# **ICES WGBEAM REPORT 2010**

SCICOM STEERING GROUP ON ECOSYSTEM SURVEYS SCIENCE AND TECHNOLOGY

ICES CM 2010/SSGESST:17

**REF. SCICOM, ACOM** 

# Report of the Working Group on Beam Trawl Surveys (WGBEAM)

8-11 June 2010

Lowestoft, UK



Conseil International pour l'Exploration de la Mer

# International Council for the Exploration of the Sea Conseil International pour l'Exploration de la Mer

H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk info@ices.dk

Recommended format for purposes of citation:

ICES. 2010. Report of the Working Group on Beam Trawl Surveys (WGBEAM), 8-11 June 2010, Lowestoft, UK. ICES CM 2010/SSGESST:17. 214 pp.

For permission to reproduce material from this publication, please apply to the General Secretary.

The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council.

© 2010 International Council for the Exploration of the Sea

# Contents

| Exec | cutive | summary                    |                                           | 1  |
|------|--------|----------------------------|-------------------------------------------|----|
| 1    | Oper   | ing of the meeting         |                                           | 4  |
| 2    | Ado    | otion of the agenda        |                                           | 4  |
| 3    | Intro  | duction                    |                                           | 4  |
| U    | 3.1    |                            |                                           |    |
|      | 3.2    |                            |                                           |    |
| 4    | Revi   | ew of WGBEAM 2009 t        | ecommendations and other requests to      |    |
| -    |        |                            |                                           | 5  |
|      | 4.1    | WGBEAM 2009 recomme        | endations                                 | 5  |
|      | 4.2    | Additional requests        |                                           | 6  |
| 5    | Resu   | lts of 2009 surveys (ToR a | 1)                                        | 7  |
|      | 5.1    | Offshore surveys           |                                           | 7  |
|      |        | 5.1.1 Participation and    | coverage of the area                      | 7  |
|      |        | 5                          |                                           |    |
|      |        | 5 5                        | sheets offshore surveys per country       |    |
|      | 5.2    | 2                          |                                           |    |
|      |        | •                          | coverage of the area                      |    |
|      |        | 2                          | shooto inchore currence por country       |    |
|      |        |                            | sheets inshore surveys per country        |    |
| 6    | Popu   | lation abundance indices   | s (ToR b and d)                           | 42 |
|      | 6.1    | 5                          | age-group for plaice and sole for the     | 40 |
|      |        | 5                          |                                           |    |
|      |        |                            |                                           |    |
|      | 6.2    |                            | age-group for plaice and sole for the     | 12 |
|      | 0.2    | 5                          | uge group for place and sole for the      | 49 |
|      |        | 6.2.1 Sole                 |                                           | 50 |
|      |        | 6.2.2 Plaice               |                                           | 50 |
|      | 6.3    | Evaluation of abundance    | indices                                   | 52 |
|      |        | 6.3.1 Recalculation of I   | Putch inshore indices (SNS)               | 52 |
|      |        |                            | recalculation of international inshore    | 50 |
|      |        |                            | offshore plaice indices in XSA            |    |
|      | 6.4    |                            | f UK and Belgian offshore sole indices in |    |
|      | 0.1    | 1                          | )                                         | 54 |
|      |        |                            | ,<br>FLAT                                 |    |
|      |        | -                          | UK                                        |    |
|      |        |                            | Belgium                                   |    |
|      |        | 6.4.4 Discussion           |                                           | 56 |

| 7  | Coo    | rdination and standardization of beam trawl surveys (ToR c)                                     | 57 |
|----|--------|-------------------------------------------------------------------------------------------------|----|
|    | 7.1    | Offshore beam trawl surveys                                                                     | 57 |
|    |        | 7.1.1 Timing and area coverage                                                                  | 57 |
|    |        | 7.1.2 Staff exchange                                                                            |    |
|    |        | 7.1.3 Database developments (ToR f)                                                             | 57 |
|    | 7.2    | Inshore beam trawl surveys                                                                      | 59 |
|    |        | 7.2.1 Timing and area coverage                                                                  |    |
|    |        | 7.2.2 Staff exchange                                                                            |    |
|    |        | 7.2.3 Database developments (ToR f)                                                             | 60 |
| 8  | Dev    | relopment of manual (ToR e)                                                                     | 61 |
|    | 8.1    | Offshore beam trawl survey manual                                                               | 61 |
|    |        | 8.1.1 Addition of flow diagrams on gear checking and catch processing                           | 61 |
|    |        | 8.1.2 Extension of table containing biological sampling                                         |    |
|    | 8.2    | Inshore beam trawl survey manual                                                                | 63 |
| 9  | Oth    | er subjects                                                                                     | 64 |
|    | 9.1    | Request on Dutch offshore index calculation (ICES Data Centre)                                  |    |
|    |        | 9.1.1 Raw data                                                                                  | 64 |
|    |        | 9.1.2 Age-length key                                                                            | 64 |
|    |        | 9.1.3 Cpue per age per haul                                                                     | 65 |
|    |        | 9.1.4 Dealing with missing age information                                                      |    |
|    |        | 9.1.5 Final index                                                                               |    |
|    |        | <ul><li>9.1.6 Conclusion and action points</li><li>9.1.7 Follow-up</li></ul>                    |    |
|    | 9.2    | Request on species taxonomy (ICES Data Centre)                                                  |    |
|    | 9.2    | 9.2.1 Proposal from Data Centre on Species vocabularies                                         |    |
|    |        | 9.2.1 WGBEAM reaction on the proposal                                                           |    |
|    | 9.3    | Request on adding fisheries survey information to indices                                       |    |
|    |        | (IMARES)                                                                                        |    |
|    |        | <ul><li>9.3.1 Request by IMARES on industry survey advice</li><li>9.3.2 WGBEAM advice</li></ul> |    |
|    | 9.4    | Calculation of relative gear efficiencies                                                       |    |
|    |        | 9.4.1 Introduction                                                                              |    |
|    |        | 9.4.2 Data available                                                                            |    |
|    |        | 9.4.3 Factors to evaluate                                                                       | 71 |
|    | 9.5    | Adopting new maturity scales                                                                    | 71 |
| 10 | Ref    | erences                                                                                         | 72 |
| An | nex 1: | List of participants                                                                            | 73 |
| An | nex 2: | Agenda                                                                                          | 74 |
| An | nex 3: | WGBEAM terms of reference for the next meeting                                                  | 77 |
| An | nex 4: | Recommendations                                                                                 | 79 |

| Annex 5: Details on offshore and inshore beam trawl surveys                                                       | 80  |
|-------------------------------------------------------------------------------------------------------------------|-----|
| Annex 6: Spatial distribution of sampling and fish species for the offshore surveys                               | 83  |
| Annex 7: Abundance of fish species for the offshore surveys by<br>Subdivision                                     | 119 |
| Annex 8: Abundance of fish species for the offshore surveys by roundfish area                                     | 127 |
| Annex 9: Abundance (n/hour) of 13 epifauna species for the offshore<br>surveys by roundfish area or Subdivision   | 136 |
| Annex 10: Population abundance indices for sole and plaice, offshore surveys                                      | 144 |
| Annex 11: Planimetric data for the continental inshore surveys                                                    | 153 |
| Annex 12: Number of hauls by area and year for the inshore surveys                                                | 155 |
| Annex 13: Number of hauls by depth class, country and year for the inshore surveys                                | 158 |
| Annex 14: Abundance of fish species and <i>Crangon</i> sp. in the inshore surveys                                 | 161 |
| Annex 15: Population abundance indices for sole and plaice, inshore surveys                                       | 169 |
| Annex 16: Comparison of Dutch Sole Net Survey (SNS) indices before and after database corrections                 | 173 |
| Annex 17: Spatial distribution of whiting, pout whiting, tub gurnard and grey gurnard in offshore survey per year | 174 |
| Annex 18: Summary of the results of the Cefas 2009 Young Fish Survey invertebrate catch                           | 182 |
| Annex 19: Executive summary – Workshop on Sexual Maturity Staging of sole, plaice, dab and flounder (WKMSSPDF)    | 192 |
| Annex 20: Manual for the inshore beam trawl surveys –version 0.1                                                  | 194 |

#### **Executive summary**

The Working Group on Beam Trawl Surveys (WGBEAM) met in Lowestoft, UK, 8–11 June 2010. Eight participants representing five countries joined the meeting.

#### **Terms of reference**

a) Prepare a progress report summarizing the results of the 2009 offshore and inshore beam trawl surveys.

The majority of the standard output was prepared before WGBEAM. During WGBEAM an extra study on the distribution patterns of grey gurnard, tub gurnard, whiting and pout whiting was done.

The results of the comparison of day and night catches in the French offshore survey were presented. The potential influence of water depth on the catches was discussed and it was suggested to do an analysis taking into account water depth as a parameter and to do an analysis on the variability of the day and night catches separately.

For the UK inshore surveys the length distribution data collected for *Crangon* sp. was presented. A non-statistical analysis of the length distributions indicated that it might be possible for this specific survey to obtain viable length distributions from a selection of randomly selected stations.

b) Tabulate population abundance indices by age-group for sole and plaice in the North Sea, Division VIIa and Divisions VIId-g.

North Sea sole: The 2005 year class appeared as two year olds in 2007 although only seen as average recruitment in 2006. The 2005 year class is still clearly visible in 2008 and 2009.

Area VII sole: In VIId, the 2008 year class is seen as one year olds in 2009 as a strong year class, comparable to the size of the 2002 year class. VIIa and VIIf surveys show below average recruitment for sole.

North Sea plaice: The 2006 year class in the North Sea is well above the long-term mean which is shown by the UK and the Dutch "Tridens" survey in 2009. This is also evident in the 'Isis' survey at-age 1 but not at the older ages. The older age groups (including the 2006 year class) in the "Tridens" survey show an increase.

Area VII plaice: In VIId, the 2006, 2007 and 2008 year classes are above average, the 2008 year class being the highest in the series. In VIIe the age 1 year class index does not seem to represent the indices for the older ages. Since 2005, the year classes have been above the survey mean, with the 2007 year class being the highest of the time-series. In VIIf, recruitment has been poor in recent years with 2001 and most subsequent year classes below average. By contrast, recruitment in the Irish Sea (VIIa) has been increasing recently.

The Dutch 1996 and 1997 year class for inshore and offshore surveys was re-read and the index was updated using the new age readings. The index for the Dutch inshore SNS survey was recalculated since data prior to 2002 were transferred from text files to the main database, which resulted in minor revisions.

c) Further coordinate offshore and coastal beam trawl surveys in the North Sea and Divisions VIIa, VIId-g and VIIIa-b;

Most surveys were carried out according to planning; only the Belgian inshore survey faced serious problems resulting in a lower sampling coverage than planned.

A staff exchange for the offshore was planned for 2011: German staff will join a Cefas Endeavour survey, UK staff will join the "Tridens" survey, and Dutch staff will join the Solea survey.

In 2010, Belgian staff will go on board the Cefas Endeavour Irish Sea survey.

For the inshore surveys, UK staff will join the German survey and the Dutch Wadden Sea survey in 2010.

d) Evaluate and report population abundance indices, taking into account the key issues involved in the index calculation;

See b)

e) Continue development of a manual to improve standardization of sampling protocols, surveys gears and quality control aspects;

Suggestions were made for updates of the offshore survey manual (scheduled in 2011). A start was made with the manual for the inshore beam trawl surveys.

f) Continue work on developing and standardizing an international (fish and epifauna) database of offshore beam trawl survey data and coordinate such activities with those of the IBTSWG.

A timetable for the addition of offshore beam trawl survey data to DATRAS was made:

| COUNTRY     | SURVEY                            | Data in<br>DATRAS | Products<br>FROM<br>DATRAS | PLANS UNTIL<br>WGBEAM<br>2011                                                                | ACTIONS NEEDED TO<br>ACHIEVE GOAL                                      |
|-------------|-----------------------------------|-------------------|----------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Belgium     | Belgica                           | no                | no                         | Upload 2008,<br>2009, 2010<br>data                                                           |                                                                        |
| France      | Gwen Drez                         | no                | no                         | Upload 2008,<br>2009, 2010<br>data                                                           | ICES Data Centre:<br>stretch accepted area<br>for beam trawl<br>survey |
| Germany     | Solea                             | no                | no                         | Upload 2008,<br>2009, 2010<br>data<br>Data<br>preparation <<br>2008<br>scheduled for<br>2010 | SOL (old Solea)<br>added to DATRAS as<br>a vessel                      |
| Netherlands | Isis                              | 1985–<br>2009*    | yes                        | Index<br>calculation                                                                         | See Section 9.1                                                        |
|             | Tridens II                        | 1996–<br>2009**   | yes                        | from<br>DATRAS                                                                               |                                                                        |
| UK          | Cefas Endeavour,<br>VIId/IVc      | 1990–<br>2009***  | no                         | Index<br>calculation                                                                         | See Section 9.1                                                        |
|             | Cefas<br>Endeavour,VIIfg,<br>VIIa | 1993–<br>2009***  | no                         | from<br>DATRAS,<br>upload<br>species that<br>were not<br>accepted<br>before.                 |                                                                        |

| COUNTRY | SURVEY    | DATA IN<br>DATRAS | Products<br>FROM<br>DATRAS | Plans until<br>WGBEAM<br>2011       | ACTIONS NEEDED TO<br>ACHIEVE GOAL         |
|---------|-----------|-------------------|----------------------------|-------------------------------------|-------------------------------------------|
|         | Carhelmar | no                | no                         | Upload time-<br>series to<br>DATRAS | CHM added to<br>DATRAS as valid<br>vessel |

For the inshore surveys WGBEAM agreed on organising a one-day workshop to allow upload of inshore beam trawl survey data to DATRAS.

## Additional requests

There were four additional requests sent to WGBEAM.

- WKFLAT recommended that sole indices for the North Sea part of the UK IVc/VIId survey and the Belgian offshore survey should be calculated. The UK IVc index was already available to WGNSSK and for 2008 and 2009 Belgian sole indices were calculated. The UK and Belgian indices by year class were compared and showed similar patterns for 2008 and 2009.
- ICES Data Centre on reviewing the current index calculations for the Dutch offshore beam trawl survey.
- WGBEAM compared the Dutch offshore indices to the offshore indices as calculated by ICES Data Centre step by step and concluded that the main difference is in the handling of length data without age information.
- ICES Data Centre on species taxonomy
- WGBEAM reviewed the proposal by the ICES Data Centre to switch from ITIS species coding to ERMS/WoRMS species coding and supports the proposal.
- IMARES on adding additional information from industry survey to survey indices.
- WGBEAM put advice on the industry survey and the potential additional information for stock assessment purposes.

# 1 Opening of the meeting

The chair opened the meeting at 9.30 on 8 June 2010.

# 2 Adoption of the agenda

The adopted agenda is published in Annex 2.

# 3 Introduction

## 3.1 Terms of reference

The **Working Group on Beam Trawl Surveys** (WGBEAM), chaired by Ingeborg de Boois, Netherlands, will meet in Lowestoft, UK, 8–11 June 2010 to:

- a) Prepare a progress report summarizing the results of the 2009 offshore and inshore beam trawl surveys;
- b) Tabulate population abundance indices by age-group for sole and plaice in the North Sea, Division VIIa and Divisions VIId-g;
- c) Further coordinate offshore and coastal beam trawl surveys in the North Sea and Divisions VIIa, VIId-g and VIIIa-b;
- d ) Evaluate and report population abundance indices, taking into account the key issues involved in the index calculation;
- e) Continue development of a manual to improve standardization of sampling protocols, surveys gears and quality control aspects;
- f) Continue work of developing and standardizing an international (fish and epifauna) database of offshore beam trawl survey data and coordinate such activities with those of the IBTSWG.

WGBEAM will report by 5 July 2010 (via SSGESST) for the attention of SCICOM, WGISUR and ACOM.

# 3.2 Participants

There were eight participants from five countries. Because of EU responsibilities, the French participant was only able to join WGBEAM for one day. A complete list of participants at the WGBEAM meeting is given in Annex 1 of the report.

# 4 Review of WGBEAM 2009 recommendations and other requests to WGBEAM

# 4.1 WGBEAM 2009 recommendations

1. WGBEAM recommends that once the offshore surveys are uploaded to the DATRAS database ICES data centre should be asked to provide precision estimates for inclusion in the next appropriate WGBEAM report.

To be followed up ICES Data Centre in cooperation with WGBEAM. Status: because not all offshore beam trawl data are uploaded to DATRAS yet, this recommendation was not followed up yet.

2. WGBEAM recommends that if time and weather allows, overlapping stations between the surveys of two countries should be considered.

Germany tried to do comparative fishing with Dutch survey (Isis) but could not get into contact with RV Isis. UK is doing additional tows at the Belgium coast which might be Belgium tows. Germany and Netherlands (Tridens) did do some comparative fishing.

Status: completed

3. WGBEAM encountered problems with the screening program from June 10 in the afternoon onwards. WGBEAM recommends ICES Data Centre to investigate the problem.

Followed up by ICES Data Centre. Status: Fixed/Completed

4. WGBEAM recommends that Denmark makes effort to extend the inshore survey to the Danish coast, in order to obtain a more complete coverage of the continental coast.

Status: unknown, there seem to be budgetary problems.

5. WGBEAM recommends further examination of the spatial distribution patterns in relation to water depth and distance to the coast

Status: incomplete, to be put on the list for WGBEAM 2011

6. WGBEAM recommends doing a re-run of the XSA model for North Sea plaice for the updated separate offshore Dutch indices as for the combined Dutch offshore index taking into consideration the points raised in Chapter 8.2.4 of the WGBEAM 2009 report.

This topic was carried out by WGNSSK: see Section 6.3.3.

Status: completed.

7. For WGBEAM 2010, WGBEAM recommends to come up with working documents on the following topics: gear efficiency, sensitivity of indices, species of the year.

Status: incomplete, to be put on the list for WGBEAM 2011. A working document on gear efficiencies was created during WGBEAM 2010 and can be found in Section 9.4.

8. WGBEAM recommends putting information on index revisions in the survey summary sheets from 2010 onwards.

Followed up by WGBEAM. Status: completed (see summary sheets, Section 5).

9. WGBEAM recommends the creation of a DATRAS user group, including members of all survey working groups.

A DATRAS User Advisory Panel was installed in October 2009. The group used the ICES sharepoint as a discussion board. Every individual working with DATRAS data

(upload and/or download) can be added as a member to the group. The coordinator of DUAP reports back to ICES WGDIM. It is recommended that WGBEAM evaluates the functioning of DUAP at WGBEAM 2011.

10. WGBEAM recommends ICES Data Centre to send a warning users when higher taxa levels are present in the selected data.

11. WGBEAM recommends to check for higher taxa levels when up-loading data and give a warning to the owner of the data when a higher taxon level is uploaded.

Both to be followed up by ICES Data Centre. Status: Both in progress see also Section 9.2.

## 4.2 Additional requests

WGBEAM received four additional requests to deal with:

- WKFLAT on sole indices UK Channel, Belgium (and Germany), see Section 6.4
- ICES Data Centre on reviewing the current index calculations for the Dutch offshore beam trawl survey. See Section 9.1.
- ICES Data Centre on species taxonomy, see Section 9.2.
- IMARES on adding additional information from industry survey to survey indices. See Section 9.3.

# 5 Results of 2009 surveys (ToR a)

ToR a) Prepare a progress report summarizing the results of the 2008 offshore and inshore beam trawl surveys

## 5.1 Offshore surveys

### 5.1.1 Participation and coverage of the area

Eight surveys were carried out, covering the North Sea, VIId, VIIe, VIIfg, VIIa, VIIIa and VIIIb. The participating vessels and time of the cruises is listed in Table 5.1.1.1. The coverage of the area by each of the participating countries' surveys and the number of stations sampled in 2009 is shown in Annex 6.

WGBEAM recommends that once the offshore surveys are uploaded to the DATRAS database ICES Data Centre should be asked to provide precision estimates for inclusion in the next appropriate WGBEAM report.

| COUNTRY     | VESSEL    | Area                          | DATES           | GEAR                      |
|-------------|-----------|-------------------------------|-----------------|---------------------------|
| Belgium     | Belgica   | southern North Sea<br>(IVb,c) | 24 Aug – 4 Sept | 4m beam                   |
| England     | Endeavour | VIIc, VIId                    | 17 Jul – 31 Jul | 4m beam                   |
| England     | Endeavour | VIIfg, VIIa                   | 9 Sep –1 Oct    | 4m beam                   |
| England     | Carhelmar | VIIe                          | 9 Oct-16 Oct    | 4m beam                   |
| France      | Gwen Drez | VIIIa, VIIIb                  | 3 Nov – 16 Dec  | 4m beam                   |
| Germany     | Solea     | German Bight (IVb)            | 14–26 Aug       | 7 m beam                  |
| Netherlands | Tridens   | central North Sea (IVa,b)     | 24 Aug – 14 Sep | 8m beam + flip-up<br>rope |
| Netherlands | Isis      | southern North Sea<br>(IVb,c) | 10 Aug – 10 Sep | 8m beam                   |

#### Table 5.1.1.1. Overview of surveys during 2009.

#### 5.1.2 Survey results

The German offshore survey was completed without incident and a number of additional tows were able to be carried out.

The IVc and VIId survey was done again carried out by Endeavour. The problems encountered in French compulsory pilotage areas in 2008 were overcome. However, a number of stations in the Baia de Seine meant that two stations normally fished had to be abandoned because of extremely large epifauna catches, these stations are unlikely to be included in the survey from 2010 onwards. The English VIIe survey had to abandon one station because of significant amounts of dead shell on the ground however, this station is not part of the index grid.

The French survey continued to carry out tows at night and the preliminary analysis of this was presented at WGBEAM (see Section 5.1.2.3). Bad weather did hamper some operations but the survey dates were extended and all primary stations were fished. Gérard Biais presented the French results, especially the differences between day and night catches. WGBEAM discussed the potential influence of water depth on the catches and advises to do an analysis taking into account water depth as a parameter and to do an analysis on the variability of the day and night catches sepa-

rately. WGBEAM advises not to change the sampling strategy unless based on statistical analysis results.

The Dutch offshore surveys were completed without major incident. During the Dutch survey, comparative towing was carried out with a commercial fishing vessel in order to study the need for an industry survey in near future. The fishing vessel UK45 fished parallel with both "Isis" and "Tridens" during two days. Plaice and sole were measured to the cm below to compare length frequency distributions. Since 2009 was only a trial to study the logistics of parallel fishing, there are not enough data available to draw conclusions on.

#### 5.1.2.1 Catch results

Distribution plots for the offshore survey fish species are presented in Annex 6.2. Numbers per hour for fish species per ICES division and roundfish area (RFA) are in Annex 7 and 8. The time-series of the catch of epifauna species per RFA and for ICES Subdivisions VII and VIII is in Annex 9.

An extra analysis for whiting, pout whiting, tub gurnard and grey gurnard was done. Annex 17 and Figure 5.1.2.1 show plots of the average number of whiting, pout whiting, tub gurnard and grey gurnard caught per year (Figure 5.1.2.1 and per rectangle per year (Annex 17) throughout the beam trawl surveys for all offshore surveys (except for the French survey) combined.

The bubble plots show that the spatial distribution of whiting differs between years; in some years catches are clustered although in other years they are not. Overall, the average catch of whiting shows a decrease through time. For pout whiting no clear pattern is visible for the numbers caught per statistical rectangle per year. The average catches per year do not show a significant trend although the catches seem to decrease over years.

Through time the average catch of tub gurnard has been stable and low. No pattern can be detected in the spatial distribution of the catches of this species. For grey gurnard, on the other hand, a northwesterly shift is visible through time although the average catch per year of this species has remained relatively stable through time.

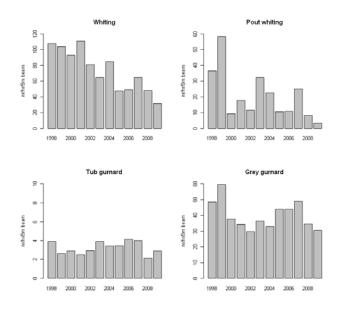



Figure 5.1.2.1. The average number caught per hour per 8m beam per year for whiting, pout whiting, tub gurnard and grey gurnard for all surveys (except the French survey) combined.

#### 5.1.2.2 Comparative tows

"Tridens" and "Solea" carried out two additional tows for comparison purposes but no analysis of these has been undertaken.

Preliminary observations on daylight effect on sole abundance index in the Bay of Biscay

#### 5.1.2.3 Results day and night comparison Bay f Biscay

The French beam trawl ORHAGO survey was launched in 2007 to get an abundance index of sole in the Bay of Biscay. In the context of an UE multiannual plan for restoring the state of this stock, the agreement of the industry on the survey protocol was considered to be a matter of particular importance for the future acceptance of assessments in which this survey will take part. An important point for this agreement appears to be the industry recommendation to trawl at night to maximize the sole catches.

The survey was consequently designed with a number of trawls as large as possible during the night. However, because the night trawling increases the cost of the survey (the working rules on French research vessels do not allow to work more than five hours during night), the survey programs have included a comparison of the catches during daylight and night on the same haul and during the same day to assess the advantage to work at night.

After three surveys, the collected data allow a first analysis of these comparative day/night hauls. This analysis was carried out by comparing the catch numbers of sole by 10 nautical miles. It confirms that the night catches are generally greater than day catches. Over the three years, night catches are about 10% above day catches (Figure 5.1.2.3.1). However, the night/day ratio of catch numbers may change from one year to another one: it was 1.5 in 2007, 1.2 in 2008 and 1 in 2009 (Table 5.1.2.3.1).

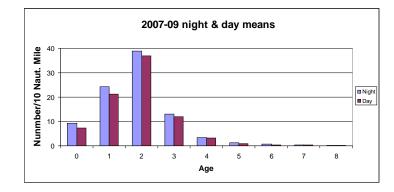



Figure 5.1.2.3.1. Sole Abundances indices (number/10 nautical miles) by daylight and at night.

| AGE   | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | TOTAL |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|
| 2007  | 2.0 | 1.6 | 1.4 | 1.3 | 1.4 | 1.5 | 1.4 | 1.4 | 0.7 | 1.5   |
| 2008  | 2.5 | 1.1 | 1.2 | 1.2 | 1.1 | 1.5 | 1.8 | 1.0 | 0.9 | 1.2   |
| 2009  | 1.1 | 1.0 | 1.0 | 0.9 | 0.8 | 0.7 | 1.2 | 0.6 | 1.3 | 1.0   |
| total | 1.3 | 1.1 | 1.1 | 1.1 | 1.0 | 1.2 | 1.5 | 1.0 | 1.1 | 1.1   |

Table 5.1.2.3.1. Night/day catch ratio by year and age group.

Within years and among the age groups 0 to 4, which form the bulk of the catches, the ratios appear then to be different (higher) only at-age 0. From age 5 to 8+, there are also few ratios largely different from the annual mean but it is likely due a smaller precision of this ratio when age group abundance is lower.

Concerning the night/day catch ratio at-age 0, the spatial distribution of this age group can explain its higher value. Indeed, this age group 0 is only present in the coastal area and the catch at night are greater in this area that in deeper water with no relation with the fish length (Table 5.1.2.3.2).

Table 5.1.2.3.2. Night/day catch ratio by depth and length group (comparison for the central area of the Bay of Biscay which contributes for more than 90% to the annual abundance index).

| Depth       | <5     | 0м     | >5     | 0M     |
|-------------|--------|--------|--------|--------|
| Fish length | <23 cm | >22 cm | <23 cm | >22 cm |
| 2007        | 1.6    | 1.7    | 1.2    | 1.2    |
| 2008        | 1.2    | 1.3    | 0.8    | 1.0    |
| 2009        | 1.0    | 1.0    | 1.1    | 1.0    |

However, if the depth may explain some night/day variations of the catches in each year, the variations of the night/day catch ratio may be large between years on the same haul (Figure 5.1.2.3.2). There is obviously a local effect in these variations that must be investigated more closely by continuing the comparison between night and day catches during one or two years and, if possible, by looking at the spatial variations at small spatial scale.

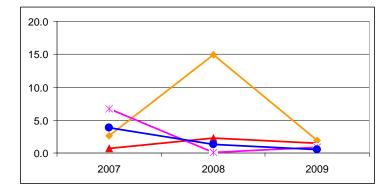



Figure 5.1.2.3.2. Examples of large variation of the night/day catch ratio on the same haul between years.

# 5.1.3 Survey summary sheets offshore surveys per country

# 5.1.3.1 Survey summary Belgium

| Nation: | Belgium                                 | Vessel: | RV "Belgica"                  |
|---------|-----------------------------------------|---------|-------------------------------|
| Survey: | Offshore North Sea Beam<br>Trawl Survey | Dates:  | 24 August to 4 September 2009 |

| Survey<br>description:                                                                                                                                                                                                                                                                                                         | An annual NSBTS survey is carried out in the southwestern part of the North Sea (IVb and IVc West) to sample the adult flatfish stocks, primarily targeting plaice and sole. Starting in 1992, the RV "Belgica" samples 62 fixed sampling stations in BTS Areas 2, 3 and 4.                           |                                                   |                                                       |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|--|--|--|
| Gear details:                                                                                                                                                                                                                                                                                                                  | All NSBTS sampling stations trawl, a 40 mm codend and c                                                                                                                                                                                                                                               |                                                   | 30 min, with a 4 m beam                               |  |  |  |
| Notes from<br>survey (e.g.<br>problems,<br>additional work<br>etc.):                                                                                                                                                                                                                                                           | 59 valid stations done. Because of bad weather conditions during the second<br>half of the survey, 3 stations were missed. Also no overlap with stations of the<br>UK BTS could be realized.<br>Number of otoliths: 25 ind per cm size class per BTS Area for cod, brill, turbot,<br>plaice and sole. |                                                   |                                                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                | Indices for plaice and sole are the numbers per hour, averaged by ICES rectangle and averaged over all sampled ICES rectangles. The indices will be further investigated in cooperation with WGBEAM (See Section 6.4).                                                                                |                                                   |                                                       |  |  |  |
| Target species catch rates:                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                       | TIME SERIES<br>MEAN NR. PER HR                    | 2009<br>MEAN NR. PER HR                               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                | Plaice                                                                                                                                                                                                                                                                                                | 54.2                                              | 68.0                                                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                | Sole                                                                                                                                                                                                                                                                                                  | 91.6                                              | 72.3                                                  |  |  |  |
| Number of fish<br>species recordedThe NS BTS measures all commercial fish species to the 5 mm below (no su<br>sampling), and also records all other fish species by length (mostly all indi<br>viduals, but sometimes based on subsamples). 52 different species of fish v<br>caught.unusual catches:The top 10 by number are: |                                                                                                                                                                                                                                                                                                       |                                                   |                                                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                | SPECIES                                                                                                                                                                                                                                                                                               | Т                                                 | OTAL NUMBER                                           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                | Limanda limanda                                                                                                                                                                                                                                                                                       |                                                   | 4041                                                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                | Echiichthys vipera                                                                                                                                                                                                                                                                                    |                                                   | 2544                                                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                | Solea solea                                                                                                                                                                                                                                                                                           |                                                   | 2133                                                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                | Pleuronectes platessa                                                                                                                                                                                                                                                                                 |                                                   | 2006                                                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                | Callionymus lyra                                                                                                                                                                                                                                                                                      |                                                   | 1477                                                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                | Merlangius merlangus                                                                                                                                                                                                                                                                                  |                                                   | 925                                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                | Trisopterus luscus                                                                                                                                                                                                                                                                                    |                                                   | 772                                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                | Arnoglossus laterna                                                                                                                                                                                                                                                                                   |                                                   | 745                                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                | Buglossidium luteum                                                                                                                                                                                                                                                                                   |                                                   | 663                                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                | Agonus cataphractus                                                                                                                                                                                                                                                                                   |                                                   | 634                                                   |  |  |  |
| Number of<br>epifauna species<br>recorded                                                                                                                                                                                                                                                                                      | All individuals of epibenthi<br>species are recorded on th<br>detailed taxonomical level of<br>only for the bigger catches)<br>presented to the WGBEAM.                                                                                                                                               | e species-level wheneve<br>herwise) based on comp | er possible (or the most<br>lete catches (subsampling |  |  |  |

| Index revisions: | The number of otoliths collected per cm class per species per BTS Area was |
|------------------|----------------------------------------------------------------------------|
|                  | increased from 20 to 25.                                                   |

| ICES Divisions                                                            | Strata            | Gear           | Indices<br>stations | Comments |  |  |
|---------------------------------------------------------------------------|-------------------|----------------|---------------------|----------|--|--|
| VIb, c                                                                    | 62 fixed stations | 4 m beam trawl | 59                  |          |  |  |
| Number of biological samples (maturity and age material, *maturity only): |                   |                |                     |          |  |  |

25 otoliths per cm size class are collected per BTS Area for cod, brill, turbot, plaice and sole, and the fish these came from are also sexed.

No maturity information is recorded (inappropriate period of the year), but gonads of rays are collected for maturity-studies and vertebrae for age-studies.

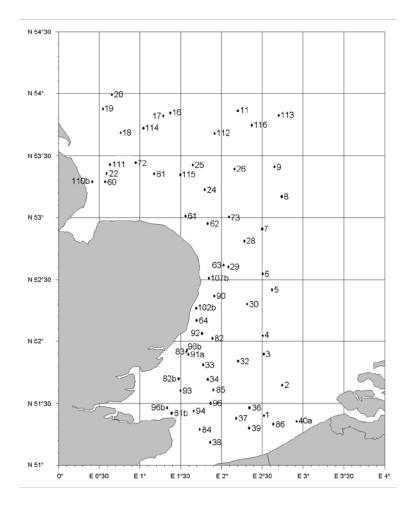



Figure 5.1.3.1.1. Towing positions "Belgica" 2009.

5.1.3.2 Survey summary England: VIId and IVc

| Nation: | UK (England and Wales) | Vessel: | RV Cefas Endeavour |
|---------|------------------------|---------|--------------------|
| Survey: | 11/09                  | Dates:  | 17–31 July         |

| Survey<br>description:                                               | Q3 Eastern English Channel and Southern North Sea survey aims to collect data<br>on distribution and relative abundance, with biological information on<br>commercial fish species in VIId and IVc. The primary target species are sole and<br>plaice, with additional species including lemon sole and cod. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |           |                                       |     |  |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|-----------|---------------------------------------|-----|--|
| Gear details:                                                        |                                                                                                                                                                                                                                                                                                              | rrawl with chain<br>over. Also attach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ũ                 |           |           | ım trawl wit                          | h   |  |
| Notes from<br>survey (e.g.<br>problems,<br>additional work<br>etc.): | the French side<br>completely (3 ir<br>in an attempt to<br>tows on the Frn<br>have been encom                                                                                                                                                                                                                | Because of large catches of benthos and dead shell and sand a number of tows on<br>the French side of Viid had to be either shortened in length or dropped<br>completely (3 in total). Additionally 7 stations off the Belgium coast were fished<br>in an attempt to get better coverage of the IVc area. It is likely that the invalid<br>tows on the Frnech coast will be rationlised in 2010, to stop the problems that<br>have been encountered over the last 3 years. In addition to the primary aims,<br>length weight relationship data were collected at all stations. |                   |           |           |                                       |     |  |
| Target species catch rates:                                          | mean no. per no. per hr mean catch ca                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |           | 2009 mear<br>catch weig<br>per hr (kg | ght |  |
|                                                                      | Sole                                                                                                                                                                                                                                                                                                         | 64.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 84.39             | 6.87      | 8.72      |                                       |     |  |
|                                                                      | Plaice                                                                                                                                                                                                                                                                                                       | 72.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 84.47             | 17.31     |           | 20.41                                 |     |  |
| Number of fish                                                       | 65 separate spec                                                                                                                                                                                                                                                                                             | cies of finfish we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | re caught. The to | op 10 by  | number    | are:                                  |     |  |
| species recorded<br>and notes on                                     | Callionymus lyra                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |           |           | 3436                                  |     |  |
| any rare species                                                     | Pleuronectes plat                                                                                                                                                                                                                                                                                            | essa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |           |           | 2841                                  |     |  |
| or unusual                                                           | Solea solea                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |           | 2839                                  |     |  |
| catches:                                                             | Limanda limanda                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |           |           | 2526                                  |     |  |
|                                                                      | Buglossidium lut                                                                                                                                                                                                                                                                                             | eum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |           |           | 2238                                  |     |  |
|                                                                      | Trisopterus luscı                                                                                                                                                                                                                                                                                            | ıs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |           |           | 666                                   |     |  |
|                                                                      | Trisopterus minı                                                                                                                                                                                                                                                                                             | itus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |           |           | 578                                   |     |  |
|                                                                      | Arnoglossus late                                                                                                                                                                                                                                                                                             | rna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |           |           | 544                                   |     |  |
|                                                                      | Merlangius merg                                                                                                                                                                                                                                                                                              | angus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |           |           | 473                                   |     |  |
|                                                                      | Trachinus (echiic                                                                                                                                                                                                                                                                                            | hthys) vipera Ago                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nus cataphractus  |           |           | 439                                   |     |  |
| Number of<br>epifauna species<br>recorded:                           | 88 separate infa<br>ICES divisions.                                                                                                                                                                                                                                                                          | una species were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e observed durin  | ng the 20 | )09 surve | ey across bot                         | h   |  |
| Index revisions:                                                     | none                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |           |                                       |     |  |

| ICES<br>Divisions | Strata | Gear             |                 | Priority<br>stations | Additional | Invalid | Total Valid | Comments                                    |
|-------------------|--------|------------------|-----------------|----------------------|------------|---------|-------------|---------------------------------------------|
| VIId and IV       | z None | 4m bean<br>trawl | <sup>n</sup> 85 | 15                   | 7          | 9       | 107         | 7 Additional stations<br>off Belgium fished |

| Number of biological samples (maturity and age material, *maturity only): |        |                      |        |  |  |  |  |
|---------------------------------------------------------------------------|--------|----------------------|--------|--|--|--|--|
| Species                                                                   | Number | Species              | Number |  |  |  |  |
| Pleuronectes platessa                                                     | 1904   | Gadus morhua         | 3      |  |  |  |  |
| Solea solea                                                               | 2320   | Platichthys flesus   | 287    |  |  |  |  |
| Limanda limanda                                                           | 1867   | Scophthalmus rhombus | 13     |  |  |  |  |
| Microstomus kitt                                                          | 157    | Psetta maxima        | 16     |  |  |  |  |



Figure 5.1.3.2.1. Towing positions UK VIId/IVc.

