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i Executive summary 

The overall aim of the workshops on Integrated Trend Analysis to support Integrated Ecosystem 
Assessment is to develop good practices in the application of integrated trend analyses (ITA) 
and interpretation of their results for integrated ecosystem assessment (IEA). This series of work-
shops follow a simulation-based evaluation approach. 

The third workshop (WKINTRA3) was dedicated to the review of simulated multivariate eco-
logical "control" datasets, which were further used to evaluate the following selection of ITA 
methods: heatmaps, principal component analysis (PCA), integrated resilience analysis (IRA), 
multivariate autoregressive trend models (MAR-T), trend estimation and classification (TREC), 
minimum/maximum autocorrelation factor analysis (MAFA), redundancy discriminant analysis 
(RDA) and dynamics factor analysis (DFA).  

Based on the ITA evaluation results, several recommendations are made for further development 
and use of ITA to support the work of ICES IEA groups. These recommendations include 1) clear 
specification of the objective when applying ITA methods, 2) increased transparency and trace-
ability of the methods used, 3) explicit consideration of input data uncertainties, 4) methods for 
detecting extreme events (such as heatwaves), 5) harmonisation in the reporting of ITA outputs, 
6) generalisation of the evaluation of ITA method performance and 7) peer-reviewing of ITA
methods across IEA groups.
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ii Expert group information 

Expert group name Third workshop on Integrated Trend Analysis to support Integrated Ecosystem Assess-
ment (WKINTRA-3) 

Expert group cycle Annual 
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Reporting year in cycle 1/1 

Chair(s) Saskia Otto, Germany 

Benjamin Planque, Norway 

Meeting venue(s) and dates 21–24 September 2021, online, 12 participants 
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1 Terms of reference, agenda and participation 

The general objective of the workshop series (WKINTRA) is to develop good practices in the 
application of integrated trend analyses (ITA) and interpretation of their results for integrated 
ecosystem assessment.  

The Terms of Reference of the workshop WKINTRA-3 were: 

a) Review the simulated multivariate ecological datasets prepared during and following
WKINTRA2 (Science plan codes 1.3 and 1.9).

b) Evaluate a selection of Integrated Trend Analysis (ITA) methods (Science plan codes 1.3
and 1.9).
For this, the following steps were to be taken,

• select a set of ITA methods,
• provide the R code to run the analyses,
• define method-specific qualitative or quantitative criteria that allow for an objective com-

parison across simulated datasets,
• apply the ITA methods on relevant simulated datasets, and assess outcomes on a case

study- and approach-specific basis.

c) Develop guidelines for IEA groups to evaluate ITA methods, including a comprehensive
documentation of data generation and method application using the R environment
(Science plan code 6.5).

In 2018, a first workshop (WKINTRA-1) was held in Hamburg, Germany (ICES, 2018). It was 
then recommended that two further workshops should be conducted. A second workshop to 
generate simulated datasets for few contrasted ecosystems (WKINTRA-2) and a third workshop 
to perform the evaluation of selected ITA methods on the simulated datasets (WKINTRA-3).  

WKINTRA-3 took place as an online meeting on September 21st-24th, 2021, and was attended by 
12 participants from five countries (see annex 1).  

Benjamin Planque and Saskia Otto opened the meeting. The agenda was adopted (see annex 2). 
Participants were informed about ICES code of conduct. No conflicts of interest were identified 
by the participants or the chairs. The introduction to the meeting was followed by a brief intro-
ductory round table of the participants. 

The following ITA methods were agreed to be evaluated: 

• Heatmaps or so-called Traffic Light Plots (TLP)
• Principal Component Analysis (PCA)
• Integrated Resilience Analysis (IRA)
• Multivariate Autoregressive Trend Analysis (MAR-T)
• Trend Estimation and Classification (TREC)
• Minimum/Maximum Autocorrelation Factors (MAFs)
• Redundancy Discriminant Analysis (RDA)
• Dynamic Factor Analysis (DFA)

https://ices.dk/about-ICES/Documents/Resolutions/Science_plan_codes.pdf
https://ices.dk/about-ICES/Documents/Resolutions/Science_plan_codes.pdf
https://ices.dk/about-ICES/Documents/Resolutions/Science_plan_codes.pdf
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2 Review the simulated datasets 

2.1 Surrogate time-series using phase randomisation 

The method of surrogate time-series based on phased randomisation is designed to simulate 
time-series with specified mean, variance, and temporal autocorrelation. The method is de-
scribed in Schreiber and Schmitz (2000) and was applied in Planque and Arneberg (2018), where 
the authors assessed the robustness of Principal Component Analysis (PCA) when applied to 
multivariate time-series. The general principle is that a time-series in the time-domain can be 
fully described by its equivalent in the frequency domain, by specifying the values for the phase 
and amplitude for each frequency. If the amplitudes remain unchanged but the phases are shuf-
fled, the resulting time-series share the same power-spectrum (and therefore the same temporal 
autocorrelation) as the original time-series, but the values in the time-domain are random. The 
method is used here to simulate multivariate time-series datasets in which each individual time-
series simulation preserves specific properties of the original data. Because the time-series are 
generated independently from each other, it is assumed that relationships between time-series 
can only emerge by chance. Such multivariate dataset produced with phase randomisation is 
analogue to an experimental ‘control’ or ‘blank’ or 'null model'. 

The phase randomisation requires that the original time-series be stationary, i.e. without a mon-
otonic trend and that the data be normally distributed. For this purpose, on each time-series, the 
method was implemented as follows: 

1. Transform non-normal data (usually with double square root transformation)
2. Estimate the linear time-trend, and compute the residuals
3. Apply the phase randomisation on the residuals
4. Add the linear time-trend to the randomised residuals
5. Back-transform (with e.g. double square transformation).

The issue of the linear temporal trend is not easy to deal with because the trends in the datasets 
contain information and, at the same time, constitute a statistical nuisance. When a linear trend 
dominates (i.e. the % variance explained by the trend is high), the information content of the 
time-series is close to 2 degrees of freedom (the slope and intercept). The statistical value of the 
observed relationships between 2 series dominated by trends is similar to that of a correlation 
based on 2 observations. Although it is tempting to associate time-series that share similar or 
opposite trends, the statistical support for the association between the time-series is very weak. 

In practice, surrogates can be generated in the R language using the function surrogate of the 
library tseries (Trapletti and Hornik, 2020). 

During the previous workshop and this workshop, surrogate time-series were generated for the 
following datasets: Barents Sea, Bay of Biscay, Central Baltic Sea, Celtic Sea, Norwegian Sea, 
North Sea Skagerrak, NoBa simulations (see section 2.4) and Baltic Sea simulations (see section 
2.5). 
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Figure 1. An illustration of surrogate time-series. The left panel shows the original dataseries for Haddock biomass in the 
Barents Sea from 1985 to 2015. The rightmost panel shows two surrogates with the same trend and residual autocorre-
lation as the original observations. The 3 panels in the middle show surrogates with only part of the original data struc-
ture preserved: only mean and variance (middle left), trend and residual variance but not autocorrelation (middle), or 
residual variance and autocorrelation but not trend (middle right).  

2.2 Multivariate autoregressive simulations 

The observed time-series data display stationary and non-stationary mean components. In sta-
tistical time-series modelling, the stationary and non-stationary mean parts are considered sep-
arately in the model because the statistical property of non-stationary mean process (mean is not 
constant over time) is different from the property of stationary process (mean, variance are con-
stant over time and covariance is consistent for a fixed lag). Once the trend component is esti-
mated by a trend model (see next paragraph), MAR (if the data are multivariate) and AR (if the 
data are univariate) models are applied to the residual parts that are obtained by extracting trend 
from the observations. MAR model expresses the state of all variables at present and past time-
steps, and the appropriate effect from the past are evaluated by the statistical criterion. In MAR, 
the relationships between variables are explicit in the autoregressive (AR) coefficient matrix. AR 
model is the univariate version. The physical meaning of the estimated AR coefficients is ob-
tained by considering the frequency domain. The frequency response function is given by the 
estimate AR coefficients and the (cross) power spectrum is calculated by the variance (- covari-
ance matrix) of prediction error of (M)AR model and the frequency response function. 

MAR model is used to simulate multivariate time-series data, or to estimate the likely value of 
model parameters given observational data. It is expected that results of ITA performed on MAR 
outputs should recover some information about the relationships between variables, that were 
explicitly included via the model parameters. Interestingly, it is possible to estimate MAR model 
parameters from observational data, simulate new datasets with the fitted MAR model and re-
cover the parameters by fitting new MAR to the simulated data. If the data presents non-station-
ary trend, the trend model can be considered in addition to MAR model. Furthermore, effects 
from abiotic factors can be considered in the model, expressed as exogenous variables (X). The 
formula is given by MARX or MARX+TREND. In any case, this multistage fitting-simulation-
fitting process can be insights into the performance of MAR(X) + Trend as a tool for ITA. 

