43	0.60	0.64	0.75	0.69	0.77	0.90	0.85
1997	0.00	0.05	0.08	0.15	0.17	0.21	0.34	0.35	0.57	0.64	0.72	0.73	0.85	0.93
1998	0.00	0.00	0.03	0.11	0.09	0.26	0.32	0.49	0.52	0.69	0.74	0.77	0.81	0.91
1999	0.00	0.00	0.00	0.04	0.17	0.35	0.22	0.53	0.73	0.71	0.67	0.69	0.74	0.71
2000	0.00	0.08	0.14	0.25	0.40	0.51	0.59	0.62	0.65	0.69	0.78	0.96	0.96	1.00
2001	-	0.00	0.06	0.14	0.28	0.32	0.40	0.52	0.53	0.60	0.76	0.74	0.81	0.85
2002	-	0.00	0.05	0.07	0.23	0.44	0.41	0.63	0.74	0.93	0.77	0.89	0.90	0.94
2003	-	0.00	0.00	0.05	0.13	0.24	0.24	0.47	0.58	0.68	0.75	0.65	0.77	0.78
2004	-	0.00	0.03	0.07	0.13	0.43	0.21	0.51	0.46	0.63	0.64	0.86	0.82	0.96
2005	-	-	0.00	0.05	0.29	0.18	0.34	0.39	0.39	0.56	0.73	0.81	0.79	0.82
2006	-	-	0.00	0.10	0.06	0.22	0.25	0.39	0.47	0.57	0.67	0.67	0.74	0.86
2007	-	-	0.00	0.08	0.30	0.25	0.24	0.66	0.68	0.70	0.88	0.86	0.89	0.99
2008	-	-	0.80	0.25	0.82	0.68	0.62	0.80	0.79	0.86	0.88	0.91	0.90	0.92
2009	-	-	-	-	-	0.50	0.50	1.00	0.93	0.81	0.86	0.86	0.84	0.86
2010	-	-	-	-	-	-	-	-	0.57	0.53	0.77	0.89	0.33	0.82
2011	-	-	-	-	-	-	-	-	-	-	0.73	0.78	0.94	0.93
2012	0.00	0.11	0.10	0.29	0.20	0.20	-	-	-	0.75	0.72	0.70	0.91	0.78
2013	0.00	0.12	0.05	0.10	0.19	0.38	0.71	-	0.29	0.82	0.92	0.89	0.77	0.86

| YEAR | AGE19 | AGE20 | AGE21 | AGE22 | AGE23 | AGE24 | AGE25 | AGE26 | AGE27 | AGE28 | AGE29 | AGE30 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1992 | 0.45 | 0.62 | 0.51 | 0.63 | 0.76 | 0.60 | 0.57 | 0.60 | 0.68 | 0.74 | 0.82 | 0.80 |
| 1993 | 0.91 | 0.85 | 0.82 | 0.87 | 0.75 | 0.91 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1994 | 0.96 | 0.96 | 1.00 | 0.88 | 1.00 | 1.00 | 1.00 | 1.00 | - | 1.00 | 1.00 | - |
| 1995 | 0.76 | 0.89 | 0.90 | 0.91 | 1.00 | 1.00 | 1.00 | 1.00 | - | - | - | |
| 1996 | 0.91 | 0.88 | 0.96 | 0.93 | 1.00 | 0.87 | 0.95 | 0.95 | 1.00 | - | 1.00 | 0.86 |
| 1997 | 0.94 | 1.00 | 1.00 | 0.95 | 0.89 | 0.94 | 0.93 | 0.89 | 1.00 | 1.00 | 1.00 | - |

| 1998 | 0.89 | 0.86 | 1.00 | 1.00 | 0.67 | 0.70 | 1.00 | 1.00 | - | - | 1.00 | 0.88 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1999 | 0.77 | 0.89 | - | 0.83 | - | 1.00 | 0.89 | - | - | - | - | |
| 2000 | 1.00 | - | - | - | 1.00 | - | - | - | - | - | - | |
| 2001 | 0.60 | 0.70 | 0.56 | - | - | - | - | - | - | - | - | |
| 2002 | 0.96 | 0.92 | 0.95 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | - |
| 2003 | 0.93 | 0.96 | 0.94 | 0.67 | 1.00 | - | 1.00 | - | - | - | - | |
| 2004 | 0.92 | 0.95 | 0.89 | 0.88 | 1.00 | 0.86 | 1.00 | - | - | - | - | |
| 2005 | 0.77 | 0.94 | 0.95 | 0.88 | 0.83 | 1.00 | - | 1.00 | - | - | - | |
| 2006 | 0.83 | 0.97 | 0.79 | 0.95 | 0.81 | 1.00 | - | 1.00 | - | - | - | |
| 2007 | 0.98 | 1.00 | 0.96 | 0.94 | 1.00 | 0.92 | 1.00 | 0.83 | 1.00 | 1.00 | 1.00 | - |
| 2008 | 0.92 | 0.90 | 0.93 | 0.93 | 0.94 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.93 | 1.00 |
| 2009 | 0.88 | 0.95 | 0.89 | 0.95 | 0.92 | 0.95 | 0.86 | 0.93 | 1.00 | 0.93 | 0.83 | 0.86 |
| 2010 | 0.82 | 0.92 | 0.86 | 0.80 | 1.00 | 0.63 | 0.80 | 0.80 | 0.86 | - | 0.67 | - |
| 2011 | 0.89 | 0.92 | 0.92 | 0.93 | 0.83 | 0.85 | 1.00 | 1.00 | - | 0.83 | - | |
| 2012 | 0.88 | 0.89 | 0.85 | 0.81 | 0.95 | 0.81 | 0.86 | 1.00 | 0.93 | 1.00 | 1.00 | - |
| 2013 | 0.75 | 0.79 | 0.71 | 0.83 | 0.88 | 0.95 | 1.00 | 0.63 | 1.00 | 1.00 | 1.00 | 1.00 |

Figure E1. Sebastes norvegicus in Sub-areas 1 and 2. Yield-per-recruit for S. norvegicus, computed from the base case GADGET model presented at the benchmark assessment in February 2012 (WKRED).

Figure E2. Overview of the Norwegian biological age samples (number individuals, number hauls/sets, number of boats) from the commercial fisheries for S. norvegicus in 2013 representing more than 80% of the catches and which the input data to the Gadget model are based upon. The colours denote which sampling platform has been used: High Seas Reference fleet, port sampling, Coast guard, Coastal Reference Fleet, or inspectors/observers at sea. The green crosses show the catch in tonnes for the different seasons, areas and gears.