5.1.3.3 Survey summary England: VIIa and VIIf

| Nation: | UK (England and Wales) | Vessel: | RV Cefas "Endeavour"         |
|---------|------------------------|---------|------------------------------|
| Survey: | 13/09                  | Dates:  | 9 September – 1 October 2010 |

| Survey<br>description                                                | Q3 Irish Sea and Bristol Channel survey aims to collect data on distribution and relative abundance, with biological information on commercial fish species in VIIa and VIIf. The primary target species are sole and plaice, with additional species including whiting, lemon sole and cod.                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                   |          |           |          |        |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------|----------|-----------|----------|--------|
| Gear details:                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rrawl with chain<br>over. Also attach |                   |          |           | ım trawl | with   |
| Notes from<br>survey (e.g.<br>problems,<br>additional work<br>etc.): | For the first time this survey was carried out on the RV Cefas Endeavour. The survey was completed without incident. Water sampling at stations in the Bristol Channel was carried out under external contract. A total of 8 stations had to be fished for less than 30 minutes. This was mainly because of large by catches of benthis or as a precaution agianst gear damage. A significant amount of additional aims were carried out. These incldued <i>Scophthalmus rhombus</i> and <i>Scophthalmus maximus</i> finclips for comparative population genetics structure, 15 <i>Scyliorhinus canicula</i> sampled to determine post mortality length and measurement changes and 98 specimens were photographed for maturity stage. |                                       |                   |          |           |          |        |
| Target species<br>catch rates:                                       | Time series 2009 mean Time series 2009 m<br>mean no. per hr mean catch catch w<br>hr hr h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                   |          |           | weight   |        |
|                                                                      | Sole VIIa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32.49                                 | 15.53             | 4.27     |           | 2.20     |        |
|                                                                      | Sole VIIf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 77.45                                 | 66.32             | 8.26     |           | 7.17     |        |
|                                                                      | Plaice VIIa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 210.07                                | 221.77            | 18.68    |           | 22.05    |        |
|                                                                      | Plaice VIIf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.84                                 | 41.36             | 4.97     |           | 6.10     |        |
| Number of fish                                                       | 72 separate spec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cies of finfish we                    | re caught. The to | op 10 by | y number  | are:     |        |
| species<br>recorded and                                              | Limanda limanda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                     |                   |          | 12743     |          |        |
| notes on any                                                         | Pleuronectes plat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | essa                                  |                   |          | 8124      |          |        |
| rare species or                                                      | Buglossidium lut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eum                                   |                   |          | 7057      |          |        |
| unusual catches:                                                     | Trisopterus minı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ites                                  |                   |          | 3798      |          |        |
|                                                                      | Callionymus lyra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                     |                   |          | 2517      |          |        |
|                                                                      | Merlangius merl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | angus                                 |                   |          | 2307      |          |        |
|                                                                      | Scyliorhinus can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                   |          | 2186      |          |        |
|                                                                      | Arnoglossus late                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rna                                   |                   |          | 2048      |          |        |
|                                                                      | Solea solea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                   |          | 1850      |          |        |
|                                                                      | Eutrigla gurnard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                   |          | 1162      |          |        |
| Number of<br>infauna species<br>recorded                             | 153 separate inf<br>ICES divisions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | auna species we                       | re observed duri  | ng the   | 2009 surv | ey acros | s both |
| Index revisions:                                                     | none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                   |          |           |          |        |

| ICES      |                                      |                  | Indices         | Priority   |            |              | Total V   | alid commen |
|-----------|--------------------------------------|------------------|-----------------|------------|------------|--------------|-----------|-------------|
| Divisions | Strata                               | Gear             | stations        | stations   | Additiona  | l Invalid    |           |             |
| VIIa,f    | Depth band<br>within<br>stratum area | 4m bean<br>trawl | <sup>n</sup> 65 | 43         | 17         | 2            | 125       |             |
|           | Number of bio                        | logical sar      | nples (ma       | turity and | age materi | al, *maturi  | ty only): |             |
|           | Species                              |                  |                 | Number     | Species    |              |           | Number      |
|           | Pleuronectes pla                     | tessa            |                 | 1819       | Gadus m    | orhua        |           | 37          |
|           | Solea solea                          |                  |                 | 826        | Melanogi   | rammus aeg   | lefinus   | 61          |
|           | Limanda limand                       | la               |                 | 483        | Lophius p  | viscatorious |           | 46          |
|           | Microstomus kit                      | t                |                 | 150        | Scophtha   | lmus rhomb   | us        | 37          |
|           | Merluccius mer                       | luccius          |                 | 32         | Lepidorho  | ombus whiff  | iagonis   | 64          |
|           | Merlangius mer                       | langus           |                 | 227        | Scophtha   | lmus maxim   | us        | 25          |



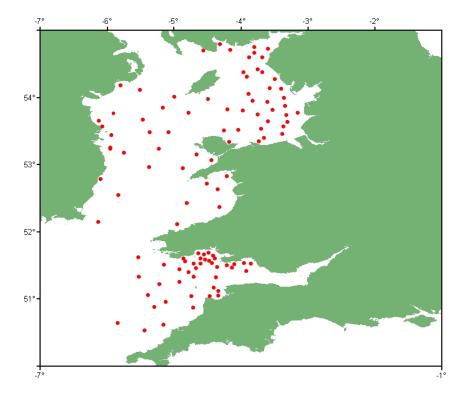



Figure 5.1.3.3.1. Towing positions UK Cefas "Endeavour" 13/09 Beam Trawl survey.

| 5. | 1. | 3.4 | 4 | Survey | summary | England: | Vlle |
|----|----|-----|---|--------|---------|----------|------|
|----|----|-----|---|--------|---------|----------|------|

| Nation: | UK (England and Wales) | Vessel: | FV "Carhelmar"    |
|---------|------------------------|---------|-------------------|
| Survey: | 2/09                   | Dates:  | 9–16 October 2009 |

| Survey<br>description                                                | Q4 Western English channel beam trawl survey. The primary target species are sole and plaice, with additional species including lemon sole and monkfish.                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                              |                         |                  |  |  |  |  |  |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|--|--|--|--|--|
| Gear details:                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Twin steel 4m-beam trawl with chain mat and single flip-up rope, 80mm trawl with 40mm codend cover. From 2006 a SAIV mini CTD has been attached to one beam. |                         |                  |  |  |  |  |  |
| Notes from<br>survey (e.g.<br>problems,<br>additional work<br>etc.): | Cefas has carried out this survey since 1984, firstly on the FV Bogey1, then from<br>1998 on the FV "Carhelmar". In 2002 the survey was switched to the RV<br>"Corystes" for 3 years but since 2005 it has returned to FV "Carhelmar". In 2009,<br>the survey was completed however, after 3 attempts, 1 station (prime E2) was<br>abandomed after large catches of broken shell were caught and the tow<br>invalidated. Weights are only recorded for individual biological samples. |                                                                                                                                                              |                         |                  |  |  |  |  |  |
| Target species catch rates:                                          | Time<br>mean ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | series<br>5. per hr                                                                                                                                          | 2008 mean no.<br>per hr |                  |  |  |  |  |  |
|                                                                      | Sole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.37                                                                                                                                                         | 8.51                    |                  |  |  |  |  |  |
|                                                                      | Plaice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.68                                                                                                                                                         | 13.11                   |                  |  |  |  |  |  |
| Number of fish                                                       | 82 separate specie                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | es of finfish were                                                                                                                                           | caught. The top 1       | 0 by number are: |  |  |  |  |  |
| species<br>recorded and                                              | Aspitrigla cuculus                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              |                         | 993              |  |  |  |  |  |
| notes on any                                                         | Pleuronectes plates                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sa                                                                                                                                                           |                         | 747              |  |  |  |  |  |
| rare species or                                                      | Scyliorhinus canic                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ula                                                                                                                                                          |                         | 552              |  |  |  |  |  |
| unusual catches:                                                     | Solea solea                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                              |                         | 488              |  |  |  |  |  |
|                                                                      | Limanda limanda                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                              |                         | 451              |  |  |  |  |  |
|                                                                      | Eutrigla gurnardu                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                            |                         | 234              |  |  |  |  |  |
|                                                                      | Lophius piscatoriu                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                            |                         | 203              |  |  |  |  |  |
|                                                                      | Trisopterus luscus                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              |                         | 193              |  |  |  |  |  |
|                                                                      | Merlangius merlar                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | igus                                                                                                                                                         |                         | 167              |  |  |  |  |  |
|                                                                      | Microstomus kitt                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                              |                         |                  |  |  |  |  |  |
| Number of<br>infauna species<br>recorded                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | For the first year epibenthos was recorded as observed on all stations. The most common species noted was <i>Pagurus prideau</i> at 89% of stations.         |                         |                  |  |  |  |  |  |
| Index revisions                                                      | none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                              |                         |                  |  |  |  |  |  |

| ICES<br>Divisions | Strata                                           | Gear   |    | Priority | Additional | Invalid     | Total Va  | alid Comme | nts |
|-------------------|--------------------------------------------------|--------|----|----------|------------|-------------|-----------|------------|-----|
| VIIe              | Distance from shore                              | 2 x 4m | 49 | 49       | 8          | 1           | 57        |            |     |
|                   | Number of biological samples (maturity and age a |        |    |          |            | al, *maturi | ty only): |            |     |
|                   | Species                                          |        |    | Number   | Species    |             |           | Number     |     |
|                   | Pleuronectes pla                                 | tessa  |    | 340      | Solea sole | ra          |           | 336        |     |
|                   | Lophius piscator                                 | ious   |    | 156      | Gadus m    | orhua       |           | 2          |     |
|                   | Microstomus kit                                  | t      |    | 68       |            |             |           |            |     |

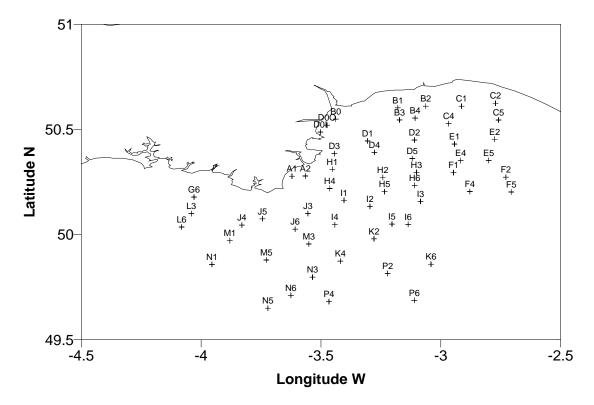



Figure 5.1.3.4.1. Towing positions UK "Carhelmar" 2/09 Beam Trawl survey.

| 5.1.3.5 | Survey | summary | Germany |
|---------|--------|---------|---------|
|---------|--------|---------|---------|

| Nation: | Germany | Vessel: | RV "Solea"        |
|---------|---------|---------|-------------------|
| Survey: | BTS     | Dates:  | 14–26 August 2009 |

| Survey<br>description:                                                                        | Q3 North Sea survey aims to collect data on distribution and relative<br>abundance, with biological information, on commercial and other fish and<br>invertebrate species in IVb to the west of Denmark. The distribution of young<br>flatfish, particularly plaice, has particular attention (higher sampling density<br>further inshore.) |                                                                                                    |                               |  |  |  |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------|--|--|--|
| Gear details:                                                                                 | 7 meter beam trawl with 5 ticklers, 40 mm mesh in the codend, 80 mm mesh in the net.                                                                                                                                                                                                                                                        |                                                                                                    |                               |  |  |  |
| Notes from survey<br>(e.g. problems,<br>additional work<br>etc.):                             | 56 hauls were carried out (                                                                                                                                                                                                                                                                                                                 | 56 hauls were carried out (approx. 28 hours fishing time).                                         |                               |  |  |  |
| Target species<br>catch rates:                                                                | TIME SERIES2009 MEANMEAN NO. PER HRNO. PER HR                                                                                                                                                                                                                                                                                               |                                                                                                    |                               |  |  |  |
|                                                                                               | Sole                                                                                                                                                                                                                                                                                                                                        | 4.01                                                                                               | 4.5                           |  |  |  |
|                                                                                               | Plaice                                                                                                                                                                                                                                                                                                                                      | 265.29                                                                                             | 166.89                        |  |  |  |
| Number of fish<br>species recorded<br>and notes on any<br>rare species or<br>unusual catches: | 41 separate species of finfis<br>The top 10 by number are:<br>Limanda limanda<br>Pleuronectes platessa<br>Buglossidium luteum<br>Arnoglossus laterna<br>Hippolossoides platessoides<br>Eutrigla gurnardus<br>Microstomus kitt<br>Callionymus lyra<br>Raja radiata<br>Agonus cataphractus<br>Merlangius merlangus                            | sh were caught.<br>14863<br>4664<br>2142<br>1235<br>1068<br>559<br>270<br>263<br>232<br>208<br>124 |                               |  |  |  |
| Number of<br>epifauna species<br>recorded:                                                    | 20 epifauna (attached and survey.                                                                                                                                                                                                                                                                                                           | free-living) species w                                                                             | vere observed during the 2009 |  |  |  |
| Index revisions:                                                                              |                                                                                                                                                                                                                                                                                                                                             |                                                                                                    |                               |  |  |  |

|                |        |               | Indices  | Priority stations |            |         | Total Valid Comments |
|----------------|--------|---------------|----------|-------------------|------------|---------|----------------------|
| ICES Divisions | Strata | Gear          | stations |                   | Additional | Invalid |                      |
| North Sea IVb  | N/A    | 7m beam trawl | 56       | 56                | **         | 0       | 56                   |

| Number of biological samples (maturity and age material, *maturity only): |      |                 |      |  |  |
|---------------------------------------------------------------------------|------|-----------------|------|--|--|
| Species Number Species N                                                  |      |                 |      |  |  |
| Pleuronectes platessa                                                     | 1392 | Limanda limanda | 1643 |  |  |

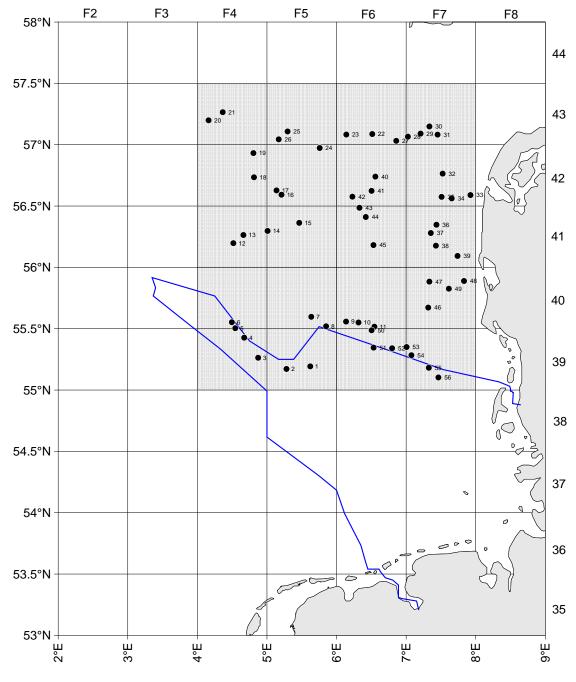



Figure 5.1.3.5.1. Towing positions Germany "Solea" Beam Trawl Survey.

# 5.1.3.6 Survey summary France

| Nation: | FRANCE    | Vessel: | NO "Gwen Drez"                   |
|---------|-----------|---------|----------------------------------|
| Survey: | ORHAGO 09 |         | 3 November – 16<br>December 2009 |

| Survey<br>description:                                               | Q4 Bay of Biscay survey to collect data on benthic fish species distributions and relative abundances, with biological information on some commercial fish species in VIIIab. The principal target species is sole, with additional species including <i>Nephrops norvegicus</i> , sand sole, thickback sole and senegalese sole. |                                                                                                                                                                       |                                                        |                                            |       |                             |  |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------|-------|-----------------------------|--|
| Gear details:                                                        | Steel 4m-beam trawl with chain mat, 50mm trawl with 45mm codend and 20mm purse.                                                                                                                                                                                                                                                   |                                                                                                                                                                       |                                                        |                                            |       |                             |  |
| Notes from<br>survey (e.g.<br>problems,<br>additional<br>work etc.): | 51 replicate tov                                                                                                                                                                                                                                                                                                                  | 117 hauls were carried out (approx. 54 hours fishing time).<br>51 replicate tows were made for day-night studies.<br>Bottom temperatures were recorded for each haul. |                                                        |                                            |       |                             |  |
| Target species catch rates:                                          |                                                                                                                                                                                                                                                                                                                                   | Time series<br>mean no. per<br>hr                                                                                                                                     | 2009 mean no.<br>per hr                                | Time series<br>mean catch<br>weight per hr | catch | mean<br>1 weight<br>11 (kg) |  |
|                                                                      | Sole (day)                                                                                                                                                                                                                                                                                                                        | 42.08                                                                                                                                                                 | 64.23                                                  | 5.12                                       | 7.65  |                             |  |
|                                                                      | Sole (night)                                                                                                                                                                                                                                                                                                                      | 50.72                                                                                                                                                                 | 73.19                                                  | 5.89                                       | 7.60  |                             |  |
|                                                                      | Sole (total)                                                                                                                                                                                                                                                                                                                      | 46.36                                                                                                                                                                 | 68.76                                                  | 5.50                                       | 7.63  |                             |  |
| Number of fish<br>recorded and<br>note on any                        |                                                                                                                                                                                                                                                                                                                                   | cies of finfish we<br>night. The top 10                                                                                                                               | and 61 separate species of finfish<br>hr are:<br>Night |                                            |       |                             |  |
| rare species or<br>unusual                                           | Trisopterus lusc                                                                                                                                                                                                                                                                                                                  | us                                                                                                                                                                    | 83.21                                                  | Trisopterus luscus 79.13                   |       |                             |  |
| catches:                                                             | Solea vulgaris                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                       | 69.64                                                  | '<br>Solea vulgaris                        |       | 69.71                       |  |
|                                                                      | Trisopterus min                                                                                                                                                                                                                                                                                                                   | utus                                                                                                                                                                  | 59.73                                                  | Arnoglossus laterna                        |       | 54.19                       |  |
|                                                                      | ,<br>Arnoglossus late                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                       | 55.83                                                  | Trisopterus minutus                        |       | 46.60                       |  |
|                                                                      | Callionymus lyr                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                       | 40.79                                                  | Callionymus lyra                           |       | 45.48                       |  |
|                                                                      | Merluccius mer                                                                                                                                                                                                                                                                                                                    | luccius                                                                                                                                                               | 33.44                                                  | Buglossidium luteum                        |       | 34.48                       |  |
|                                                                      | Gadiculus argen                                                                                                                                                                                                                                                                                                                   | iteus                                                                                                                                                                 | 33.09                                                  | Microchirus variegatus                     |       | 33.49                       |  |
|                                                                      | Microchirus var                                                                                                                                                                                                                                                                                                                   | iegatus                                                                                                                                                               | 30.56                                                  | Gobius niger                               |       | 19.50                       |  |
|                                                                      | Buglossidium lu                                                                                                                                                                                                                                                                                                                   | iteum                                                                                                                                                                 | 28.68                                                  | Trachurus trachu                           | rus   | 19.46                       |  |
|                                                                      | Dicologlossa cui                                                                                                                                                                                                                                                                                                                  | 1eata                                                                                                                                                                 | 19.15                                                  | <i>Gadiculus argenteus</i> 17.10           |       |                             |  |
| Number of<br>epifauna<br>species<br>recorded:                        | 1 1                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                       | 5 1                                                    | rates epifauna spe<br>Iab ICES division    |       | t night                     |  |

| ICES<br>Divisions | Strata | Gear                | Indices<br>stations | Priority<br>stations | Additional | Invalid | Total<br>valid | Comments                                        |
|-------------------|--------|---------------------|---------------------|----------------------|------------|---------|----------------|-------------------------------------------------|
| VIIIab            | N/A    | 4m<br>beam<br>trawl | 51                  |                      | 11         | 4       | 113            | 51 replicate<br>tows for day-<br>night studies. |

| Number of biological samples ( *age materiel only) |       |                         |     |  |  |
|----------------------------------------------------|-------|-------------------------|-----|--|--|
| Species Number Species Number                      |       |                         |     |  |  |
| Solea solea maturity and age                       | 818   | Red mullet *            | 118 |  |  |
| Solea solea maturity only                          | 2 499 | Merluccius merluccius * | 333 |  |  |
| Argyrosomus regius *                               | 40    | Lophius piscatorius *   | 96  |  |  |

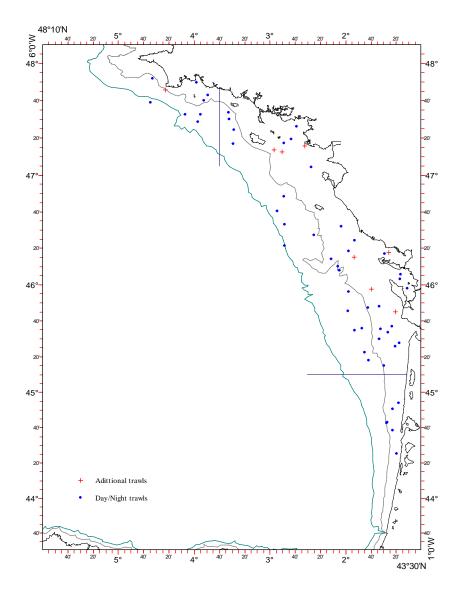



Figure 5.1.3.6.1 Towing positions France (day and night).

5.1.3.7 Survey summary Netherlands: Tridens

| Nation: | Netherlands             | Vessel: | RV "Tridens"                  |
|---------|-------------------------|---------|-------------------------------|
| Survey: | BTS (Beam Trawl Survey) | Dates:  | 24 August – 14 September 2009 |

| Survey<br>description                                                                         | The BTS aims to (i) monitor fish fauna by sampling length frequency distributions of all fish species and age composition of flatfish species, (ii) monitor species composition of epibenthos species by counting and weighing (if possible), (iii) create a fishery-independent estimate of age density for plaice and sole in the North Sea for stock assessment, (iv) monitor sex- and length composition of <i>Cancer pagurus, Nephrops norvegicus</i> and elasmobranch species.                                                                                           |                                                                              |                              |  |  |  |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------|--|--|--|
| Gear details:                                                                                 | 8 meter beam trawl with 8 ticklers, 40 mm mesh in the codend, 120 mm mesh in the net and a flip-up rope.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                              |                              |  |  |  |
| Notes from<br>survey:                                                                         | 68 hauls were carried out (approx. 34 hours fishing time). The survey was<br>completed with minor incidents. Net damage was repaired within a few hours.<br>Vertical CTD measurements were carried out after each haul.<br>In 2009, the net on port side was slightly adjusted to have a proper net lay-out.<br>To study the effect of the changes, for each station starbord and portside net<br>were sorted for plaice and sole. The differences in catch rates were not<br>statistically significant. Based on this results, the starboard net will be adjusted<br>in 2010. |                                                                              |                              |  |  |  |
| Target species<br>catch rates:                                                                | TIME SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                              | 2009 MEAN                    |  |  |  |
| catch rates:                                                                                  | MEAN NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                              | NO. PER HR                   |  |  |  |
|                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No index                                                                     |                              |  |  |  |
|                                                                                               | Plaice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78.07                                                                        | 162.98                       |  |  |  |
| Number of fish<br>species recorded<br>and notes on any<br>rare species or<br>unusual catches: | 50 separate species of finfish wThe top 10 by number are:Limanda limandaPleuronectes platessaHippoglossoides platessoidesArnoglossus laternaEchiichthys viperaEutrigla gurnardusMicrostomus kittBuglossidium luteumMerlangius merlangusCallionymus lyra141 epifauna (attached and free                                                                                                                                                                                                                                                                                         | 22880<br>5397<br>4036<br>2307<br>2130<br>1878<br>1238<br>1205<br>1017<br>698 | ere observed during the 2009 |  |  |  |
| epifauna species<br>recorded:                                                                 | survey.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                              |                              |  |  |  |
| Index revisions:                                                                              | 1996 yearclass plaice for 1997 a reading checked and revised)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and 1998 survey rev                                                          | vised to the dataseries (age |  |  |  |

|                |        |               | Indices  | Priority stations |            |         | Total Valid Comments |
|----------------|--------|---------------|----------|-------------------|------------|---------|----------------------|
| ICES Divisions | Strata | Gear          | stations | -                 | Additional | Invalid |                      |
| North Sea      | N/A    | 8m beam trawl |          |                   | 0          | 0       | 68                   |

| Number of biological samples (maturity and age material, *maturity only): |        |                            |        |  |  |  |  |
|---------------------------------------------------------------------------|--------|----------------------------|--------|--|--|--|--|
| Species                                                                   | Number | Species                    | Number |  |  |  |  |
| Pleuronectes platessa                                                     | 1102   | Microchirus variegatus     | 34     |  |  |  |  |
| Limanda limanda                                                           | 551    | Psetta maxima              | 23     |  |  |  |  |
| Microstomus kitt                                                          | 376    | Scophthalmus rhombus       | 9      |  |  |  |  |
| Hippoglossoides platessoides                                              | 260    | Zeugopterus norvegicus     | 6      |  |  |  |  |
| Solea solea                                                               | 161    | Molva molva                | 3      |  |  |  |  |
| Gadus morhua                                                              | 136    | Lepidorhombus whiffiagonis | 3      |  |  |  |  |
| Arnoglossus laterna                                                       | 65     | Platichthys flesus         | 2      |  |  |  |  |
| Buglossidium luteum                                                       | 43     | Pollachius virens          | 2      |  |  |  |  |
| Merluccius merluccius                                                     | 35     |                            |        |  |  |  |  |

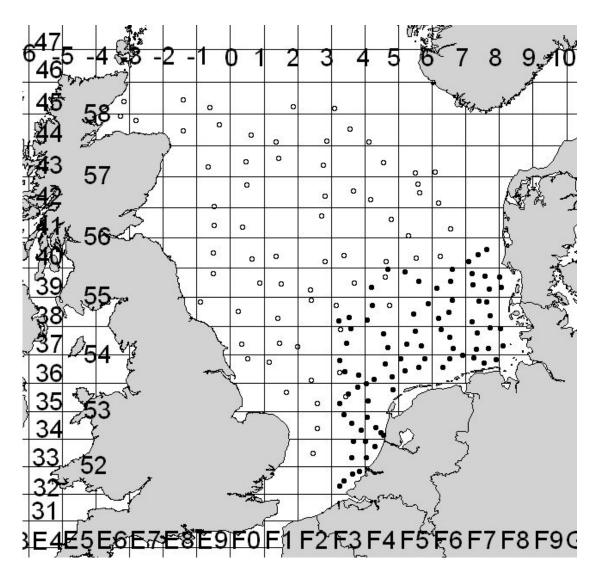



Figure 5.1.3.7.1. Towing positions Dutch Beam Trawl survey: open rounds=Tridens, black bullets=Isis.

# 5.1.3.8 Survey summary Netherlands: Isis

| Nation: | Netherlands             | Vessel: | RV "Isis"                     |  |
|---------|-------------------------|---------|-------------------------------|--|
| Survey: | BTS (Beam Trawl Survey) | Dates:  | 10 August – 10 September 2009 |  |

| Survey<br>description                                                                         | The BTS aims to (i) monitor fish fauna by sampling length frequency distributions of all fish species and age composition of flatfish species, (ii) monitor species composition of epibenthos species by counting, (iii) create a fishery-independent estimate of age density for plaice and sole in the North Sea for stock assessment, (iv) monitor sex- and length composition of <i>Cancer pagurus</i> , <i>Nephrops norvegicus</i> and elasmobranch species. |                                                                           |                             |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------|--|--|--|--|--|
| Gear details:                                                                                 | 8 meter beam trawl with in the net.                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 meter beam trawl with 8 ticklers, 40 mm mesh in the codend, 120 mm mesh |                             |  |  |  |  |  |
| Notes from<br>survey:                                                                         | 83 hauls were carried ou<br>rectangles planned were                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                           | ng time). All priority ICES |  |  |  |  |  |
| Target species catch rates:                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TIME SERIES<br>N NO. PER HR                                               | 2009 MEAN<br>NO. PER HR     |  |  |  |  |  |
|                                                                                               | Sole                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49.50                                                                     | 34.23                       |  |  |  |  |  |
|                                                                                               | Plaice                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 776.02                                                                    | 1140.09                     |  |  |  |  |  |
| Number of fish<br>species recorded<br>and notes on any<br>rare species or<br>unusual catches: | 43 separate species of fin<br>The top 10 by number an<br>Pleuronectes platessa<br>Limanda limanda<br>Arnoglossus laterna<br>Buglossidium luteum<br>Callionymus lyra<br>Merlangius merlangus<br>Agonus cataphractus<br>Solea solea<br>Echiichthys vipera<br>Eutrigla gurnardus                                                                                                                                                                                     | •                                                                         |                             |  |  |  |  |  |
| Number of<br>epifauna species<br>recorded:                                                    | 50 epifauna (attached and free-living) species were observed during the 200 survey.                                                                                                                                                                                                                                                                                                                                                                               |                                                                           |                             |  |  |  |  |  |
| Index revisions:                                                                              | 1996 yearclass plaice for 1997 and 1998 survey revised to the dataseries (age reading checked and revised)                                                                                                                                                                                                                                                                                                                                                        |                                                                           |                             |  |  |  |  |  |

| ICES Divisions   | Strata  | Gear      |         | Indice<br>station |     | Priority stations | Addit   | tionalInv | alid | Total<br>Valid | Comments |
|------------------|---------|-----------|---------|-------------------|-----|-------------------|---------|-----------|------|----------------|----------|
| North Sea        | N/A     | 8m bean   | n trawl | 83                |     | 0                 | 0       | 0         |      | 83             |          |
| Number of bio    | logical | samples ( | maturi  | ty and            | age | material, *1      | maturit | ty only): |      |                |          |
| Species          |         |           | Num     | ber               | Spe | ecies             |         |           | Nu   | mber           |          |
| Pleuronectes pla | itessa  |           | 642     |                   | Mie | crostomus ki      | tt      |           | 77   |                |          |
| Solea solea      |         |           | 432     |                   | Sco | phthalmus r       | hombus  | 3         | 59   |                |          |
| Limanda limana   | la      |           | 272     |                   | Gad | lus morhua        |         |           | 5    |                |          |
| Psetta maxima    |         |           | 105     |                   |     |                   |         |           |      |                |          |

# 5.2 Inshore surveys

## 5.2.1 Participation and coverage of the area

The inshore surveys in the North Sea are carried out by Belgium (Demersal Young Fish Survey-DYFS), Germany (DYFS), the Netherlands (Demersal Fish Survey-DFS) and UK (Young Fish Survey-YFS).

The Sole Net Survey (SNS), which is carried out by the Netherlands in the North Sea, is classified as an inshore survey, but 'nearshore' may be more appropriate because the area covered is further offshore than the other inshore surveys.

The participating vessels and time of the cruises is listed in Table 5.2.1.1. Details on areas covered by country are given in Annex 5. Details on depth strata fished are given in Annex 11.

| COUNTRY              | VESSEL                                | AREA                                   | DATES                                               | GEAR             |
|----------------------|---------------------------------------|----------------------------------------|-----------------------------------------------------|------------------|
| Belgium              | Hinders/<br>Broodwinner               | Belgian coastal zone                   | 11 Sep – 25 Sep                                     | 6 m shrimp trawl |
| UK                   | F.V. Suvera and<br>F.V. Fisher Lassie | Thames estuary                         | 28 Aug – 25 Sep                                     | 2 m shrimp trawl |
| UK                   | F.V. Challenge                        | Northeast English<br>coastal zone      | 26 Aug – 11 Sep                                     | 2 m shrimp trawl |
| Germany              | Chartered Cutters                     | German Bight and<br>German Wadden Sea  | 8 Sep –3                                            | 3 m shrimp trawl |
| Netherlands<br>(SNS) | Isis                                  | Dutch coastal zone                     | 15 Sep – 29 Sep                                     | 6 m beam trawl   |
| Netherlands          | Schollevaar                           | Scheldt estuary                        | 7 Sep - 24 Sep                                      | 3 m shrimp trawl |
| Netherlands          | Stern                                 | Dutch Wadden Sea                       | 31 Aug – 30 Sep                                     | 3 m shrimp trawl |
| Netherlands          | Isis and Jakoriwi                     | Dutch coastal zone<br>and German Bight | 01 Oct – 22 Oct<br>2009 and 02 Nov<br>– 05 Nov 2009 | 6 m shrimp trawl |

Table 5.2.1.1. Overview of surveys during 2009.

## 5.2.2 Survey results

In 2009, Netherlands encountered technical problems during the Isis survey in the Dutch coastal zone and German Bight. It was not possible to finish the survey using Isis, so the commercial vessel "Jakoriwi" was hired to finish the survey, using the standard survey gear and design.

From the 23 stations that were fished by Belgium, one station was considered invalid. The Belgian vessel the 'Broodwinner' was not available throughout the whole survey period in 2009. A commercial vessel (O.191), using the standard survey gear and the regular towing speed and duration, was therefore chartered to sample part of the stations.

For the UK there were no significant problems encountered although it was not possible to fish one of the 161 stations due the presence of a wind farm. It is intended that a similar "new" station will be identified to replace it next year. Gary Burt did a presentation on the results of the UK inshore surveys, highlighting the introduction of more extensive benthic sampling and the collection of length frequency distributions for *Crangon* sp., for the first time, which meant that the duration of the surveys had to be extended. However, these difficulties were overcome and the survey went well in this respect (see also Annex 18). The German inshore survey did not face any difficulties.

### 5.2.2.1 Catch results

The species composition per country per area for the continental surveys (Coastal, Wadden Sea, Scheldt Estuary) and aggregated for Thames and Humber for the UK surveys is listed in Annex 14. The selection of species is described in the WGBEAM 2008 report.

For the UK length distribution data collected for *Crangon* sp. shows that there are no distinctive size class groups across the survey areas and that they were most abundant off the Lincolnshire coast. A non-statistical analysis of the length distributions indicated that it might be possible to obtain viable length distributions from a selection of randomly selected stations (see also Annex 18).

Comparative tows

In 2008, Germany performed 15 more hauls to add to the comparison between the German and Dutch rigging of the survey trawl with respect to catches of 0 group plaice (ICES 2008a). The results did not suggest continuing this comparison study. See also Section 9.4, gear efficiency.

# 5.2.3 Survey summary sheets inshore surveys per country

# 5.2.3.1 Survey summary Belgium

| Nation: | Belgium                                                   | Vessel: | O.29 'Broodwinner'   |
|---------|-----------------------------------------------------------|---------|----------------------|
| Survey: | Inshore Demersal Young<br>Fish and Brown shrimp<br>Survey | Dates:  | 11–25 September 2009 |

| description                                                                               | As part of the international Demersal Young Fish (and Brown Shrimp) Survey, an annual autumn sampling survey is carried out in the Belgian coastal waters, to collect data on the abundance of juvenile flatfish (primarily plaice, <i>Pleuronectes platessa</i> , and sole, <i>Solea solea</i> ) and brown shrimp ( <i>Crangon crangon</i> ).<br>Since 1973, 33 fixed sampling stations are fished. Untill 1982, the research vessel Hinders was used, from 1983 onwards the survey was carried out with the training and research vessel O.29 'Broodwinner' (LOA 27.2 m; engine power 221 kW).<br>The location of the sampling area matches the main flatfish nursery grounds along the Belgian coast. |                                                                                                                                                                                                                                                                       |                                                                                                                     |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ions are fished for approx. 30 m<br>n 6 m; codend mesh size 18 mm, s                                                                                                                                                                                                  | -                                                                                                                   |  |  |  |  |  |
| survey (e.g.<br>problems,<br>additional<br>work etc.):                                    | Because of unavailability of the usual vessel O.29 during part of the intended<br>survey-period, only 23 sampling stations were fished as planned. 22 stations were<br>valid (station 91 invalid). For 9 of these stations (the ones fished on 23–25/09), the<br>(commercial) vessel O.191 was used (LOA 37.8m; engine power 882 kW), but with<br>the same gear normally used on this the survey, and at the regular survey towing<br>speed and duration.                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                       |                                                                                                                     |  |  |  |  |  |
| Target                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TIME SERIES<br>MEAN NR. PER 1000 M <sup>2</sup>                                                                                                                                                                                                                       | 2009<br>MEAN NR. PER 1000 M <sup>2</sup>                                                                            |  |  |  |  |  |
| species catch<br>rates:                                                                   | Plaice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *                                                                                                                                                                                                                                                                     | 6.79                                                                                                                |  |  |  |  |  |
| Tutes.                                                                                    | Sole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *                                                                                                                                                                                                                                                                     | 6.23                                                                                                                |  |  |  |  |  |
| 2009 data                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | vailable because of omitting data                                                                                                                                                                                                                                     |                                                                                                                     |  |  |  |  |  |
| fish species<br>recorded<br>and notes on<br>any rare<br>species or<br>unusual<br>catches: | volume) species to the cr<br>and turbot. From 2009 of<br>species caught (e.g. inclu-<br>this way, 12 species were<br>Species Total :<br>Limanda limanda<br>Merlangius merlangus<br>Pleuronectes platessa<br>Solea solea<br>Eutrigla gurnardus<br>Platichthys flesus<br>Microstomus kitt<br>Gadus morhua<br>Psetta maxima<br>Scyliorhinus canicula<br>Scomber scombrus<br>Scophthalmus rhombus                                                                                                                                                                                                                                                                                                            | easuring the most important com<br>m below being cod, whiting, plai<br>on, the species list is extended to<br>uding lesser spotted dogfish, gu<br>e documented in 2009. Ordered bo<br>number<br>3845<br>3064<br>2787<br>2556<br>121<br>109<br>63<br>10<br>4<br>1<br>1 | ice, flounder, dab, sole, brill<br>o cover all commercial fish<br>irnards, lemon sole,). In<br>y number, these are: |  |  |  |  |  |
| epifauna                                                                                  | f Appr. 500 brown shrimp per station are measured in 5 mm size classes.<br>No other epifauna species are recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                       |                                                                                                                     |  |  |  |  |  |
|                                                                                           | The number of DYFS-stations that were succesfully fished in 2009 is too low,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                                                                                                     |  |  |  |  |  |

| revisions: | potentially influencing the indices. |
|------------|--------------------------------------|
|            |                                      |

| ICES Divisior | ns Strata | aGear        | Indices<br>stations | Priority<br>stations | Addit | tionalInval |    | Comments                              |
|---------------|-----------|--------------|---------------------|----------------------|-------|-------------|----|---------------------------------------|
| IVc           | N/A       | 6m beam traw | /133                | 33                   | 0     | 1           | 22 | 10 stations not<br>fished (see above) |

Number of biological samples (maturity and age material, \*maturity only):

None

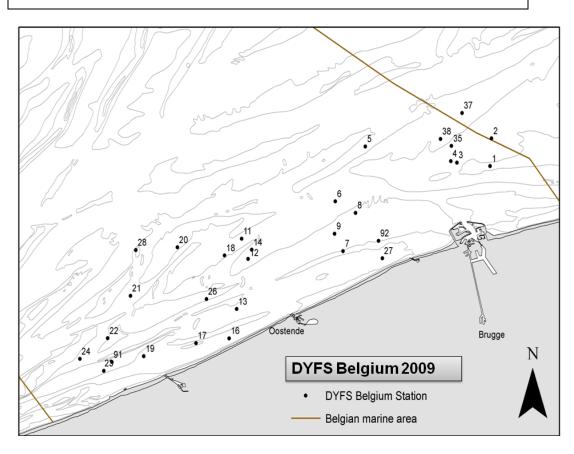



Figure 5.3.21.1. Station positions for inshore Belgian sampling.

| 5.2.3.2 | Survey summary: U | K |
|---------|-------------------|---|
|         |                   |   |

| Nation: | UK (England and Wales)   | Vessel: | FV "Challenge", (NE coast and<br>Humber) FV "Fisher Lassie" (N<br>Thames), FV "Suvera" (S Thames) |
|---------|--------------------------|---------|---------------------------------------------------------------------------------------------------|
| Survey: | Humber 1/09; Thames 1/09 | Dates:  | 26 August – 25 September 2009                                                                     |

| Survey<br>description<br>Gear details:                                                              | The North Sea Young Fish Survey aims to collect data on the distribution and relative abundance of small fish (primarily juvenile sole and plaice) caught in inshore waters between the River Humber and Margate. A total of 161 (81 – NE coast and Humber; 80 – Thames) stations are surveyed annually between late August and early September. Biological information is collected for sole and plaice. Temperature and salinities are recorded at each station, dissolved oxygen content recorded at the Humber stations and the shrimp catch and the epifauna quantified.                                               |                                                                           |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|--|--|
| Geur details.                                                                                       | A wooden 2m-beam trawl rigged with a fine mesh net with a codend<br>mesh, a light chain footrope and three tickler chains stretched loosely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                           |  |  |  |  |  |
| Notes from<br>survey (e.g.<br>problems,<br>additional<br>work etc.):                                | The survey was completed as planned. It was not possible to complete one of the Thames stations because of the presence of a wind turbine. For the 2009 survey the duration of the survey was increased by an additional five days in order to obtain additional epifauna catch data and length distributions of the shrimp catch.                                                                                                                                                                                                                                                                                          |                                                                           |  |  |  |  |  |
| Target                                                                                              | Time series mean no<br>. per 1000m² (2000 – 2009)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2009 MEAN NO. PER<br>1000m <sup>2</sup>                                   |  |  |  |  |  |
| species catch<br>rates:                                                                             | Plaice IVc 7.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.85                                                                      |  |  |  |  |  |
|                                                                                                     | Sole IVc 7.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.94                                                                      |  |  |  |  |  |
| Number of<br>fish species<br>recorded and<br>notes on any<br>rare species<br>or unusual<br>catches: | <ul> <li>39 species / genera of finfish were caught. The top 10 by number were Gobies (<i>Pomatoschistus spp</i>)</li> <li>Nilsson's Pipefish (<i>Syngnathus rostellatus</i>)</li> <li>Sole (Dover Sole; <i>Solea solea</i>)</li> <li>European Plaice (<i>Pleuronectes platessa</i>)</li> <li>Dab (<i>Limanda limanda</i>)</li> <li>Pogge (Armed Bullhead; <i>Agonus cataphractus</i>)</li> <li>Lesser Weever Fish (<i>Echiichthys (Trachinus) vipera</i>)</li> <li>Sea Snail (<i>Liparis liparis</i>)</li> <li>Whiting-Pout (Bib; <i>Trisopterus luscus</i>)</li> <li>Common Dragonet (<i>Callionymus lyra</i>)</li> </ul> | e:<br>9536<br>1142<br>923<br>394<br>293<br>282<br>174<br>157<br>110<br>97 |  |  |  |  |  |
| Number of<br>epifauna<br>species<br>recorded:                                                       | Introduced for the 2009 survey, epifauna species / genera were identi<br>a standard list at each station as follows:<br>Up to 7 species / genera of colonial species were observed.<br>Up to 13 species /genera (as identified by the Beam Trawl WG) were<br>Up to 7 species of shell-fish (in addition to above) were counted.<br>The shrimp catch was quantified volumetrically and a length distribut<br>the nearest mm) was obtained from approxiamtely 50 individuals pe                                                                                                                                               | counted.<br>ation (carapace length to                                     |  |  |  |  |  |

| ICES Divisions | Strata                            | Gear          | Indices stations | Total<br>Valid | Comments                                                    |
|----------------|-----------------------------------|---------------|------------------|----------------|-------------------------------------------------------------|
| Humber 1/09    |                                   |               | 81               | 81             |                                                             |
| Thames 1/09    |                                   |               | 80               | -              | 1 station not fished because of presence of a wind turbine. |
|                | Depth band within<br>stratum area | 2m beam trawl | 161              | 160            |                                                             |

#### Stations fished:

Number of biological samples (maturity and age material):

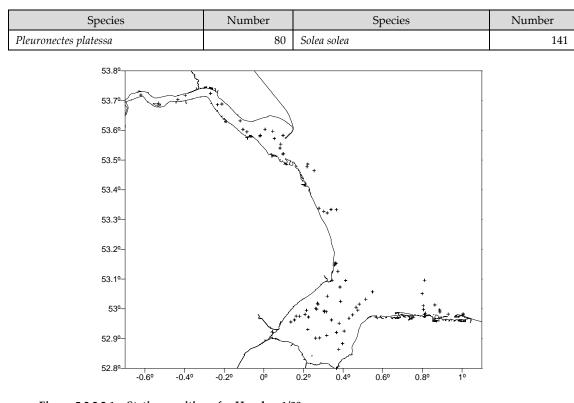



Figure 5.3.2.2.1a. Station positions for Humber 1/09.