2.3 ISIS-Fish simulations 

ISIS-Fish is a deterministic simulation model designed to explore the dynamics of mixed fisheries 
(Mahevas and Pelletier, 2004; Pelletier et al., 2009). It is spatially explicit with a monthly time-
step. Catches result from the interaction between the spatial distribution of population abun-
dance and the spatial distribution of fishing effort standardised per gear, métier, and fleet, both 
dynamically updated each month. The ISIS-Fish application to the mixed demersal fishery of the 
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Eastern English Channel simulates the response of fleets and stocks to the implementation of the 
landing obligation regulation. It comprises 10 commercial species and 17 fleets (Lehuta et al., 
2015; Lehuta and Vermard, submitted). It evidences the effect of choke species on the fishery, 
that is an early closure of the fishery in the year, due to the limiting TAC for plaice and sole and 
its impact on effort, catches and biomass of all the target species. For the purpose of the work-
shop, simulations were ran for 30 years, assuming stock recruitment relationships for five of the 
stocks. To illustrate the impact of random noise on the perceived dynamics, a deterministic run 
and 10 additional runs including interannual noise around the stock-recruitment relationship 
were carried out. Outputs of interest are typical from fishery monitoring and consist of 48 annual 
time-series of stock biomass, catches, mean weight in catch and effort per fleet. MAFA were ap-
plied to the time-series. 

Figure 2. Examples of ISIS-Fish outputs for sole abundance, catch and mean weight of catch and the effort of one of the 
netter fleets. Black line is the deterministic run, coloured lines are the runs with random noise on the stock recruitment 
relationship. 

2.4 NoBa simulations 

Atlantis is an end-to-end, mostly deterministic model consisting of several modules that interact: 
an oceanographic module (physico-chemical environment, hydrology), a biological module 
(foodweb model), and a harvesting module (with fleets, gears and management schemes). In a 
more complex form, the model can also include an assessment module (optional, for e.g. man-
agement strategy evaluation), and an economic module that can include incentives for fisheries 
or inform on economical outputs (Audzijonyte et al., 2019). Processes are spatially resolved in a 
set of boxes and layers where they are considered homogeneous. In the case of the Norwegian 
and Barents Sea Atlantis model (NoBa, Hansen et al., 2016) the model comprises 60 boxes with 
up to 7 water column layers and a sediment layer, and 53 biological compartments, with biomass 



ICES | WKINTRA-3   2021 | 5 

pools for invertebrate species and up to 10 age classes per vertebrate groups. For the workshop, 
we used readily available and published data from Hansen et al. (2019). The simulations aimed 
at studying the impact of different scenarios of fisheries effort on the ecosystem in a warming 
Barents Sea (defined by a downscaled forcing under the RCP4.5 climatic scenario). We selected 
only one scenario with a fishing pressure of 1.0x FMSY ran on 110 years. Selected outputs are the 
main time-series of integrated ecosystem assessment for the Barents Sea, including environmen-
tal conditions (temperature, oxygen, chlorophyll a), population biomass (large zooplankton, cap-
elin, herring, polar cod, cod, Greenland halibut, haddock, saithe, long rough dab) and fisheries 
catches (capelin, herring, cod, haddock and Greenland halibut). A thousand surrogate time-se-
ries were created from those outputs, from which 9 were selected randomly. It was noticed that 
in the case of very smoothed time-series (e.g. saithe, SAI), the surrogates had a much stronger 
variability than the original time-series (Figure 3), a problem already identified by Schreiber and 
Smith (2000). Heatmaps and PCA were applied to the time-series. 

Figure 3. Population biomass simulated time-series from NoBa Atlantis (in black) and corresponding surrogates (colours)  

2.5 Baltic Sea 

A generalized dynamic foodweb model for the central Baltic Sea was presented and discussed 
(Blenckner et al., 2015). This model consists of coupled empirical individual models (Generalized 
Additive Models, GAMs) and allows for regime-dependent dynamics (tGAM, a threshold for-
mulation of a GAM) depending on whether the system is below or above a given value of a 
threshold variable (see Figure 3 in Blenckner et al., 2015). The modelling approach consists of two 
steps: first an individual statistical model is fit to each trophic level, then the separate models are 
coupled together into a joint foodweb model that is able to reproduce the observed population 
dynamics based on external drivers and the trophic interactions emerging from the individual 
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models. This generalized dynamic foodweb model can be subsequently used to simulate the sys-
tem under a range of conditions (Figure 2 in Blenckner et al., 2015). We decided to use the Baltic 
Sea model due to its simple configuration (few foodweb components) and because it accounts 
for the regime shift that took place in this marine ecosystem in the late 1980s. Regime shifts are 
an ecological feature that ITA methods are supposed to be able to detect and, therefore, outputs 
from the Baltic Sea model can be a good candidate dataset to evaluate different ITA methods. 

Simulated output time-series consists of 100 realizations of the ecosystem for a series of 81 fishing 
mortality levels (Flvl), covering the range that goes from 0 to 1.4, every 0.05. Environmental con-
ditions were sampled from values observed during the first or the second regime (before/after 
1989). This setup gives a total of 16,200 realizations 8,100 run under pre-regime environmental 
conditions and 8,100 using those observed after the late-1980s regime shift (Figure 4 in Blenckner 
et al., 2015). 

For the purpose of WKINTRA3 one random realization (81 steps) of the Baltic Sea foodweb for 
a complete range of Fs (0, 0.05, 0.10, …, 1.30, 1.35, 1.40) was selected. This realization consisted 
of cod (CODs), sprat (SPRs), herring (HERs), Pseudocalanus sp. (PSEs) and cladocerans (CLAs) 
biomass/abundance as well as the corresponding temperature (TMPsum), salinity (SLNdeep), 
herring fishing mortality (Fher) and the increasing levels of cod fishing mortality (Flvl). Subse-
quently, surrogates were created out of the selected simulation.  

Heatmaps and PCA (biplot and trajectories) analyses were run on both the simulations and sur-
rogates. The methods were able to pinpoint the cod fishing mortality level at which cod biomass 
collapsed. The exact level showed some variation when using surrogates. 
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3 Evaluation of selected Integrated Trend Analysis 
(ITA) methods 

3.1 Heatmaps 

Method description 

The heatmap (also called Traffic Light Plot, TLP) is a graphical method designed to represent 
multiple time-series simultaneously. The output of the heatmap method is a colourised matrix 
in which each row is a variable and each column is a year. The colours reflect the values in the 
original datasets and the dataseries can be re-ordered (from top to bottom) so that series that 
share similar properties are plotted near each other. 

For this specific application we used the following protocol to generate the heatmaps: 

• For each individual time-series:

o Classify individual observations in 5 categories from low to high. The categories are
based on equal intervals from the lowest to the highest recorded value.

o Colourise the observations from green (low) to red (high).

• Plot all the time-series in an ordered fashion (here, based on the mean in the first 5y).

Data used 

The heatmap ITA was applied to observational data and surrogates (section 2.1) from the follow-
ing six regional IEAs: Barents Sea, Bay of Biscay, Central Baltic Sea, Celtic Sea, Norwegian Sea 
and North Sea / Skagerrak. A thousand surrogate time-series were available for each region, but 
only 8 surrogates were analysed. This is because the interpretation of the heatmaps is mostly 
visual, and it was deemed practical and appropriate to look at a limited number of maps only. 

Evaluation approach 

The evaluation of the heatmap method was conducted in 3 phases. First, the participants were 
asked to answer a series of questions regarding their expectations from heatmaps. Second, the 
participants were provided with 9 heatmaps for each region. For each regional set, one of the 
heatmaps was generated from the observational data and the 8 others from surrogates. Third, 
the participants were asked questions similar to those in the first step. In addition, they were 
asked if they could identify/discriminate the heatmap that was based on the original data, on the 
regional system of their choice (i.e., the one they knew best). An example of the 9 heatmaps for 
the Barents Sea is provided as an illustration (Figure 4). 

This was followed by a plenary discussion on the same day (day #1 of the meeting) and another 
discussion in a smaller group on day #3. 
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Figure 4. Nine heatmaps for the Barents Sea ecosystem. One map is based on the observational data and the 8 others 
are based on surrogate time-series. 

Results 

The surveys before and after looking at the original/simulated heatmaps yielded similar results 
(Figure 5) regarding objectives that seem legitimate (e.g. get a general visual impression of the 
long-term changes of many variables simultaneously, split between variables that have in-
creased, decreased or remain stable or identify time-periods that are similar to each other). Sim-
ilarly, objectives that seemed less legitimate in the first survey remained so in the second survey 
(single out series that are different from others and single out years that are different from other). 
Overall, the heatmap is perceived as a method that can be applied with a wide range of objectives 
in mind. 

One noticeable change between the first and the second survey concerns the association between 
biotic/abiotic variables that have similar temporal patterns. Respondent were more confident in 
heatmaps achieving this goal after visualising the plots than before. 