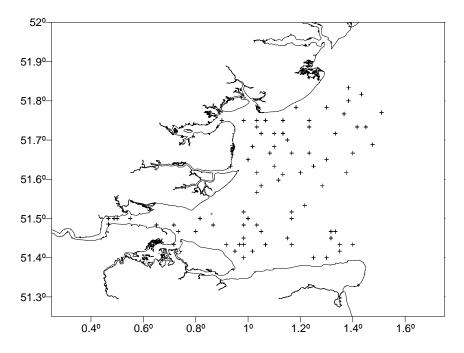



Figure 5.3.2.2.1b. Station positions for Thames 1/09.

| 5. | .2 | 3 | .3 | Survey | summary | Germany |
|----|----|---|----|--------|---------|---------|
|----|----|---|----|--------|---------|---------|

| Nation: | Germany | Vessel: | Chartered Cutters   |
|---------|---------|---------|---------------------|
| Survey: | DYFS    | Dates:  | 8–30 September 2009 |

| Survey<br>description                                                      | The DYFS (Demersal Young Fish and Brown Shrimp Survey) aims to collect data on distribution and relative abundance, with biological information on fish and crustacean species in the Wadden Sea region. The primary target species are plaice and sole, with additional species including whiting, cod and brown shrimp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                    |                     |                                                                             |         |  |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------|---------|--|
| Gear<br>details:                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | p-beam trawl witho<br>temperature and pi                                     |                                                                    |                     |                                                                             |         |  |
| Notes<br>from<br>survey<br>(e.g.<br>problems,<br>additional<br>work etc.): | sensor for time, temperature and pressure (light optional) is attached.<br>BFAFi –ISH operates the survey since 1974. Weser estuary and Jade were included from 2005 onwards. Spring series were terminated. There is no fixed position grid, but the same channel systems and all depth strata covered within and outside the island chain down to approx. 12m water depth are sampled on a yearly basis. The deeper gullies are taken into account, too. Single station data are available. Time series indices are only avilable for Schleswig-Holstein area at present, the other areas are in a validation process. 2006 data are also available for entire German coastal zone.<br>Data of only a limited number of "standard" invertebrates are stored in the ISH database. (Species list has changed also over years) |                                                                              |                                                                    |                     |                                                                             |         |  |
| Target<br>species<br>catch rates:                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Time series<br>mean<br>(Schleswig-<br>Holstein only)<br>n/1000m <sup>2</sup> | 2009 mean<br>(Schleswig-<br>Holstein only)<br>n/1000m <sup>2</sup> | Time series<br>mean | 2009 mean<br>(coastal Zone<br>all along<br>Germany)<br>n/1000m <sup>2</sup> |         |  |
|                                                                            | Plaice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.40                                                                        | 9.32                                                               |                     | 9.36                                                                        | -       |  |
|                                                                            | Sole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.97                                                                         | 0.76                                                               |                     | 0.74                                                                        | -       |  |
|                                                                            | Cod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.98                                                                         | 0.95                                                               |                     | 0.76                                                                        | -       |  |
|                                                                            | Whiting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.23                                                                         | 5.26                                                               |                     | 3.49                                                                        | -       |  |
|                                                                            | Brown<br>shrimp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1899                                                                         | 1158.22                                                            |                     | 1679.44                                                                     |         |  |
| Number of                                                                  | The top 10 by n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | umber are:                                                                   |                                                                    |                     |                                                                             | <b></b> |  |
| fish<br>species<br>recorded<br>and notes                                   | 54 taxa of finfish were caught from 2001 to 2009. The<br>top 10 by number in 2009 out of 36 taxa:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |                                                                    |                     |                                                                             |         |  |
| on any                                                                     | Pleuronectes pla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tessa                                                                        | 5911                                                               |                     |                                                                             |         |  |
| rare                                                                       | Pomatoschistus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | minutus                                                                      | 5240                                                               |                     |                                                                             |         |  |
| species or                                                                 | Osmerus eperlar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                              | 3112                                                               |                     |                                                                             |         |  |
| unusual<br>catches:                                                        | Syngnathus rost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                              | 2400                                                               |                     |                                                                             |         |  |
|                                                                            | Limanda limand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              | 1353                                                               |                     |                                                                             |         |  |
|                                                                            | Merlangius mer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                                                                            | 1216                                                               |                     |                                                                             |         |  |
|                                                                            | Agonus cataphro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | actus                                                                        | 856                                                                |                     |                                                                             |         |  |
|                                                                            | Liparis liparis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                              | 677                                                                |                     |                                                                             |         |  |
|                                                                            | Platichthys flesus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                              | 611                                                                |                     |                                                                             |         |  |
| Number                                                                     | Myoxocephalus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                              | 313                                                                |                     | 1                                                                           |         |  |
| Number of epifauna                                                         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nd are recorded on<br>SF database. For 20                                    | *                                                                  | er, only selecte    | a species are                                                               |         |  |
| species                                                                    | Crangon crango                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              | 1155442                                                            |                     |                                                                             |         |  |
| recorded:                                                                  | Mytilus edulis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              | 292813                                                             |                     |                                                                             |         |  |

|            | Ophiurida           | 86874 |
|------------|---------------------|-------|
|            | Macropipus holsatus | 13928 |
|            | Asterias rubens     | 2913  |
|            | Carcinus maenas     | 2827  |
|            | Pandalus montagui   | 779   |
|            | Crangon almanni     | 677   |
|            | Paguridae           | 355   |
|            | Buccinum undatum    | 71    |
| Index      |                     |       |
| revisions: |                     |       |

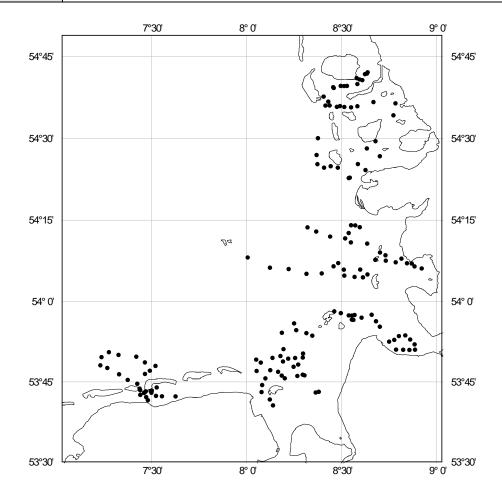



Figure 5.3.2.3.1. Stations sampled in the German DYFS 2009.

| Nation:                                                                                       | Netherlands                                                                                                                                                                                                                                                                           | Vessel:                                                              | RV "Schollevaar"                                                                                                                                                                                                                  |  |  |  |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Survey:                                                                                       | DFS (Demersal Fish Survey)                                                                                                                                                                                                                                                            | Dates:                                                               | 7–24 September 2009                                                                                                                                                                                                               |  |  |  |
| Survey description                                                                            | distributions of all fish spe<br>monitor species composition<br>fishery-independent index                                                                                                                                                                                             | cies and age c<br>on of epibenth<br>of abundance<br>h Sea for stock  | y sampling length frequency<br>ompositions of flatfish species, (ii)<br>toos species by counting, (iii) create a<br>to by age group (0- and 1-group) for<br>assessment, (iv) collect data on<br>chrimp ( <i>Crangon crangon</i> ) |  |  |  |
| Gear details:                                                                                 |                                                                                                                                                                                                                                                                                       |                                                                      | and a bobbin rope ("shrimp net").                                                                                                                                                                                                 |  |  |  |
| Notes from survey<br>(e.g. problems,<br>additional work<br>etc.):                             |                                                                                                                                                                                                                                                                                       | hauls were carried out. A CTD was attached to the net.               |                                                                                                                                                                                                                                   |  |  |  |
| Target species catch rates:                                                                   |                                                                                                                                                                                                                                                                                       | e series<br>no./1000m²                                               | 2009 MEAN<br>NO./1000M <sup>2</sup>                                                                                                                                                                                               |  |  |  |
|                                                                                               | Sole                                                                                                                                                                                                                                                                                  | 3.47                                                                 | 3.76                                                                                                                                                                                                                              |  |  |  |
|                                                                                               | Plaice                                                                                                                                                                                                                                                                                | 10.07                                                                | 8.64                                                                                                                                                                                                                              |  |  |  |
|                                                                                               | Note: without area based v                                                                                                                                                                                                                                                            | veighting as u                                                       | sed in the index calculations                                                                                                                                                                                                     |  |  |  |
| Number of fish<br>species recorded<br>and notes on any<br>rare species or<br>unusual catches: | 35 separate species of finitis<br>The top 10 by number are:<br>Pomatoschistus sp.<br>Pleuronectes platessa<br>Clupea harengus<br>Solea solea<br>Platichthys flesus<br>Limanda limanda<br>Trisopterus luscus<br>Dicentrarchus labrax<br>Myoxocephalus scorpius<br>Merlangius merlangus | 3267<br>2487<br>1492<br>1053<br>904<br>732<br>165<br>125<br>78<br>74 | ıt.                                                                                                                                                                                                                               |  |  |  |
| Number of<br>epifauna species<br>recorded:                                                    | · ·                                                                                                                                                                                                                                                                                   | free-living) sp                                                      | ecies were observed during the 2009                                                                                                                                                                                               |  |  |  |
| Index revisions:                                                                              | 1996 yearclass plaice revise<br>revised)                                                                                                                                                                                                                                              | ed to the datas                                                      | series (age reading checked and                                                                                                                                                                                                   |  |  |  |

5.2.3.4 Survey summary Netherlands: Schollevaar

# Stations fished:

| ICES Divisions          | Strata                  | Gear         | Indices<br>stations | Priority stations | Addition | alInvali | Total<br>idValid | Comments |
|-------------------------|-------------------------|--------------|---------------------|-------------------|----------|----------|------------------|----------|
| IVc: Scheldt<br>estuary | area and<br>depth class | 3m beam traw | /181                |                   | 0        | 0        | 81               |          |

| Number of biological samples (maturity and age material): |     |                       |    |  |  |
|-----------------------------------------------------------|-----|-----------------------|----|--|--|
| Species Number Species Number                             |     |                       |    |  |  |
| Pleuronectes platessa                                     | 121 | Limanda limanda       | 34 |  |  |
| Platichthys flesus                                        | 99  | Scophthalumus rhombus | 4  |  |  |
| Solea solea                                               | 97  |                       |    |  |  |

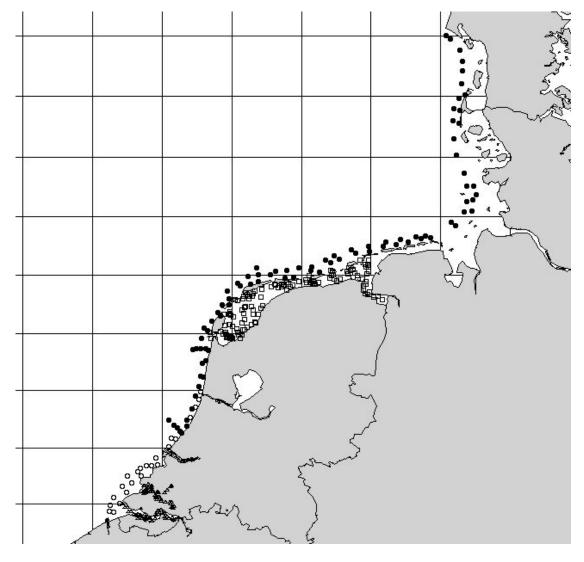



Figure 5.2.3.4.1. Station positions for Dutch DFS: black dots: Isis, circles: Jakoriwi, open squares: Stern, triangles: Schollevaar.

| 5.2.3.5 | Survey summary Netherland | ls: Stern |
|---------|---------------------------|-----------|
|---------|---------------------------|-----------|

| Nation: | Netherlands                | Vessel: | RV "Stern"                    |
|---------|----------------------------|---------|-------------------------------|
| Survey: | DFS (Demersal Fish Survey) | Dates:  | 31 August – 30 September 2009 |

| Survey description                                                                            | The DFS aims to (i) monitor fish fauna by sampling length frequency<br>distributions of all fish species and age compositions of flatfish species, (ii)<br>monitor species composition of epibenthos species by counting, (iii) create a<br>fishery-independent index of abundance by age group (0- and 1-group) for<br>plaice and sole in the North Sea for stock assessment, (iv) collect data on<br>length frequency distribution of brown shrimp ( <i>Crangon crangon</i> ). |                                                                           |                                    |  |  |  |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------|--|--|--|
| Gear details:                                                                                 | 3 meter beam trawl with 2                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l tickler chain and a b                                                   | obbin rope ("shrimp net").         |  |  |  |
| Notes from survey<br>(e.g. problems,<br>additional work<br>etc.):                             | 122 hauls were carried out. A CTD was attached to the net.                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |                                    |  |  |  |
| Target species catch rates:                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1E SERIES<br>NO./1000M <sup>2</sup>                                       | 2009 MEAN<br>NO/1000M <sup>2</sup> |  |  |  |
|                                                                                               | Sole                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.06                                                                      | 1.94                               |  |  |  |
|                                                                                               | Plaice                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31.41                                                                     | 5.64                               |  |  |  |
|                                                                                               | Note: without area based                                                                                                                                                                                                                                                                                                                                                                                                                                                         | weighting as used in                                                      | the index calculations             |  |  |  |
| Number of fish<br>species recorded<br>and notes on any<br>rare species or<br>unusual catches: | 35 separate species of finf<br>The top 10 by number are<br>Pomatoschistus sp.<br>Pleuronectes platessa<br>Solea solea<br>Ciliata mustela<br>Platichthys flesus<br>Agonus cataphractus<br>Syngnathus rostellatus<br>Clupea harengus<br>Osmerus eperlanus<br>Myoxocephalus scorpius                                                                                                                                                                                                | :<br>8322<br>2848<br>968<br>904<br>632<br>438<br>424<br>411<br>372<br>367 | uno abcomod during the 2008        |  |  |  |
| Number of<br>epifauna species<br>recorded:                                                    | 22 epifauna (attached and survey.                                                                                                                                                                                                                                                                                                                                                                                                                                                | free-living) species w                                                    | vere observed during the 2008      |  |  |  |
| Index revisions:                                                                              | 1996 yearclass plaice revis<br>revised)                                                                                                                                                                                                                                                                                                                                                                                                                                          | sed to the dataseries (a                                                  | age reading checked and            |  |  |  |

# Stations fished (see Figure 5.3.2.4.1 for map):

| ICES Divisions     | Strata                  | Gear         | Indices stations | 5 | Addition | alInval |     | Comments |
|--------------------|-------------------------|--------------|------------------|---|----------|---------|-----|----------|
| IVc: Wadden<br>Sea | area and<br>depth class | 3m beam traw | vl122            |   | 0        | 0       | 122 |          |

| Number of biological samples (maturity and age material): |        |                      |        |  |
|-----------------------------------------------------------|--------|----------------------|--------|--|
| Species                                                   | Number | Species              | Number |  |
| Platichthys flesus                                        | 219    | Scophthalmus rhombus | 8      |  |
| Pleuronectes platessa                                     | 197    | Limanda limanda      | 6      |  |
| Solea solea                                               | 185    |                      |        |  |

5.2.3.6 Survey summary Netherlands: Isis (DFS)

| Nation: | Netherlands                | Vessel: | RV "Isis" and "Jakoriwi"                    |
|---------|----------------------------|---------|---------------------------------------------|
| Survey: | DFS (Demersal Fish Survey) | Dates:  | 1–22 October 2009 and 2– 5<br>November 2009 |

| Survey description                                                                            | The DFS aims to (i) monitor fish fauna by sampling length frequency distributions of all fish species and age compositions of flatfish species, (ii) monitor species composition of epibenthos species by counting, (iii) create a fishery-independent index of abundance by age group (0- and 1-group) for plaice and sole in the North Sea for stock assessment, (iv) collect data on length frequency distribution of brown shrimp ( <i>Crangon crangon</i> ). |                                                                                                                                                                                              |                                     |  |  |  |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|--|--|
| Gear details:                                                                                 | 6 meter beam trawl with                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 tickler chain and a                                                                                                                                                                        | bobbin rope ("shrimp net").         |  |  |  |
| Notes from survey<br>(e.g. problems,<br>additional work etc.):                                | technical problems with                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110 hauls were carried out. A CTD was attached to the net. Because of technical problems with RV Isis a commercial fishing vessel using the research gear was used to complete the sampling. |                                     |  |  |  |
| Target species catch                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                              |                                     |  |  |  |
| rates:                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1E SERIES<br>NO./1000M <sup>2</sup>                                                                                                                                                          | 2009 MEAN<br>NO./1000M <sup>2</sup> |  |  |  |
|                                                                                               | Sole                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.21                                                                                                                                                                                         | 0.82                                |  |  |  |
|                                                                                               | Plaice                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.41                                                                                                                                                                                        | 8.64                                |  |  |  |
|                                                                                               | Note: without area based                                                                                                                                                                                                                                                                                                                                                                                                                                          | d weighting as used i                                                                                                                                                                        | n the index calculations            |  |  |  |
| Number of fish<br>species recorded and<br>notes on any rare<br>species or unusual<br>catches: | 41 separate species of fir<br>The top 10 by number an<br>Pomatoschistus sp.<br>Limanda limanda<br>Pleuronectes platessa<br>Buglossidium luteum<br>Merlangius merlangus<br>Agonus cataphractus                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              |                                     |  |  |  |
|                                                                                               | Callionymus lyra2599Solea solea802Ammodytes sp.693Arnoglossus laterna556                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                              |                                     |  |  |  |
| Number of epifauna species recorded:                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                              | were observed during the            |  |  |  |
| Index revisions:                                                                              | 1996 yearclass plaice rev<br>revised)                                                                                                                                                                                                                                                                                                                                                                                                                             | ised to the dataseries                                                                                                                                                                       | (age reading checked and            |  |  |  |

# Stations fished (see Figure 5.3.2.4.1 for map):

| ICES Divisions  | Strata                    | Gear         | Indices stations | 2 | Additiona | lInvali |    | Comments |
|-----------------|---------------------------|--------------|------------------|---|-----------|---------|----|----------|
| IVc: Dutch coas | t area and<br>depth class | 6m beam traw | 175              | 0 | 0         | 0       | 75 |          |

| Number of biological samples (maturity and age material): |        |                     |        |  |  |
|-----------------------------------------------------------|--------|---------------------|--------|--|--|
| Species                                                   | Number | Species             | Number |  |  |
| Limanda limanda                                           | 477    | Platichthys flesus  | 52     |  |  |
| Pleuronectes platessa                                     | 276    | Psetta maxima       | 11     |  |  |
| Solea solea                                               | 131    | Scophthalmus rhomus | 10     |  |  |

5.2.3.7 Survey summary Netherlands: Isis (SNS)

| Nation: | Netherlands           | Vessel: | RV "Isis"            |
|---------|-----------------------|---------|----------------------|
| Survey: | SNS (Sole Net Survey) | Dates:  | 15–29 September 2009 |

| Survey description                                                                            | The SNS aims to (i) monitor fish fauna by sampling length frequency<br>distributions of all fish species and age compositions of flatfish species, (ii)<br>monitor species composition of epibenthos species by counting, (iii) create a<br>fishery-independent index of abundance by age group (1-, 2-, 3- and 4-group)<br>for plaice and sole in the North Sea for stock assessment. |                                                                                 |                                                                |  |  |  |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|--|
| Gear details:                                                                                 | 6 meter beam trawl w                                                                                                                                                                                                                                                                                                                                                                   | ith 4 tickler chains, mesh                                                      | size 40 mm in the codend.                                      |  |  |  |
| Notes from survey<br>(e.g. problems,<br>additional work<br>etc.):                             | 51 hauls were carried to the net.                                                                                                                                                                                                                                                                                                                                                      | out (approx. 13 hours fish                                                      | ning time). A CTD was attached                                 |  |  |  |
| Target species catch rates:                                                                   |                                                                                                                                                                                                                                                                                                                                                                                        | Time series<br>an no./100 hr                                                    | 2009 MEAN<br>NO/100 HR                                         |  |  |  |
|                                                                                               | Sole                                                                                                                                                                                                                                                                                                                                                                                   | 6716                                                                            | 4731                                                           |  |  |  |
|                                                                                               | Plaice                                                                                                                                                                                                                                                                                                                                                                                 | 66794                                                                           | 70705                                                          |  |  |  |
| Number of fish<br>species recorded<br>and notes on any<br>rare species or<br>unusual catches: | 35 separate species of<br>The top 10 by number<br>Limanda limanda<br>Pleuronectes platessa<br>Pomatoschistus sp.<br>Buglossidium luteum<br>Arnoglossus laterna<br>Merlangius merlangus<br>Callionymus lyra<br>Agonus cataphractus<br>Solea solea<br>Echiichthys vipera                                                                                                                 | are:<br>9241<br>8827<br>2647<br>2160<br>1956<br>930<br>835<br>660<br>579<br>224 | una channad during the 2000                                    |  |  |  |
| Number of<br>epifauna species<br>recorded:                                                    | 33 epifauna (attached survey.                                                                                                                                                                                                                                                                                                                                                          | and free-living) species w                                                      | rere observed during the 2009                                  |  |  |  |
| Index revisions:                                                                              |                                                                                                                                                                                                                                                                                                                                                                                        | evised). Complete series                                                        | evised to the dataseries (age<br>checked and revised, no major |  |  |  |

# Stations fished (see Figure 5.3.2.4.1 for map):

| ICES Divisions  | Strata                  | Gear         | Indices stations | Priority stations | Addition | alInvali | Total<br>dValid | Comments |
|-----------------|-------------------------|--------------|------------------|-------------------|----------|----------|-----------------|----------|
| IVc: Wadden Sea | area and<br>depth class | 6m beam traw | v151             | 0                 | 0        | 0        | 51              |          |

| Number of biological samples (maturity and age material): |                             |  |  |  |  |  |
|-----------------------------------------------------------|-----------------------------|--|--|--|--|--|
| Species Number Species Number                             |                             |  |  |  |  |  |
| Pleuronectes platessa                                     | 653 Platichthys flesus 37   |  |  |  |  |  |
| Limanda limanda                                           | 616 Scophthalmus rhombus 29 |  |  |  |  |  |
| Solea solea215Psetta maxima18                             |                             |  |  |  |  |  |

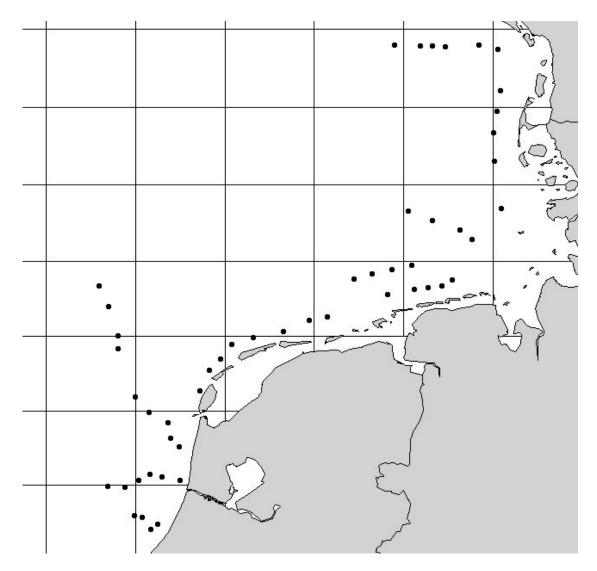



Figure 5.3.2.7.1. Station positions for Isis (SNS).

# 6 Population abundance indices (ToR b and d)

# 6.1 Abundance indices by age-group for plaice and sole for the offshore surveys

Annex 10 and Figures 6.1.1.1–6.1.1.2 present the abundance indices by age for sole and plaice from each of the offshore survey areas separately, updated with the indices for 2009.

The revision history until 2009 can be found in the WGBEAM 2009 report (ICES, 2009).

To ensure consistency with the data given to the WGNSSK and WGCSE, Annex 10 has been updated to include the UK tuning indices data calculated for each of the working groups. For WGNSSK this gives data for sole and plaice for age groups 1-10+ per hour for an 8m-beam trawl. For the WGCSE (fusion of the former NSDSWG and SSDSWG) this gives total catch at-age for sole and plaice for a 4m-beam trawl with the total distance fished in kilometres.

#### 6.1.1 Sole

#### North Sea sole

Figure 6.1.1.1a shows the time-series trends in sole for the North Sea, based on the Netherlands Isis offshore surveys. This survey indicates that recent year classes have been mainly poor with 2003 and 2004 year classes substantially below the long-term arithmetic mean at all ages. There was a significant increase in the number of three year olds caught in the 'Isis' survey this year. This 2005 year class appeared as two year olds in 2007 but was only seen as average recruitment in 2006. The 2005 year class is still clearly visible in 2008 and 2009.

The spatial coverage of the Netherlands "Tridens" survey makes it unsuitable for monitoring sole abundance.

#### Area VII sole

The indices for sole from area VII stocks are summarized in Figure 6.1.1.1b-e. In recent years the two adjacent areas VIId and VIIe have both shown above average recruitment but not for the same year classes; however in 2008 both areas are showing poor, below average recruitment. In VIId, 2001 and 2004 year classes were above average whereas, in VIIe, 2002 and 2003 appear to be above average at least at-age 1. However, there is a lack of resolution on older ages in VIIe and no consistent indication of strong year classes is evident. In both stocks, the 2006 year class appears to be very poor. In VIIf and VIIa, there has been poor recruitment in 2003–2007, with the 2005 year class being one of the poorest for the past 10 years. In VIId, the 2008 year class is seen as one year olds in 2009 as a strong year class, comparable to the size of the 2002 year class. VIIa and VIIf surveys show below average recruitment for sole.

#### 6.1.2 Plaice

#### 6.1.2.1 Correction of Dutch plaice indices for year class 1996

For many years the 1- and 2-group indices for plaice were missing in the time-series of the BTS. This omission was because of age reading problems for the 1996 year class, which occurred in catch year 1997. The age reading problems were caused by the formation of false growth checks in the otoliths of plaice from the 1996 year class, in combination with the inexperience of the age reader at that time. All plaice otoliths

#### 6.1.2.2 Population abundance indices

#### North Sea plaice

Trends in the indices for North Sea plaice from the Netherlands "Isis" and "Tridens" surveys are shown in Figures 6.1.2.2a and 6.1.2.2 b. The Isis survey covers mainly the southern North Sea, whereas the "Tridens" extends substantially further north and west. The Isis survey indicates that recruitment has been well below average since the strong 2001 year class. The "Tridens" survey confirmed the strong 2001 year class and indicated that the 2003 year class was also above average at both 2 and 3 year olds.

The 2006 year class in the North Sea is well above the long-term mean which is shown by the UK and the Dutch "Tridens" survey. This is also evident in the 'Isis' survey at-age 1 but not at the older ages. The older age groups (including the 2006 year class) in the "Tridens" survey show an increase. It is not clear where the increase comes from.

#### Area VII plaice

Plaice indices for area VII stocks are shown in Figures 6.1.2.2c-f. In VIId, the 2006, 2007 and 2008 year classes are above average, the 2008 year class being the highest in the series. In VIIe the age 1 year class index does not seem to represent the indices for the older ages. Since 2005, the year classes have been above the survey mean, with the 2007 year class being the highest of the time-series. In VIIf, recruitment has been poor in recent years with 2001 and most subsequent year classes below average, however there has been an above average catch of the 2006 year class (at-age 3), which was not evident at-age 1 but was clear as age 2 in 2008. By contrast, recruitment in the Irish Sea (VIIa) has been increasing recently. The 2006 year class at-age 1 is well above the long-term mean and is continuing to show at the older ages.

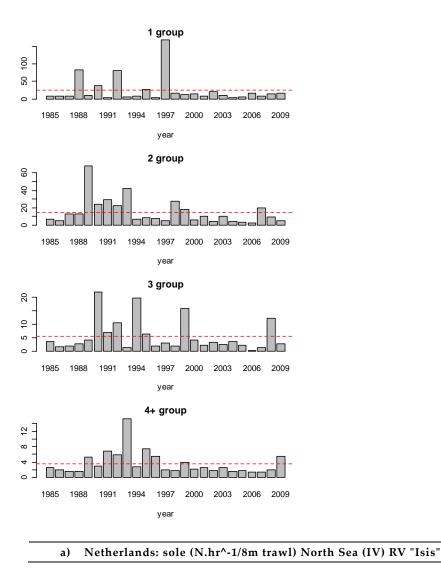



Figure 6.1.1.1. Catch rate of sole from Netherlands and UK surveys in the North Sea and VII d, a, e, f and g. (Horizontal line=long-term mean for the period presented).

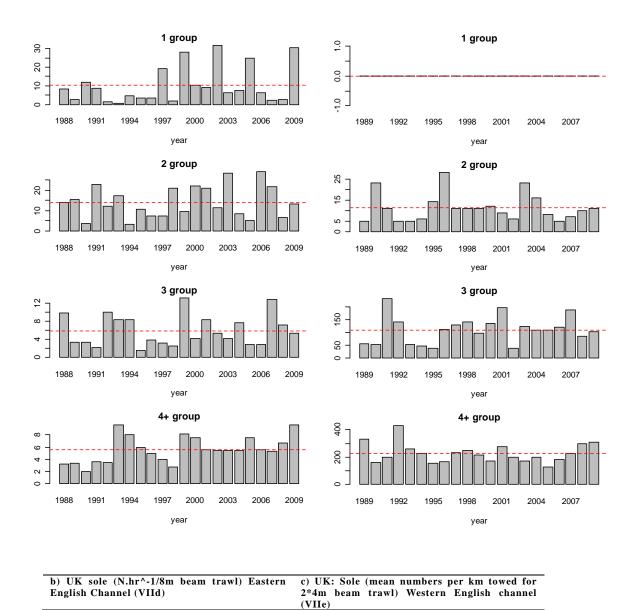
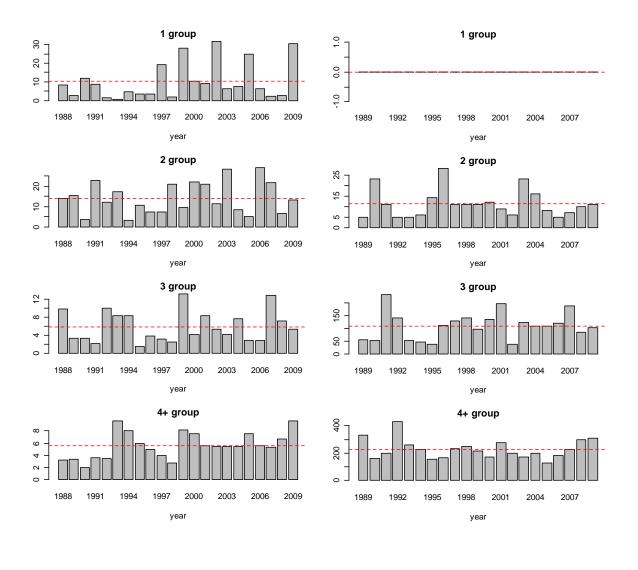




Figure 6.1.1.1. Continued.



d) UK: sole (mean numbers per km towed for<br/>4m beam trawl) Bristol Channel (VIIf)(e) UK: sole (mean numbers per km towed for<br/>4m beam trawl) Eastern Irish Sea (VIIa)

Figure 6.1.1.1. Continued.

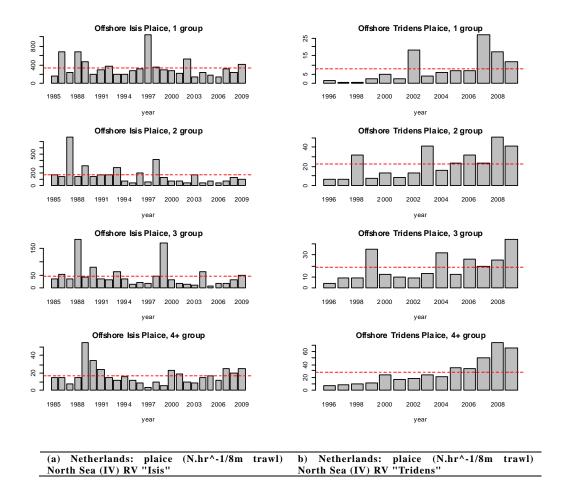



Figure 6.1.1.2. Catch rate of plaice from Netherlands and UK surveys in the North Sea and VII d, a, e, f and g. (Horizontal line=long-term mean for the period presented).

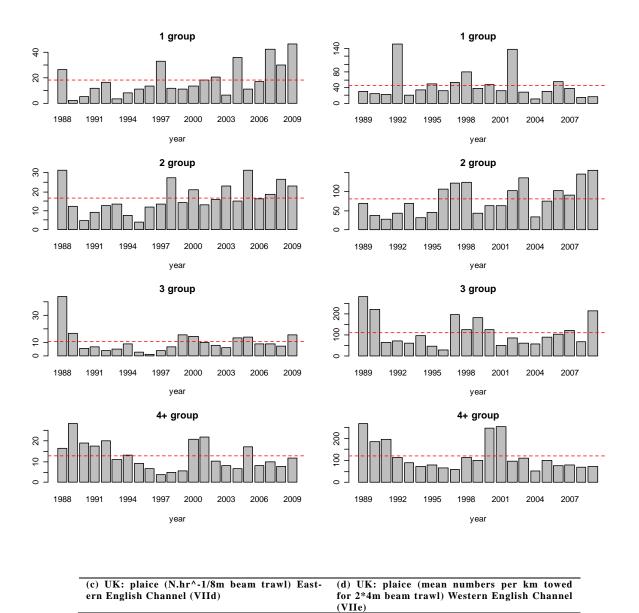
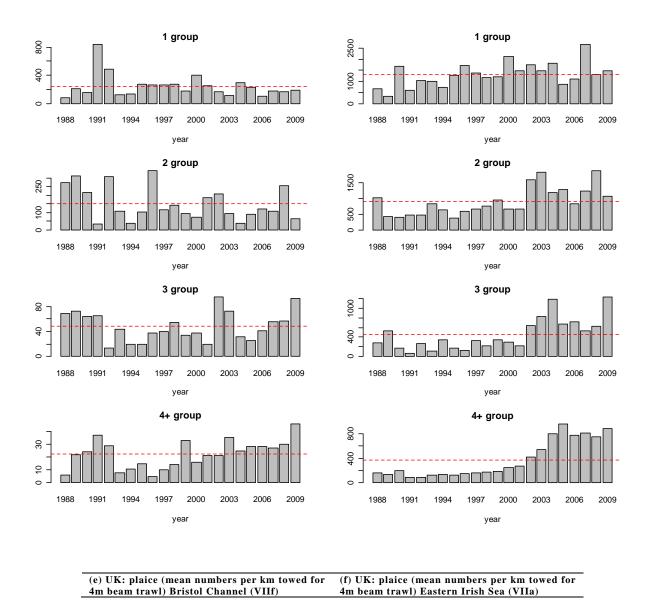
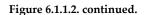





Figure 6.1.1.2. Continued.