Five out of 11 respondent were confident in identifying the heatmap derived from original ob-
servations against the 8 others derived from surrogates. This was usually achieved by looking at 
well-known individual time-series (e.g. herring and seabirds in the Norwegian Sea, cod and 
NAO in the Barents Sea or cod and Acartia sp. in the central Baltic Sea) or by inspecting 'blocks' 
of time-series that were known to co-vary. 
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Figure 5. Results from the survey on heatmaps before (left) and after (right) visualising the heatmaps for the 8 regional 
IEAs. 

Important issues 

Trends: heatmaps appear efficient at visualising the long-term trends of many series. It is more 
immediate to read trends from heat maps than to read year-to-year fluctuations. In heatmaps the 
trends are considered to provide important (maybe the most important) information.  

Association between time-series maybe more difficult to identify than trends. This is particu-
larly true when time-series are located far apart on the map, when the association is at short time-
scale and when the association is negative. 

Recurrent emerging patterns: when many of the dataseries are dominated by trends, the 
heatmap will display a diagonal pattern, with e.g., declining series at the top and increasing time-
series at the bottom. 

Colour categorisation: The choice of categories for colouring the dataseries is not neutral. Cate-
gories based on equal intervals or quantiles will yield graphically different outputs. At present 
most categorisation schemes are based on the full range of variability in individual variables. 
This means that two series, for example one with species biomass varying by 100% and one with 
species biomass varying by 1%, will both be represented using the full colour range. This could 
be misleading and in some instances the categorisation scheme needs to be revised. 

Choice of colours: The colour scale (green to red) can be mis-interpreted. Some can read it in a 
normative way, green = good and red = bad while other associate red with low and green with high. 
In addition, the scale may not be appropriate for some categories of colour-blind readers. 

Ordering of variables: How the different variables are ordered when drawing the heatmap can 
also greatly influence the reading and interpretation. This is because series that are nearby are 
easier to visually compare than those that are far apart. Current ordering methods include the 
use of a prior PCA analysis to order time-series based on their score on the first axis, the use of 
the average values in the early years of the time-series (series are for example ordered by de-
creasing mean category values in the first 5y), or the use of an external variable.  

Heatmaps are not suitable to represent uncertainties in the underlying dataseries, since only the 
point estimates can be colourised. 

The group could not identify obvious criteria for defining or estimating heatmap performance. 
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Although the survey results indicated that heatmaps could be (or had been) used with a range 
of objectives, the method appear most useful to provide a graphical summary of the data that 
support a pre-existing description of changes in an ecosystem. There exist other methods that 
are better suited to investigate relationships between time-series, regime shifts, etc. In addition, 
if prepared in standardised manner, heatmaps could be a way to harmonise the presentation of 
some of the IEA group results, thereby favouring comparisons between regions and systems. 

Recommendations 

Use heatmaps primarily as a graphical illustration of the ecosystem changes, not as a tool for 
investigating these changes. 

Pay attention to methodological choices: data categorisation scheme, colour scale, method for 
ordering variables. Report these choices explicitly. 

Use non-normative colours and terminology as much as possible (e.g., the term "traffic light" is 
normative but the terms "heatmap" or "colormap" are not). 

Calm down if you see a diagonal pattern, this is an expected feature when many time-series are 
dominated by long-term trends. 

Harmonise practices between IEA groups as much as possible to promote comparative analyses. 

3.2 PCA 

Methods description 

The evaluation of Principal Component Analysis (PCA) was based on the results published by 
Planque and Arneberg (2018). PCA is a dimension reduction technique based on the transfor-
mation of the original data into a new multidimensional space in which each dimension, i.e., 
component, is orthogonal to the others. The components are presented by decreasing amount of 
explained variance. The technique is often used to reduce/summarise multivariate datasets into 
a smaller number of dimensions and to identify relationships between the original variables. 
PCA can be performed on the variance-covariance matrix or on the correlation matrix between 
the original variables. In all IEAs, PCAs are conducted on the correlation matrices because the 
different variables are often reported in different units. Some IEA groups perform PCAs sepa-
rately on abiotic and biotic variables while others treat them simultaneously. 

Data used 

The data used is presented in Planque and Arneberg (2018). It consists of the dataseries provided 
by the IEA groups for the Norwegian Sea, Barents Sea, North Sea Skagerrak and Central Baltic 
Sea plus a control dataset constructed by assembling 15 unrelated time-series from large-scale 
databases. For each dataset, 1000 surrogates were produced using the method outlined in section 
2.1. 
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Evaluation approach 

The evaluation was primarily based on two outputs of the PCA analyses. First, the representation 
of the ecosystem trajectory in the plane formed by the first 2 components. Second, the percentage 
of variance explained by the first 2 components. The evaluation was done by comparing how 
these two outputs differ between the analyses performed on the original datasets and those per-
formed on surrogate datasets. 

Results 

The results show that outputs on the control dataset are not differentiable from outputs based 
on surrogate time-series (which is the expectation). For the 4 IEA datasets, the "horseshoe" pat-
tern of the ecosystem trajectory is often observed in the surrogate time-series. This is a well-
known artefact of the method. When linear trends are dominating in many time-series, the first 
component of the PCA captures the trend components, and the second component, which is 
orthogonal to the first one by construction, resemble a second order polynomial. The result is a 
"horseshoe" pattern in the PC1-2 plane (Figure 6). The percentage variance explained by PC1-2 
in the original IEA datasets exceeds, on average – the percentage variance explained in the sur-
rogate datasets. However, the difference is often marginal (Figure 7). Most of the variance can be 
explained by random (but structured in time) time-series or is explained by other PCs. 

Figure 6. Biplots of the PCA performed for the Norwegian Sea. The arrows show the contribution of each variable in the 
first 2 components (length of the arrow) as well as the correlation between variables and components (angle between 
arrows or between arrows and components). The continuous lines indicate the temporal “trajectory” of the system pro-
jected on the first two axes of the PCA. The PCA results are shown for the original dataseries (left) and one realization of 
simulated data with trend and autocorrelation preserved (right). The horseshoe-like trajectory is visible on both plots. 
(reproduced from Planque and Arneberg, 2018)  
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Figure 7. Fraction of the variance explained by the first two axes of the PCAs. From bottom to top: a) minimum possible 
amount of variance that can be explained by the first two PCS; median variance explained in PCAs performed on simu-
lated data that incorporate b) mean and variance only, c) autocorrelation, d) trend, e) trend and autocorrelation; f) var-
iance explained in the empirical dataset. The upper boxes indicate the residual variance not explained by the first two 
axes of the PCA. In the control dataset, the variance explained by the PCA on observed data is not greater than that 
obtained on simulated dataseries with similar trend and autocorrelation. (reproduced from Planque and Arneberg, 2018) 

Important issues 

Long-term trends in the dataseries that are used as input to PCA constitute simultaneously in-
formation and nuisance. Correlations between different variables can occur at different time-
scales, including long-term, in which case the trends contain important information about how 
different ecosystem components are related. Temporal changes in the whole system are also ex-
pected to occur at multiple time-scales and long-term trends in the dataset contribute to the over-
all pattern of change. However, PCAs are primarily designed for cross-sectional datasets, not for 
time-series, and cannot be used to discriminate between changes in variables that can be at-
tributed to time-dependency and those that can be attributed to causal interactions between var-
iables.  

Association between time-series (as revealed in the PCA biplots) cannot be attributed to causal 
relationships and in many cases, may simply reflect that several series display quasi monotonic 
long-term trends. 

In many PCAs performed on IEA dataseries, the high percentages of variance explained as well 
as the temporal trajectories mainly are recurrent emerging patterns which result from the pres-
ence of monotonic trends. These are likely to be artefact of the method. 

Variable selection is a key step in PCA analysis. If many variables are associated with the same 
ecosystem process or component (e.g. temperature in January, temperature in May, heat content 
and ice extent are all related to ocean thermodynamics), then this process/component is likely to 
dominate the PCA results (i.e. drive the first(s) component(s)). 

Dataseries are often preprocessed before entering the PCA analysis. Preprocessing may involve 
data-transformation (e.g. log or double-square root transformation for biotic datasets), or selec-
tion of time-series in order to limit the redundancy of variables and avoid upweighting of certain 
processes (e.g. including sea surface temperature, ice extent and heat content may give too much 
weight to heat related processes and can be reduced to one variable only). The preprocessing 
steps, as well as the rationale behind them, should be presented explicitly. 

PCA is not suitable to represent uncertainties in the underlying dataseries, since only the point 
estimates are used as input to the analysis. 
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The group did not discuss in depth the criteria for assessing the performance of PCA analysis 
in the context of ITAs. System trajectories in PC1-2 and percentage of variance have been used 
as evaluation criteria by Planque and Arneberg (2018). 