# 6.2 Abundance indices by age-group for plaice and sole for the inshore surveys

The abundance indices for the inshore surveys covering the full period of each survey are shown in Annex 15 and Figures 6.2.1.1–6.2.1.2.

In VIId, the indices used by WGNSSK are the English inshore beam trawl survey for plaice and the combined English and French surveys for sole. WGBEAM did not have the French survey data available at the meeting and as a result, only the English survey data has been tabulated and discussed. There are no inshore surveys in other parts of area VII which are used by the relevant Working Groups or coordinated by WGBEAM. Since 2007, UK no longer carries out the VIId inshore survey because of financial reasons.

The DYFS, DFS and YFS indices for the North Sea are combined to derive an international inshore index. The combined indices of 0- and 1-group plaice and sole are used by the WGNSSK to estimate recruitment. Both the national and the international indices are presented in Annex 15, only the combined index is presented in Figures 6.2.1.1–6.2.1.2.

The SNS (North Sea) abundance indices of plaice and sole for age groups 0–4, are also used by WGNSSK for estimating recruitment and/or for tuning of the XSA model.

A notable change in the abundance indices of the North Sea inshore surveys is the almost complete disappearance of 1 group plaice in the combined index in the last approx. 10 years. This decrease is mainly driven by the Dutch indices and less obvious in the Belgian and UK indices. The decrease in abundance of 1 group plaice in the inshore areas is thought to be caused by a change in distribution (Grift *et al.*, 2004). In effect, the combined inshore index is currently not sufficiently sampling the distribution area of 1 group plaice.

## 6.2.1 Sole

The North Sea 0-group sole in 2009 in the international index is about the same size (below average) as the years before. From the SNS 0-group index this year class seems to be more prominent. However, because of the mesh size, the SNS gear is not designed for targeting 0-group flatfish so no conclusions can be made based on its 0-group index.

#### 6.2.2 Plaice

The North Sea 0-group plaice is slowly increasing in the international index. The patterns in the international inshore index and the SNS look alike. There is no strong year class visible in the index series for 0 and 1-group plaice.

#### 6.2.2.1 Correction of Dutch plaice indices for year class 1996 (SNS)

For many years the 1- and 2-group indices for plaice were missing in the time-series of the SNS. This omission was because of age reading problems for the 1996 year class, which occurred in catch year 1997. The age reading problems were caused by the formation of false growth checks in the otoliths of plaice from the 1996 year class, in combination with the inexperience of the age reader at that time. All plaice otoliths from the SNS, which were collected in 1997, were recently re-read. The new age readings were used to recalculate the SNS indices in 1997.

The results of this re-read exercise combined with the results of the re-read of the BTS (see Section 6.1.2.1) led us to doubt the validity of the Dutch DFS age readings for the 1996 year class (at young ages). Therefore the otoliths collected in 1996 and 1997 during the DFS were re-read as well. The Dutch DFS indices have not yet been revised based on these new age readings.

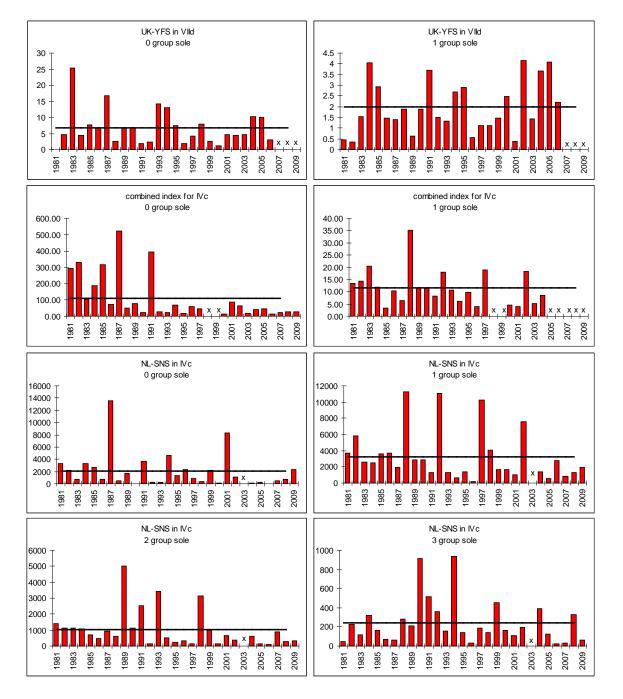



Figure 6.2.1.1. Indices of juvenile sole abundance from inshore beam trawl surveys. Young fish surveys (YFS / DFS / DYFS): abundance indices are given as numbers per 1000 m<sup>2</sup> (Netherlands, Belgium and Germany) and as millions of fish sampled (UKYFS and international index). Sole Net Survey (SNS): abundance indices are given as numbers per 100 hour fishing. (Horizontal line=long-term mean for the period presented, x=no data available).

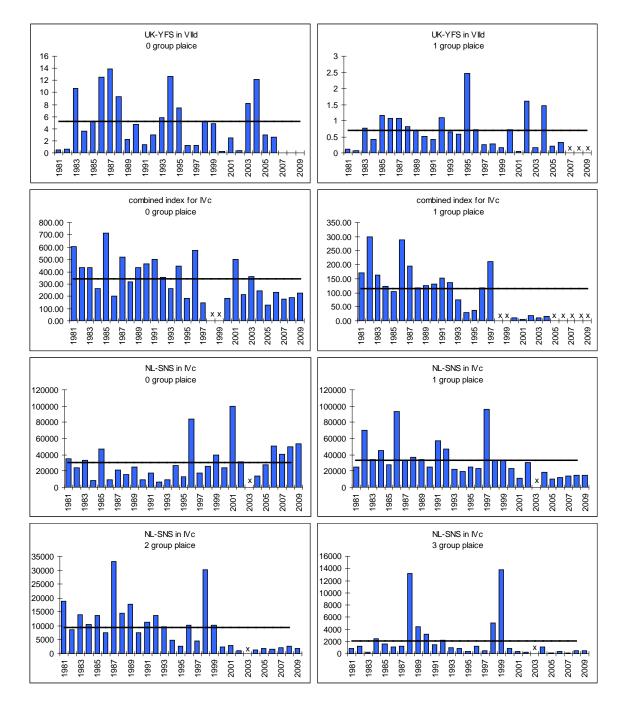



Figure 6.2.1.2. Indices of juvenile plaice abundance from inshore beam trawl surveys. Young fish surveys (YFS / DFS / DYFS): abundance indices are given as numbers per 1000 m<sup>2</sup> (Netherlands, Belgium and Germany) and as millions of fish sampled (UKYFS and international index). Sole Net Survey (SNS): abundance indices are given as numbers per 100 hour fishing. (Horizontal line=long-term mean for the period presented, x=no data available).

# 6.3 Evaluation of abundance indices

#### 6.3.1 Recalculation of Dutch inshore indices (SNS)

The full time-series of the Dutch Sole Net Survey (SNS) indices has been recalculated because of a change in the database. The age data are now included in the oracle database, whereas before the data were stored in text files. This data transfer caused minor differences in the age length keys by area, and hence in the age compositions (not in the total catches). All these changes were checked and were related to corrections of the sample area. Comparison of indices (plaice and sole) before and after these database corrections are presented in Annex 16. The differences are negligible with exception of the 1 and 2-group indices for plaice in 1997. These exceptions are related to corrections in the age determinations (see Section 6.2.2.1) and not to the database transfer.

## 6.3.2 Recommendation recalculation of international inshore indices

It is recommended to recalculate the full time-series of the international inshore indices because of the following changes:

- revision Dutch series because of transfer age database (minor changes expected)
- revision UK series 2001–2008 (minor changes expected)
- revision of the complete German series, including more stations
- correction age data in 1996 and 1997 in Dutch series
- omission of the German series from the 1-group indices (1-group series stopped in 2005 + approach different compared to other countries)
- new weighting of survey areas based on new estimations of surface of areas for the continental inshore surveys
- redistribution of depth strata and prioritizing of stations for the UK inshore survey
- re-evaluation of ALK's for the UK inshore survey
- new insights with regard to relative gear efficiency (see Section 9.4)

## 6.3.3 Combined Dutch offshore plaice indices in XSA

Combining the BTS-Tridens and BTS-Isis surveys into one has minimal effect on the perception of the stock: a short deviation from SPALY (same procedure as last year) estimates in the early 1990s and a slightly higher estimate of SBS and very slight lowering of the estimate of F in the recent period (Figure 6.3.3.1). This is most likely because of the weightings at age used in combining the two indices being very similar to the relative weightings at age assigned to each index when fit separately in the XSA. Similar to separate index runs, when the SNS series is excluded and only the combined index is used in the XSA, a much higher estimate of SSB (and correspondingly lower estimate of F) is produced.

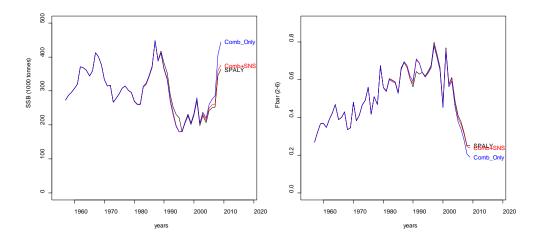



Figure 6.3.3.1 North Sea plaice XSA results with respect to SSB (left) and F (right) estimates using the combined BTS survey (BTS-Isis and BTS-Tridens) with different permutations of the available survey tuning indices. Labels indicate used tuning indices (SPALY=same procedure as last year i.e. BTS-Isis and BTS-Tridens separate with SNS survey).

# 6.4 Request on calculation of UK and Belgian offshore sole indices in IVc (WKFLAT/WGNSSK)

#### 6.4.1 Request from WKFLAT

It is recommended that WGBEAM evaluates the Belgian and UK (Corystes) surveys in terms of their potential use in assessing the Sole IV stock. Also examine possibility of extending BTS survey for sole to cover this area or explain why this area is not currently included.

#### 6.4.2 Index calculation UK

It should be noted that the UK has produced an index (1995–2009), which was available for the stock assessment but was not used.

In order to produce the UK index, individual station length distributions (LD) are combined by rectangle. Similarly, a rectangle age length key (ALK) is created. A rectangle age composition (AC) is then created combining the rectangle LD with the rectangle ALK. The UK survey covers 3 rectangles (31F1, 32F1 and 33F1). These three rectangles ACs are then combined. To calculate the mean number of fish at age, this combined AC is then divided by the total number of hauls for the rectangles (in this case 16). In order to be consistent with the other indices created by WGBEAM, this is then raised to an 8m beam for a one hour tow. The indices provided to the working group are shown in Table 6.4.2.1.

| Year | ALL AGES | 0     | 1      | 2      | 3     | 4     | 5     | 6     | 7     | 8     | 9    | 10+  |
|------|----------|-------|--------|--------|-------|-------|-------|-------|-------|-------|------|------|
| 1995 | 178.87   | 0.53  | 41.60  | 86.43  | 17.13 | 16.10 | 9.81  | 5.19  | 0.86  | 0.78  | 0.00 | 0.43 |
| 1996 | 186.32   | 3.33  | 75.48  | 52.47  | 22.89 | 8.98  | 8.33  | 8.77  | 1.30  | 1.81  | 0.73 | 2.22 |
| 1997 | 187.99   | 4.49  | 70.49  | 63.17  | 19.81 | 9.34  | 5.56  | 3.52  | 7.10  | 1.77  | 1.77 | 0.97 |
| 1998 | 101.73   | 7.91  | 10.59  | 63.34  | 15.71 | 1.77  | 0.89  | 0.86  | 0.00  | 0.44  | 0.00 | 0.22 |
| 1999 | 170.45   | 8.96  | 103.75 | 18.49  | 24.53 | 9.36  | 0.86  | 0.30  | 1.09  | 0.59  | 1.56 | 0.99 |
| 2000 | 397.29   | 3.22  | 192.51 | 157.89 | 15.03 | 14.08 | 7.00  | 2.60  | 0.67  | 0.37  | 0.91 | 3.01 |
| 2001 | 329.99   | 5.87  | 91.45  | 174.90 | 45.70 | 2.99  | 4.57  | 1.83  | 0.82  | 0.63  | 0.24 | 1.00 |
| 2002 | 244.76   | 2.22  | 125.78 | 47.31  | 33.28 | 21.97 | 3.61  | 4.39  | 1.79  | 0.90  | 1.15 | 2.38 |
| 2003 | 266.74   | 0.91  | 69.91  | 129.31 | 16.26 | 23.56 | 14.71 | 0.77  | 6.43  | 1.52  | 0.86 | 2.50 |
| 2004 | 229.33   | 24.63 | 58.65  | 57.77  | 50.15 | 12.46 | 10.14 | 8.58  | 0.65  | 2.15  | 1.15 | 3.00 |
| 2005 | 283.43   | 37.64 | 107.01 | 55.54  | 19.82 | 37.68 | 3.29  | 10.42 | 5.63  | 0.56  | 1.20 | 4.64 |
| 2006 | 387.00   | 7.02  | 202.50 | 82.19  | 20.64 | 14.03 | 35.20 | 6.72  | 9.17  | 5.34  | 0.36 | 3.83 |
| 2007 | 170.47   | 9.41  | 40.71  | 77.34  | 19.25 | 4.40  | 2.78  | 11.41 | 0.94  | 2.19  | 1.08 | 0.96 |
| 2008 | 233.02   | 1.00  | 98.84  | 59.97  | 39.34 | 13.45 | 0.63  | 3.41  | 10.73 | 2.55  | 1.79 | 1.32 |
| 2009 | 272.96   | 1.01  | 35.21  | 82.39  | 58.21 | 56.85 | 12.23 | 1.99  | 3.39  | 10.18 | 6.27 | 5.23 |

Table 6.4.2.1. UK sole index for IVc based on the VIId/IVc offshore beam trawl survey (numbers per hour fishing per 8 m beam trawl), for 31F1, 32F2, 33F1.

#### 6.4.3 Index calculation Belgium

As the full time-series of Belgian data are not yet available in the required format, the following analysis uses only the 2008 and 2009 data when comparing the UK and Belgian indices. Combining the UK and Belgian indices should be encouraged and not lead to major problems because the gears used in both surveys are similar, so there is no gear efficiency difference to be expected.

The UK-regime described in Section 6.4.2 was then repeated for the Belgian data for two different areas. Firstly for the total survey area (14 rectangles) then for only those rectangles sampled by the UK (3 rectangles). The results are shown in Figure 6.4.3.1 and Table 6.4.3.1 this shows that there are very similar trends, particularly when comparing only those areas that both Belgium and the UK fish.

| YEAR       | ALL AGES | 0    | 1     | 2      | 3     | 4     | 5     | 6    | 7     | 8     | 9    | 10+  |
|------------|----------|------|-------|--------|-------|-------|-------|------|-------|-------|------|------|
| UK 2008    | 233.02   | 1.00 | 98.84 | 59.97  | 39.34 | 13.45 | 0.63  | 3.41 | 10.73 | 2.55  | 1.79 | 1.32 |
| BEL 2008*  | 339.6    | 7.6  | 152.6 | 68.2   | 46    | 25.4  | 5.4   | 9.2  | 16    | 0.6   | 0.4  | 8.20 |
| BEL 2008** | 149.71   | 3.11 | 78.10 | 36.89  | 11.56 | 5.651 | 4.70  | 6.35 | 0.95  | 0.51  | 1.40 | 0.51 |
| UK 2009    | 272.96   | 1.01 | 35.21 | 82.39  | 58.21 | 56.85 | 12.23 | 1.99 | 3.39  | 10.18 | 6.27 | 5.23 |
| BEL 2009*  | 318.59   | 5.88 | 59.06 | 153.41 | 35.29 | 43.29 | 8     | 0.71 | 4.24  | 6.35  | 1.18 | 1.18 |
| BEL 2009** | 143.12   | 4.41 | 35.32 | 34.58  | 31.93 | 17.76 | 6.37  | 2.10 | 4.07  | 3.53  | 1.29 | 1.76 |

Table 6.4.3.1. UK and Belgium sole index for statistical rectangles in 2008 and 2009, as numbers per hour per 8 m beam trawl.

\*Index for sole from Belgian offshore survey, only overlapping statistical rectangles taken into account (31F1, 32F2, 33F1)

\*\*Index for sole from Belgian offshore survey, all stations

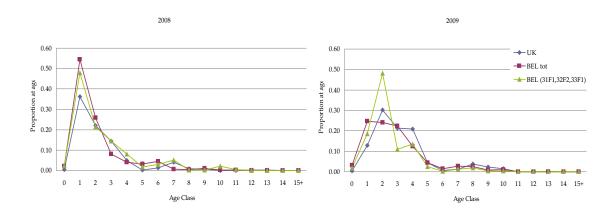



Figure 6.4.3.1. UK and Belgium sole index, as proportion (of total nr of sole caught) at age, for 2008 and 2009.

#### 6.4.4 Discussion

While carrying out this analysis, it became clear that Belgium collected very few age data in certain rectangles. Main reason for this is the use of ALK-areas, representing a far lower spatial resolution than rectangles, as spatial units for the collection of otoliths. This can and does result in very small numbers of otoliths taken from certain rectangles. This is especially the case when the numbers to be taken per ALK-area were almost or fully reached in other rectangles within the same ALK-area. It is recommended that Belgium re-evaluates its biological sampling protocol to increase spatial resolution from an area based ALK to a rectangle based sampling design for the biological data, at least for plaice and sole.

Separate indices for the UK survey area and the Belgian survey area as well as a combined index for the combined survey area can be created. The separate UK series for IVc is already available, the series for Belgium and the combined series will follow the upload of data in DATRAS (see Section 7.1.3).

It is the recommendation of the working group that the Belgian offshore beam trawl survey data are uploaded to DATRAS so that a time-series for the sole index can be created, along the lines of the UK index. It will then be possible for both the Belgian and the UK IVc sole index (and potentially a combined one for the commonly fished rectangles) to be available to the assessment working group.

WGBEAM cannot think of other possible sources for fisheries independent data in the North Sea to derive sole indices from. The Dutch offshore Isis survey is already taken into account in WGNSSK and the Dutch offshore Tridens survey and the German offshore (Solea) are outside sole distribution area.

# 7 Coordination and standardization of beam trawl surveys (ToR c)

ToR c) Further coordinate offshore and coastal beam trawl surveys in the North Sea and Divisions VIIa, VIId-g and VIIIa-b;

# 7.1 Offshore beam trawl surveys

## 7.1.1 Timing and area coverage

Annex 5.1 lists the offshore surveys together with the geographic area covered, the gear used and the date started.

WGBEAM recommends that if time and weather allows, overlapping hauls will be carried out by countries operating in the same area.

| COUNTRY     | VESSEL             | Area               | DATES           | GEAR                   |
|-------------|--------------------|--------------------|-----------------|------------------------|
| Belgium     | Belgica            | southern North Sea | 23 Aug – 3 Sep  | 4m beam                |
| UK          | Cefas<br>Endeavour | VIId, IVc          | 17 – 31 Jul     | 4m beam                |
| UK          | Cefas<br>Endeavour | VIIfg, VIIa        | 11 Sep – 3 Oct  | 4m beam                |
| UK          | Carhelmar          | VIIe               | 9 – 16 Oct      | 4m beam                |
| France      | Gwen Drez          | VIIIa, VIIIb       | 3 Nov – 9 Dec   | 4m beam                |
| Germany     | Solea              | German Bight       | 12 – 27 Aug     | 7m beam                |
| Netherlands | Tridens            | central North Sea  | 23 Aug - 16 Sep | 8m beam + flip-up rope |
| Netherlands | Isis               | southern North Sea | 9 Aug - 10 Sep  | 8m beam                |

Table 7.1.1.1. Timing of the surveys in 2010.

\*: planned

## 7.1.2 Staff exchange

In 2010, staff from Belgium (Kelle Moreau) will join the UK "Cefas Endeavour" VIIfg survey. Details will be arranged between parties.

For 2011 the following staff exchange during the offshore beam trawl surveys will take place:

UK (Rob Bush/Richard Ayers) Netherlands "Tridens" (10 days in week 35/36 or week 37/38 2011)

NL (Sieto Verver/Henk Heessen) Germany "Solea" 18 Aug – 3 Sep 2011

Germany (Kay Panten) UK VIId/IVc. If not possible, UK VIIfg, VIIa

WGBEAM recommends that a report is made from all staff exchanges by the members of staff doing the exchange. The reports will be published in the WGBEAM report.

# 7.1.3 Database developments (ToR f)

ToR f) Continue work of developing and standardizing an international (fish and epifauna) database of offshore beam trawl survey data and coordinate such activities with those of the IBTSWG.

WGBEAM is encouraging the upload of all offshore beam trawl survey data as coordinated by WGBEAM. This will create the possibility to work with an agreed international dataset and will allow direct output for the assessments. In 2008 and 2009, all countries delivered their offshore beam trawl data to the WGBEAM database as DATRAS format files. Since the reference values for the different surveys were discussed in 2008 with the ICES Data Centre (ICES, 2008), no problems should occur when uploading the offshore beam trawl data. The only exception might be France, because that survey was not taken into account in the meeting between WGBEAM and the ICES Data Centre.

Table 7.1.1.4.1 lists the current offshore data available in DATRAS by country and ship and includes planning for further uploads.

| COUNTRY     | SURVEY                            | DATA IN<br>DATRAS | Products<br>FROM<br>DATRAS | PLANS UNTIL<br>WGBEAM 2011                                                             | ACTIONS NEEDED TO<br>ACHIEVE GOAL                                      |
|-------------|-----------------------------------|-------------------|----------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Belgium     | Belgica                           | no                | no                         | Upload 2008,<br>2009, 2010 data                                                        |                                                                        |
| France      | Gwen Drez                         | no                | no                         | Upload 2008,<br>2009, 2010 data                                                        | ICES Data Centre:<br>stretch accepted area<br>for beam trawl<br>survey |
| Germany     | Solea                             | no                | no                         | Upload 2008,<br>2009, 2010 data<br>Data<br>preparation <<br>2008 scheduled<br>for 2010 | SOL (old Solea)<br>added to DATRAS as<br>a vessel                      |
| Netherlands | Isis                              | 1985–<br>2009*    | yes                        | Index<br>calculation                                                                   | See Section 9.1                                                        |
|             | Tridens II                        | 1996–<br>2009**   | yes                        | from DATRAS                                                                            |                                                                        |
| UK          | Cefas<br>Endeavour,<br>VIId/IVc   | 1990–<br>2009***  | no                         | Index<br>calculation<br>from DATRAS,                                                   | See Section 9.1                                                        |
|             | Cefas<br>Endeavour,VIIfg,<br>VIIa | 1993–<br>2009***  | no                         | upload species<br>that were not<br>accepted<br>before.                                 |                                                                        |
|             | Carhelmar                         | no                | no                         | Upload time-<br>series to<br>DATRAS                                                    | CHM added to<br>DATRAS as valid<br>vessel                              |

#### Table 7.1.1.3.1. DATRAS offshore beam trawl data.

\*1985, 1986, 2007 data cannot be downloaded from DATRAS although the files have been sent to ICES \*\* 2007, 2008 data cannot be downloaded from DATRAS although the files have been sent to ICES

\*\*\* operated by Corystes until 2007/2008. 2008 (VIId/IVc) and 2009 (all areas) data cannot be downloaded from DATRAS although the files have been sent to ICES

WGBEAM recommends that the automatic uploading facility as is operational for IBTS since 2010 will be applied in due time for the beam trawl surveys.

WGBEAM recommends that the French survey area will be incorporated in the range of the allowable values for latitude and longitude.

## 7.2 Inshore beam trawl surveys

#### 7.2.1 Timing and area coverage

Annex 5.2 lists the offshore surveys together with the geographic area covered, the gear used and the date started.

# Table 7.2.1.1. Timing of the surveys in 2010.

| COUNTRY              | VESSEL                                | Area                                   | DATES               | Gear             |
|----------------------|---------------------------------------|----------------------------------------|---------------------|------------------|
| Belgium              | Broodwinner                           | Belgian coastal zone                   | 6 Sep – 17 Sep      | 6 m shrimp trawl |
| UK                   | F.V. Suvera and<br>F.V. Fisher Lassie | Thames estuary                         | 20 Aug – 15<br>Sep* | 2 m shrimp trawl |
| UK                   | F.V. Challenge                        | Northeast English<br>coastal zone      | 20 Aug – 15<br>Sep* | 2 m shrimp trawl |
| Germany              | Chartered vessels                     | German Bight and<br>German Wadden Sea  | 30 Aug – 1 Oct      | 3 m shrimp trawl |
| Netherlands<br>(SNS) | Isis                                  | Dutch coastal zone                     | 13 - 23 Sep         | 6 m beam trawl   |
| Netherlands          | Schollevaar                           | Scheldt estuary                        | 6 – 24 Sep          | 3 m shrimp trawl |
| Netherlands          | Stern                                 | Dutch Wadden Sea                       | 6 Sep - 8 Oct       | 3 m shrimp trawl |
| Netherlands          | Isis                                  | Dutch coastal zone<br>and German Bight | 27 Sep - 29 Oct     | 6 m shrimp trawl |

#### \*: Planned

The UK survey in the Eastern English Channel coastal zone will not be done in 2010.

## 7.2.2 Staff exchange

The organization of staff exchange on inshore surveys is more complicated than for the offshore surveys because the inshore surveys take place on smaller vessels with less staff on board and so, it is more complicated to exchange experienced staff without causing problems on the own survey.

Table 7.2.1.2 shows information on the logistics of the inshore trips that are relevant to staff exchange.

| COUNTRY     | Ship               | SLEEP ASHORE | Extra sleeping facilities on<br>board | TRIP LENGTH |
|-------------|--------------------|--------------|---------------------------------------|-------------|
| Belgium     | Broodwinner*       | yes          | -                                     | Day         |
| Germany     | Commercial cutters | yes          | -                                     | Day         |
| Netherlands | Stern, Schollevaar | no           | No                                    | Day         |
|             | Isis               | no           | No                                    | Week        |
| UK          | All                | yes          | -                                     | Day         |

#### Table 7.2.1.2. information in inshore trips

\*NB: extra staff might cause problems.

In 2010, Cefas staff will join the German inshore survey. This will be combined with a visit to the Dutch Wadden Sea inshore surveys. Details will be arranged between parties (Uli Damm, Gary Burt and Marcel de Vries (NL)).

#### 7.2.3 Database developments (ToR f)

The inshore WGBEAM dataset containing length frequencies and station information is held at IMARES. All countries involved in inshore surveys do add their data to this database. Historically, all countries used their own reporting format, which resulted in a lot of work to add the data in one dataset. For the 2009 surveys, countries sent the inshore data in DATRAS format, which resulted in fewer errors in the international inshore dataset. There is an international index derived from the inshore data which is used in the assessments for plaice and sol by WGNSSK. The international index is calculated at IMARES.

WGBEAM recommends the upload to DATRAS of all inshore beam trawl survey data as coordinated by WGBEAM. This will create the possibility to work with an agreed international dataset and will allow direct output for the assessments.

To allow upload of inshore beam trawl survey data, the checks as carried out before uploading files to DATRAS have to be discussed by representatives of the countries running the inshore surveys together with the ICES Data Centre as was done in 2008 for the offshore beam trawl surveys (ICES, 2008).

WGBEAM recommends that a one-day meeting is organized, attended by at least one representative of the ICES Data Centre and representatives of Belgium, Germany, Netherlands and UK with expertise on the data of the inshore surveys (one representative per country). The meeting will be scheduled the day before WGBEAM 2011.

# 8 Development of manual (ToR e)

*ToR e)* Continue development of a manual to improve standardization of sampling protocols, surveys gears and quality control aspects;

# 8.1 Offshore beam trawl survey manual

# 8.1.1 Addition of flow diagrams on gear checking and catch processing

WGBEAM discussed the flow diagrams on gear checking and catch processing as published in the IBTS manual (ICES, 2010).

In general, WGBEAM thought the flow diagrams will be an addition to the manual. WGBEAM decided to separate the steps in the flow diagram where the research crew is responsible for from the steps that are outside the responsibility of the researching institute (e.g. being responsibility of the vessel's crew) by different colouration.

## Gear checking

WGBEAM will add the recording on damaged/defect groundgear and wires to the registration of damaged/defect nets on the register.

## Catch processing

The work done on the offshore beam trawl surveys corresponds to this flow diagram. However, in some cases data from papers are not all put onto PC yet during the cruise, but completed at the institute after the cruise.

Changing text on estimate of the catch and subsample weight is needed because procedures do not match the flow diagram.

WGBEAM decided to incorporate the flow diagrams on gear checking and catch processing in the offshore beam trawl manual, taking into account the comments. The flow diagrams will be added to the first updated version of the manual which will be scheduled for WGBEAM 2011.

Because the manuals of the surveys are published as separate documents on the DATRAS website, it is recommended that the numbering of survey manuals is independent of the survey group report. It would be very desirable to have a universal ICES system that clearly labelled any type of electronic document coming from the EG's.

# 8.1.2 Extension of table containing biological sampling

WGBEAM updated the offshore biological sampling table with numbers collected.

|                                 | UK              |                 |                    |                 |           | Nethe        | RLANDS       | GERMANY          | Belgium | FRANCE |
|---------------------------------|-----------------|-----------------|--------------------|-----------------|-----------|--------------|--------------|------------------|---------|--------|
| Species                         | VIIa            | VIIf            | VIIe               | VIId            | IVc       | Isis         | Tridens      |                  |         |        |
| Arnoglossus laterna             | N               | N               | Ν                  | Ν               | Ν         | N            | 5/cm/strata  | Ν                | Ν       | Ν      |
| Buglossidium luteum             | N               | N               | Ν                  | Ν               | Ν         | N            | 5/cm/strata  | Ν                | Ν       | Ν      |
| Dicentrachus labrax             | All             | All             | Ν                  | All             | All       | N            | N            | Ν                | Ν       | Ν      |
| Gadus morhua                    | 10/cm           | 10/cm           | All                | 10/cm           | 10/cm     | 5/cm/strata  | 5/cm/strata  | Ν                | Y       | N      |
| Hippoglossoides<br>platessoides | N               | N               | N                  | N               | N         | N            | 5/cm/strata  | N                | N       | N      |
| Hippoglossus<br>hippoglossus    | All             | All             | All                | All             | All       | -            | 5/cm/strata  | N                | N       | N      |
| Lepidorhombus<br>whiffiagonis   | -               | 10/cm           | 10/cm              | N               | N         | -            | 5/cm/strata  | Ν                | N       | Y      |
| Limanda limanda                 | 5/cm/sex        | 5/cm/sex        | Ν                  | 5/cm/sex        | 5/cm/sex  | 5/cm/strata  | 5/cm/strata  | 3/cm/sex/statrec | Ν       | Ν      |
| Lophius piscatorious            | 10/cm           | 10/cm           | 10/cm              | 10/cm           | 10/cm     | Ν            | Ν            | Ν                | Ν       | Y      |
| Melanogrammus<br>aeglefinus     | 10/cm           | 10/cm           | -                  | N               | Ν         | -            | N            | Ν                | Ν       | Ν      |
| Merlangius merlangus            | 10/cm           | 10/cm           | -                  | N               | Ν         | N            | N            | N                | Ν       | Y      |
| Microstomus kitt                | 10/cm           | 10/cm           | 10/cm              | 10/cm           | 10/cm     | 5/cm/strata  | 5/cm/strata  | N                | Ν       | N      |
| Mullus surmuletus               | N               | N               | Ν                  | Ν               | Ν         | N            | N            | Ν                | Ν       | Y      |
| Phrynorhombus<br>norvegicus     | N               | N               | N                  | N               | N         | -            | 5/cm/strata  | N                | -       | -      |
| Pleuronectes platessa           | 8/cm/sex/strata | 8/cm/sex/strata | 1–8/cm/sex/strata* | 2/cm/sex/strata | 10/cm/sex | 1/cm/statrec | 1/cm/statrec | 3/cm/sex/statrec | Y       | N      |
| Psetta maxima                   | 10/cm           | 10/cm           | 10/cm              | 10/cm           | 10/cm     | 5/cm/strata  | 5/cm/strata  | Ν                | Y       | Ν      |
| Raja brachyura                  | 10/cm/sex       | 10/cm/sex       | 10/cm/sex          | 10/cm/sex       | 10/cm/sex | N            | N            | Ν                | Y       | Ν      |
| Raja clavata                    | 10/cm/sex       | 10/cm/sex       | 10/cm/sex          | 10/cm/sex       | 10/cm/sex | Ν            | Ν            | N                | Y       | Ν      |
| Raja microccellata              | 10/cm/sex       | 10/cm/sex       | 10/cm/sex          | 10/cm/sex       | 10/cm/sex | Ν            | N            | Ν                | Y       | Ν      |
| Raja montagui                   | 10/cm/sex       | 10/cm/sex       | 10/cm/sex          | 10/cm/sex       | 10/cm/sex | Ν            | N            | Ν                | Y       | Ν      |
| Raja naevus                     | -               | 10/cm/sex       | 10/cm/sex          | 10/cm/sex       | 10/cm/sex | Ν            | N            | Ν                | Y       | Ν      |
| Scophthalmus rhombus            | 10/cm/sex       | 10/cm/sex       | 10/cm/sex          | 10/cm/sex       | 10/cm/sex | 5/cm/strata  | 5/cm/strata  | Ν                | Y       | Ν      |
| Solea solea                     | 8/cm/sex/strata | 8/cm/sex/strata | 1–8/cm/sex/strata* | 2/cm/sex/strata | 10/cm/sex | 1/cm/statrec | 1/cm/statrec | Y                | Y       | Y      |

\* Depending on length

# 8.2 Inshore beam trawl survey manual

A start was made in setting up a survey manual for the inshore surveys. The first draft of the inshore manual can be found in Annex 20.

# 9 Other subjects

## 9.1 Request on Dutch offshore index calculation (ICES Data Centre)

The indices for the Dutch beam trawl survey as calculated at ICES based on the data available at ICES, are not similar to the indices as calculated by IMARES. For this reason, a comparison of the intermediate products of the index calculation was done by WGBEAM. The results of the comparison and the actions to be undertaken are in this section.

#### 9.1.1 Raw data

The data used were the 2004 beam trawl survey data for plaice (*Pleuronectes platessa*). ICES data were derived from DATRAS, WGBEAM data were derived from the IMARES database FRISBE.

Table 9.1.3.1. Raw data for plaice in the 2004 Dutch offshore beam trawl survey as calculated by IMARES and ICES respectively.

| VARIABLE                           | IMARES (FRISBE)                | ICES (DATRAS)                   | AGREED |
|------------------------------------|--------------------------------|---------------------------------|--------|
| Number of hauls Isis               | 83                             | 83                              | Yes    |
| Number of hauls Tridens II         | 75                             | 75                              | Yes    |
| Number at length plaice Isis       | 24400                          | 24400<br>(hlnoatlength*subfact) | Yes    |
| Number at length plaice Tridens II | 3072                           | 3072<br>(hlnoatlength*subfact)  | Yes    |
| Number at-age plaice Isis          | 744<br>(1 without age<br>info) | 743                             | Yes    |
| Number at-age plaice Tridens II    | 893<br>(5 without age<br>info) | 888                             | Yes    |

#### 9.1.2 Age-length key

Basically, the age-length key (ALK) is derived from the records containing age information. The ALK can be derived from the DATRAS CA records and should add up to the number-at-age for the two ships combined. As the numbers from the IMARES database and DATRAS are similar, the ALK should be similar for both datasets, too.

Table 9.1.2.1. ALK per BTS index area for plaice in the 2004 Dutch offshore beam trawl survey as calculated by IMARES and ICES respectively.

| VARIABLE                  | IMARES (FRISBE) | ICES (DATRAS) | AGREED |
|---------------------------|-----------------|---------------|--------|
| Number at length area 701 | 198             | 9             | No     |
| Number at length area 702 | 248             | 12            | No     |
| Number at length area 703 | 285             | 9             | No     |
| Number at length area 704 | 268             | 3             | No     |
| Number at length area 705 | 249             | 17            | No     |
| Number at length area 706 | 138             | 8             | No     |
| Number at length area 707 | 245             | 11            | No     |
|                           | 1631            | 69            |        |

When recalculating the CA data to an ALK by adding the ALK areas to the CA file, similar numbers for the ALK from the IMARES dataset and the DATRAS dataset can be created. It is unclear how the ALK file is created at ICES. The table to relate statistical rectangles to beam trawl survey ALK areas is in Annex 10.3.

## 9.1.3 Cpue per age per haul

By combining the length frequency distribution and the ALK at an index area basis, the cpue per age per haul can be derived.

Table 9.1.3.1. Cpue per length per haul for plaice in the 2004 Dutch offshore beam trawl survey as calculated by IMARES and ICES respectively.

| VARIABLE                   | IMARES (FRISBE) | ICES (DATRAS) | AGREED |
|----------------------------|-----------------|---------------|--------|
| Number of hauls Isis       | 81              | 81            | Yes    |
| Number of hauls Tridens II | 74              | 53            | No     |

The discrepancy in the number of hauls taken into account for Tridens II is caused by the revision of the indices as described in the WGBEAM 2009 report (ICES, 2009).

For the IMARES data, the number per haul is used to calculate this file. At ICES Data Centre, the numbers per hour are used for the creation of the CPUE per age per haul. For this reason, the result is expected to be different, but should be identical when IMARES data are raised to numbers per hour. The data were compared for a number of hauls from both vessels and were identical, taking into account the raising to numbers per hour for the IMARES data.

## 9.1.4 Dealing with missing age information

In the next step, at IMARES dummy ALK records are created for length classes without age information. If there is no age connected to the length of a fish in an index area, the data of the nearest index area are used to fill the gap. If there are still missing ages at length, an ALK is created for the complete series of that year. In recent years, after this step there is no missing age information at length. However, the historical data (prior to 2002) might even then still have missing ALK information. To solve this, dummy records are created by smoothing the length frequency distribution of the age data. In this way, data from the nearest length class will be used to fill the gaps in the ALK file.

There is no information how ICES Data Centre deals with missing ALK information. This should be sorted out because this is crucial to the index calculation.

## 9.1.5 Final index

The final index for 2004 plaice as calculated by ICES Data Centre and IMARES respectively can be found in Table 9.1.1.5.1.