There appear to be two main types of objectives when using PCA for ITA. First, PCAs have 
been used as an exploration tool to reveal association between variables (biotic, abiotic or both). 
In this case, practitioners should carefully consider the risks of spurious correlations due to trend 
and autocorrelation in the time-series as these can lead to artefactual high performance of the 
PCA in terms of variance explained and associations between variables. Second, PCAs have been 
used to provide a summary of a dataset in which the different variables are a priori known to be 
related to each other (a typical example is the use of PCA or EOFs (Empirical Orthogonal Func-
tions) to summarise temporal changes in spatial fields of sea level pressure) if the data can be 
assumed stationary. In this case, the summary provided by the PCA may be meaningful, alt-
hough the constraints imposed by orthogonal axes may not always be appropriate. 

Additional considerations 

PCA is useful for dimensionality reduction, lossy data compression, feature extraction and data 
visualization however (Bishop 2006); as we demonstrated in this workshop, applying PCA with-
out considering the statistical properties of the data can provide a misleading interpretation to 
the output – which is common sense in time-series analysis (Kawasaki 2004). PCA is originally 
used for multivariate analysis, which these data are basically assumed to be sampled inde-
pendently. Applying PCA directly to the data in the time domain means that we just focus on 
the correlation of the variables at an identical time point, since the eigen decomposition is per-
formed on the instantaneous covariates, disregarding the information contained in the data’s 
leads and lags. Therefore, it is hard to capture the dynamics behind the data based on the results 
by PCA by using the time domain. As a possibility for applying PCA to time-series data, 
Brillinger (1981) proposed the concept of a dynamical PC. The time-series data are converted by 
discrete Fourier transformation. The procedure guarantees asymptotical independence in the 
samples, enabling the ordinary PCA technique to be valid in the frequency domain. Brillinger’s 
concept is based on the eigenvalue decomposition of spectral density matrices instead of the 
eigenvalue decomposition of covariance matrices. 

PC captures the fluctuation maximizing the variability of the data, which first and second PCs 
usually cover over 90 percent of whole variance of the data. If the data includes long-term trend 
(non-stationary mean), shown in subsection 3.4, PCs just distinguish similar trend pattern. There-
fore, nonstationary mean time-series data observed in marine biology, ecology and/or ocean ge-
ography should be applied trend model at once and would be better to test time dependency in 
the component by extracting trend pattern.  

Why do we analyse multidimensional time-series data observed in oceans? The scientists en-
gaged in marine biology, ecology and/or ocean geography are originally interested in dynamical 
changes or the diagram of relevant biological species and geographical/climate environmental 
factors in a marine ecosystem. For this challenge, scientists should directly investigate mutual 
and causal relationships among the data. The first attempt for causal inference between variables 
goes back to a study on feedback systems by Wiener (1958), where, by his definition, a given 
time-series is causal to another if knowledge of the first series reduces the mean square prediction 
error of the second-time-series. Granger (1969) followed this notion of causality and applied it to 
the analysis of economic time-series data using bivariate AR model. A parallel development to 
Granger’s approach was made by Akaike (1968), who provided a feedback system analysis using 
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a MAR model. Akaike’s approach was a practical statistical method to investigate mutual rela-
tionships among variables from two different angles – the open/closed impulse response calcu-
lated in the time domain, and the relative power contribution calculated in the frequency do-
main. Numerous successful applications of the method have since been found in several fields 
such as engineering, physics, economics and medical science (Akaike and Kitagawa, 1994). 
Therefore, applying MAR model is one possible way to analyse multidimensional time-series 
data observed in oceans. Notice that applying MAR to less than 50-time sampled points data 
should be done carefully (Hardison et al., 2019; Solvang and Subbey, 2019), and the physical 
property or precision should be validated by resampling. 

Recommendations 

IEA groups should explicitly state their objectives when performing a PCA, i.e. exploration of 
associations between variables vs. summarising of a dataset. Applying PCA for the latter objec-
tive is recommended. 

Data preprocessing (data selection and transformation) and methodological choices (use of cor-
relation or variance-covariance matrix) must be justified and reported. 

High percentage of variance explained by the first components is not advisable as a criteria for 
justifying the success of the method, unless this has been compared with the same measure on 
control datasets as in e.g., Planque and Arneberg (2018). 

3.3 IRA 

Method description 

The Integrated Resilience Analysis (IRA) framework is a multivariate, 3-step approach devel-
oped by Vasilakopoulos and Marshall (2015). In the first step, the ecosystem components of in-
terest are reduced to a single (or few) system indicator variable(s) using a dimension reduction 
method such as the Principal Component Analysis (PCA). The ecosystem state, e.g. the first prin-
cipal component (PC1) of the biotic variables, is then regressed against a single pressure or 
stressor (Vasilakopoulos et al., 2017) or a composite indicator, such as the PC1 of a pressure-based 
PCA (Vasilakopoulos and Marshall, 2015). The presence of a bifurcation pattern is identified if 
the response curve is not only non-linear but can be best described by two response functions 
separated in time, i.e., if a threshold (non-additive) formulation of a Generalized Additive Model 
(aka tGAM) performs better in terms of predictive performance than an ordinary fully additive 
GAM. In the case of a discontinuous system response, the lines of the fitted (two or more) GAMs 
represent the alternative attractors or basins. The position of the tipping points can then be ap-
proximated based on the thresholds identified by the non-additive models, and one or more fold-
bifurcations can be revealed.  

Once a fold bifurcation pattern is detected, annual resilience values are estimated based on the 
position of each year in relation to the fitted attractors and assumed tipping points of the fold 
bifurcation. By interpolating these annual resilience values, a folded stability landscape can then 
be fitted. 
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Data used 

The IRA was applied to observational data and surrogates (section 2.1) from the following five 
regional IEAs: Barents Sea, Bay of Biscay, Central Baltic Sea, Norwegian Sea and North Sea / 
Skagerrak. Out of the 1000 available surrogate datasets 100 datasets were randomly chosen to 
shorten the computation time. All biotic time-series were considered as ecosystem components 
of interest and a priori fourth root-transformed to normalize the data. All environmental variables 
were considered as stressors. 

Evaluation approach 

Two IRAs were conducted for each case study and the observational time-series: one in which 
the biotic PC1 was regressed against the environmental PC1 (following Vasilakopoulos and 
Marshall, 2015) and one where the pressure with the strongest correlation was used as explana-
tory variable (see Vasilakopoulos et al., 2017). This dual approach was then adopted for the 100 
surrogate datasets, here using the same pressure as in the observation-based analysis for com-
parability. Since the direction of the PC1 has little meaning, the axis was allowed to rotate in the 
last step of the resilience estimation to better reproduce a potential fold bifurcation pattern. 

The evaluation of the IRA was then conducted in two phases. First, a more quantitative approach 
was used in which the observation-based results from the first two steps of the IRA, i.e. the PCA 
and the GAM/tGAM modelling, were directly compared with the distribution of surrogate-
based results. The assumptions here were that 

• the biotic and environmental PC1 of the observation-based PCAs explain significantly
more variance in the multivariate dataset than when using surrogate data.

• the fold bifurcation is more pronounced in the observational data, expressed as higher
explanatory power in the GAM and tGAM and a lower probability of tGAMs outper-
forming the corresponding GAMs in the surrogate datasets.

Second, a visual comparison of the resilience landscape was made. Participants were provided 
with six shuffled resilience landscapes for each case study: one based on the true observations 
and five based on the surrogates. Participants were then asked to identify the observation-based 
assessment result. 

Results 

The results of the quantitative evaluation (phase 1) show that outputs from the observational 
datasets are not necessarily different from the surrogate datasets. Explained variances of the ob-
servation-based PCAs were only found for the Barents Sea (environmental PC1; see also Figure 
8, left) and the Central Baltic Sea (both PC1) to be significantly higher. Also, the fold bifurcation 
pattern was not more pronounced in the observational time-series as one would have expected. 
In fact, the tGAMs outperformed the GAM not only in all observational datasets but in 90-100% 
of all surrogates (Figure 8, top-right). An exception is here the North Sea with 58% when using 
the environmental PC1 as covariate. In five out of the six case studies, the surrogate-based 
tGAMs explained more variance than the control, i.e. based on observations (see Figure 8). 
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Figure 8. Distribution of surrogate-based analyses outputs in contrast to observational-based output (dashed black line): 
explained variance of the first component of the biotic and environmental PCA (left column), the explained variance and 
p-value of the GAM (middle column), as well as the explained variance of the TGAM and the identified time threshold
(right column). 

The identification of the observation-based resilience assessment from the six plots shown to the 
participants revealed challenging. A potential fold bifurcation pattern was often found for mul-
tiple datasets, both for the observations and surrogates (see Figure 9). However, none of the 
studied assessment plots showed such a distinct pattern as demonstrated in the original papers. 