The table shows the indices do vary although not too extremely. This might be a sign that the major discrepancies are caused by the way the models deal with missing information.

| 66 |  |  |
|----|--|--|
|    |  |  |

| Age | IMARES_ISIS | ICES_Isis | Agreed | IMARES_TRIDENS II | ICES_TRIDENS | AGREED |
|-----|-------------|-----------|--------|-------------------|--------------|--------|
| 0   | 197.94      | 124.156   | No     | 0.01              | 0            | No     |
| 1   | 233.71      | 230.607   | No     | 5.98              | 5.51         | No     |
| 2   | 39.62       | 42.28     | No     | 15.78             | 11           | No     |
| 3   | 61.91       | 65.111    | No     | 31.49             | 29.946       | No     |
| 4   | 6.15        | 6.896     | No     | 9.43              | 7.734        | No     |
| 5   | 2.46        | 2.082     | No     | 4.32              | 3.945        | No     |
| 6   | 1.49        | 1.62      | No     | 2.44              | 2.447        | No     |
| 7   | 0.95        | 1.018     | No     | 1.24              | 1.084        | No     |
| 8   | 2.84        | 3.044     | No     | 2.5               | 1.861        | No     |
| 9   | 0           | 0         | Yes    | 0.41              | 0.382        | No     |
| 10+ | 0.01        | 0.019     | No     | 1.41              | 1.175        | No     |

Table 9.1.5.1. Indices for plaice, offshore beam trawl survey 2004 (numbers per hour fishing).

## 9.1.6 Conclusion and action points

Comparing the index calculation for plaice in the Dutch offshore beam trawl survey as done by IMARES and ICES, leads to the following conclusions:

- the raw data used for the calculation by both models are identical
- the ALK as published on the DATRAS website is different from the ALK as calculated by IMARES and needs to be revised by ICES Data Centre
- although the ALK is different, the cpue per age per haul does not seem to be affected by this. WGBEAM has the impression that the ALK file as published on the DATRAS website differs from the ALK file used in the index calculation done by ICES.
- the cpue per age per haul is not identical because of a shift in the index areas (update by WGBEAM 2009) for Tridens. The statistical rectangles used for the index calculation need to be revised by ICES Data Centre.
- there is no insight in the way ICES Data Centre deals with missing age information in the length distribution. This needs to be sorted out because it is a crucial step in the index calculation, mainly for historical data.

# 9.1.7 Follow-up

After ICES Data Centre has implemented the changes and additions as described in Section 9.1.6, there has to be another check of the index calculation. In case the revision of the offshore beam trawl index calculation is done throughout the year, this might be done by correspondence between IMARES and ICES Data Centre intersessionally. When the results for the index calculation are identical, WGBEAM should approve the calculation as done by the ICES Data Centre in the 2011 meeting, based on the report of the intersessional comparison. The report will be added to the WGBEAM 2011 report.

When the results for the index calculation of the Dutch offshore beam trawl survey are approved, the index calculation should be applied to the UK data that are stored in DATRAS and checked to the original UK indices as sent to the assessment working groups.

# 9.2 Request on species taxonomy (ICES Data Centre)

WGBEAM received a request by the ICES Data Centre on a change in the taxonomic coding system as used by ICES.

# 9.2.1 Proposal from Data Centre on Species vocabularies

# 9.2.1.1 Background on Species vocabularies

Because ICES covers a number of thematic areas and geographic regions, there have been a number of different species vocabularies/lists employed at different time for different purposes. The Data Centre does not have the capacity or knowledge to maintain their own list, nor would it be wise to do so, therefore we continue to rely on the best available vocabularies managed by networks of taxonomist. Currently the Data Centre supports reporting of species as:

- NODC codes (Deprecated lookup in ITIS)
- ITIS (International Taxonomic Information System)
- ERMS and WoRMS (European and World Register of Marine Species)
- HELCOM Phytoplankton Expert Group Baltic Species list

Increasingly, the ICES Data Centre and data output services have relied on ERMS and WORMS, there are a number of advantages of using these vocabularies, including the web services, user tools, comprehensiveness of species information and a close link to the data projects that ICES is involved in (OBIS, EurOBIS and EMOD-NET Biological). To this end, the ICES Data Centre has made a recommendation to both OSPAR and HELCOM, through their monitoring groups, to standardize their data submissions to ICES on ERMS vocabulary. This will reduce the number of errors in mapping between lists and ensure a standard throughout the region is maintained.

In essence, ICES Data Centre already does a conversion of Trawl survey species to ERMS codes, as the DATRAS data are harvested into the ICES Data warehouse (http://ecosystemdata.ices.dk), where all species are viewed by scientific name, validated by ERMS.

#### 9.2.1.2 WGBEAM Request 2009

"WGBEAM recommends to check for higher taxa levels when up-loading data and give a warning to the owner of the data when a higher taxon level is uploaded."

This request kick-started this proposal as the answer from the Data Centre was:

"We are using the ITIS database for comparing and checking TSN and NODC code. There is no family – genus relation we can see in this database, because of this if there is higher taxa level present in the submission then it is not possible to find it out on base reported TSN or NODC code. However, this kind of check would be possible using the ERMS database, but this would require mapping all the codes over and supporting an extra vocabulary within DATRAS."

Therefore the advantage to WGBEAM and all the trawl survey groups would be better taxonomic control and possibilities to apply taxonomic checks on the data.

#### 9.2.1.3 Proposal to WGBEAM

1) To align with the request to OSPAR and HELCOM, we would ask WGBEAM to consider the adoption of ERMS as their species vocabulary for Trawl Surveys. Recognizing that this request affects all the trawl survey

groups using DATRAS, we would ask the WGBEAM forwards this recommendation to the other groups for consideration.

- 2) The implications would be:
  - ICES to provide lookup lists (NODC<->TSN<->ERMS)
  - A change to reporting format (to accept AphiaID's) and remove Spec-CodeType
  - A change to the Screening programme (DATSU) to validate against the ERMS database
  - Data submitters to change their export programmes accordingly to use ERMS

#### 9.2.2 WGBEAM reaction on the proposal

1) Although WGBEAM has no problems with the present system and procedures, it would support the switch to another taxonomic coding system (ERMS) as proposed by the ICES Data Centre, acknowledging the usefulness of standardization across data contributors, regular updating and online availability. This holds in particular when other expert groups using DATRAS would opt in the same way.

As far as WGBEAM could see, by using the ERMS sending a notification to the client doing a database search or upload when a higher taxon is detected (which may comprise the sought item), may be accomplished relatively easy because the online version of the databank (http://www.marbef.org/data/erms.php) indicates the respective taxonomic level and links automatically to the "parent" (=next higher taxon). So the respective pointers are available somewhere and need not be constructed. The numeric taxonomic code ("AphiaID") itself does not appear to be hierarchical.

2) The implications -additional work for ICES and national labs- are listed by the Data Centre. For WGBEAM, the implications are minor compared to the advantages of the incorporation of the ERMS vocabulary. When a downloadable lookup table is available containing the various coding types per species, national labs should be able to convert one code to another.

# 9.3 Request on adding fisheries survey information to indices (IMARES)

#### 9.3.1 Request by IMARES on industry survey advice

The Dutch flatfish fishery wants to set up an industry survey together with IMARES and the ministry of Agriculture, Nature and Food Quality. The aim of this survey is to collect additional information on plaice and sole, which can be used in stock assessment of these species. Could WGBEAM give us an indication of the requirements for such a survey?

#### 9.3.2 WGBEAM advice

WGBEAM wants to direct attention to the existence of a UK industry survey on plaice and sole in ICES division 7e of which plaice is used in the stock assessment, an Irish industry survey in Irish waters and a Scottish monkfish survey which is used in the stock assessment.

#### 9.3.2.1 Collecting additional data

First of all, when setting up a new survey, it is important to identify which additional information on the target species is planned to be collected. For example, information of areas not covered by the research survey, a different length range of the stock in an area that is already covered by a research survey, an increase of the sampling density in a research survey area.

By setting the goals for additional information it will be easier to set up a sampling strategy for the industry survey and it will increase the chance on valuable data coming from the industry survey.

#### 9.3.2.2 Setting up a survey

In order to be a valuable source of information for fisheries science such as stock assessments, a survey on fish species has to at least been carried out for 5 years in order to get information on the variability of the stock over time. Building a proper timeseries requires a standard sampling strategy (i.e. gear, haul duration, fishing speed, mesh size, area coverage, sampling time in the year) throughout the years. This is highlighted by the UK 7e industry survey as in 2009 the survey did not match the standard sampling protocol and for this the 2009 data were not used for the stock assessment.

It is important to decide which species will be focused on and how the species will be processed. Whatever is decided (one species or all, subsampling strategy, length measurements, collection of biological information), it is crucial to standardize the processing of the catch throughout the series (consistency).

WGBEAM advises that the organizers of the fish surveys let the survey plan been reviewed by experts on surveys.

#### 9.3.2.3 The use of the survey for stock assessment

WGBEAM calculates the survey indices for plaice and sole that is used in stock assessment. From this experience it can be concluded that length and age information on the target species is crucial in order to give information to the stock assessment models.

It is however not within the expertise of WGBEAM to decide whether or not the results of an industry survey in the end will be valuable for the stock assessment.

WGBEAM advises that the WGNSSK is asked for advice on the conditions for adding a new series to the stock assessment.

#### 9.4 Calculation of relative gear efficiencies

Recommendation 7: For WGBEAM 2010, WGBEAM recommends to come up with working documents on the following topics: gear efficiency, sensitivity of indices, and species of the year.

#### 9.4.1 Introduction

The offshore beam trawl surveys coordinated by WGBEAM all started as national surveys and have their own time-series and sampling strategy. The inshore survey on 0 and 1 group fish started as a Dutch survey (Boddeke, 1970) and was copied by Belgium and Germany and coordinated by the flatfish working group (ICES, 1985) and so, the continental inshore survey is the most internationally standardized survey

coordinated by WGBEAM. The UK coast inshore survey started as a separate survey with a different gear. This results in use of different gears for various surveys.

There are two main reasons for sorting out the relative gear efficiency of the used gears:

- for the calculation of combined indices as used in the stock assessment
- for the combining information on the abundance of species in the surveys, and so, trends in species abundance

This document is meant as a starting point to study the relative gear efficiency factors of the surveys coordinated by WGBEAM.

#### 9.4.1.1 Offshore surveys

WGBEAM 2009 (ICES, 2009) summarized the difference in 8 meter beam trawl with and without flip-up rope as follows:

"It is difficult to obtain reliable gear efficiency estimates. Data based on simultaneous hauls from the same vessel are scarce and comparing hauls that differ in time, space and vessel may be biased. Therefore it is impossible to estimate gear efficiency for different bottom structures and detailed size/age classes (as WKFLAT requested) based on the existing data. This will require a substantial survey effort focusing on this issue. Nevertheless, it is recommended that the existing data and the previous analyses are scrutinised and combined in a comprehensive analysis into a publication."

The studies underlying, are summarized in Table 9.4.1.1.

Table 9.4.1.1. Relative gear efficiency estimates for BTS-gear with and without flip-up rope. Estimates given are for  $\alpha$  in relationship: Nisis=  $\alpha$  \* Ntridens (in which N=catch rate).

| Source            | Groeneve | eld & Rijnsd | ICES, 2005 |        |         |  |
|-------------------|----------|--------------|------------|--------|---------|--|
| age or size group | 0-2 gr.  | 3-5 gr.      | 6+ gr.     | <15 cm | ≥ 15 cm |  |
| Plaice            | 2.5      | ns           | 0.7        | 2.9    | 1.5     |  |
| Sole              | 4.0      | ns           | ns         | 2.8    | 2.6     |  |

ns = non significant relationship

#### 9.4.1.2 Inshore surveys

For the inshore surveys, in 1983 the North Sea flatfish working group derived raising factors for the different gears used in the continental and UK coast DYFS (ICES, 1985). Until now, these factors are used in the calculation of the international inshore plaice and sole indices.

# 9.4.2 Data available

#### 9.4.2.1 Offshore surveys

The offshore surveys partly overlap between countries. UK and Belgium are fishing in more or less the same area and Germany and Netherlands have overlap in their sampling area. WGBEAM encourages comparative fishing when time and weather allows and so, there are some hauls in the same year on the same position within a time frame of one to two days, done by different countries.

#### 9.4.2.2 Inshore surveys

For the inshore surveys, Germany carried out comparative tows with 3 meter shrimp trawls rigged with and without tickler chain in the Wadden Sea. This is the only difference between the German and the Dutch gear used in the Wadden Sea.

The Netherlands has a dataset containing parallel fishing with the 6 meter beam trawl as used in the SNS and the 6 meter shrimp trawl as used in the coastal DFS. Those data are collected in the 1980's by fishing with one gear on one side of the ship and the other gear on the other side.

Apart from those datasets there might be some overlapping stations for Netherlands and Germany in the Wadden Sea and Belgium and Netherlands on the Belgian coast, but that presumably only applies for a small number of tows.

# 9.4.3 Factors to evaluate

WGBEAM is looking for a generic method to compare beam trawl gear efficiencies in the North Sea and Wadden Sea, taking into account:

- the scarcity of overlapping data
- the spatial coverage of the surveys
- temporal coverage of the surveys (seasonal patterns)
- gear efficiencies for different species
- gear efficiencies for certain size ranges
- the offshore gears (4 m beam trawl UK, 4 m beam trawl Belgium, 7 m beam trawl Germany, 8 m beam trawl Netherlands, 8 m beam trawl with flip-up rope Netherlands)
- the inshore gears (2 m beam trawl UK, 3 m beam trawl Germany, 3 m beam trawl Netherlands, 6 m beam trawl Belgium, 6 m beam trawl DFS Netherlands, 6 m beam trawl SNS Netherlands)

There are two ways forward for calculation of new gear efficiency factors:

- Study the problem intersessionally (geostatistics). IMARES to lead
- Comparative towing on one ship with two different gears. Belgium and UK to study possibilities.

# 9.5 Adopting new maturity scales

In January 2010, the workshop on Maturity Staging of Sole, Plaice, Dab and Flounder met in IJmuiden, Netherlands. The workshop proposed new maturity scales for the four flatfish species, based on a 6 point scale as adopted for gadoids. The executive summary of WKMSSPDF is in Annex 19.

The most important message for WGBEAM is: "As it is difficult to identify the proper maturity stage when fish is not clearly developing, data collection for maturity ogives is recommended during the prespawning season. This implies that sampling for maturity staging for sole, plaice, dab and flounder should be done during late fourth quarter until the end of the first quarter." For the surveys coordinated by WGBEAM, this means that for none of the four species maturity information should be collected during the inshore and offshore surveys, except the French Bay of Biscay survey. If an institute decides to collect maturity information outside the optimal sampling period, WKMSSPDF recommends that histological samples are taken.

# 10 References

- Boddeke, R., Daan, N., Postuma, K. H., de Veen, J. F., Zijlstra, J. J. 1970. A census of juvenile demersal fish in the Wadden Sea, the Dutch coastal area and the open sea areas off the coasts of the Netherlands, Germany and the southern part of Denmark. Ann. Biol., 26 (1969):269–275.
- Grift, R. E., Tulp, I., Clarke, L., Damm, U., McLay, A., Reeves, S., Vigneau, J., Weber, W. 2004. Assessment of the ecological effects of the Plaice Box. Report of the European Commission Expert Working Group to evaluate the Shetland and Plaice boxes. Brussels. 121 pp.
- ICES. 1985. Report of the 0-group North Sea flatfish Working Group, IJmuiden, 21–25 November 1983.
- ICES. 2008. Report of the Working Group on Beam Trawl Surveys (WGBEAM), 13–16 May 2008, IJmuiden, Netherlands. ICES CM 2008/LRC:10. 188 pp.
- ICES. 2009. Report of the Working Group on Beam Trawl Surveys (WGBEAM), 9–12 June 2009, La Rochelle, France. ICES CM 2009/LRC:04. 196 pp.
- ICES. 2010. Report of the International Bottom Trawl Survey Working Group (IBTSWG), 22–26 March 2010, Lisbon, Portugal. ICES CM 2010/SSGESST:06. 267 pp.

# Annex 1: List of participants

| NAME                                | Address                                                                          | Phone/Fax                                                       | EMAIL                           |  |  |
|-------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------|--|--|
| Gérard Biais                        | Ifremer, Station de<br>La Rochelle<br>B.P. 7<br>17 137<br>L'HOUMEAU<br>FRANCE    | TEL: +33 5 46 50 06<br>61<br>FAX: +33 5 46 50 06<br>50          | Gerard.biais@ifremer.fr         |  |  |
| Ingeborg de Boois<br><b>(Chair)</b> | IMARES<br>Haringkade 1<br>PO Box 68<br>NL-1970 AB<br>IJmuiden<br>Netherlands     | TEL: +31(0) 317<br>487070<br>FAX: +31(0) 317<br>487326          | ingeborg.deboois@wur.nl         |  |  |
| Gary Burt                           | Cefas<br>Lowestoft<br>Laboratory<br>Lowestoft<br>Suffolk NR33 0HT<br>UK          | TEL: +44 (0)1502 52<br>44 90<br>FAX: +44 (0)1502 52<br>45 46    | gary.burt@cefas.co.uk           |  |  |
| Ulrich Damm                         | VTI<br>Institut für<br>Seefischerei<br>Palmaille 9<br>D-22767 Hamburg<br>Germany | TEL: +49 (0) 4038 90<br>52 68<br>FAX:: +49 (0) 4038 90<br>52 63 | ulrich.damm@vti.bund.de         |  |  |
| Brian Harley                        | Cefas<br>Lowestoft<br>Laboratory<br>Lowestoft<br>Suffolk NR33 0HT<br>UK          | TEL: +44 (0)1502<br>524254<br>FAX: +44 (0)1502 52<br>45 46      | brian.harley@cefas.co.uk        |  |  |
| Kelle Moreau                        | ILVO-Fisheries<br>Ankerstraat 1<br>B-8400 Oostende<br>Belgium                    | TEL: +32 (0) 59<br>569830<br>FAX: +32 (0) 59<br>330629          | kelle.moreau@ilvo.vlaanderen.be |  |  |
| Harriet van Overzee                 | IMARES<br>Haringkade 1<br>PO Box 68<br>NL-1970 AB<br>IJmuiden<br>Netherlands     | TEL: +31(0) 317<br>487185<br>FAX: +31(0) 317<br>487326          | harriet.vanoverzee@wur.nl       |  |  |
| Kay Panten                          | VTI<br>Institut für<br>Seefischerei<br>Palmaille 9<br>D-22767 Hamburg<br>Germany | TEL: +49 (0) 4038 90<br>51 08<br>FAX:: +49 (0) 4038 90<br>52 63 | kay.panten@vti.bund.de          |  |  |

# Annex 2: Agenda

#### Agenda WGBEAM 2010, 8-11 June 2010

#### Tuesday 9 June, start 9.30

Welcome and Logistics

#### am

General issues:

- 1. Terms of Reference and main aims
- 2. Working documents
- 3. Chapter responsibilities
- 4. Review of recommendations
- 5. Reports from:
  - IBTS WG Brian
  - WGDIM Ingeborg
  - WGNSSK Uli/Sven
  - WKMSSPDF Ingeborg
  - Other?
- 6. Presentations:
  - Gérard on Bay of Biscay survey
- 7. Additional requests:
  - WKFLAT on sole indices UK Channel, Belgium (and Germany)
  - IMARES on adding additional information from industry survey to survey indices: UK sole FSP 7e, Scottish monkfish survey is used in the series. Examples in Celtic Seas Ecoregion. Irish industry survey too.
  - ICES Data Centre on reviewing the current index calculations for the Dutch offshore beam trawl survey: UK data use as validation set.
  - ICES Data Centre on species taxonomy

ToR a) prepare a progress report summarizing the results of the 2009 offshore and inshore beam trawl surveys;

Short feedback on the 2009 by all countries: did people face problems during the survey, how were they solved involvement of fisheries in the beam trawl surveys: experiences, nice things to know, etc.

Prepare standard output:

- area coverage (Figures 3.1.1–3.1.4)
- standard reporting formats
- finalize survey summary sheets if not ready

ToR b) tabulate population abundance indices by age-group for sole and plaice in the North Sea, Divisions VIIa, VIId-g and VIIIa-b;

• as last year: similar plots and text as in 2009 report

• changes in population distribution

*ToR d)* Evaluate and report population abundance indices, taking into account the key issues involved in the index calculation;

#### pm

work on chapter responsible for

# Wednesday 10 June

### am

ToR c) further coordinate offshore and coastal beam trawl surveys in the North Sea and Divisions VIIa, VIId-g and VIIIa-b for 2010 and 2011;

Review all aspects of surveys which could be more effectively coordinated:

- survey timing and gear
- staff exchange
- overlapping of survey days for gear inter-calibration to be discussed
- QA issues, List of fish species in offshore and inshore beam trawl surveys
- For 2011 offshore surveys: concrete exchange plan (including names and who goes where)

*ToR e)* Continue development of a manual to improve standardization of sampling protocols, surveys gears and quality control aspects;

- check the offshore manual for updates
- start creating a coastal beam trawl manual

Inshore surveys:

- Presentation Gary
- update database inshore surveys
- discussion on recalculating inshore indices

#### pm

Work on: (How) Can we get more out of WGBEAM? (create -scientific- output)

# Thursday 11 June

#### am

ToR f) Continue work of developing and standardizing an international (fish and epifauna) database of offshore beam trawl survey data and coordinate such activities with those of the IBTSWG.

• for BEL and GER: use the DATRAS screening program to screen the DATRAS format offshore files

Other issues:

• collection of maturity photos and samples – discuss WKMSSPDF – Workshop on Maturity Staging of sole, plaice, dab and flounder and WKMSTB -Workshop on Maturity Staging of Turbot and Brill pm

- Recommendations
- Analysis and text writing

# Friday 12 June

am

New chair

Date and time of next meeting

ToRs for 2011 meeting

Recommendations

Text checking

1300 finish

# Annex 3: WGBEAM terms of reference for the next meeting

The **Working Group on Beam Trawl Surveys** (WGBEAM), chaired by Brian Harley\*, UK, will meet in Hamburg, Germany, 7–10 June 2011 to:

- a) Prepare a progress report summarizing the results of the 2010 offshore and inshore beam trawl surveys;
- b) Tabulate, report and evaluate population abundance indices by age-group for sole and plaice in the North Sea, Division VIIa and Divisions VIId-g, taking into account the key issues involved in the index calculation;
- c) Further coordinate offshore and coastal beam trawl surveys in the North Sea and Divisions VIIa, VIId-g and VIIIa-b;
- d) Continue development of a manual to improve standardization of sampling protocols, surveys gears and quality control aspects;
- e) Continue work of developing and standardizing an international (fish and epifauna) database of offshore beam trawl survey data and coordinate such activities with those of the IBTSWG.
- f) Look into the details of a (selection of) species caught in inshore or offshore beam trawl surveys. The selection of the species can be done based on the output tor a, b or based on an external request.

WGBEAM will report by 10 July 2011 (via SSGESST) for the attention of SCICOM, WGISUR and ACOM.

| Priority                    | The current activities of this Group will lead ICES into issues related to the ecosystem affects of fisheries, especially with regard to the application of the Precautionary Approach. Consequently, these activities are considered to have a very high priority.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scientific<br>justification | <ul> <li>Term of Reference a)</li> <li>Several countries are conducting or have recently completed significant studies in this area and the subject would benefit from a review of progress and an evaluation of the results obtained. The last review of significant studies occurred in 1996 by the ICES Study Group on Unaccounted Mortalities. A review of more recent work will determine the need for revision and update on planning and methodology for studying this subject.</li> <li>Term of Reference b)</li> <li>All fishing activities have influences that extend beyond removing target species. The approach recommended by FAO is that responsible fisheries technology should achieve management objectives with a minimum of side effects and that they should be subject to ongoing review. WGFTFB members and others are currently undertaking a range of research programmes to</li> </ul> |
| Resource<br>requirements    | <ul> <li>provide the means to minimize side effects.</li> <li>The research programmes which provide the main input to this group are already underway, and resources are already committed. The additional resource required to undertake additional activities in the framework of this</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Participants                | group is negligible.<br>The Group is normally attended by some 20–25 members and guests.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Secretariat<br>facilities   | None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Financial                   | No financial implications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

#### Supporting Information

| Linkages to<br>advisory<br>committees        | There are no obvious direct linkages with the advisory committees.                                                                                                                           |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Linkages to other<br>committees or<br>groups | There is a very close working relationship with all the groups of the Fisheries<br>Technology Committee. It is also very relevant to the Working Group on<br>Ecosystem Effects of Fisheries. |
| Linkages to other organizations              | The work of this group is closely aligned with similar work in FAO and in the Census of Marine Life Programme.                                                                               |

| RECOMMENDATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FOR FOLLOW UP BY:                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 1. WGBEAM recommends that once the offshore surveys are<br>uploaded to the DATRAS database ICES data centre should be<br>asked to provide precision estimates for inclusion in the next<br>appropriate WGBEAM report.                                                                                                                                                                                                                                                                                                                                                                                       | WGBEAM members, ICES Data<br>Centre                       |
| <ol> <li>WGBEAM recommends that if time and weather allows,<br/>overlapping stations between the surveys of two countries<br/>should be considered.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                              | Responsible chief scientists                              |
| 3. WGBEAM recommends that Denmark makes effort to extend<br>he inshore survey to the Danish coast, in order to obtain a more<br>complete coverage of the continental coast.                                                                                                                                                                                                                                                                                                                                                                                                                                 | Denmark                                                   |
| <ol> <li>WGBEAM recommends further examination of the spatial<br/>distribution patterns in relation to water depth and distance to<br/>he coast</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WGBEAM related institutes                                 |
| 5. It is recommended that WGBEAM evaluates the functioning of DUAP at WGBEAM 2011.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WGBEAM 2011                                               |
| 6.It is the recommendation of the working group that the Belgian<br>offshore beam trawl survey data are uploaded to DATRAS so<br>that a time-series for the sole index can be created, along the lines<br>of the UK index.                                                                                                                                                                                                                                                                                                                                                                                  | ILVO                                                      |
| 7. It is recommended that Belgium re-evaluates its biological<br>sampling protocol to increase spatial resolution from an area<br>based ALK to a rectangle based sampling design for the<br>biological data, at least for plaice and sole.                                                                                                                                                                                                                                                                                                                                                                  | ILVO                                                      |
| B. WGBEAM recommends that a report is made from all staff<br>exchanges by the members of staff doing the exchange. The<br>reports will be published in the WGBEAM report.                                                                                                                                                                                                                                                                                                                                                                                                                                   | Personnel involved in staff<br>exchange                   |
| 9. WGBEAM recommends that the automatic uploading facility<br>as is operational for IBTS since 2010 will be applied in due time<br>for the beam trawl surveys.<br>WGBEAM recommends that the French survey area will be<br>ncorporated in the range of the allowable values for latitude and<br>ongitude.                                                                                                                                                                                                                                                                                                   | ICES Data Centre                                          |
| 10. WGBEAM recommends the upload to DATRAS of all inshore<br>beam trawl survey data as coordinated by WGBEAM. This will<br>create the possibility to work with an agreed international<br>dataset and will allow direct output for the assessments. A one-<br>day meeting will organized, attended by at least one<br>representative of the ICES Data Centre and representatives of<br>Belgium, Germany, Netherlands and UK with expertise on the<br>data of the inshore surveys (one representative per country). The<br>meeting will be scheduled the day before WGBEAM 2011. (see<br>also Section 7.2.3) | WGBEAM members in<br>cooperation with ICES Data<br>Centre |
| 11. WGBEAM recommends that the full time-series of the international inshore indices will be calculated, taking into account Section 6.3.2 of this report                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WGBEAM members (IMARES to lead)                           |
| 12. It would be very desirable to have a universal ICES system<br>that clearly labelled any type of electronic document coming<br>from the EG's.                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ICES Secretariat/PUBCOM                                   |

Annex 5: Details on offshore and inshore beam trawl surveys

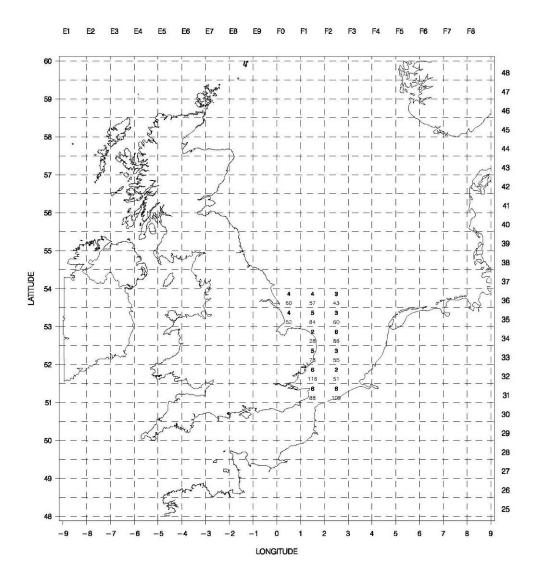
|                         | BELGIUM           | FRANCE    | GERMANY           | NETHERLANDS               | NETHERLANDS                 | UK                                    | UK                               | UK            |
|-------------------------|-------------------|-----------|-------------------|---------------------------|-----------------------------|---------------------------------------|----------------------------------|---------------|
| Survey area:            | IVb and c<br>west | VIIIab    | IVb east          | IVb and c east            | Central N Sea               | VIId                                  | VIIe                             | VIIa, f and g |
| Year survey started:    | 1992              | 2007      | 1991              | 1985                      | 1996                        | 1988                                  | 1988                             | 1988          |
| Dates:                  | August            | November  | mid August        | August-early<br>September | mid August-mid<br>September | late July                             | late September/<br>early October | September     |
| Usual start date        | week 33           | week 48   | week 32           | week 32/33                | week 34                     | week 30                               | week 39/40                       | Week 36/37    |
| Number of survey days   | 10                |           | 11                | 20                        | 16–20                       | 15                                    | 8                                | 21–24         |
| Ship:                   | RV Belgica        | Gwen Drez | RV Solea          | RV Isis                   | RV Tridens                  | RV Corystes/<br>RV Cefas<br>Endeavour | MFV Carhelmar                    | RV Corystes   |
| Ship length:            | 50 m              |           | 42 m#             | 28 m                      | 73.5                        | 53 m                                  | 22 m                             | 53 m          |
| Beam trawl length:      | 4 m               | 4 m       | 7 m               | 8 m                       | 8 m                         | 4 m                                   | 4 m                              | 4 m           |
| Number of beams fished: | 1                 | 1         | 2                 | 2                         | 2                           | 1                                     | 2                                | 1             |
| Number of beams sorted: | 1                 | 1         | 1                 | 1                         | 1                           | 1                                     | 2                                | 1             |
| Trawl duration (min):   | 30                |           | 30                | 30                        | 30                          | 30                                    | 30                               | 30            |
| Tow speed (knots):      | 4                 |           | 4                 | 4                         | 4                           | 4                                     | 4                                | 4             |
| Cod end stretched mesh  | 40                |           | 80                | 40                        | 40                          | 75                                    | 75                               | 75            |
| (mm):                   |                   |           | Liner: 44 mm      |                           |                             | Liner: 40 mm                          | Liner: 40 mm                     | Liner: 40 mm  |
| Number of ticklers:     | 0                 |           | 5                 | 8                         | 8                           | 0                                     | 0                                | 0             |
| Gear code:              | BT4M              |           | BT7               | BT8                       | BT8F                        | BT4FM                                 | BT4FM                            | BT4FM         |
| Attachment:             | *                 |           | (none)            | (none)                    | **                          | *                                     | *                                | *             |
| Station positions:      | fixed             |           | pseudo-<br>random | pseudo-random             | pseudo-random               | Fixed                                 | fixed                            | Fixed         |
| Av No stns/yr           | 53                |           | 63                | 88                        | 63–73                       | 100                                   | 57                               | 94            |
| Benthos sampling since: | 1992              |           | 1992              | 1985                      | 1996                        | 1991                                  | 1992                             | 1992          |

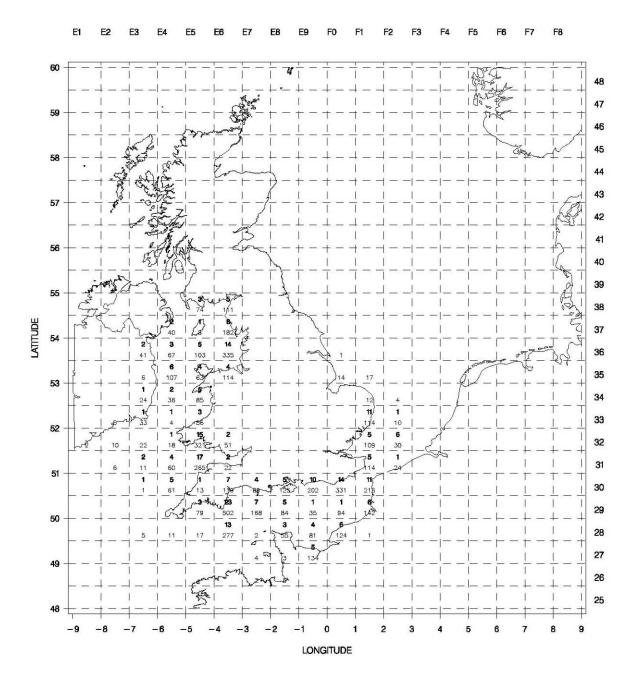
Annex 5.1. Details of the beam trawl surveys currently undertaken by each country.

# New vessel since 2004; previously 35m

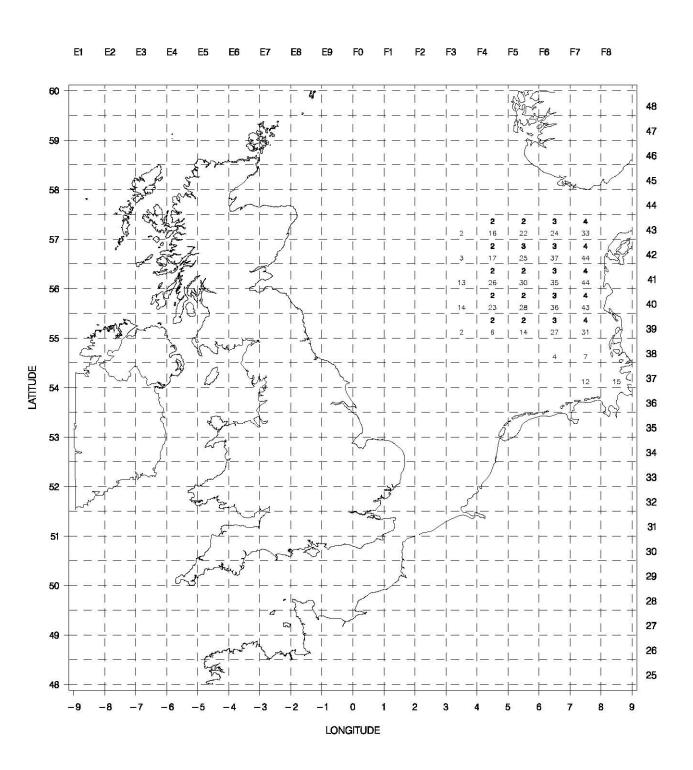
\* chain mat and flip-up rope

\*\* flip-up rope only

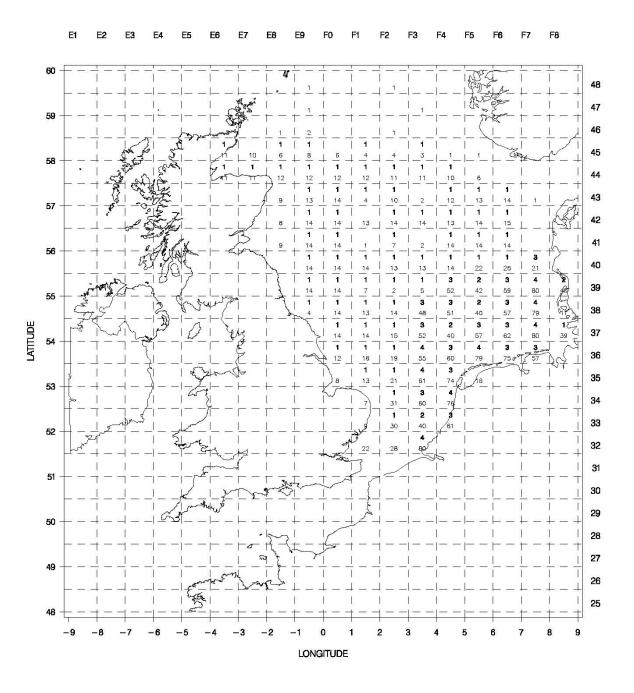

Annex 5.2. Inventory of the inshore beam trawl surveys.


| COUNTRY                             | NETHERLANDS (SNS)                    |                               | NETHERLANDS (DFS)             |                                 | UK (YFS)                                    | BELGIUM (DYFS)                                                     | GERMANY (DYFS)                           |                                       |
|-------------------------------------|--------------------------------------|-------------------------------|-------------------------------|---------------------------------|---------------------------------------------|--------------------------------------------------------------------|------------------------------------------|---------------------------------------|
| Geographical<br>Area                | Scheveningen (NL) to<br>Esbjerg (DK) | Wadden Sea                    | Scheldt Estuary               | Dutch coast to<br>Danish coast  | Eastern/South-<br>Eastern English-<br>Coast | Belgian Coast                                                      | NiedersachsenWadden<br>Sea +Elbe Estuary | Schlesweig-<br>Holstein<br>Wadden Sea |
| Ship                                | Tridens / Isis                       | Stern / Waddenzee             | Schollevaar                   | Isis / Beukels /<br>WR17 / GO29 | Chartered vessels                           | Hinders / Brood-<br>winner                                         | Chartered vessels                        | Chartered vessels                     |
| ship size (m)                       | 73m / 28m                            | 21m / 21m                     | 21m                           | ± 28m                           | 8–10m                                       | 27m                                                                | 12–16m                                   | 12–18m                                |
| Date started                        | 1969                                 | 1970                          | 1970                          | 1970                            | 1973–2007                                   | 1970                                                               | 1972                                     | 1974                                  |
| Sampling Period                     | Apr/May ('69–'89)<br>Sept/Oct        | Apr/May ('70–'86)<br>Sept/Oct | Apr/May ('70–'86)<br>Sept/Oct | Apr/May ('70–'86)<br>Sept/Oct   | Sept/Oct                                    | Sept/Oct                                                           | Apr/May ('74–'04)<br>Sept/Oct            | Apr/May ('74–'04)<br>Sept/Oct         |
| Usual Start date                    | 12 Sept                              | 29 Aug                        | 5 Sept                        | 26 Sept                         | 1 Sept                                      | 1–14 Sept                                                          | 15 Sept                                  | 5 Sept                                |
| Number of days per<br>period        | 8–9 within 2 weeks                   | 20 within 5 weeks             | 12 within 3 weeks             | 16 within 5 weeks               | 3 surveys x 8 days                          | 7 within 2 weeks                                                   | 5                                        | 5 – 7                                 |
| Beam trawl type                     | 6m beam trawl                        | 3m shrimp trawl               | 3m shrimp trawl               | 6m shrimp trawl                 | 2m shrimp trawl                             | 6m shrimp trawl                                                    | 3m shrimp trawl                          | 3m shrimp trawl                       |
| Tickler Chains                      | 4                                    | 1                             | 1                             | 1                               | 3                                           | 0                                                                  | 0                                        | 0                                     |
| Mesh size net                       | 80mm                                 | 35mm                          | 35mm                          | 35mm                            | 10mm                                        | 40mm                                                               | 32mm                                     | 32mm                                  |
| Mesh size codend                    | 40mm                                 | 20mm                          | 20mm                          | 20mm                            | 4mm                                         | 22mm                                                               | 18mm                                     | 18mm                                  |
| Speed fished                        | 3.5–4 knots                          | 3 knots                       | 3 knots                       | 3 knots                         | 1 knot                                      | 3 knots                                                            | 3 knots                                  | 3 knots                               |
| Time Fished                         | 15 min                               | 15 min                        | 15 min                        | 15 min                          | 10 min                                      | 15 min                                                             | 15 min                                   | 15 min                                |
| Approx. number of stations per year | 55                                   | 120                           | 80                            | 100                             | 82                                          | 33                                                                 |                                          |                                       |
| Target species                      | 0– 4 group sole and plaice           | 0–1 group sole and plaice     | 0–1 group sole and plaice     | 0–1 group sole and plaice       | 0–1 group sole and plaice                   | 0–2 group sole and plaice                                          | 0–1 group sole and plaice                | 0–1 group sole and plaice             |
| Catch rate and<br>LF distribution   | All fish species                     | All fish species<br>Crangon   | All fish species<br>Crangon   | All fish species<br>Crangon     | All fish species                            | Commercial fish<br>species<br><i>Crangon</i> (1973–92,<br>2004–05) | All fish species <i>Cran</i> -<br>gon    | All fish species<br>Crangon           |
| Catch rate                          | Epibenthos (quantity)                | Epibenthos (quan-<br>tity)    | Epibenthos (quan-<br>tity)    | Epibenthos (quan-<br>tity)      | Crangon (volume)                            | Crangon (weight)                                                   | Epibenthos (quantity)                    | Epibenthos (quan-<br>tity)            |
| Age data for plaice and sole        | All years                            | All years                     | All years                     | All years                       | Since 2003                                  | None                                                               | None                                     | None                                  |

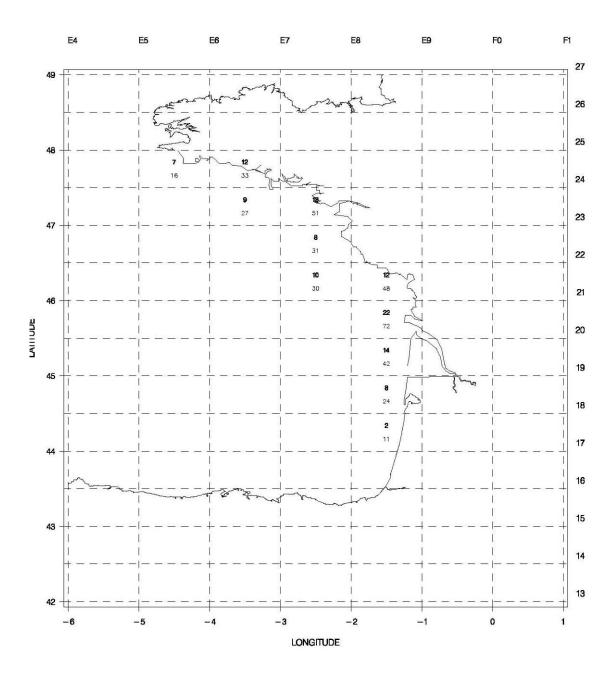
# Annex 6: Spatial distribution of sampling and fish species for the offshore surveys


# Annex 6.1 Spatial sampling coverage per country

Annex 6.1.1 Total number of offshore beam trawl hauls per rectangle. Total hauls in 2008 (above) and total for 1992-2009 (below) for Belgium .