Figure 9. Folded stability landscape and resilience assessment for the observation-based analysis (upper middle panel) 
and five surrogate-based analyses for the Barents Sea. On the empirical folded stability landscapes continuous black lines 
indicate the linear attractors, dotted black line indicates the possible extension of the lower and upper branch and F1 
and F2 indicate the tipping points. Colors represent the relative resilience contour interpolated from the relative resili-
ence of each year. 
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Important issues 

The main objective of the IRA framework is to test the theory of critical transitions, which sug-
gests that complex natural systems impacted by multiple stressors may exhibit fold bifurcations 
featuring folded response curves, tipping points and alternate attractors. As confirmative 
method, however, there is the danger of misuse particularly as the method tends to easily gen-
erate the pattern looked for. 

Trends: the PCA-based IRA framework faces a similar dilemma as the PCA long-term trends in 
biotic time-series might not necessarily be driven by the same exogenous drivers but rather by 
internal auto-regressive processes, as often found for fish species or other long-living species. 
However, the method cannot differentiate between the underlying processes and instead inter-
prets similar trends as system-wide dynamics that can be related to the same stressor or stressor 
combination (in the second step). 

Emerging systematic patterns: the modelling approach in the IRA framework shows the ten-
dency for inflated type I error and overfit in the GAMs and particularly tGAMs. Splitting the 
response curve into two or more time periods (i.e. using ‘time’ as the threshold variable) leads 
generally to a better fit to the data on which the model is trained. Flexible modelling approaches 
such as the tGAM (but also GAMs) have the tendency to overfit the data and have higher vari-
ances, i.e. small changes in the training data can result in large changes in the estimated coeffi-
cients (James et al., 2013). When then allowing the biotic PC1 (i.e., the y-axis) in the resilience 
landscape plot to rotate, a fold bifurcation pattern is easily emerging. 

Methodological choices: as with many multivariate analyses, variable selection is a key step also 
in the IRA. Any overrepresentation of a specific component group is likely to dominate the sys-
tem-wide analysis. Similarly crucial is the data preprocessing, such as transformation to normal-
ize the data for the PCA, although GAMs and tGAMs allow for any distribution as long as they 
are clearly defined in the modelling function. In general, all preprocessing steps, as well as the 
rationale behind them, should be presented explicitly. 

The IRA framework is neither suitable to represent uncertainties in the underlying dataseries 
nor in the estimated resilience of the system.  

The group did not discuss in-depth further criteria for defining or estimating IRA performance 
as done in the evaluation here. 

Recommendations 

As recommended for the PCA, data preprocessing (data selection and transformation) and meth-
odological choices (use of correlation or variance-covariance matrix) must be justified and re-
ported. 

The decision for selecting the tGAM over the ordinary GAM should not only be made using the 
genuine Cross-Validation (gCV) score but also visually: 

• Based on the development of the Generalized Cross-Validation (GCV) score estimated
for the sequence of models with a different threshold value (‘valley plots’, see Figure 2 in
Llope et al., 2011 for examples). Only if the selected tGAM has also a distinct lower GCV
than all other theoretical tGAMs and if both regimes have sufficient data points to allow
the estimation of the response curve, should the tGAM be considered optimal.

• Based on the confidence intervals of the two (or more) GAMs that describe the two (or
more) basins of attraction. Only if there is no (or not much) overlap, i.e. if the basins of
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attraction are clearly distinguishable, should the tGAM be retained over the fully additive 
GAM. 

Following the evaluation scheme outlined here, we recommend that the performance of the IRA 
should be assessed by comparing observational-based results with simulated results, e.g. based 
on surrogates. This helps to identify the sensitivity of the method to generate the theoretical pat-
tern when applied on these data. 

3.4 MAR-T 

Method description 

Multivariate autoregressive models with trends (MAR-T) are constructed with the following 
procedures: 1. Apply the polynomial trend model to the observed time-series data. The order of 
polynomial trend model is set up to three and the optimum order is selected by an information 
criterion; 2. Apply MAR model to the residual obtained by extracting the estimated trend from 
the observation; 3. Using the estimated MAR coefficients and trend, the simulation data are gen-
erated by the time-series model with random noise that obeys to normal distribution with zero 
mean and estimated variance (covariance); 4. Combine the generated MAR data and the trend 
that was estimated in procedure 2. Using these procedures, 100 MAR-T time-series dataset is 
generated. 

Data used 

The observed time-series data includes HERSSB, SPRSSB, Acrtia_Spr, Temora_Spr, Pseudo_Spr, 
Chla-GBSpr, dia_GB_spr and dino_GB_spr from the dataset for Central Baltic Sea. By excluding 
missing values, the data includes 32 time points (1975-2013). In addition to the 100 MAR-T da-
taset, two kinds of surrogates, 1000 datasets for phase randomization and 1000 datasets for time-
domain randomization with the same mean and variance of the estimated MAR part (from orig-
inal data) are prepared. Finally, these data are also combined with the estimated polynomial 
trend parts. 

Evaluation approach 

To 100 MAR-T datasets, 1000 phase randomized datasets and 1000 time-domain randomized 
datasets, procedures 1 and 2 explained in ‘Method description’ are applied again. Using the es-
timated AR coefficients and variance-covariance matrix, power spectra for the three different 
datasets are calculated to confirm the physical properties. Then, PCA is applied to the three dif-
ferent datasets, and the first and second PC scores are compared. 
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Results 

The power spectra for the 100 MAR-T datasets and 1000 phase-randomized datasets are similar 
to the power spectra for the original data. However, the power spectra for 1000 time-domain-
randomized datasets indicate white noise. 

The first PC scores show similar patterns for all cases while the second PC scores are varied. The 
patterns of the first PC scores correspond to the estimated trend patterns as shown in Figure 10. 

Figure 10. The eight panels in left-hand side indicate the estimated trend patterns (black lines) when applying procedure 
1 in Method Description to 100 MAR+T data. The true trends estimated from observation is illustrated by red lines. In 
right-hand side, top panel indicates the first PC score for original data. Larger scores correspond to rising trend and lower 
scores correspond to declined trend. The middle three panels show plots of the first PC scores in the case of 100 MAR+T, 
1000 time-domain-randomized and 1000 phase-randomized surrogates. The lower three panes show plots of the first PC 
scores in the case of estimated trends given by procedure 1 to 100 MAR+T, 1000 time-domain-randomized and 1000 
phase-randomized surrogates. Plots of the first PC score in all cases show similar tendency to the case of original data. 

Important issues 

Even if the statistical properties for time domain randomization data are different, the first PC 
sores of all types show similarity. When applying PCA to the estimated trend component, the 
first PC demonstrates similar tendency; that is, it distinguishes between upward and downward 
configuration. 

Recommendations 

The observed time-series data usually present non-stationary mean process, and time-series 
trend model should be applied to estimate trend pattern. Based on the above results, it should 
be obvious that PCA is not suited to distinguish trend pattern. Moreover, theoretically the 
method is not appropriate to model non-stationary mean process.  
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3.5 TREC 

Method description 

Common trends refer to trends that are similar across ecosystem components time-series. Iden-
tifying common trends can be useful as a diagnostic tool to reveal past changes and to explore 
the relationships among biological communities, as well as between these communities and en-
vironmental conditions. In the present investigation, trend estimation and classification (TREC) 
has been proposed in Solvang and Planque (2020). The method is based on two statistical proce-
dures that includes trend modelling and discriminant analysis for classifying similar trend (com-
mon trend) classes. TREC includes two different kinds of parametric trend models, a polynomial 
regression model and a stochastic dth order difference equation model. The optimum order of 
the polynomial trend model or difference equation model is selected by an information criterion 
(Akaike information criterion, AIC, Akaike, 1974). For the estimated trends, a two-category dis-
crimination procedure is applied to roughly divided them into three groups representing con-
figurations related to upward, flat and downward. If it is necessary to classify them into groups 
of more concrete patterns from the three groups, multiple-category discrimination is applied to 
the reference trend that analyser is interested in. The reference trend is assigned as a general 
icon. 

Data used 

We applied TREC to the time-series complied by the ICES integrated assessment working groups 
for the Barents Sea (WGIBAR) and the Norwegian Sea (WGINOR), including abiotic, biotic and 
human impact variables. 

Evaluation approach 

A simulation clarified the performances of two different trend models and their flexibility for 
use with several representative patterns, which can be predefined as icons.  

Results 

The trends for abiotic, biotic and human impact data were estimated and classified into common 
trend groups, e.g. Table 1 summarized classified groups of WGINOR dataset consisting of 24 
annual time-series for the period 1995–2015. 
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Table 1. Results of discrimination analysis for WGIBAR data: assigned icons by multi-category discriminates. 

Important issues 

For trend estimation, polynomial trend and stochastic difference trend models are available in 
TREC. Polynomial trend model gives simple configuration as the polynomial order is set up to 
three. Simple trends are easily classified into understandable configuration groups and easily 
assign to general icons. On the other hand, higher order polynomial trend or stochastic difference 
trend model gives more complicated trend pattern, which becomes difficult to assign to simple 
general icons simply. Depending on the aim, analyser can choose whether focusing on getting 
precise trend estimates or focusing on classification of the trend. 
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Recommendations 

TREC method focuses on long-term trends in time-series data, it works for any length for sam-
pled time points and is robust for application to short time-series. It directly identifies and clas-
sifies the dominant trends underlying observations.  

In contrast to ordinal multivariate analysis, assumption of Gaussian or identical distribution is 
not necessary for the data to apply TREC. 

The identified common trend patterns are simple comparing with common trend obtained by 
Dynamic Factor Analysis. Based on classified trend groups by TREC, communication among 
stakeholders can be enhanced by showing the common tendency between a biological commu-
nity in a marine ecosystem and the environmental factors as well as the icons allocated (Table 1) 
by generalizing common trend patterns. Furthermore, the classified groups could help to con-
sider further numerical analysis for investigation of precise ecosystem function. 

3.6 MAFA 

Method description 

Minimum/maximum autocorrelation factors (MAFs) is a multivariate statistical method that 
aims to maximise the autocorrelation between neighbouring observations (Shapiro and Switzer, 
1989; Woillez et al., 2009; Doray et al., 2018). When applied to multivariate time-series, mini-
mum/maximum autocorrelation factors analysis (MAFA) decomposes the original suite of vari-
ables into a series of MAFs, in which autocorrelation decreases from the first factor to the last. 
Selecting the first MAFs enables to extract the time-series components that are the most contin-
uous in time, in a way akin to selecting the first sinusoid cycles in a Fourier transformation. 
MAFA is based on the implementation of 2 successive PCAs: the first one transforms the multi-
variate time-series into principal components (PCs). The second PCA is performed on the PCs 
increments, so as to maximise/minimise their variance, and hence the PCs autocorrelation at a 
chosen time-lag. 

Data used 

MAFA was applied to the ISIS-Fish time-series in order to evidence the main trends in the evo-
lution of the Eastern English Channel fishery following the landing obligation implementation. 
The analysis was performed comparatively on the random runs and the deterministic one, in 
order to evaluate the sensitivity of the method to random noise. Because MAFA relies on PCA, 
the number of time-series should not exceed the number of observations in each series. A selec-
tion of the variables must therefore be done prior to the analysis. Woillez et al. (2009) advise to 
include the variables which normalised one-lag variogram values are below 1. 
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Evaluation approach 

The evaluation concerned two aspects: First the ability of the method to retrieve the most im-
portant changes in the fishery following the landing obligation implementation. Second the ro-
bustness of the detection of these signals to random noise in the stock recruitment relationships. 
This second aspect is of particular interest because of the very nature of MAFA that tends to 
discard the most chaotic variables. It must be noted however that the introduction of noise only 
on certain species and on biological variables, may bias variable selection toward the determin-
istic species and toward the variables that are the most loosely related to biomass. 

Results 

Variable selection: As expected with modelled data, normalised one-lag variogram values are 
very low and almost always below 1. We decided to keep the maximum number of variables 
allowed (29) with the lowest normalised variogram values. These variables changed depending 
on the run. In particular, they greatly differ between the deterministic run and the random runs 
(Figure 11). 
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Figure 11. Ranks of the variables according to their normalised one-lag variogram values. The boxplots represent the 
variation of rank across random runs and the red dot the rank according to the deterministic run. 

It was decided to keep the 29 most continuous variables of each run. Therefore, variables selected 
differed across MAFA. Despite a relatively different selection of variables across runs, the MAFs 
obtained are similar in pattern at least for the first three. However, the MAFs obtained from 
random runs are less smooth than the deterministic MAFs. 
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Figure 12. First six MAFs obtained with the deterministic run (black line) and the 10 randomised runs (thin coloured lines). 

As for variable contributions to the first two MAFs, they are similar across runs (the top 4 are the 
same) (Figure 12). However out of the eleven most contributing variables to MAF 1 and 2, six are 
not common to the deterministic run and the random runs. Finally, these most contributing time-
series only loosely resemble the MAFs. In terms of interpretation, MAF1 and MAF2 point to 
variables related to cod and scallops abundance, which display a spectacular increase over the 
period. However, it also selected plaice abundance which stayed almost constant and discarded 
whiting abundance despite an abrupt change.  

Conversely MAFs 3 to 6 display more complex shapes to which less variables contributed and 
therefore resemble more to the original data. Interestingly the most contributing variables to 
these MAFs were related to sole, which is the species responsible for the choke of the system 
following the landing obligation implementation. This suggests that MAFs were successful at 
catching the informative patterns and select the variables supporting the dynamics.  

The method aims at retrieving the most continuous patterns present in the datasets. In the pre-
sent application, the system experienced a brutal change in dynamics following the implemen-
tation of a new management measure. The method might therefore not be the most appropriate 
to evidence this shift and should probably be reserved to the demonstration of more progressive 
changes. Nonetheless, higher MAFs were effective at pointing out the interesting dynamics of 
sole variables. 
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Figure 13. Ranks of variable contribution to MAFs 1 (left) and 2 (right). The box summarize the ranks of a variable over 
the random runs and the red dot indicates the rank of the variable in the deterministic run. Variables with ranks over 23 
(on the right of the dashed blue line) are considered the most contributing.   
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Figure 14. Time-series contributing the most to MAFs 1 and 2, obtained with the deterministic run (black line) and the 10 
randomised runs (thin coloured lines). 

Important issues 

As for PCA, by construction the method tends to extract the linear trend and then cycles what-
ever the variables included. Therefore, the method can almost be seen more as a projection on 
orthogonal functions like Fourier transformation does on sinusoids. The difference lies in the 
orthogonal functions being built using the dataset and thus representing the smoothest trend 
orthogonal to the others but not a necessarily a perfect line or cycle which could be informative 
of breaking points or asymmetries. 

The method requires that a limited number of time-series are considered which requires a selec-
tion. Different methods are proposed in the literature for the selection based on keeping the 
smoothest series (Woillez et al., 2009; Doray et al., 2018) which were unsuccessful in our case 
because of the time-series being model outputs they were all very smooth and the selection was 
not conclusive. An ad hoc method had to be chosen. 

The application proves the robustness of the method to variable selection and random noise but 
also questions its relevance because it provides the same answer for datasets that are substan-
tially different. 

The method is meant at selecting the smoothest variables, therefore it is important to avoid mix-
ing data of different nature that are expected to have contrasted levels of autocorrelation (such 
as model vs. observations or aggregated data (in time or space) vs. local measurement). 
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Recommendations 

MAFA is an interesting tool to explore complex datasets composed of time-series. It has the ad-
vantage of explicitly accounting for autocorrelation in the decomposition of the variance of the 
dataset. MAFA allows selecting variables based on their level of autocorrelation or according to 
how much they resemble to temporal trends built using the full datasets. 

MAFA seems to be robust to variable selection and random noise around temporal patterns. 
However, it could be of interest to try to project the variables left aside in the selection phase on 
the MAFs to allow a more throughout interpretation.  

Depending on the question MAFA is intended to address, it might be relevant to stop at the first 
MAFs, if looking for progressive changes or to explore higher MAFs, when more complex dy-
namics or shifts are looked for.  

The method presents the same issues than PCA regarding the orthogonal patterns that can be 
extracted from time-series and one should not expect the first MAFs to resemble time-series. 
Instead, not only the first MAFs should be explored to have an overview of the patterns present 
in the data, and the contributions should be exploited to select variables and evidence the mix of 
patterns they display. 

It is recommended to use the MAFs and contribution to select the smoothest variables but to go 
back to original data for interpretation because the MAF can differ significantly from the time-
series even when they contribute greatly.  

As for PCA, MAFA should not be used to draw conclusions on causal relationships between 
variables because these would only rely on correlations. 

3.7 RDA 

Method description 

Redundancy Analysis (RDA) is a constrained canonical ordination technique that combines mul-
tiple regression and principal component analysis (van den Wollenberg, 1977; Legendre and Gal-
lagher, 2001; Borcard et al., 2018). RDA computes orthogonal axes (e.g. RDA 1 and RDA2) whose 
linear combinations of explanatory variables best explain the variation in the response data. Un-
like PCA, RDA can formally test statistical hypotheses about the significance of those relation-
ships which provides opportunities for model selection techniques. 

Using RDA as an ITA method is useful when the user intends to identify the most relevant ex-
planatory variables, e.g. before a Dynamic Factor Analysis (DFA), from a rich dataset but poor a 
priori hypotheses. RDA can identify the most influential explanatory variables using model se-
lection techniques such as forward selection, backward elimination and stepwise selection. After 
model selection the subset of explanatory variables identified in the reduced and more parsimo-
nious RDA model can then be used as covariates in DFA. 
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Data used 

RDA was applied to the observational Celtic Sea data and five surrogates simulated using phase 
randomisation (Section 2.1). The Celtic Sea data are relatively short (1997–2019) and contained 
missing values. The missing values for states in 2017 was imputed using a 5 year moving average 
(i.e. the mean of the two years before and after the missing value) and missing values at the end 
of the time-series (i.e. 2019) were estimated using a 3-year trailing moving average. Response 
data were fourth-root transformed to have a symmetric distribution and stabilise the variances. 
The transformed response variables and the explanatory variables were standardized to ensure 
all units were comparable. The transformed and standardised data used for this section is the 
same data used for the DFA section (section 3.8). 