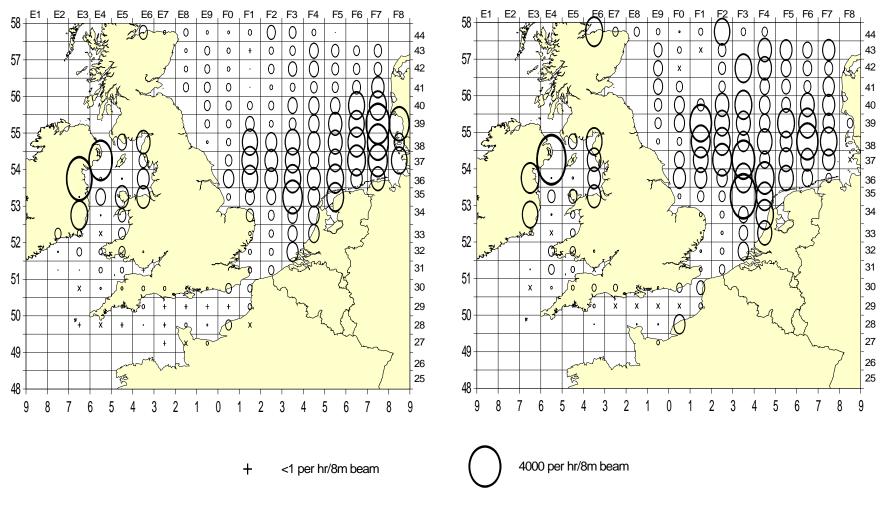


Annex 6.1.2 Total number of offshore beam trawl hauls per rectangle. Total hauls in 2008 (above) and total for 1990-2009 (below) for England .



Annex 6.1.3 Total number of offshore beam trawl hauls per rectangle. Total hauls in 2008 (above) and total for 1997-2009 (below) for Germany .



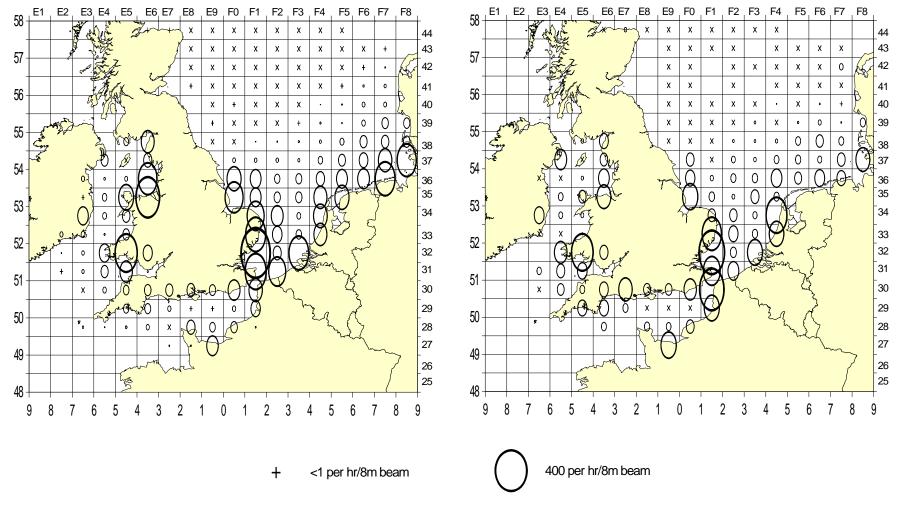
Annex 6.1.4 Total number of offshore beam trawl hauls per rectangle. Total hauls in 2008 (above) and total for 1990-2009 (below) for Netherlands .




Annex 6.1.5 Total number of offshore beam trawl hauls per rectangle. Total hauls in 2008 (above) and total for 2007-2008 (below) for France .

Annex 6.2 Spatial distribution per species

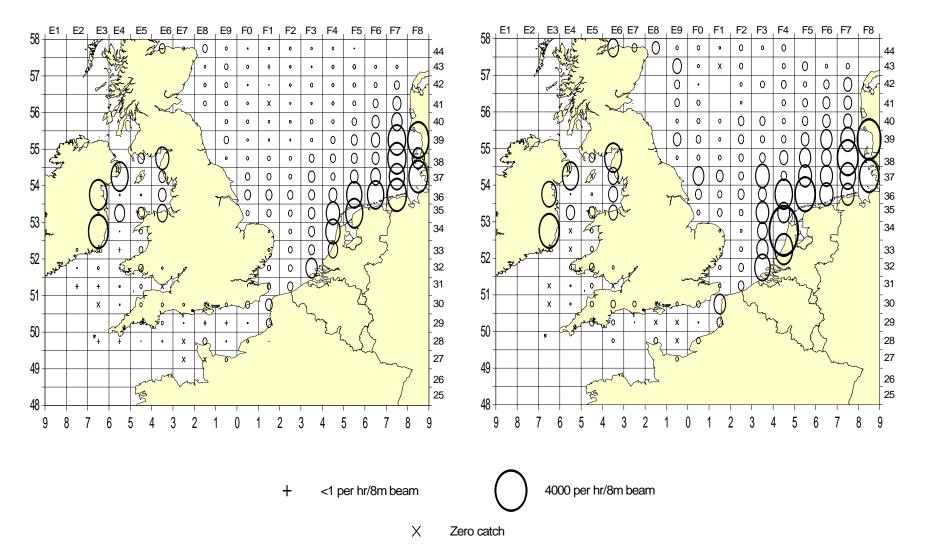
# Annex 6.2.1 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.


Dab





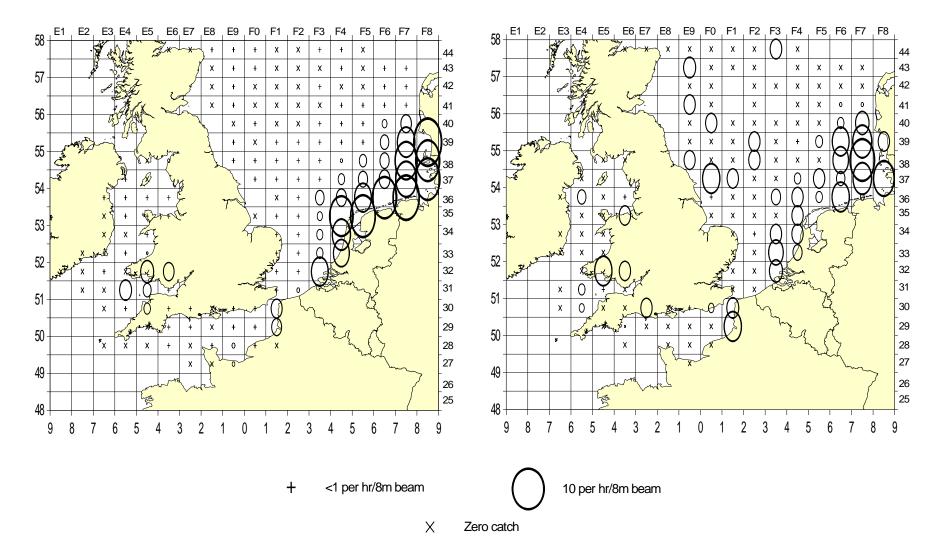
Annex 6.2.2 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.


Sole



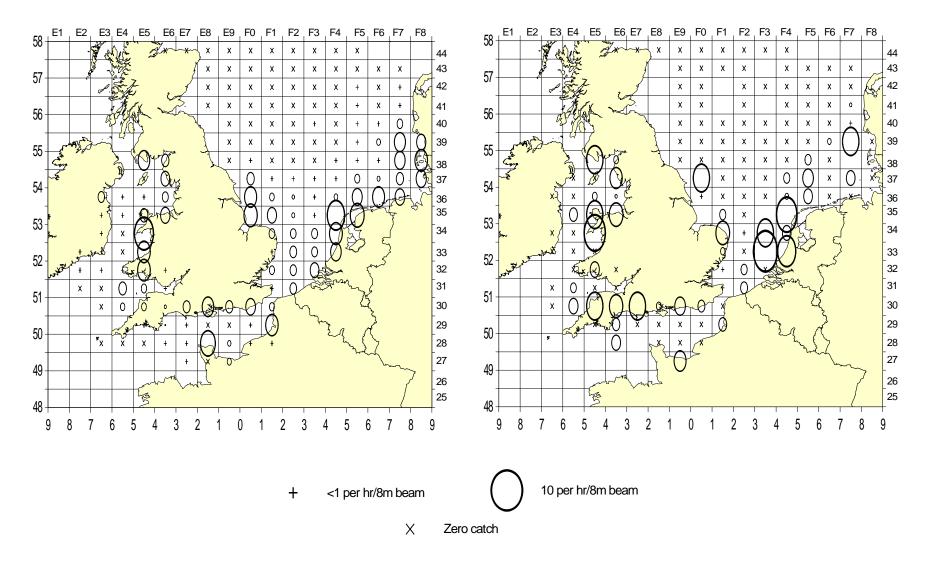


# Annex 6.2.3 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.


Plaice



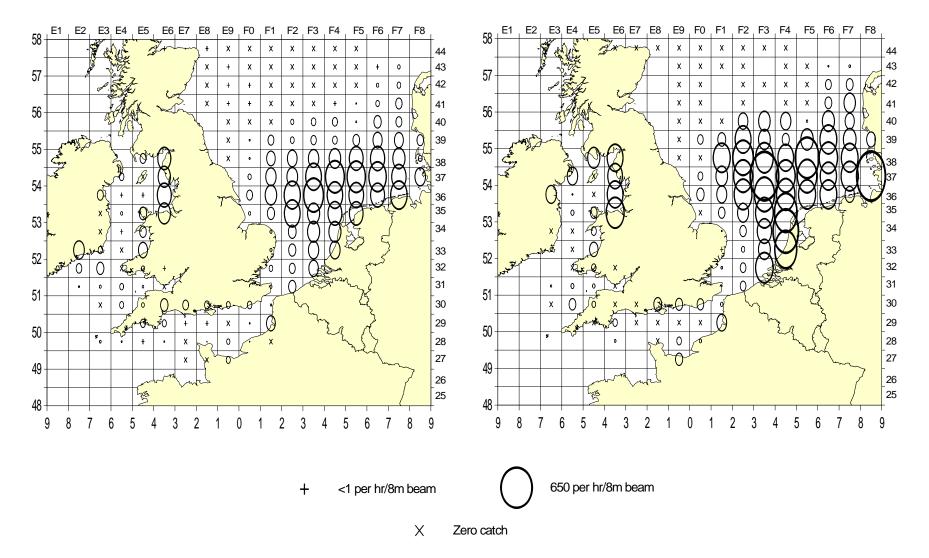
| 91


Annex 6.2.4 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.

Turbot

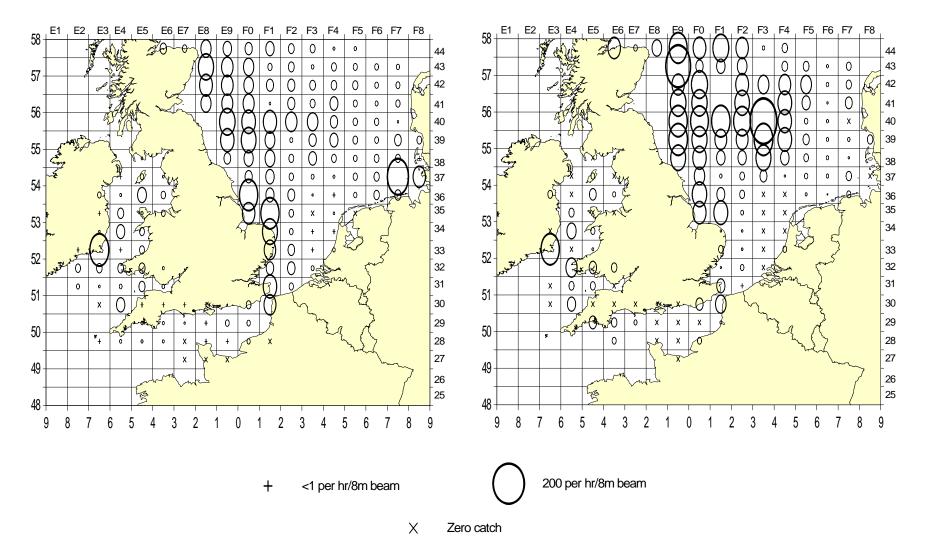


Annex 6.2.5 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.


Brill



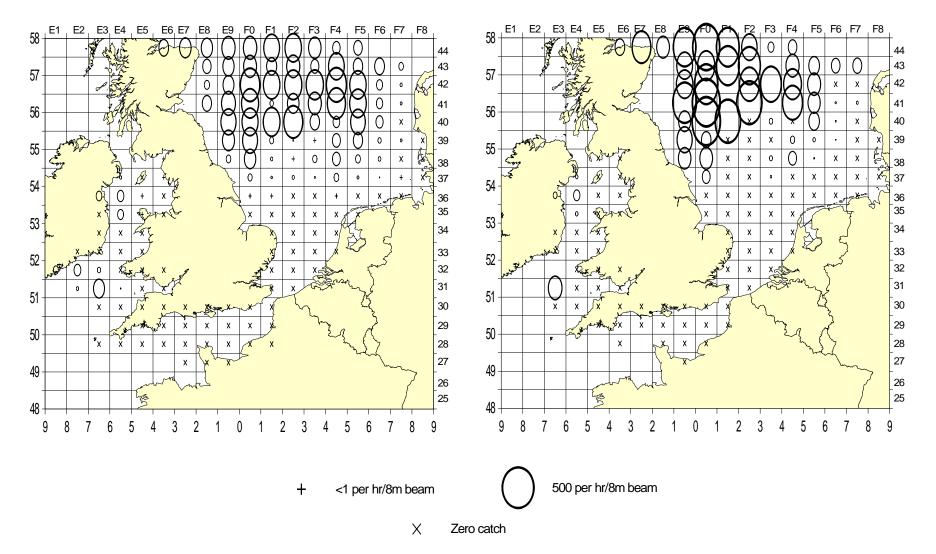
| 93


Annex 6.2.6 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.

Scaldfish

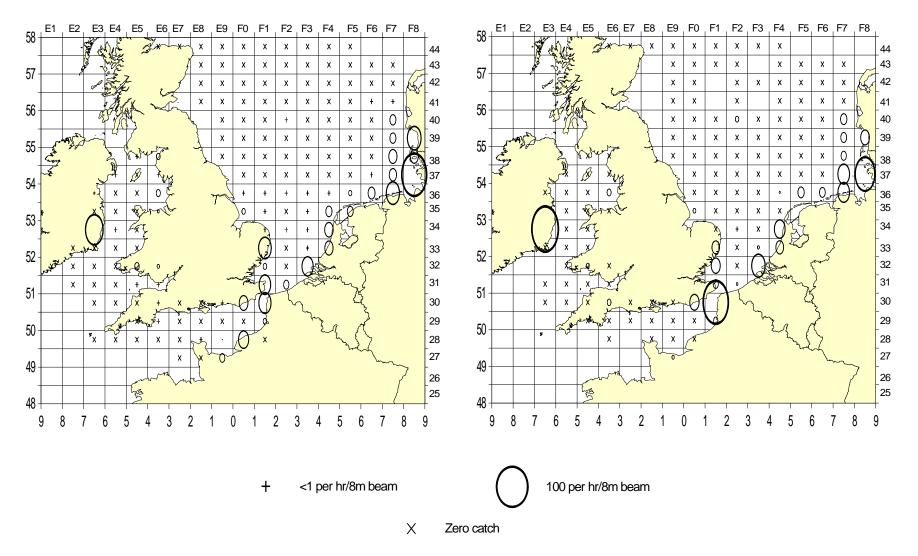


Annex 6.2.7 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.


Lemon sole



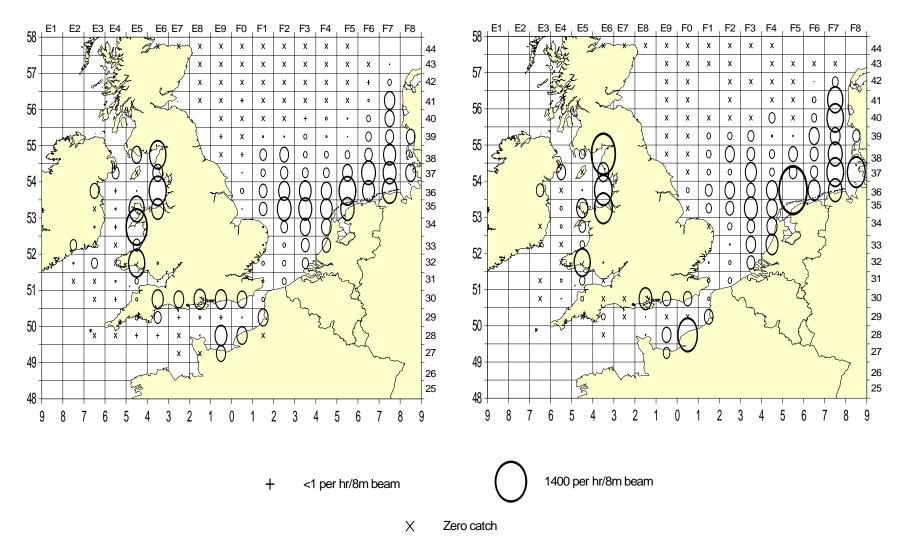
| 95


Annex 6.2.8 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.

American plaice (long rough dab)

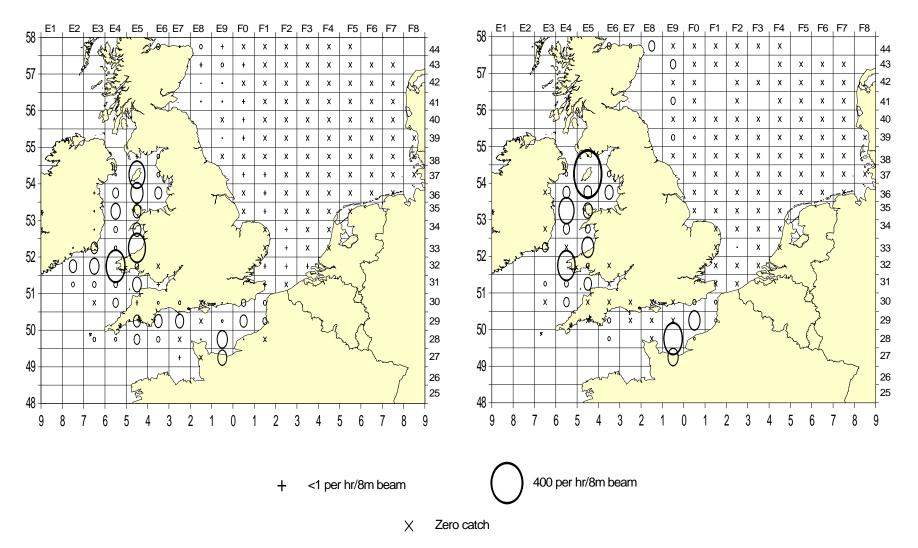


# Annex 6.2.9 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.


Flounder



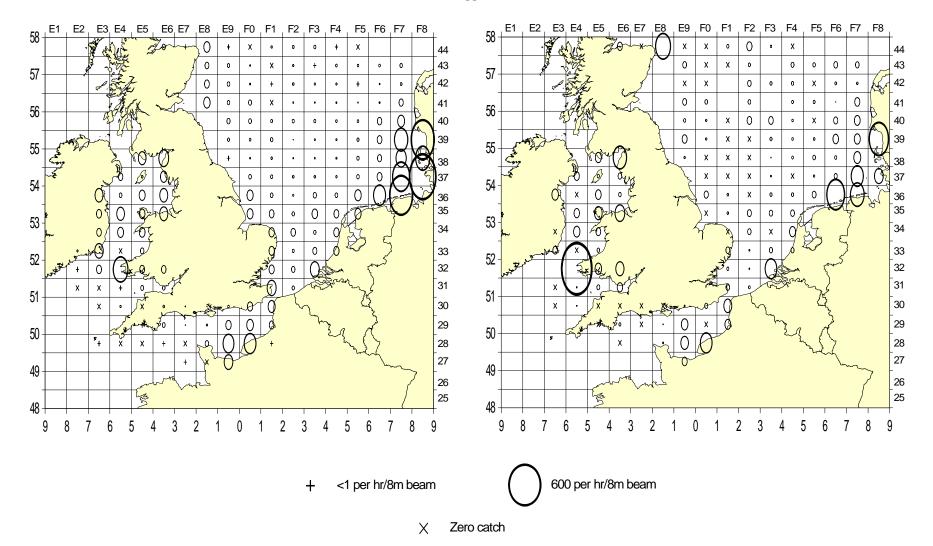
| 97


# Annex 6.2.10 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.

Solenette

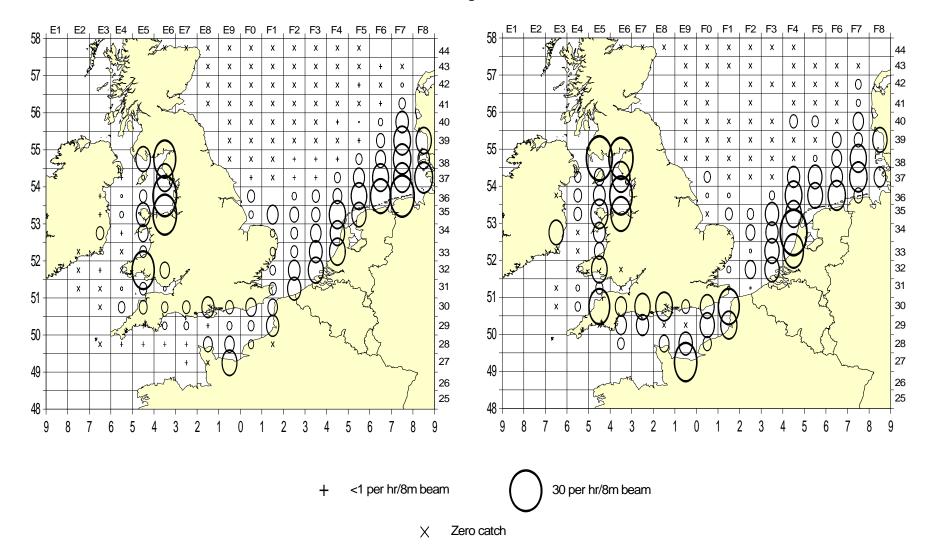


# Annex 6.2.11 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.


Thickback sole



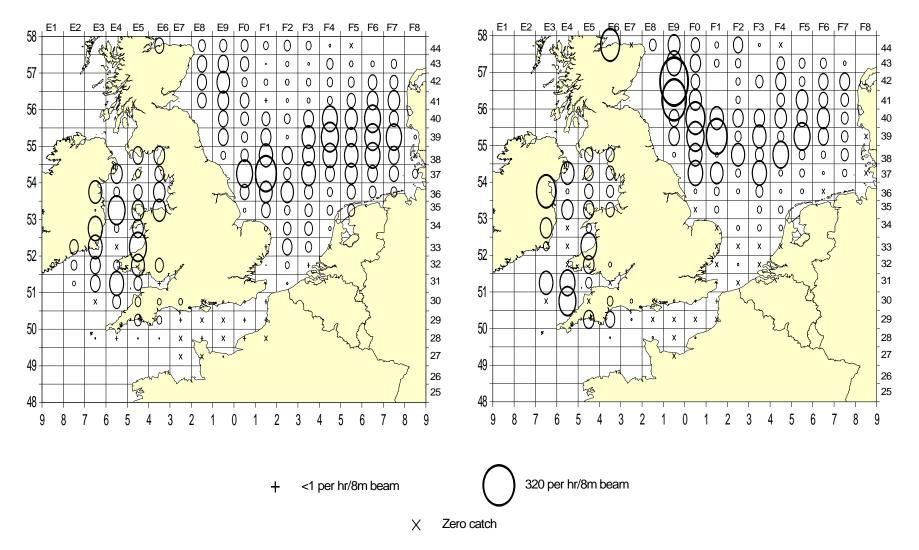
| 99


Annex 6.2.12 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.

Pogge

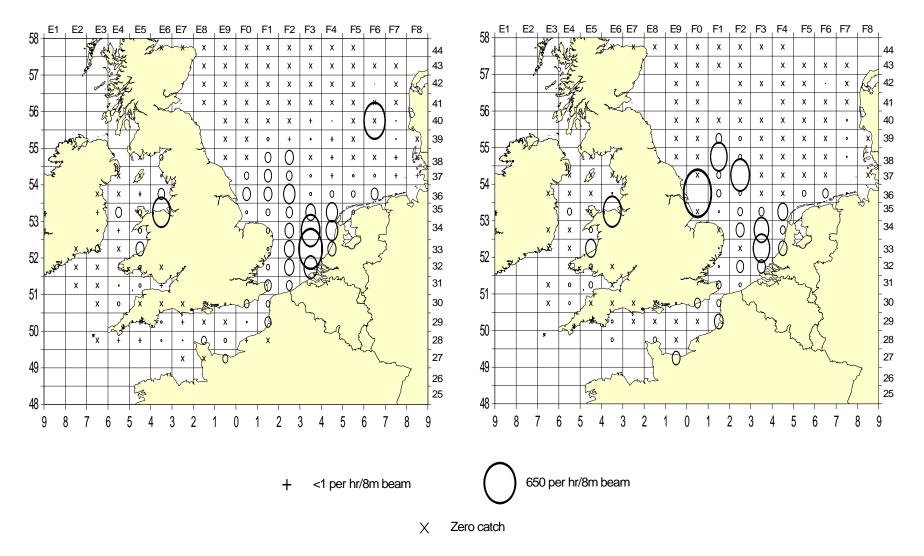


# Annex 6.2.13 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.


Tub gurnard



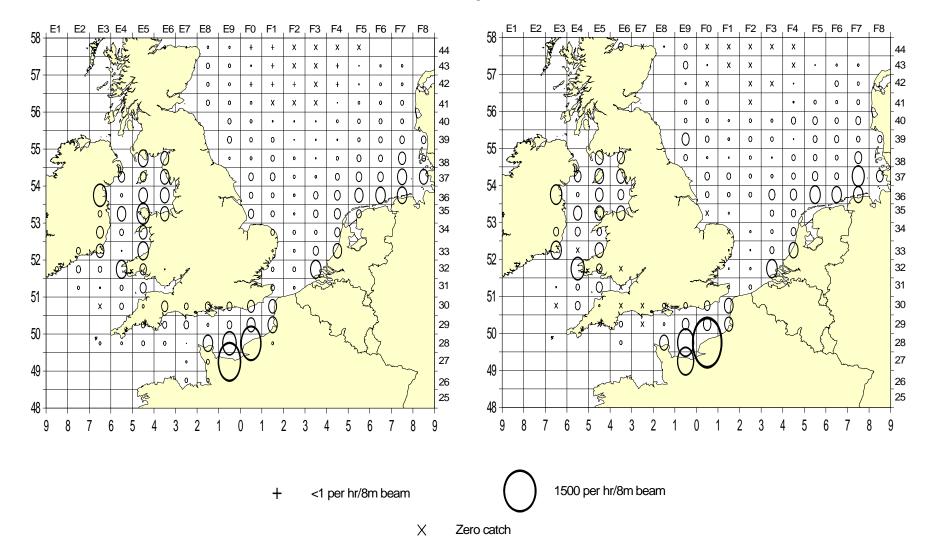
| 101


Annex 6.2.14 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.

Grey gurnard

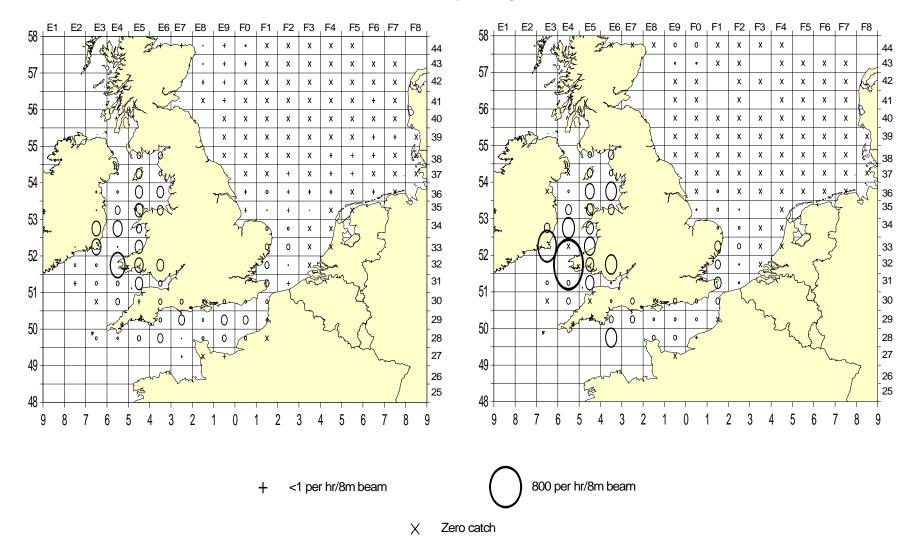


#### Annex 6.2.15 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.


Lesser weever

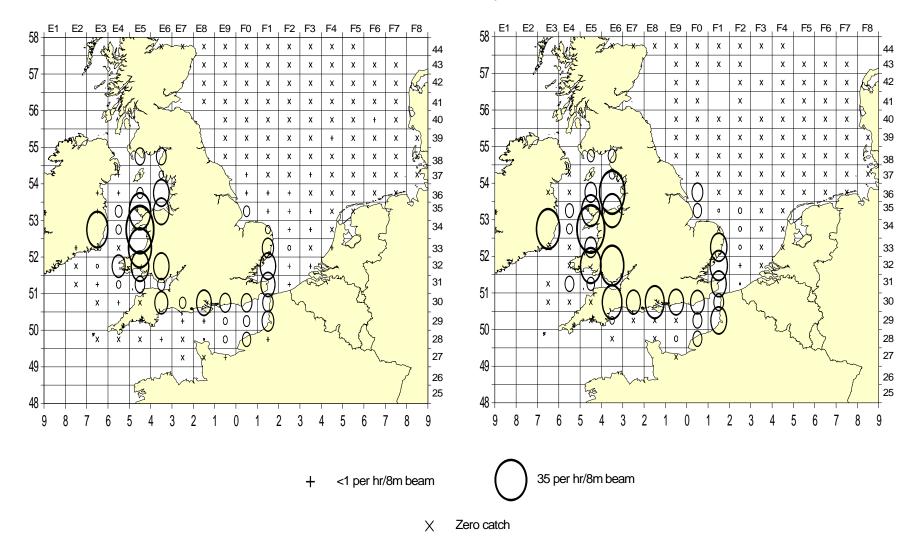


| 103


Annex 6.2.16 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.

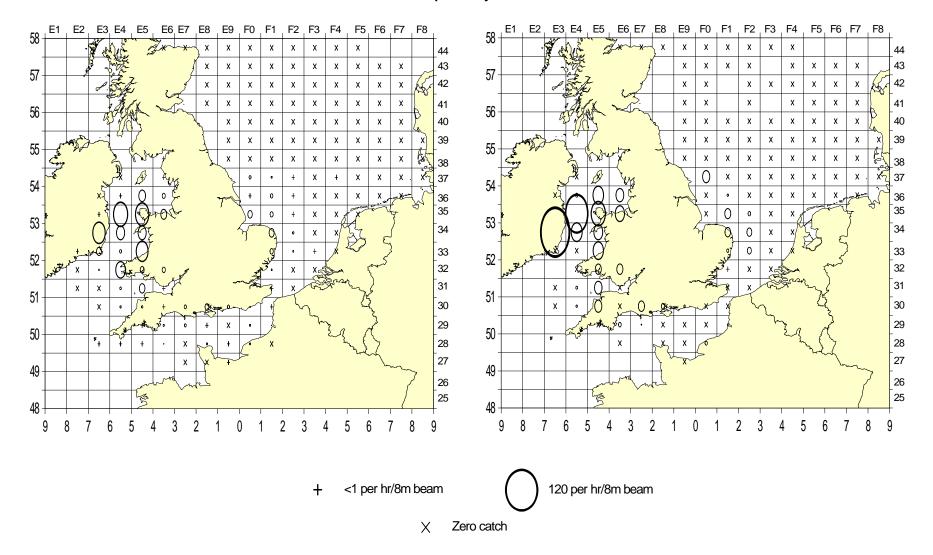
Common dragonet




#### Annex 6.2.17 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.

#### Lesser spotted dogfish

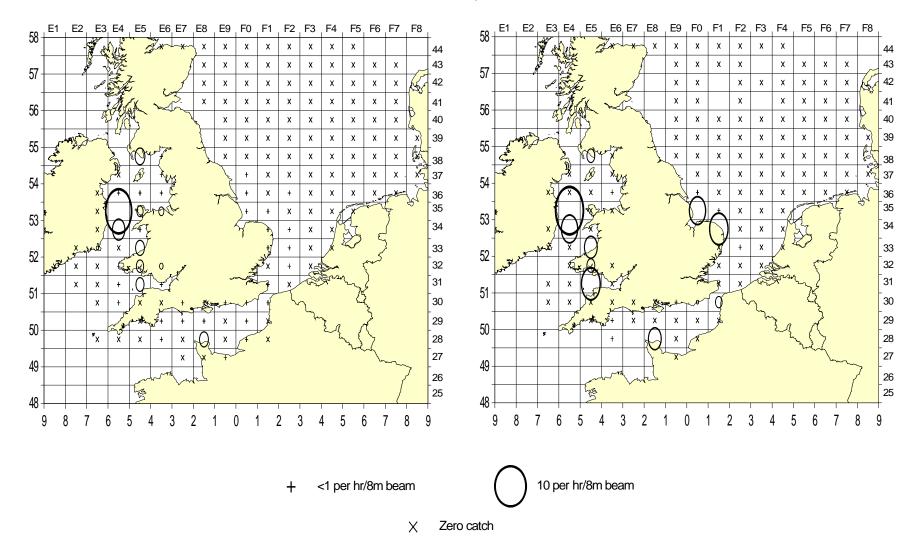



Annex 6.2.18 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.

Thornback ray

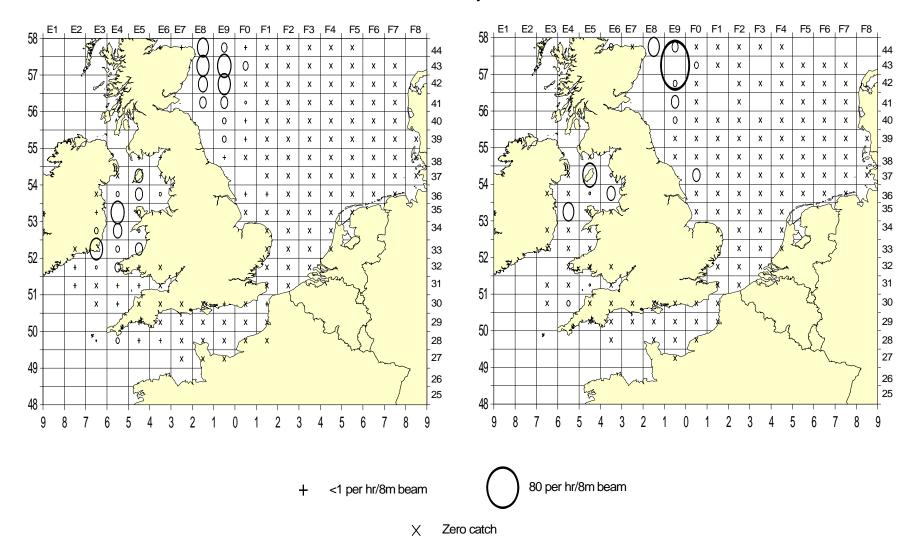


#### Annex 6.2.19 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.


Spotted ray



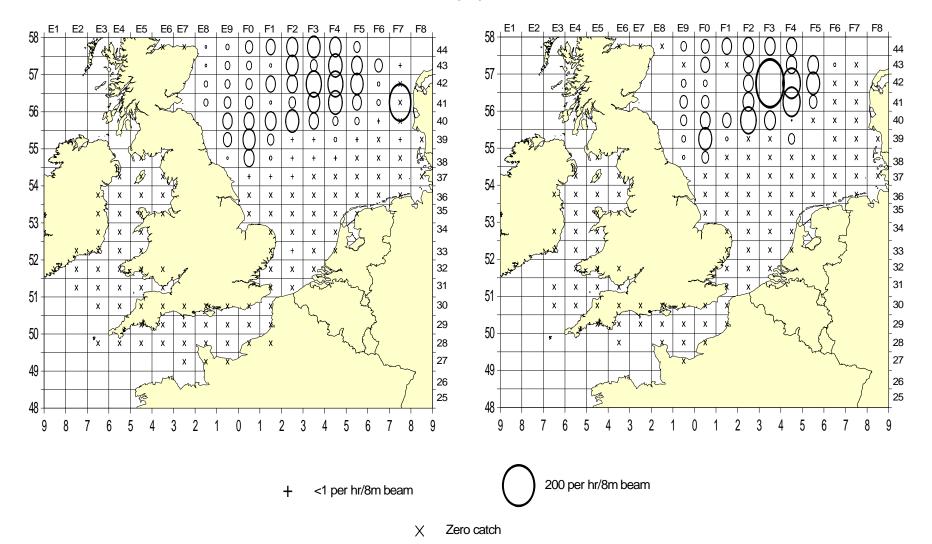
| 107


Annex 6.2.20 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.