Evaluation approach 

Full models were reduced to more parsimonious model using backward elimination for the ob-
servational and five surrogate datasets. The purpose was to compare the most influential explan-
atory variables identified in the reduced models of the observational and surrogate datasets. In 
the absence of dominant linear trends, we would expect to observe zero or at least fewer explan-
atory variables in the reduced model and different linear combinations for each surrogate. 

Results 

Many of the response and explanatory variables in the Celtic Sea observational dataset had clear 
linear trends. Mean fishing exploitation rate (Fbar) had a clear negative trend whereas many of 
the response variables tended to have a positive trend. The reintroduction of these linear trends 
in the phase-randomisation process makes the evaluation of RDA difficult because the time-se-
ries are autocorrelated, particularly fishing pressure variables. After backward elimination the 
reduced RDA model on the observational data identified the linear combinations of Fbar, Fcod, 
TLC, NPP and TSC as the explanatory variables that best explained the variation in the response 
data. The surrogates had fewer explanatory variables which would be expected for randomised 
data. However, ‘Fbar’ was the dominant explanatory variable on the first and most important 
RDA axis for the observational and most of the surrogates (Figure 15). The time trajectory was 
similar for all triplots which moved across the RDA1 axis from high to low fishing pressure in-
dicating the presence of dominant linear trend (i.e. Fbar) in the set of explanatory variables. Sim-
ilarly, response variables (e.g. plaice, john dory, rays and hake) retained their negative relation-
ship with fishing pressure in the surrogate time-series. Except for fishing pressure, the linear 
combination of explanatory variables changed for simulation 2 and simulation 5 indicating that 
the method may be prone to type 1 errors possibly due to a combination of time-dependency 
structures in the data and small sample size. Overall, RDA appears to suffer from the same sta-
tistical artefacts as PCA. The first RDA axes captures the dominant trend in the set of explanatory 
variables and the first PC of the PCA on the matrix of fitted response variables captures the 
dominant linear trend in the response variables. 
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Figure 15. Triplots of the reduced RDA model for the observational and five surrogate dataseries. Blue lines indicate 
explanatory variables, red lines indicate response variables and the angles between the lines represent the strength and 
direction of their linear relationship. 

Important issues 

In the context of an IEA, the main objective of RDA is to explore linear relationships between 
multivariate data and multiple explanatory variables and then, via model selection, identify the 
most influential explanatory variables. However, relationships in ecological data are not always 
linear and the user needs to identify whether a linear or unimodal gradient analysis is appropri-
ate by checking the gradient lengths of the response variables. Axes lengths greater than two to 
three standard deviations indicate that states are likely to be unimodal and Canonical Corre-
spondence Analysis (CCA) may be more appropriate than RDA. 

RDA is an extension of PCA and therefore suffers similar issues (see section 3.2). An advantage 
of RDA over PCA is that the user can state that the linear combination of explanatory variables 
on the axes explain (in the statistical sense) the variation in the response dataset. However, similar 
to PCA, the user needs to exercise caution when inferring causal relationships between variables 
due to time-dependency structures. 

Variable selection to identify the most influential explanatory variables can be achieved using 
forward, backward and stepwise selection however strong linear dependencies in the explana-
tory variables need to be explored by computing variance inflation factors (VIF) to ensure stable 
regression coefficients.  

Point estimates are used as the input into RDA so the method cannot represent uncertainties in 
the datasets. 

RDA often use dataseries that are preprocessed by transforming the response variables to 
achieve normal (or at least symmetric) distributions and stabilise variances. Preprocessing steps 
should be justified and explicitly reported by the user. 
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Recommendations 

IEA groups may have rich datasets but poor a priori hypotheses. In this context RDA can be used 
to explore and identify linear relationships and then search for parsimony. Due to time-depend-
ency structures in the dataseries it is recommended that the method is used to reduce a large set 
of explanatory variables into a smaller subset that characterise the key pressures in the ecosys-
tem. The subset of key pressures can then be used as covariates for methods that are computa-
tionally demanding but better suited to time-series analysis (e.g. MAFA and DFA). 

Transformation to stabilise variances and standardization to achieve dimensionally homogenous 
variables must be justified and stated. Hellinger transformation may be more appropriate when 
using raw abundances to avoid double-zero issues (Legendre and Gallagher, 2001). 

Permutation tests to assess the significance of global and reduced models are likely to be affected 
by time-dependencies structures in the dataseries. 

3.8 DFA 

Method description 

Dynamic Factor Analysis (DFA) is a dimension reducing technique used to detect fewer common 
trends in a larger set of short non-stationary time-series and has been modified for fisheries ecol-
ogy (Zuur et al., 2003b, 2003a). It has two applications of which the second application is an ex-
tension on the first. The first application involves identifying M common trends in N time-series 
without considering the effects of explanatory variable(s) on the response variables/states. This 
application is useful when the objective is to identify groupings of states that share an underlying 
pattern. The second application introduces a linear regression component into the model which 
estimates state-specific relationships with covariates. The M common trends are now interpreted 
as underlying patterns in the temporal variation not captured by the effects of the covariates (i.e. 
underlying patterns in the residuals). The state-specific relationships with the covariate(s) in the 
model is quantified by regression parameters, standard errors and t-values. The DFA model with 
the linear regression component is useful when the objective is to explore relationships between 
pressures and states and the common trend(s) may represent latent variables which were not 
included in the original model. For both applications each state has a factor loading and a canon-
ical correlation coefficient whose sign and magnitude indicate the direction and strength of the 
relationship between the M common trend(s) and each state. This allows the user to identify 
groupings of response variables/states which share an underlying pattern. The resulting M 
trends, factor loadings, canonical correlations and the effects of the covariates characterise the 
temporal variability of the states which can then be used by an IEA group to identify potential 
drivers of change in the ecosystem.  

Data used 

The same transformed and standardized Celtic Sea data used for RDA (section 3.7) was also used 
for the DFA section. 
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Evaluation approach 

To gain a better understanding of emerging patterns, the structure of the DFA model was kept 
constant for each dataset and the linear regression component of the DFA model that accounts 
for the effects of the explanatory variables was omitted. The objective was to identify common 
trends in the states without taking into account the effect of covariates. The number of common 
trends to be estimated was set to two (M = 2) and to reflect that relationships between variables 
were removed in the surrogates we set the error covariance matrix to a diagonal matrix. It was 
expected that DFA on each surrogate dataset would estimate different common trends and also 
inconsistent groupings of states on the different common trends. 

Results 

The most dominant common trend (trend 1) was positive for both the observational and surro-
gate time-series (Figure 16). This is likely to be a result of the process used to generate surrogate 
time-series which preserved linear trends in the observational time-series. Many of observational 
time-series exhibited a positive trend and because the linear time-trend is reintroduced into the 
surrogates it is likely that DFA identified the reintroduced trends as an underlying pattern in 
each surrogate states time-series. It is unlikely that this is an emerging pattern of DFA but rather 
a consequence of the method used to generate the surrogate time-series. Interestingly, the less 
dominant trend (trend 2) varied for each dataset indicating that once the dominant linear trend 
(trend 1) was accounted for the remaining temporal variation did not have a consistent underly-
ing pattern/trend and groupings of states which would be expected for the randomised data. 

Figure 16. Common trends identified in the observational (black line) and surrogate time-series (coloured lines) using a 
DFA model with M=2 and R=diagonal. 

The canonical correlations which quantify the association between the states/response variables 
and the common trends was consistent for trend 1 but varied for trend 2 (Figure 17). Once again 
trend 1 detected the reintroduced linear time-trends of states whose time-series were increasing 
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with time whereas trend 2 and the groupings of species on that trend was less consistent which 
would be expected for randomised data. 

Figure 17. Canonical correlations between each state’s time-series and the common trends. The horizontal line denotes 
the threshold for a statistically significant association. 

Important issues 

DFA is useful for exploring and identifying common trends within a set of time-series but by 
adding the linear regression component into the model it can quantify relationships between 
each state and pressure in the form of regression parameters. 

The common trends are interpreted differently when the linear regression component (that ac-
counts for causal linear relationships between states and pressures) is included in the model. 
Without the linear regression component, the common trend(s) describe underlying pattern(s) 
and the canonical correlations indicate the groupings of states that follow the underlying pat-
tern(s). Whereas the addition of the regression component into the DFA model is used to quan-
tify the effect of a pressure on each state and the common trends are estimated in the residuals. 
The common trends can then be used to identify variable(s) that were not included in the original 
model. 

Trends provide useful information because the method is designed for short non-stationary 
time-series however, similar to MAFA, the number of variables included in the analysis cannot 
exceed the length of the time-series. 

To get an idea of the importance of each common trend the user should apply the model with 
one common trend then apply a model with two common trends and compare the trends of both 
models. The dominant pattern is the trend in the model with two common trends which looks 
like the common trend in the first model. 

Interpretation of a DFA model is easier when the covariates explain most of the variation in the 
data, otherwise the user has the task of explaining the meaning of the common trend(s) and 
groupings of states. 



34 | ICES SCIENTIFIC REPORTS 4:32 | ICES 

Model evaluation is similar to linear regression. Useful tools include residuals versus fitted val-
ues, QQ-plots and histograms of residuals. 

DFA cannot handle uncertainties in the input data as it uses point estimates and data needs to 
be standardized or normalised prior to analysis. 

Sometimes a common trend perfectly fits one of the response variables, this is known as a Hey-
wood case and occurs in other forms of factor analysis. Using a non-diagonal matrix for the error 
covariance matrix often solves this problem. Using a non-diagonal error matrix can also reduce 
the number of common trends required for an adequate model fit albeit at the cost of increasing 
the number of model parameters and computing time. 

Recommendations 

IEA groups should identify the most influential pressures in the system prior to DFA to avoid 
overfitting the model, modelling crude variance and to reduce computational time. It is recom-
mended that the user identifies the dominant pressures by exploring the data using other tech-
nique such as PCA (section 3.2) or using the model selection process in RDA (section 3.7). 

The user should clearly indicate what the common trends describes when the linear regression 
component is added or omitted from the DFA model. 

The user should standardise the explanatory variables to ease the interpretation of the regression 
parameters and avoid introducing highly correlated explanatory variables into the model. 

AIC is initially used to determine the goodness-of-fit however the user should also compare pat-
terns in residuals and fitted versus observed values. Sometimes the addition of a common trend 
to the model may lower the AIC but the additional trend is only important for a relatively small 
number of states. This makes interpretation difficult, and the user will need to decide whether 
to include the additional trend or use the less optimal model which is easier to interpret. 
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4 Guidelines to IEA groups 

It is recommended that IEA groups explicitly specify the objective of the ITA method they em-
ploy and check that method is appropriate to address this objective. This issue was already iden-
tified in WKINTRA-2 where it was found that different IEA groups had different motivations 
for using the same ITA, or used different ITAs to address similar questions. Sometimes the match 
between objective and method is not clear or suboptimal (e.g. heatmaps used to investigate syn-
chrony between time-series). 

Special attention should be given to transparency and traceability of the ITA analysis and of the 
data supporting it. Reference to data sources, within or outside ICES databases should be pro-
vided. Data processing, including data transformation or interpolation should be explicitly jus-
tified and reported. The detail of methodological choices (e.g. category definitions for heatmaps, 
correlation vs. covariance matrix for PCA, and so on) should also be reported exhaustively, if 
necessary in supplementary documents or appendices. 

WKINTRA ToR c aims to develop guidelines to evaluate ITA methods, and in collaboration with 
the IEA groups, could provide the incorporation of a new topic for the (EO) for each ecoregion 
on ITA evaluation following the ICES Technical Guidelines (ICES 2021).  

None of the methods reviewed during WKINTRA-3 could account for uncertainties in the input 
data. The dataseries that support IEA are provided with variable degrees of certainty (e.g. sea 
surface temperature time-series are much less uncertain than zooplankton biomass time-series) 
and therefore provide information with different levels of quality/certainty. It is recommended 
that IEA groups and future WKINTRA-like workshops pay attention to methods that can ex-
plicitly handle uncertainties in input dataseries. It is also recommended that IEA groups report 
the uncertainties associated with the dataseries that support their IEAs. Presently, most IEA 
groups don't report these uncertainties. 

Many methods currently used in IEAs focus on temporal trends and on the detection of ruptures 
in time-series (regime shifts). Methods for the detection of extreme events (such as heatwaves) 
would constitute an additional useful contribution to IEAs. 

When appropriate, different IEA groups should seek for harmonisation of the presentation of 
the ITA outputs. Without being prescriptive, such harmonisation can be achieved by providing 
guidelines common to all IEA groups on e.g., colour schemes, time-series representations, icons 
to depict ecosystem components, and so on. 

IEA groups are encouraged to assess the sensitivity of ITA methods to the selected input data 
and to carefully consider the interpretation of ITA results in light if the method’s strength, 
weaknesses and possible misuse. This can be done by applying evaluation schemes like the ones 
used in the present report, based on simulated “control” datasets. 

Methods that are recurrently used by one or several IEA groups will benefit from peer-evalua-
tion within ICES. This will ensure that IEAs are supported by high quality science through in-
ternal peer-reviews, increased transparency, and replicability. There is currently no mechanism 
at ICES to achieve this for IEAs (although it exists for stock assessments). Future WKINTRA 
workshops could contribute to the process, but other mechanisms can be envisaged at the IEASG 
level. 
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Annex 2: WKINTRA-3 resolution 

WKINTRA3 - The third workshop on integrated trend analyses in support 
to integrated ecosystem assessment 

2019/WK/IEASG09 The third workshop on integrated trend analyses in support to 
integrated ecosystem assessment (WKINTRA3), chaired by Saskia Otto, Germany, and Benja-
min Planque, Norway, will meet in 20-24 September 2021 online.  

The general objective of the workshop series is to develop good practices in the application of 
integrated trend analyses (ITA) and interpretation of their results for integrated ecosystem as-
sessment. The third workshop will: 

a) Review the simulated multivariate ecological datasets prepared during and following
WKINTRA2 (Science plan codes 1.3 and 1.9)

b) Evaluate a selection of Integrated Trend Analysis (ITA) methods (Science plan codes 1.3
and 1.9).

For this:

• a set of ITA methods will be selected,

• the R code to run the analyses will be provided,

• method-specific qualitative or quantitative criteria will be defined that allow for an
objective comparison across simulated datasets

• the ITA methods will be applied on relevant simulated datasets outcomes will be as-
sessed on a case study- and approach-specific basis

c) Develop guidelines for IEA groups to evaluate ITA methods, including a comprehensive
documentation of data generation and method application using the R environment (Sci-
ence plan code 6.5)

WKINTRA3 will report by 29 October 2021 for the attention of IEASG. 

Supporting Information 

Priority The use of ITA is widespread in the ICES integrated ecosystem assessment 
community, and recent publications have challenged the interpretation of 
its results. Thus, the priority should be considered medium to high. 

Scientific justification The first workshop on integrated trend analyses in support to integrated 
ecosystem assessment (WKINTRA) recognized some of the limitations in the 
ITA methods currently used as a standard tool by ICES IEA groups. It was 
recommended to approach the evaluation problem through simulation 
studies, in a way similar to that used earlier in ICES for stock assessment 
models (ICES, 1993). The second workshop (WKINTRA2) developed and 
compared numerical simulation protocols and algorithms, with the aim of 
simulating few contrasted ecosystem datasets. These will form the basis of 
ITA methods evaluation for the intended WKINTRA-3 workshop. 

https://ices.dk/about-ICES/Documents/Resolutions/Science_plan_codes.pdf
https://ices.dk/about-ICES/Documents/Resolutions/Science_plan_codes.pdf
https://ices.dk/about-ICES/Documents/Resolutions/Science_plan_codes.pdf
https://ices.dk/about-ICES/Documents/Resolutions/Science_plan_codes.pdf
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Resource requirements No major resourcing 

Participants Statisticians and researchers from across the IEASG network. 

Secretariat facilities None. 

Financial No financial implications for ICES. 

Linkages to advisory 
committees 

Link to ACOM through the development of ecosystem overviews 

Linkages to other 
committees or groups 

Links across all ICES IEA working groups 

Linkages to other 
organizations 

Links to IEA groups in the Arctic and PICES Working Groups working on 
similar topics. 
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Annex 3: Agenda 

We met every day from 9:00 to 13:00 with breaks at about 10:15-10:30 and 11:45-12:00. 

21st September 

• Opening of the meeting
• Round table presentation
• Summary of WKINTRA-1&2, objectives of WKINTRA-3 (Benjamin & Saskia)
• Questions/Discussion
• Review of the datasets, observations and simulations (focus on new ones since last meet-

ing, ToR a)
• ToR b: ITA methods evaluations:

• Heatmaps and PCA (Benjamin)

22nd September 

• ToR b: ITA methods evaluations:

• Integrated Resilience Analysis (Saskia)
• RDA/DFA (Jed)
• MAR-X (Hiroko)
• MAFA (Sigrid)
• Other (MARCOS?)

23rd September 

• Criteria used to perform an objective evaluation of the different methods (discussion)
• Group discussions on ITA methods

24th September 

• Development of guidelines for IEA groups (discussion, ToR c)
• Pending issues, writing assignments.
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