Blonde ray

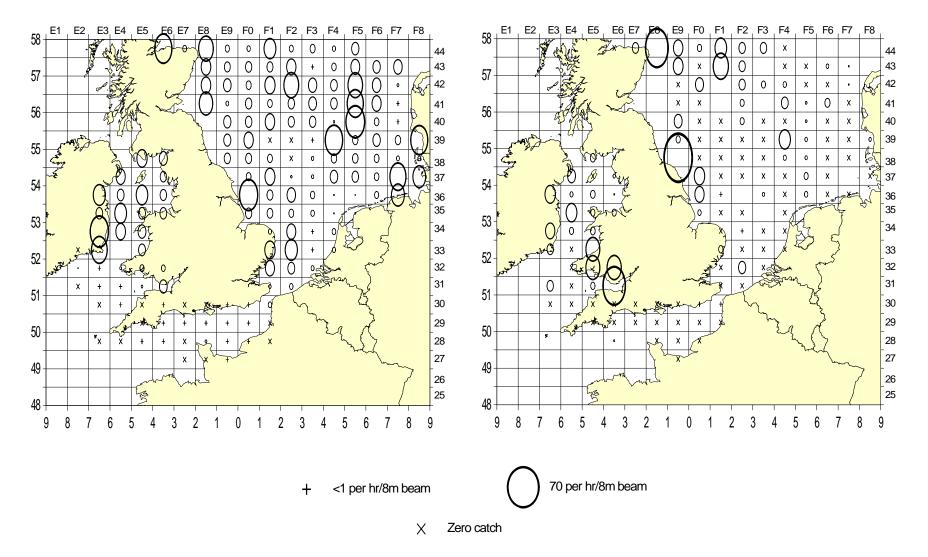


#### Annex 6.2.21 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.


Cuckoo ray



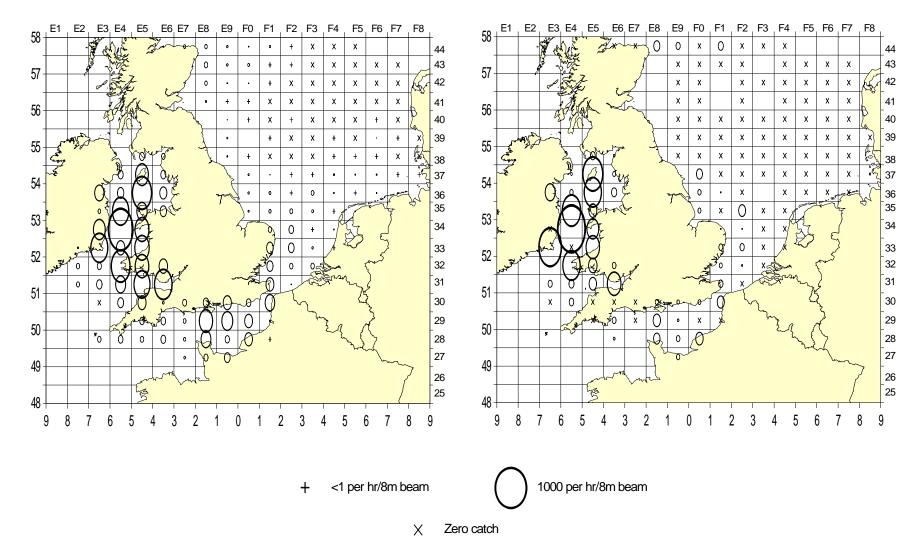
| 109


Annex 6.2.22 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.

Starry ray

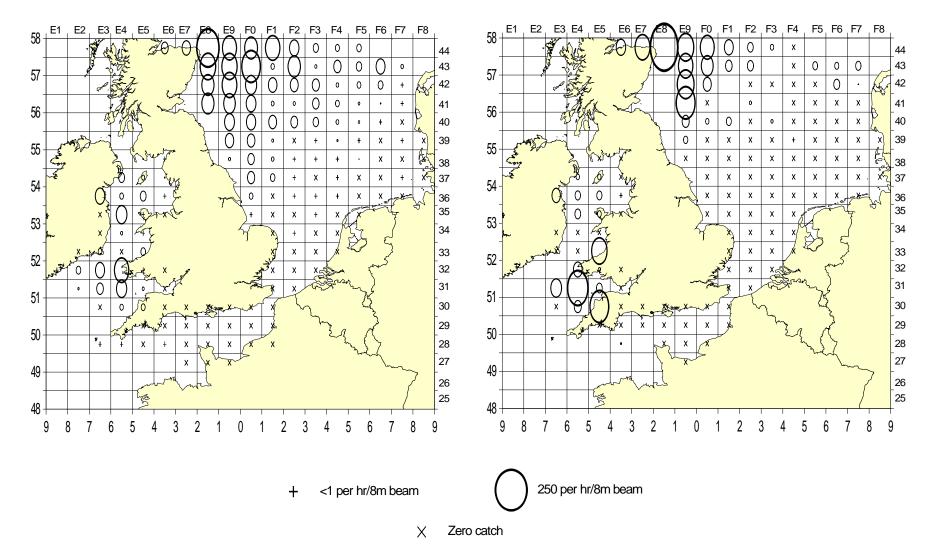


#### Annex 6.2.23 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.


Cod

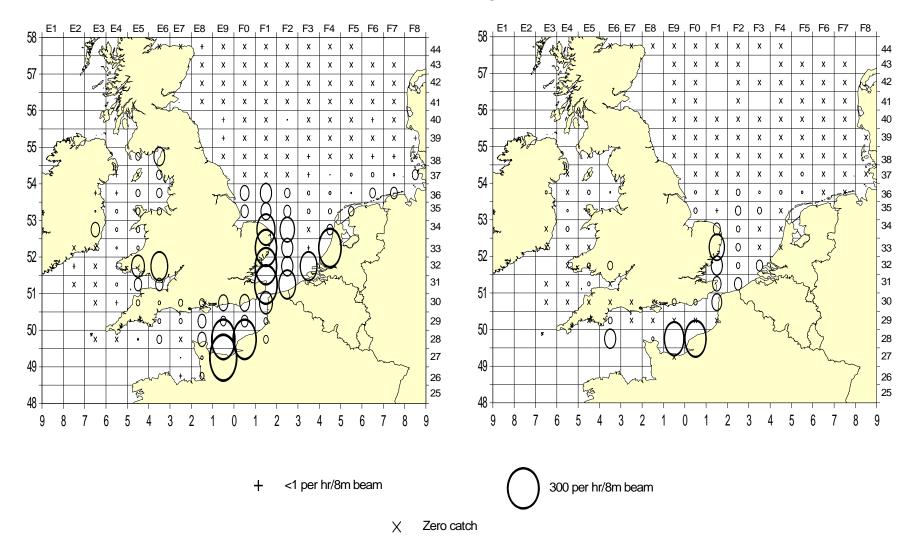


| 111


Annex 6.2.24 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.

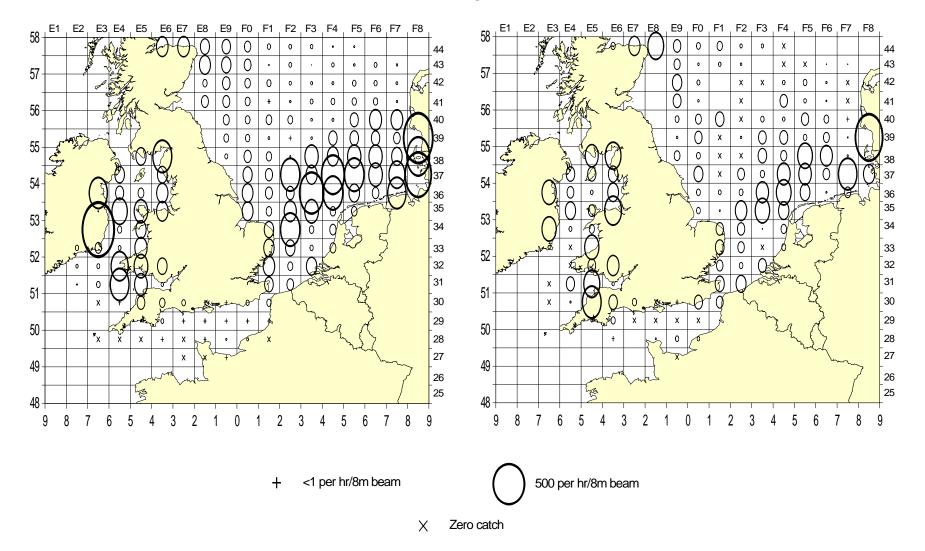
Poor cod




#### Annex 6.2.25 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.

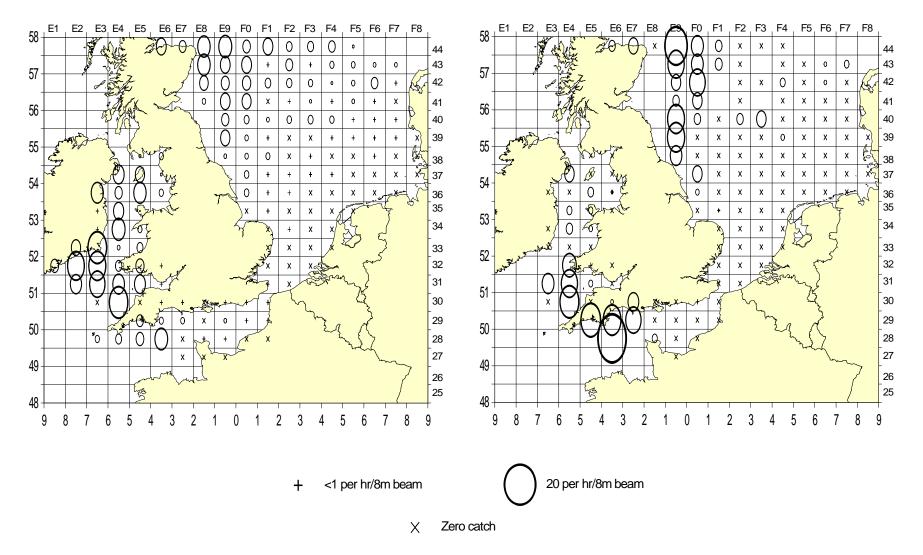
Haddock




Annex 6.2.26 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.

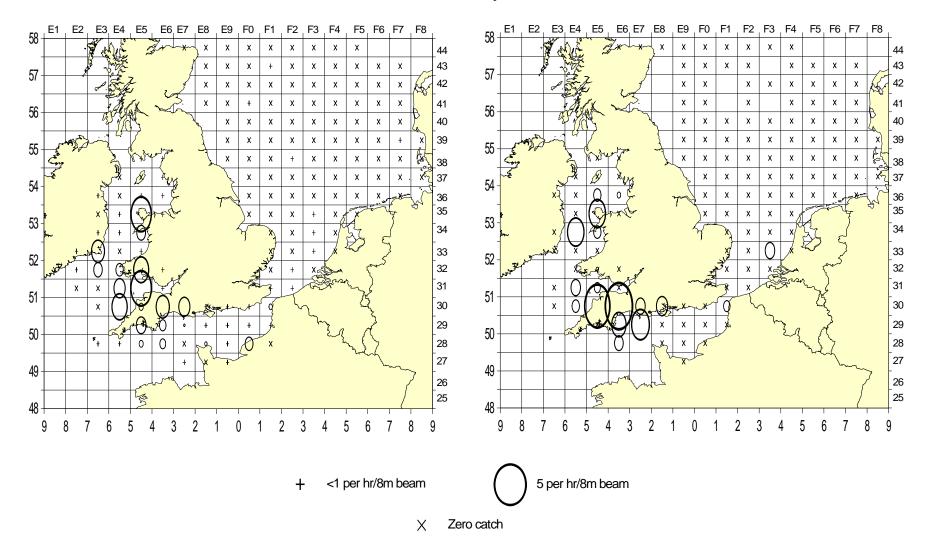
Pout whiting




#### Annex 6.2.27 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.

Whiting

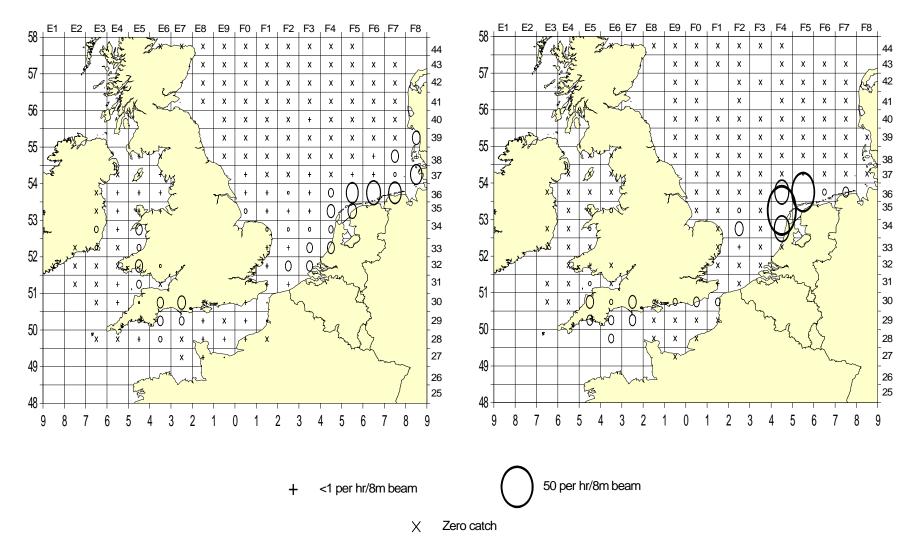



Annex 6.2.28 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.

Monkfish



#### Annex 6.2.29 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.


John Dory



| 117

Annex 6.2.30 International offshore beam trawl survey 1990-2009 Catches are number/hr/8m beam left plot mean of time series, right plot current year.

Red mullet



#### Annex 7: Abundance of fish species for the offshore surveys by Subdivision

| Annex 7 a) Abundance of fish species (per hour fishing) in subare | a VIIa |
|-------------------------------------------------------------------|--------|
| per year.                                                         |        |

|                          | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
|--------------------------|------|------|------|------|------|------|------|------|------|------|
| AMERICAN PLAICE (LR DAB) | 10   | 1    | 1    | 2    | 4    | 8    | 4    | 14   | 4    | 3    |
| ANGLERFISH (MONK)        | 1    | 2    | 2    | 4    | 3    | 3    | 3    | 2    | 2    | 2    |
| BRILL                    | 2    | 2    | 1    | 2    | 1    | 1    | 2    | 1    | 1    | 1    |
| COD                      | 25   | 10   | 4    | 23   | 15   | 8    | 8    | 6    | 1    | 10   |
| COMMON DRAGONET          | 131  | 149  | 211  | 197  | 175  | 134  | 127  | 141  | 123  | 162  |
| DAB                      | 398  | 348  | 224  | 381  | 549  | 480  | 412  | 586  | 516  | 772  |
| EUROPEAN PLAICE          | 220  | 142  | 180  | 298  | 273  | 272  | 246  | 358  | 341  | 371  |
| FLOUNDER (EUROPEAN)      | 2    | 1    | 2    | 1    | 1    | 1    | 1    | 2    | 2    | 1    |
| GREY GURNARD             | 46   | 47   | 99   | 90   | 81   | 43   | 45   | 56   | 51   | 56   |
| HADDOCK                  | 1    |      | 1    | 1    | 12   | 2    | 8    | 4    | 3    | 11   |
| JOHN DORY                | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| LEMON SOLE               | 3    | 2    | 3    | 13   | 11   | 13   | 9    | 12   | 10   | 8    |
| LESSER SPOTTED DOGFISH   | 15   | 19   | 27   | 23   | 19   | 18   | 20   | 40   | 34   | 29   |
| LESSER WEEVER FISH       | 9    | 24   | 51   | 45   | 55   | 52   | 19   | 33   | 29   | 26   |
| POGGE (ARMED BULLHEAD)   | 56   | 37   | 44   | 65   | 57   | 52   | 46   | 39   | 38   | 32   |
| POOR COD                 | 170  | 82   | 92   | 219  | 124  | 151  | 104  | 139  | 94   | 179  |
| RED GURNARD              | 1    | 6    | 3    | 4    | 6    | 3    | 5    | 9    | 10   | 11   |
| RED MULLET               |      | 1    | 1    | 1    |      | 1    |      | 1    | 1    | 1    |
| SCALD FISH               | 17   | 37   | 36   | 40   | 47   | 33   | 46   | 40   | 49   | 66   |
| SOLE (DOVER SOLE)        | 129  | 174  | 161  | 76   | 66   | 59   | 78   | 128  | 112  | 89   |
| SOLENETTE                | 96   | 249  | 146  | 210  | 196  | 248  | 167  | 240  | 230  | 284  |
| THICKBACK SOLE           | 8    | 20   | 34   | 30   | 24   | 22   | 26   | 24   | 27   | 26   |
| TUB GURNARD              | 5    | 7    | 15   | 8    | 7    | 7    | 9    | 9    | 13   | 10   |
| TURBOT                   | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| WHITING                  | 51   | 45   | 78   | 98   | 83   | 171  | 82   | 124  | 101  | 87   |
| WHITING POUT (BIB)       | 27   | 27   | 27   | 7    | 2    | 11   | 3    | 16   | 29   | 11   |

|                          | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
|--------------------------|------|------|------|------|------|------|------|------|------|------|
| AMERICAN PLAICE (LR DAB) | 2    | 1    | 1    | 1    | 11   | 2    | 2    | 2    | 1    | 2    |
| ANGLERFISH (MONK)        | 1    | 2    | 4    | 2    | 2    | 3    | 1    | 1    | 1    | 1    |
| BRILL                    | 1    | 2    | 1    | 1    | 1    | 1    | 1    | 2    | 2    | 2    |
| COD                      | 11   | 5    | 2    | 1    | 8    | 7    | 5    | 2    | 2    | 3    |
| COMMON DRAGONET          | 188  | 103  | 124  | 164  | 155  | 97   | 111  | 128  | 138  | 99   |
| DAB                      | 724  | 758  | 634  | 1271 | 1168 | 801  | 789  | 638  | 677  | 660  |
| EUROPEAN PLAICE          | 456  | 399  | 466  | 546  | 588  | 491  | 519  | 529  | 486  | 418  |
| FLOUNDER (EUROPEAN)      | 1    | 4    | 1    | 2    | 1    | 2    | 1    | 1    | 1    | 2    |
| GREY GURNARD             | 50   | 48   | 33   | 48   | 50   | 45   | 64   | 64   | 60   | 34   |
| HADDOCK                  | 3    | 6    | 1    | 7    | 17   | 10   | 23   | 3    | 1    | 6    |
| JOHN DORY                | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| LEMON SOLE               | 8    | 10   | 11   | 14   | 12   | 7    | 5    | 5    | 4    | 5    |
| LESSER SPOTTED DOGFISH   | 27   | 38   | 35   | 32   | 62   | 38   | 49   | 40   | 44   | 60   |

|                        | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
|------------------------|------|------|------|------|------|------|------|------|------|------|
| LESSER WEEVER FISH     | 57   | 17   | 33   | 20   | 25   | 18   | 23   | 19   | 28   | 21   |
| POGGE (ARMED BULLHEAD) | 42   | 30   | 35   | 32   | 55   | 30   | 23   | 28   | 21   | 27   |
| POOR COD               | 162  | 72   | 94   | 232  | 335  | 204  | 331  | 216  | 173  | 147  |
| RED GURNARD            | 10   | 11   | 9    | 14   | 12   | 10   | 13   | 18   | 16   | 15   |
| RED MULLET             | 1    | 1    | 1    | 1    | 1    | 1    | 2    | 1    | 1    | 1    |
| SCALD FISH             | 101  | 94   | 112  | 124  | 97   | 95   | 123  | 106  | 146  | 108  |
| SOLE (DOVER SOLE)      | 93   | 62   | 51   | 56   | 66   | 31   | 32   | 32   | 34   | 29   |
| SOLENETTE              | 304  | 303  | 596  | 304  | 417  | 250  | 276  | 230  | 292  | 273  |
| THICKBACK SOLE         | 37   | 28   | 31   | 28   | 38   | 20   | 34   | 35   | 45   | 34   |
| TUB GURNARD            | 11   | 10   | 9    | 12   | 10   | 11   | 8    | 7    | 10   | 11   |
| TURBOT                 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| WHITING                | 60   | 80   | 65   | 83   | 207  | 118  | 144  | 57   | 102  | 71   |
| WHITING POUT (BIB)     | 7    | 6    | 7    | 6    | 4    | 2    | 1    | 3    | 3    | 1    |

### Annex 7 b) Abundance of fish species (per hour fishing) in subarea VIId per year.

|                        | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
|------------------------|------|------|------|------|------|------|------|------|------|------|
| ANGLERFISH (MONK)      | 1    |      |      | 1    | 1    |      | 1    | 1    | 1    |      |
| BRILL                  | 2    | 1    | 1    | 1    | 1    | 2    | 2    | 1    | 1    | 1    |
| COD                    |      |      | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| COMMON DRAGONET        | 124  | 211  | 270  | 220  | 297  | 123  | 203  | 254  | 489  | 274  |
| DAB                    | 46   | 83   | 187  | 66   | 129  | 68   | 47   | 69   | 33   | 51   |
| EUROPEAN PLAICE        | 51   | 59   | 66   | 58   | 35   | 31   | 63   | 66   | 111  | 53   |
| FLOUNDER (EUROPEAN)    | 1    | 5    | 12   | 4    | 2    | 2    | 15   | 3    | 3    | 3    |
| GREY GURNARD           | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 2    |
| JOHN DORY              |      | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| LEMON SOLE             | 7    | 3    | 3    | 7    | 11   | 13   | 8    | 3    | 2    | 1    |
| LESSER SPOTTED DOGFISH | 3    | 5    | 7    | 11   | 6    | 6    | 5    | 10   | 5    | 6    |
| LESSER WEEVER FISH     | 10   | 5    | 11   | 12   | 11   | 5    | 10   | 5    | 8    | 9    |
| POGGE (ARMED BULLHEAD) | 15   | 24   | 41   | 41   | 43   | 35   | 26   | 53   | 20   | 32   |
| POOR COD               | 177  | 81   | 59   | 49   | 96   | 97   | 69   | 55   | 50   | 95   |
| RED GURNARD            | 8    | 8    | 7    | 7    | 12   | 9    | 12   | 7    | 11   | 9    |
| RED MULLET             | 1    |      | 1    | 1    |      | 1    | 1    | 1    | 1    | 1    |
| SCALD FISH             | 6    | 18   | 13   | 15   | 10   | 6    | 8    | 10   | 8    | 14   |
| SOLE (DOVER SOLE)      | 30   | 47   | 37   | 58   | 33   | 27   | 29   | 38   | 32   | 55   |
| SOLENETTE              | 103  | 187  | 156  | 186  | 175  | 77   | 145  | 140  | 92   | 153  |
| THICKBACK SOLE         | 2    | 4    | 6    | 9    | 7    | 6    | 8    | 9    | 10   | 8    |
| TUB GURNARD            | 4    | 2    | 5    | 6    | 4    | 3    | 2    | 3    | 3    | 4    |
| TURBOT                 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| WHITING                | 1    | 1    | 6    | 1    | 2    | 4    | 1    | 1    | 1    | 1    |
| WHITING POUT (BIB)     | 270  | 38   | 49   | 33   | 61   | 46   | 64   | 91   | 136  | 91   |

|                        | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
|------------------------|------|------|------|------|------|------|------|------|------|------|
| ANGLERFISH (MONK)      |      |      |      |      | 1    | 1    | 1    |      | 1    | 1    |
| BRILL                  | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 2    | 1    | 1    |
| COD                    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 2    | 1    |
| COMMON DRAGONET        | 184  | 210  | 167  | 184  | 154  | 105  | 207  | 200  | 241  | 247  |
| DAB                    | 35   | 62   | 64   | 92   | 69   | 28   | 99   | 41   | 40   | 146  |
| EUROPEAN PLAICE        | 70   | 76   | 71   | 65   | 98   | 80   | 77   | 90   | 96   | 147  |
| FLOUNDER (EUROPEAN)    | 5    | 4    | 8    | 9    | 8    | 7    | 8    | 4    | 6    | 15   |
| GREY GURNARD           | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| JOHN DORY              | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 2    | 1    |
| LEMON SOLE             | 4    | 7    | 8    | 12   | 7    | 8    | 5    | 5    | 12   | 8    |
| LESSER SPOTTED DOGFISH | 5    | 6    | 9    | 5    | 8    | 9    | 5    | 8    | 8    | 7    |
| LESSER WEEVER FISH     | 12   | 14   | 8    | 9    | 16   | 13   | 23   | 15   | 14   | 17   |
| POGGE (ARMED BULLHEAD) | 19   | 38   | 44   | 33   | 34   | 14   | 42   | 24   | 16   | 24   |
| POOR COD               | 40   | 54   | 45   | 79   | 105  | 60   | 18   | 52   | 55   | 29   |
| RED GURNARD            | 12   | 13   | 9    | 14   | 12   | 8    | 8    | 8    | 15   | 12   |
| RED MULLET             | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| SCALD FISH             | 8    | 7    | 9    | 12   | 22   | 10   | 18   | 29   | 32   | 29   |
| SOLE (DOVER SOLE)      | 43   | 44   | 64   | 57   | 40   | 41   | 55   | 46   | 30   | 87   |
| SOLENETTE              | 84   | 90   | 89   | 119  | 155  | 94   | 195  | 185  | 140  | 148  |
| THICKBACK SOLE         | 9    | 17   | 12   | 19   | 14   | 10   | 14   | 11   | 19   | 16   |
| TUB GURNARD            | 2    | 3    | 3    | 5    | 3    | 2    | 5    | 6    | 5    | 8    |
| TURBOT                 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| WHITING                | 3    | 2    | 9    | 1    | 6    | 4    | 1    | 1    | 13   | 14   |
| WHITING POUT (BIB)     | 20   | 67   | 15   | 139  | 60   | 46   | 50   | 57   | 54   | 30   |

## Annex 7 c) Abundance of fish species (per hour fishing) in subarea VIIe per year (no sampling in 2008).

|                        | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
|------------------------|------|------|------|------|------|------|------|------|------|------|
| ANGLERFISH (MONK)      | 1    | 1    | 1    | 2    | 1    | 2    | 1    | 1    | 1    | 1    |
| BRILL                  | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| COD                    |      |      | 1    |      | 1    |      |      | 1    | 1    | 1    |
| COMMON DRAGONET        | 13   | 42   | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| DAB                    | 17   | 12   | 8    | 10   | 32   | 21   | 20   | 19   | 16   | 20   |
| EUROPEAN PLAICE        | 19   | 10   | 14   | 9    | 9    | 9    | 15   | 34   | 20   | 21   |
| FLOUNDER (EUROPEAN)    |      |      |      | 1    |      | 1    | 1    |      | 1    | 1    |
| GREY GURNARD           | 6    | 3    | 2    | 4    | 10   | 3    | 6    | 3    | 6    | 12   |
| HADDOCK                |      |      |      |      |      | 1    |      |      |      |      |
| JOHN DORY              | 1    | 1    | 1    | 2    | 1    | 1    | 1    | 1    | 1    | 1    |
| LEMON SOLE             | 2    | 2    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| LESSER SPOTTED DOGFISH | 9    | 2    | 1    | 14   | 11   | 15   | 13   | 28   | 20   | 27   |
| LESSER WEEVER FISH     | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| POGGE (ARMED BULLHEAD) | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| POOR COD               | 9    | 31   | 5    | 1    | 1    | 1    | 1    | 1    | 1    | 8    |
| RED GURNARD            | 34   | 8    | 23   | 33   | 51   | 31   | 25   | 21   | 21   | 31   |

|                    | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
|--------------------|------|------|------|------|------|------|------|------|------|------|
| RED MULLET         | 1    | 1    | 1    | 1    | 1    | 2    | 2    | 2    | 1    | 4    |
| SCALD FISH         | 2    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| SOLE (DOVER SOLE)  | 10   | 20   | 22   | 13   | 11   | 9    | 13   | 18   | 16   | 15   |
| SOLENETTE          | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| THICKBACK SOLE     | 5    | 2    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| TUB GURNARD        | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| TURBOT             | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| WHITING            | 1    | 12   | 5    | 11   | 2    | 4    | 4    | 7    | 4    | 2    |
| WHITING POUT (BIB) | 13   | 17   | 11   | 8    | 4    | 1    | 5    | 14   | 8    | 2    |

|                        | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
|------------------------|------|------|------|------|------|------|------|------|------|------|
| ANGLERFISH (MONK)      | 1    | 1    | 2    | 2    | 1    | 3    | 2    | 1    |      | 15   |
| BRILL                  | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |      | 1    |
| COD                    | 1    | 1    | 1    | 1    |      |      | 1    | 1    |      | 1    |
| COMMON DRAGONET        | 2    | 15   | 134  | 206  | 189  | 9    | 11   | 4    |      | 11   |
| DAB                    | 10   | 42   | 56   | 34   | 15   | 19   | 32   | 12   |      | 30   |
| EUROPEAN PLAICE        | 22   | 27   | 15   | 13   | 12   | 12   | 16   | 14   |      | 47   |
| FLOUNDER (EUROPEAN)    | 1    | 1    |      |      |      |      | 1    | 1    |      | 1    |
| GREY GURNARD           | 8    | 1    | 8    | 12   | 6    | 9    | 7    | 10   |      | 19   |
| HADDOCK                |      |      | 1    | 1    | 1    |      | 1    |      |      | 1    |
| JOHN DORY              | 1    | 2    | 1    | 1    | 1    | 1    | 1    | 1    |      | 2    |
| LEMON SOLE             | 1    | 1    | 2    | 2    | 3    | 1    | 1    | 1    |      | 5    |
| LESSER SPOTTED DOGFISH | 13   | 25   | 15   | 23   | 22   | 25   | 25   | 19   |      | 39   |
| LESSER WEEVER FISH     | 1    | 1    | 5    | 8    | 4    | 1    | 1    | 1    |      | 3    |
| POGGE (ARMED BULLHEAD) | 1    | 1    | 14   | 16   | 15   | 2    | 1    | 1    |      | 1    |
| POOR COD               | 5    | 6    | 66   | 202  | 112  | 26   | 8    | 5    |      | 9    |
| RED GURNARD            | 28   | 10   | 31   | 34   | 44   | 30   | 32   | 14   |      | 75   |
| RED MULLET             | 2    | 4    | 1    | 7    | 3    | 3    | 8    | 2    |      | 2    |
| SCALD FISH             | 1    | 6    | 68   | 94   | 85   | 4    | 1    | 6    |      | 8    |
| SOLE (DOVER SOLE)      | 14   | 19   | 9    | 19   | 15   | 10   | 13   | 17   |      | 35   |
| SOLENETTE              | 1    | 20   | 339  | 444  | 369  | 8    | 1    | 9    |      | 10   |
| THICKBACK SOLE         | 3    | 4    | 101  | 133  | 112  | 8    | 8    | 2    |      | 3    |
| TUB GURNARD            | 1    | 1    | 1    | 2    | 1    | 1    | 2    | 5    |      | 4    |
| TURBOT                 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |      | 1    |
| WHITING                | 1    | 5    | 5    | 4    | 1    | 13   | 3    | 7    |      | 12   |
| WHITING POUT (BIB)     | 1    | 1    | 5    | 1    | 2    | 2    | 6    | 4    |      | 13   |

|                        | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
|------------------------|------|------|------|------|------|------|------|------|------|------|
| ANGLERFISH (MONK)      | 1    | 3    | 11   | 5    | 5    | 3    | 2    | 1    | 1    | 9    |
| BRILL                  | 2    | 3    | 2    | 1    | 2    | 3    | 2    | 2    | 1    | 1    |
| COD                    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 2    |
| COMMON DRAGONET        | 19   | 40   | 76   | 44   | 119  | 50   | 86   | 46   | 40   | 74   |
| DAB                    | 63   | 78   | 153  | 99   | 167  | 83   | 105  | 81   | 123  | 179  |
| EUROPEAN PLAICE        | 95   | 122  | 101  | 28   | 37   | 41   | 72   | 48   | 60   | 69   |
| FLOUNDER (EUROPEAN)    | 1    | 1    | 1    | 1    | 2    | 2    | 1    | 1    | 1    | 1    |
| GREY GURNARD           | 15   | 52   | 85   | 53   | 45   | 25   | 23   | 24   | 33   | 56   |
| HADDOCK                |      |      |      |      | 1    |      | 1    | 1    |      |      |
| JOHN DORY              | 1    | 2    | 1    | 3    | 1    | 1    | 1    | 2    | 1    | 3    |
| LEMON SOLE             | 2    | 2    | 3    | 4    | 9    | 6    | 12   | 5    | 4    | 6    |
| LESSER SPOTTED DOGFISH | 69   | 86   | 101  | 41   | 40   | 32   | 34   | 47   | 51   | 84   |
| LESSER WEEVER FISH     | 1    | 3    | 1    | 3    | 3    | 3    | 3    | 1    | 2    | 3    |
| POGGE (ARMED BULLHEAD) | 1    | 2    | 3    | 7    | 3    | 4    | 5    | 3    | 16   | 11   |
| POOR COD               | 306  | 294  | 335  | 251  | 113  | 113  | 122  | 167  | 381  | 323  |
| RED GURNARD            | 1    | 5    | 1    | 6    | 10   | 7    | 9    | 6    | 1    | 4    |
| RED MULLET             | 2    | 1    |      | 1    | 1    | 1    | 1    | 1    |      | 3    |
| SCALD FISH             | 1    | 2    | 1    | 1    | 3    | 3    | 4    | 3    | 1    | 2    |
| SOLE (DOVER SOLE)      | 113  | 137  | 130  | 68   | 110  | 53   | 59   | 89   | 189  | 417  |
| SOLENETTE              | 107  | 280  | 153  | 116  | 247  | 116  | 111  | 69   | 141  | 246  |
| THICKBACK SOLE         | 7    | 27   | 31   | 23   | 24   | 23   | 23   | 16   | 10   | 23   |
| TUB GURNARD            | 9    | 7    | 13   | 2    | 9    | 7    | 6    | 6    | 11   | 21   |
| TURBOT                 | 1    | 2    | 1    | 1    | 2    | 2    | 1    | 1    | 1    | 5    |
| WHITING                | 81   | 87   | 123  | 138  | 53   | 55   | 91   | 141  | 73   | 178  |
| WHITING POUT (BIB)     | 242  | 100  | 29   | 11   | 5    | 7    | 15   | 158  | 114  | 54   |

Annex 7 d) Abundance of fish species (per hour fishing) in subarea VIIf per year.

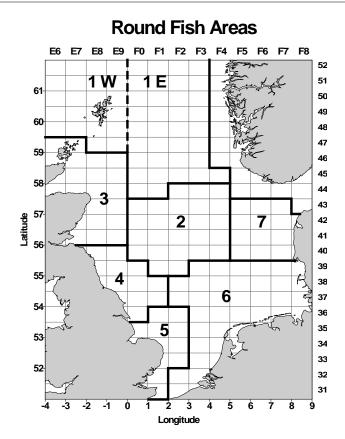
|                        | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
|------------------------|------|------|------|------|------|------|------|------|------|------|
| ANGLERFISH (MONK)      | 1    | 2    | 6    | 2    | 3    | 5    | 2    | 2    | 1    | 2    |
| BRILL                  | 4    | 1    | 1    | 1    | 1    | 2    | 1    | 2    | 1    | 1    |
| COD                    | 3    | 1    | 1    |      | 1    | 1    | 1    | 3    | 1    | 10   |
| COMMON DRAGONET        | 87   | 43   | 36   | 45   | 65   | 59   | 68   | 115  | 86   | 54   |
| DAB                    | 125  | 118  | 94   | 98   | 107  | 150  | 133  | 125  | 114  | 83   |
| EUROPEAN PLAICE        | 69   | 58   | 49   | 38   | 58   | 48   | 41   | 48   | 56   | 63   |
| FLOUNDER (EUROPEAN)    | 3    | 5    | 3    | 1    | 1    | 1    | 1    | 2    | 2    | 1    |
| GREY GURNARD           | 62   | 42   | 43   | 32   | 21   | 45   | 43   | 90   | 56   | 37   |
| HADDOCK                | 1    |      | 1    | 1    | 1    | 1    | 1    | 12   |      | 10   |
| JOHN DORY              | 2    | 6    | 3    | 3    | 3    | 3    | 2    | 2    | 2    | 1    |
| LEMON SOLE             | 7    | 9    | 17   | 21   | 19   | 11   | 16   | 26   | 11   | 10   |
| LESSER SPOTTED DOGFISH | 47   | 37   | 47   | 24   | 98   | 33   | 67   | 74   | 78   | 60   |
| LESSER WEEVER FISH     | 8    | 4    | 3    | 4    | 6    | 9    | 11   | 5    | 4    | 8    |
| POGGE (ARMED BULLHEAD) | 9    | 7    | 8    | 14   | 19   | 11   | 14   | 41   | 28   | 18   |
| POOR COD               | 297  | 80   | 155  | 349  | 275  | 269  | 392  | 308  | 375  | 76   |

|                    | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
|--------------------|------|------|------|------|------|------|------|------|------|------|
| RED GURNARD        | 5    | 11   | 11   | 12   | 19   | 8    | 6    | 12   | 1    | 11   |
| RED MULLET         | 2    | 3    | 1    | 9    | 2    | 15   | 6    | 2    | 1    | 1    |
| SCALD FISH         | 3    | 4    | 4    | 9    | 10   | 13   | 8    | 23   | 11   | 13   |
| SOLE (DOVER SOLE)  | 313  | 165  | 128  | 120  | 156  | 97   | 104  | 86   | 155  | 105  |
| SOLENETTE          | 184  | 153  | 125  | 197  | 460  | 486  | 196  | 438  | 248  | 188  |
| THICKBACK SOLE     | 28   | 15   | 17   | 12   | 14   | 8    | 13   | 27   | 21   | 15   |
| TUB GURNARD        | 10   | 8    | 11   | 11   | 13   | 11   | 11   | 14   | 5    | 5    |
| TURBOT             | 3    | 1    | 2    | 1    | 1    | 2    | 1    | 2    | 2    | 2    |
| WHITING            | 68   | 20   | 63   | 42   | 106  | 93   | 54   | 94   | 310  | 89   |
| WHITING POUT (BIB) | 12   | 17   | 42   | 22   | 28   | 7    | 9    | 58   | 42   | 3    |

### Annex 7 e) Abundance of fish species (per hour fishing) in subarea VIIg per year.

|                          | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
|--------------------------|------|------|------|------|------|------|------|------|------|------|
| AMERICAN PLAICE (LR DAB) |      |      |      | 22   | 87   | 56   | 42   | 22   |      |      |
| ANGLERFISH (MONK)        |      |      |      | 13   | 26   | 19   | 9    | 5    | 7    | 9    |
| BRILL                    | 4    |      | 4    | 1    | 1    |      |      |      | 4    |      |
| COD                      |      |      |      | 1    | 1    | 1    | 1    | 1    |      | 3    |
| COMMON DRAGONET          |      | 4    | 4    | 51   | 97   | 60   | 42   | 40   | 33   | 67   |
| DAB                      |      | 4    |      | 75   | 65   | 51   | 43   | 98   | 183  | 340  |
| EUROPEAN PLAICE          |      | 12   | 4    | 7    | 7    | 8    | 11   | 18   | 52   | 28   |
| GREY GURNARD             |      | 32   | 4    | 62   | 99   | 49   | 38   | 25   | 128  | 133  |
| HADDOCK                  |      |      |      | 18   | 44   | 16   | 20   | 17   | 1    | 67   |
| JOHN DORY                |      |      |      | 1    | 1    |      | 1    |      | 3    | 5    |
| LEMON SOLE               |      |      |      | 13   | 19   | 16   | 13   | 6    | 16   | 4    |
| LESSER SPOTTED DOGFISH   |      |      | 8    | 10   | 14   | 17   | 15   | 46   | 4    | 36   |
| LESSER WEEVER FISH       |      | 4    |      |      | 1    |      | 1    |      |      |      |
| POGGE (ARMED BULLHEAD)   |      |      |      | 19   | 10   | 12   | 5    | 16   | 29   | 41   |
| POOR COD                 | 6    | 468  | 180  | 126  | 68   | 52   | 52   | 162  | 139  | 215  |
| RED GURNARD              |      |      |      | 3    | 2    | 1    | 1    | 2    | 3    | 1    |
| RED MULLET               |      |      |      |      |      |      |      |      |      |      |
| SCALD FISH               |      |      |      | 53   | 44   | 41   | 44   | 21   | 87   | 71   |
| SOLE (DOVER SOLE)        | 6    | 60   | 16   | 13   | 13   | 11   | 8    | 23   | 11   | 53   |
| SOLENETTE                |      |      | 4    | 49   | 44   | 38   | 9    | 21   | 125  | 95   |
| THICKBACK SOLE           |      | 8    |      | 52   | 68   | 65   | 47   | 36   | 61   | 176  |
| TUB GURNARD              |      | 4    |      |      |      |      | 1    | 1    | 1    | 1    |
| TURBOT                   | 2    |      | 4    | 1    |      | 1    |      |      | 3    |      |
| WHITING                  | 10   | 108  | 40   | 43   | 19   | 33   | 29   | 124  | 95   | 793  |
| WHITING POUT (BIB)       |      | 12   | 4    |      | 1    |      |      | 7    | 1    |      |

|                          | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
|--------------------------|------|------|------|------|------|------|------|------|------|------|
| AMERICAN PLAICE (LR DAB) |      |      | 11   | 15   | 21   | 24   |      |      | 28   | 29   |
| ANGLERFISH (MONK)        |      | 3    | 6    | 9    | 6    | 5    | 6    | 4    | 5    | 8    |
| BRILL                    |      |      |      |      |      | 1    | 1    | 2    |      | 1    |
| COD                      |      |      |      | 1    |      |      | 1    |      |      | 1    |
| COMMON DRAGONET          | 4    | 65   | 32   | 27   | 195  | 96   | 99   | 106  | 115  | 52   |
| DAB                      | 4    | 92   | 40   | 39   | 15   | 76   | 66   | 100  | 162  | 107  |
| EUROPEAN PLAICE          | 12   | 4    | 6    | 7    | 3    | 12   | 23   | 18   | 12   | 7    |
| GREY GURNARD             | 8    | 87   | 46   | 61   | 23   | 47   | 63   | 130  | 142  | 64   |
| HADDOCK                  |      | 21   | 29   | 3    | 8    | 100  | 54   | 301  | 19   | 76   |
| JOHN DORY                |      |      | 3    | 1    | 3    | 3    |      | 2    | 2    | 1    |
| LEMON SOLE               |      | 4    | 1    | 3    | 3    | 2    | 13   | 10   | 7    | 8    |
| LESSER SPOTTED DOGFISH   | 8    | 139  | 207  | 20   | 47   | 46   | 48   | 100  | 110  | 112  |
| LESSER WEEVER FISH       |      |      |      |      |      | 1    |      | 10   |      | 2    |
| POGGE (ARMED BULLHEAD)   |      | 16   | 97   | 15   | 22   | 5    | 98   | 114  | 111  | 84   |
| POOR COD                 | 232  | 57   | 108  | 77   | 273  | 300  | 263  | 332  | 453  | 69   |
| RED GURNARD              |      | 3    |      |      | 2    |      |      | 2    |      | 2    |
| RED MULLET               |      |      |      |      |      |      |      | 1    |      |      |
| SCALD FISH               |      | 1    | 12   | 11   | 17   | 16   | 33   | 16   | 22   | 5    |
| SOLE (DOVER SOLE)        | 28   | 81   | 16   | 33   | 37   | 33   | 33   | 40   | 16   | 29   |
| SOLENETTE                |      |      |      |      |      |      | 37   | 2    | 9    | 4    |
| THICKBACK SOLE           |      | 80   | 133  | 57   | 153  | 49   | 44   | 34   | 59   | 24   |
| TUB GURNARD              |      |      |      | 1    |      | 1    | 1    |      |      | 1    |
| TURBOT                   | 4    | 4    | 2    | 1    | 1    | 1    | 1    | 2    | 1    | 1    |
| WHITING                  | 308  | 167  | 47   | 53   | 145  | 118  | 21   | 238  | 482  | 22   |
| WHITING POUT (BIB)       |      |      | 1    | 1    |      | 3    |      |      | 1    |      |


### Annex 7 f) Abundance of fish species (per hour fishing) in subarea VIII per year.

|                          | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
|--------------------------|------|------|------|------|------|------|------|------|------|------|
| AMERICAN PLAICE (LR DAB) |      |      |      |      |      |      |      |      |      |      |
| ANGLERFISH (MONK)        |      |      |      |      |      |      |      | 3    | 4    | 6    |
| BRILL                    |      |      |      |      |      |      |      | 1    | 1    | 1    |
| COD                      |      |      |      |      |      |      |      |      |      |      |
| COMMON DRAGONET          |      |      |      |      |      |      |      | 38   | 66   | 83   |
| DAB                      |      |      |      |      |      |      |      |      |      |      |
| EUROPEAN PLAICE          |      |      |      |      |      |      |      | 1    | 1    | 1    |
| FLOUNDER (EUROPEAN)      |      |      |      |      |      |      |      |      |      |      |
| GREY GURNARD             |      |      |      |      |      |      |      | 9    | 4    | 6    |
| HADDOCK                  |      |      |      |      |      |      |      |      | 1    | 1    |
| JOHN DORY                |      |      |      |      |      |      |      | 1    | 1    | 1    |
| LEMON SOLE               |      |      |      |      |      |      |      |      | 1    |      |
| LESSER SPOTTED DOGFISH   |      |      |      |      |      |      |      | 3    | 2    | 5    |
| LESSER WEEVER FISH       |      |      |      |      |      |      |      | 1    | 3    | 6    |
| POGGE (ARMED BULLHEAD)   |      |      |      |      |      |      |      |      |      |      |

|                   | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
|-------------------|------|------|------|------|------|------|------|------|------|------|
| POOR COD          |      |      |      |      |      |      |      | 11   | 35   | 75   |
| RED GURNARD       |      |      |      |      |      |      |      | 1    | 1    | 1    |
| RED MULLET        |      |      |      |      |      |      |      | 8    | 17   | 17   |
| SCALD FISH        |      |      |      |      |      |      |      | 65   | 106  | 82   |
| SOLE (DOVER SOLE) |      |      |      |      |      |      |      | 58   | 88   | 122  |
| SOLENETTE         |      |      |      |      |      |      |      | 26   | 64   | 49   |
| THICKBACK SOLE    |      |      |      |      |      |      |      | 22   | 37   | 43   |
| TUB GURNARD       |      |      |      |      |      |      |      | 1    | 1    | 1    |
| TURBOT            |      |      |      |      |      |      |      | 1    | 1    | 1    |
| WHITING           |      |      |      |      |      |      |      | 1    | 4    | 8    |

### Annex 7 f) Abundance of fish species (per hour fishing) in subarea VIII per year, day and night separated.

| Species                | DAY | NIGHT |
|------------------------|-----|-------|
| AMERICAN PLAICE        | N/A | N/A   |
| ANGELRFISHES           | 4   | 2     |
| BRILL                  | 0   | 0     |
| COD                    | N/A | N/A   |
| DAB                    | N/A | N/A   |
| DOVER SOLE             | 70  | 70    |
| DRAGONET               | 41  | 45    |
| EUROPEAN PLAICE        | 0   | N/A   |
| FLOUNDER (EUROPEAN)    | N/A | N/A   |
| GREY GURNARD           | 3   | 3     |
| HADDOCK                | 0   | 0     |
| JOHN DORY              | 0   | 0     |
| LEMON SOLE             | N/A | N/A   |
| LESSER SPOTTED DOGFISH | 0   | 0     |
| POGGE (ARMED BULLHEAD) | N/A | N/A   |
| POOR COD               | 60  | 47    |
| RED GURNARD            | 0   | 0     |
| RED MULLET             | 11  | 7     |
| SCALDFISH              | 56  | 54    |
| SOLENETTE              | 29  | 34    |
| THICKBACK SOLE         | 31  | 33    |
| TUB GURNARD            | 0   | 0     |
| TURBOT                 | 0   | N/A   |
| WEEVERFISHES           | 7   | 9     |
| WHITING                | 5   | 3     |
| WHITING POUT (BIB)     | 83  | 79    |



Annex 8: Abundance of fish species for the offshore surveys by roundfish area

#### Annex 8 a) Abundance of fish species (per hour fishing) in roundfish area 1 per year.

|                          | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
|--------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| AMERICAN PLAICE (LR DAB) | 17   | 177  | 150  | 101  | 116  | 142  | 218  | 180  | 189  | 212  | 187  | 223  |
| ANGLERFISH (MONK)        | 3    | 9    | 4    | 1    | 7    | 12   | 4    | 3    | 3    | 3    | 6    | 5    |
| COD                      | 31   | 7    | 5    | 5    | 8    | 2    | 9    | 5    | 11   | 8    | 21   | 9    |
| COMMON DRAGONET          |      | 1    |      | 1    | 1    | 1    |      | 1    |      |      | 2    | 1    |
| DAB                      | 5    | 109  | 73   | 68   | 54   | 98   | 111  | 83   | 29   | 37   | 103  | 140  |
| EUROPEAN PLAICE          | 12   | 10   | 8    | 7    | 5    | 11   | 4    | 17   | 3    | 6    | 21   | 29   |
| GREY GURNARD             | 4    | 25   | 7    | 3    | 16   | 19   | 15   | 22   | 9    | 66   | 22   | 18   |
| HADDOCK                  | 45   | 102  | 132  | 56   | 58   | 24   | 48   | 39   | 91   | 82   | 85   | 82   |
| LEMON SOLE               | 15   | 20   | 9    | 10   | 20   | 8    | 13   | 24   | 4    | 27   | 22   | 34   |
| LESSER SPOTTED DOGFISH   |      |      |      |      |      | 1    |      | 1    |      | 3    | 4    | 2    |
| POGGE (ARMED BULLHEAD)   |      |      | 1    | 1    |      | 1    | 4    | 1    |      | 4    | 3    | 4    |
| POOR COD                 |      |      |      |      | 1    | 20   | 1    | 1    | 6    | 1    | 2    | 8    |
| TURBOT                   | 1    |      |      |      |      |      |      |      |      |      | 1    |      |
| WHITING                  | 11   | 27   | 66   | 11   | 34   | 11   | 35   | 4    | 8    | 11   | 6    | 11   |

|                          | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
|--------------------------|------|------|------|------|------|------|------|------|------|------|
| AMERICAN PLAICE (LR DAB) |      |      |      |      |      |      | 25   | 36   | 131  | 66   |
| ANGLERFISH (MONK)        | 1    | 1    | 1    | 2    | 1    | 1    | 1    | 1    | 1    | 1    |
| BRILL                    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| COD                      |      |      | 1    | 1    | 1    | 1    | 7    | 2    | 3    | 3    |
| COMMON DRAGONET          | 72   | 158  | 205  | 167  | 180  | 80   | 141  | 152  | 302  | 151  |
| DAB                      | 15   | 33   | 42   | 15   | 39   | 25   | 46   | 82   | 167  | 99   |
| EUROPEAN PLAICE          | 23   | 19   | 27   | 17   | 15   | 14   | 14   | 44   | 32   | 30   |
| FLOUNDER (EUROPEAN)      | 1    | 1    | 1    | 1    | 1    | 1    | 9    | 1    | 1    | 2    |
| GREY GURNARD             | 3    | 1    | 2    | 2    | 6    | 1    | 7    | 9    | 12   | 11   |
| HADDOCK                  |      |      |      |      |      | 1    | 4    | 4    | 5    | 10   |
| JOHN DORY                | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| LEMON SOLE               | 3    | 2    | 1    | 1    | 2    | 2    | 3    | 2    | 7    | 4    |
| LESSER SPOTTED DOGFISH   | 8    | 5    | 7    | 17   | 11   | 14   | 10   | 17   | 11   | 13   |
| LESSER WEEVER FISH       | 5    | 2    | 3    | 4    | 5    | 2    | 5    | 2    | 3    | 4    |
| POGGE (ARMED BULLHEAD)   | 8    | 15   | 14   | 20   | 24   | 26   | 15   | 30   | 13   | 19   |
| POOR COD                 | 78   | 67   | 40   | 26   | 41   | 42   | 34   | 25   | 21   | 26   |
| RED GURNARD              | 27   | 10   | 20   | 27   | 40   | 27   | 20   | 14   | 16   | 19   |
| RED MULLET               | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 2    |
| SCALD FISH               | 4    | 11   | 10   | 10   | 6    | 3    | 3    | 3    | 4    | 5    |
| SOLE (DOVER SOLE)        | 19   | 25   | 21   | 18   | 11   | 9    | 13   | 23   | 18   | 21   |
| SOLENETTE                | 24   | 49   | 30   | 53   | 40   | 27   | 30   | 31   | 20   | 37   |
| THICKBACK SOLE           | 4    | 3    | 3    | 3    | 3    | 3    | 4    | 5    | 5    | 4    |
| TUB GURNARD              | 2    | 1    | 3    | 4    | 2    | 2    | 1    | 1    | 2    | 2    |
| TURBOT                   | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| WHITING                  | 1    | 5    | 3    | 1    | 1    | 1    | 5    | 4    | 8    | 4    |
| WHITING POUT (BIB)       | 108  | 35   | 48   | 32   | 33   | 29   | 50   | 60   | 87   | 49   |

## Annex 8 b) Abundance of fish species (per hour fishing) in roundfish area 2 per year.

|                          | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
|--------------------------|------|------|------|------|------|------|------|------|------|------|
| AMERICAN PLAICE (LR DAB) | 49   | 46   | 65   | 62   | 38   | 33   | 50   | 35   | 97   | 50   |
| ANGLERFISH (MONK)        | 1    | 1    | 2    | 1    | 1    | 2    | 1    | 1    | 1    | 8    |
| BRILL                    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| COD                      | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| COMMON DRAGONET          | 145  | 138  | 132  | 168  | 158  | 78   | 125  | 115  | 218  | 148  |
| DAB                      | 62   | 114  | 140  | 138  | 117  | 69   | 142  | 114  | 230  | 228  |
| EUROPEAN PLAICE          | 25   | 24   | 19   | 19   | 26   | 24   | 27   | 47   | 69   | 50   |
| FLOUNDER (EUROPEAN)      | 3    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 2    | 1    |
| GREY GURNARD             | 10   | 9    | 9    | 13   | 10   | 13   | 9    | 12   | 20   | 20   |
| HADDOCK                  | 21   | 14   | 5    | 5    | 3    | 2    | 9    | 2    | 5    | 1    |
| JOHN DORY                | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| LEMON SOLE               | 3    | 5    | 6    | 6    | 7    | 8    | 11   | 11   | 24   | 15   |
| LESSER SPOTTED DOGFISH   | 8    | 15   | 11   | 13   | 13   | 16   | 14   | 12   | 2    | 21   |
| LESSER WEEVER FISH       | 5    | 5    | 4    | 7    | 8    | 5    | 10   | 6    | 8    | 8    |

|                        | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
|------------------------|------|------|------|------|------|------|------|------|------|------|
| POGGE (ARMED BULLHEAD) | 11   | 25   | 29   | 23   | 22   | 9    | 24   | 15   | 13   | 12   |
| POOR COD               | 30   | 20   | 49   | 125  | 73   | 43   | 12   | 21   | 30   | 15   |
| RED GURNARD            | 20   | 12   | 20   | 24   | 32   | 19   | 21   | 11   | 10   | 45   |
| RED MULLET             | 1    | 2    | 1    | 3    | 2    | 1    | 3    | 1    |      | 1    |
| SCALD FISH             | 3    | 3    | 20   | 34   | 37   | 8    | 9    | 21   | 21   | 18   |
| SOLE (DOVER SOLE)      | 17   | 15   | 10   | 14   | 13   | 8    | 19   | 20   | 7    | 28   |
| SOLENETTE              | 36   | 30   | 111  | 149  | 172  | 60   | 91   | 74   | 54   | 63   |
| THICKBACK SOLE         | 7    | 12   | 59   | 85   | 73   | 11   | 13   | 7    | 17   | 12   |
| TUB GURNARD            | 2    | 1    | 1    | 2    | 1    | 1    | 3    | 3    | 2    | 4    |
| TURBOT                 | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| WHITING                | 4    | 5    | 6    | 5    | 3    | 5    | 3    | 2    | 4    | 6    |
| WHITING POUT (BIB)     | 13   | 35   | 8    | 79   | 30   | 28   | 35   | 34   | 22   | 22   |

### Annex 8 c) Abundance of fish species (per hour fishing) in roundfish area 3 per year.

|                          | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
|--------------------------|------|------|------|------|------|------|------|------|------|------|
| AMERICAN PLAICE (LR DAB) | 7    | 1    | 1    | 2    | 9    | 8    | 7    | 9    | 6    | 10   |
| ANGLERFISH (MONK)        | 1    | 1    | 3    | 4    | 5    | 3    | 2    | 1    | 1    | 3    |
| BRILL                    | 2    | 2    | 1    | 1    | 1    | 1    | 2    | 1    | 1    | 1    |
| COD                      | 16   | 5    | 2    | 10   | 6    | 4    | 3    | 3    | 1    | 5    |
| COMMON DRAGONET          | 104  | 99   | 160  | 123  | 144  | 87   | 85   | 82   | 80   | 101  |
| DAB                      | 296  | 216  | 248  | 234  | 331  | 253  | 212  | 310  | 291  | 438  |
| EUROPEAN PLAICE          | 168  | 112  | 138  | 157  | 133  | 130  | 139  | 181  | 211  | 190  |
| FLOUNDER (EUROPEAN)      | 2    | 3    | 6    | 2    | 1    | 2    | 3    | 1    | 1    | 1    |
| GREY GURNARD             | 32   | 35   | 68   | 55   | 52   | 27   | 27   | 32   | 34   | 45   |
| HADDOCK                  | 1    |      | 1    | 2    | 8    | 2    | 8    | 9    | 5    | 16   |
| JOHN DORY                | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| LEMON SOLE               | 4    | 2    | 3    | 10   | 12   | 13   | 11   | 9    | 8    | 7    |
| LESSER SPOTTED DOGFISH   | 17   | 27   | 30   | 21   | 19   | 16   | 17   | 32   | 26   | 31   |
| LESSER WEEVER FISH       | 8    | 16   | 33   | 26   | 26   | 24   | 10   | 20   | 16   | 15   |
| POGGE (ARMED BULLHEAD)   | 39   | 20   | 37   | 41   | 32   | 26   | 24   | 22   | 23   | 20   |
| POOR COD                 | 174  | 111  | 110  | 165  | 103  | 113  | 82   | 111  | 126  | 164  |
| RED GURNARD              | 2    | 5    | 3    | 4    | 6    | 4    | 6    | 6    | 6    | 6    |
| RED MULLET               | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| SCALD FISH               | 13   | 22   | 23   | 26   | 26   | 19   | 25   | 21   | 25   | 35   |
| SOLE (DOVER SOLE)        | 101  | 126  | 122  | 68   | 66   | 47   | 53   | 83   | 94   | 130  |
| SOLENETTE                | 102  | 231  | 166  | 180  | 203  | 152  | 138  | 160  | 162  | 231  |
| THICKBACK SOLE           | 6    | 16   | 25   | 24   | 23   | 20   | 20   | 16   | 16   | 19   |
| TUB GURNARD              | 5    | 5    | 12   | 5    | 6    | 5    | 5    | 6    | 9    | 9    |
| TURBOT                   | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| WHITING                  | 42   | 43   | 68   | 77   | 52   | 86   | 55   | 96   | 67   | 105  |
| WHITING POUT (BIB)       | 97   | 37   | 24   | 9    | 14   | 13   | 7    | 49   | 40   | 22   |

|                          | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
|--------------------------|------|------|------|------|------|------|------|------|------|------|
| AMERICAN PLAICE (LR DAB) | 7    | 12   | 7    | 10   | 14   | 10   | 12   | 11   | 8    | 15   |
| ANGLERFISH (MONK)        | 1    | 1    | 3    | 2    | 2    | 3    | 1    | 1    | 1    | 2    |
| BRILL                    | 2    | 1    | 1    | 1    | 1    | 1    | 1    | 2    | 1    | 1    |
| COD                      | 5    | 2    | 2    | 2    | 5    | 6    | 4    | 2    | 2    | 4    |
| COMMON DRAGONET          | 98   | 72   | 91   | 119  | 117  | 60   | 77   | 96   | 107  | 68   |
| DAB                      | 347  | 376  | 304  | 534  | 539  | 337  | 419  | 315  | 493  | 408  |
| EUROPEAN PLAICE          | 212  | 195  | 215  | 242  | 283  | 209  | 248  | 247  | 258  | 256  |
| FLOUNDER (EUROPEAN)      | 2    | 4    | 4    | 5    | 4    | 4    | 3    | 2    | 3    | 6    |
| GREY GURNARD             | 34   | 32   | 27   | 34   | 31   | 31   | 42   | 52   | 47   | 31   |
| HADDOCK                  | 12   | 18   | 7    | 8    | 11   | 12   | 17   | 15   | 4    | 13   |
| JOHN DORY                | 1    | 2    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| LEMON SOLE               | 9    | 11   | 14   | 23   | 16   | 12   | 12   | 13   | 14   | 10   |
| LESSER SPOTTED DOGFISH   | 20   | 24   | 32   | 20   | 50   | 25   | 40   | 36   | 43   | 44   |
| LESSER WEEVER FISH       | 26   | 11   | 15   | 12   | 16   | 12   | 16   | 12   | 15   | 13   |
| POGGE (ARMED BULLHEAD)   | 24   | 18   | 25   | 22   | 33   | 17   | 21   | 26   | 24   | 23   |
| POOR COD                 | 117  | 58   | 80   | 188  | 236  | 153  | 239  | 168  | 189  | 83   |
| RED GURNARD              | 7    | 8    | 7    | 10   | 10   | 7    | 8    | 10   | 9    | 10   |
| RED MULLET               | 1    | 1    | 1    | 3    | 1    | 4    | 3    | 1    | 1    | 1    |
| SCALD FISH               | 41   | 38   | 59   | 69   | 63   | 39   | 54   | 53   | 75   | 56   |
| SOLE (DOVER SOLE)        | 106  | 73   | 71   | 69   | 75   | 52   | 56   | 45   | 62   | 65   |
| SOLENETTE                | 177  | 171  | 331  | 283  | 365  | 211  | 182  | 218  | 220  | 178  |
| THICKBACK SOLE           | 19   | 16   | 22   | 17   | 25   | 11   | 19   | 21   | 28   | 18   |
| TUB GURNARD              | 7    | 6    | 6    | 9    | 7    | 7    | 7    | 8    | 7    | 8    |
| TURBOT                   | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| WHITING                  | 48   | 44   | 49   | 51   | 114  | 73   | 71   | 54   | 140  | 60   |
| WHITING POUT (BIB)       | 8    | 17   | 15   | 12   | 12   | 9    | 4    | 19   | 27   | 4    |

## Annex 8 d) Abundance of fish species (per hour fishing) in roundfish area 4 per year.

|                          | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
|--------------------------|------|------|------|------|------|------|------|------|------|------|
| AMERICAN PLAICE (LR DAB) |      |      |      |      |      |      | 39   | 66   | 73   | 103  |
| ANGLERFISH (MONK)        |      |      |      |      |      |      | 2    | 1    | 2    | 2    |
| BRILL                    |      |      |      | 11   | 3    | 4    | 4    | 3    | 1    | 1    |
| COD                      |      |      | 16   | 21   | 3    | 20   | 13   | 176  | 9    | 5    |
| COMMON DRAGONET          | 64   |      | 1    | 1    | 1    | 1    | 12   | 9    | 15   | 14   |
| DAB                      | 68   |      | 48   | 632  | 253  | 582  | 692  | 598  | 222  | 548  |
| EUROPEAN PLAICE          | 4    |      | 72   | 187  | 67   | 518  | 70   | 84   | 35   | 89   |
| FLOUNDER (EUROPEAN)      |      |      |      |      |      |      | 1    |      |      |      |
| GREY GURNARD             | 4    |      |      |      | 5    | 48   | 157  | 46   | 40   | 130  |
| HADDOCK                  |      |      |      |      |      | 12   | 28   | 36   | 29   | 12   |
| LEMON SOLE               | 60   |      | 24   | 91   | 48   | 174  | 92   | 158  | 34   | 34   |
| LESSER SPOTTED DOGFISH   |      |      |      |      |      |      |      |      |      | 1    |
| LESSER WEEVER FISH       |      |      | 1    | 1    | 1    | 1    | 72   | 2    | 6    | 9    |
| POGGE (ARMED BULLHEAD)   | 16   |      | 1    | 1    |      | 1    | 1    | 4    | 2    | 22   |

|                    | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
|--------------------|------|------|------|------|------|------|------|------|------|------|
| POOR COD           |      |      |      | 3    |      |      |      | 2    | 1    | 1    |
| RED GURNARD        |      |      | 64   | 32   | 16   | 34   |      |      |      |      |
| RED MULLET         |      |      |      |      |      |      |      |      | 1    |      |
| SCALD FISH         |      |      |      |      |      | 30   | 75   | 11   | 2    | 14   |
| SOLE (DOVER SOLE)  |      |      | 80   | 69   | 152  | 260  | 75   | 57   | 55   | 35   |
| SOLENETTE          |      |      |      |      |      | 78   | 74   | 61   | 9    | 5    |
| THICKBACK SOLE     |      |      |      |      |      |      |      |      |      |      |
| TUB GURNARD        |      |      | 8    | 27   |      | 6    |      |      |      |      |
| TURBOT             |      |      |      |      |      | 2    |      | 1    |      |      |
| WHITING            |      |      |      | 40   | 25   | 252  | 49   | 73   | 166  | 17   |
| WHITING POUT (BIB) |      |      |      | 64   | 84   | 16   | 17   | 36   | 2    | 5    |

|                          | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
|--------------------------|------|------|------|------|------|------|------|------|------|------|
| AMERICAN PLAICE (LR DAB) | 56   | 65   | 68   | 85   | 57   | 53   | 51   | 70   | 46   | 40   |
| ANGLERFISH (MONK)        | 1    | 1    | 2    | 1    | 1    | 1    | 3    | 3    | 1    | 3    |
| BRILL                    | 1    |      | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| COD                      | 5    | 3    | 13   | 4    | 9    | 13   | 4    | 6    | 2    | 10   |
| COMMON DRAGONET          | 39   | 21   | 20   | 22   | 19   | 74   | 52   | 61   | 57   | 27   |
| DAB                      | 504  | 447  | 347  | 550  | 349  | 564  | 1467 | 774  | 866  | 634  |
| EUROPEAN PLAICE          | 81   | 69   | 76   | 186  | 120  | 155  | 183  | 98   | 159  | 174  |
| FLOUNDER (EUROPEAN)      |      |      |      |      |      |      |      |      |      |      |
| GREY GURNARD             | 44   | 81   | 29   | 32   | 48   | 110  | 99   | 68   | 80   | 35   |
| HADDOCK                  | 32   | 34   | 16   | 11   | 6    | 7    | 10   | 4    | 2    | 2    |
| LEMON SOLE               | 48   | 49   | 78   | 58   | 45   | 56   | 56   | 72   | 53   | 50   |
| LESSER SPOTTED DOGFISH   |      |      |      |      | 1    |      | 1    |      | 2    |      |
| LESSER WEEVER FISH       | 9    | 6    | 16   | 55   | 53   | 5    | 13   | 7    | 11   | 258  |
| POGGE (ARMED BULLHEAD)   | 20   | 9    | 80   | 7    | 15   | 16   | 43   | 12   | 16   | 7    |
| POOR COD                 | 1    | 1    | 2    |      | 11   | 5    |      | 6    | 1    | 9    |
| RED GURNARD              |      |      |      |      |      |      | 1    |      |      |      |
| RED MULLET               | 1    |      | 1    |      |      |      |      | 1    |      |      |
| SCALD FISH               | 15   | 19   | 11   | 31   | 23   | 92   | 37   | 38   | 57   | 48   |
| SOLE (DOVER SOLE)        | 56   | 15   | 59   | 22   | 9    | 22   | 42   | 18   | 13   | 19   |
| SOLENETTE                | 14   | 11   | 4    | 31   | 4    | 33   | 4    | 8    | 39   | 11   |
| THICKBACK SOLE           | 1    |      |      |      |      | 1    | 1    | 1    | 1    | 1    |
| TUB GURNARD              | 1    |      | 1    |      | 1    |      |      | 1    | 1    | 1    |
| TURBOT                   | 1    | 1    |      | 1    |      | 1    | 1    | 1    | 1    | 1    |
| WHITING                  | 73   | 38   | 72   | 63   | 17   | 22   | 37   | 13   | 33   | 14   |
| WHITING POUT (BIB)       | 19   | 5    | 49   | 4    |      |      | 8    | 7    | 1    | 1    |

| 132 |  |
|-----|--|
|-----|--|

|                          | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
|--------------------------|------|------|------|------|------|------|------|------|------|------|
| AMERICAN PLAICE (LR DAB) |      |      |      |      |      |      |      |      |      |      |
| ANGLERFISH (MONK)        |      |      | 1    |      |      |      |      |      |      | 1    |
| BRILL                    | 2    | 1    | 1    | 1    | 2    | 2    | 2    | 1    | 1    | 1    |
| COD                      | 1    | 1    | 3    | 1    | 7    | 3    | 4    | 37   | 5    | 3    |
| COMMON DRAGONET          | 49   | 22   | 3    | 2    | 2    | 35   | 30   | 3    | 5    | 11   |
| DAB                      | 80   | 40   | 322  | 97   | 174  | 367  | 406  | 484  | 194  | 320  |
| EUROPEAN PLAICE          | 29   | 30   | 35   | 35   | 73   | 97   | 81   | 98   | 87   | 73   |
| FLOUNDER (EUROPEAN)      | 9    | 4    | 2    | 1    | 4    | 11   | 6    | 10   | 2    | 8    |
| GREY GURNARD             | 8    | 12   | 29   | 9    | 36   | 22   | 28   | 45   | 26   | 32   |
| HADDOCK                  |      |      |      |      |      |      |      |      | 1    |      |
| JOHN DORY                |      |      |      |      |      |      |      |      |      |      |
| LEMON SOLE               | 12   | 19   | 7    | 37   | 74   | 57   | 88   | 50   | 27   | 19   |
| LESSER SPOTTED DOGFISH   | 8    | 14   | 4    | 8    | 3    | 3    | 3    | 2    | 4    | 4    |
| LESSER WEEVER FISH       | 33   | 38   | 69   | 26   | 32   | 2    | 66   | 33   | 14   | 21   |
| POGGE (ARMED BULLHEAD)   | 37   | 30   | 10   | 15   | 15   | 60   | 53   | 24   | 6    | 12   |
| POOR COD                 | 131  | 145  | 19   | 19   | 26   | 23   | 9    | 6    | 12   | 20   |
| RED GURNARD              | 1    | 1    | 3    | 1    | 1    | 16   | 4    | 2    | 1    | 1    |
| RED MULLET               |      | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| SCALD FISH               | 21   | 5    | 78   | 49   | 26   | 133  | 69   | 47   | 34   | 45   |
| SOLE (DOVER SOLE)        | 125  | 141  | 54   | 228  | 330  | 195  | 135  | 230  | 167  | 200  |
| SOLENETTE                | 31   | 4    | 125  | 30   | 13   | 150  | 170  | 121  | 81   | 60   |
| THICKBACK SOLE           |      | 1    |      | 1    |      |      |      | 1    | 1    |      |
| TUB GURNARD              | 1    | 1    | 4    | 9    | 2    | 1    | 1    | 1    | 1    | 1    |
| TURBOT                   | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |      | 1    |
| WHITING                  | 76   | 15   | 26   | 78   | 79   | 83   | 73   | 79   | 221  | 104  |
| WHITING POUT (BIB)       | 135  | 78   | 17   | 35   | 211  | 187  | 56   | 71   | 186  | 282  |

# Annex 8 e) Abundance of fish species (per hour fishing) in roundfish area 5 per year.

|                          | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
|--------------------------|------|------|------|------|------|------|------|------|------|------|
| AMERICAN PLAICE (LR DAB) |      |      | 1    |      |      |      |      |      |      |      |
| ANGLERFISH (MONK)        | 1    |      |      | 1    |      | 1    |      | 1    |      | 1    |
| BRILL                    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| COD                      | 2    | 3    | 3    | 1    | 2    | 5    | 31   | 3    | 2    | 1    |
| COMMON DRAGONET          | 9    | 38   | 7    | 7    | 17   | 23   | 16   | 23   | 60   | 5    |
| DAB                      | 292  | 249  | 249  | 245  | 165  | 287  | 290  | 398  | 172  | 127  |
| EUROPEAN PLAICE          | 68   | 65   | 117  | 78   | 51   | 86   | 63   | 65   | 72   | 46   |
| FLOUNDER (EUROPEAN)      | 8    | 6    | 32   | 7    | 1    | 3    | 3    | 1    | 1    | 4    |
| GREY GURNARD             | 10   | 10   | 15   | 5    | 9    | 19   | 14   | 7    | 3    | 2    |
| HADDOCK                  | 1    |      |      |      |      |      |      |      |      |      |
| JOHN DORY                |      |      |      |      |      |      | 1    |      | 1    |      |
| LEMON SOLE               | 24   | 32   | 33   | 23   | 16   | 13   | 10   | 34   | 12   | 12   |
| LESSER SPOTTED DOGFISH   | 8    | 5    | 20   | 7    | 26   | 4    | 19   | 14   | 29   | 21   |
| LESSER WEEVER FISH       | 15   | 17   | 24   | 29   | 35   | 22   | 33   | 37   | 95   | 11   |
| POGGE (ARMED BULLHEAD)   | 26   | 37   | 16   | 24   | 27   | 17   | 32   | 20   | 24   | 6    |

| 2000 | 2001                                       | 2002                                                                                                                                                                                                                          | 2002                                                                                                                                                                                                                                                                           | 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2000 | 2001                                       | 2002                                                                                                                                                                                                                          | 2003                                                                                                                                                                                                                                                                           | 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10   | 30                                         | 28                                                                                                                                                                                                                            | 22                                                                                                                                                                                                                                                                             | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1    | 1                                          | 1                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1    | 1                                          | 1                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 46   | 28                                         | 41                                                                                                                                                                                                                            | 41                                                                                                                                                                                                                                                                             | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 192  | 146                                        | 163                                                                                                                                                                                                                           | 245                                                                                                                                                                                                                                                                            | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 98   | 48                                         | 64                                                                                                                                                                                                                            | 59                                                                                                                                                                                                                                                                             | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | 1                                          | 1                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2    | 1                                          | 2                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1    | 1                                          | 1                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 118  | 85                                         | 130                                                                                                                                                                                                                           | 77                                                                                                                                                                                                                                                                             | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 81   | 196                                        | 77                                                                                                                                                                                                                            | 169                                                                                                                                                                                                                                                                            | 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | 1<br>1<br>46<br>192<br>98<br>2<br>1<br>118 | 10         30           1         1           1         1           46         28           192         146           98         48           1         1           2         1           1         1           11         85 | 10       30       28         1       1       1         1       1       1         46       28       41         192       146       163         98       48       64         1       1       1         2       1       2         1       1       1         18       85       130 | 10         30         28         22           1         1         1         1           1         1         1         1           1         1         1         1           46         28         41         41           192         146         163         245           98         48         64         59           1         1         1         1           2         1         2         2           1         1         1         1           118         85         130         77 | 10         30         28         22         89           1         1         1         1         1           1         1         1         1         1           1         1         1         1         1           46         28         41         41         45           192         146         163         245         127           98         48         64         59         27           1         1         1         1         1           2         1         2         2         2           1         1         1         1         1           18         85         130         77         114 | 10       30       28       22       89       41         1       1       1       1       2         1       1       1       1       1       2         1       1       1       1       1       1         46       28       41       41       45       109         192       146       163       245       127       249         98       48       64       59       27       73         1       1       1       1       1       1         2       1       2       2       2       4         1       1       1       1       1       1         18       85       130       77       114       79 | 10       30       28       22       89       41       18         1       1       1       1       2       1         1       1       1       1       1       2       1         1       1       1       1       1       1       1         46       28       41       41       45       109       58         192       146       163       245       127       249       288         98       48       64       59       27       73       62         1       1       1       1       1       1       1         2       1       2       2       4       4         1       1       1       1       1       1         18       85       130       77       114       79       85 | 10       30       28       22       89       41       18       74         1       1       1       1       1       2       1       1         1       1       1       1       1       1       1       1         1       1       1       1       1       1       1       1         46       28       41       41       45       109       58       46         192       146       163       245       127       249       288       190         98       48       64       59       27       73       62       53         1       1       1       1       1       1       1         2       1       2       2       4       4       3         1       1       1       1       1       1       1         118       85       130       77       114       79       85       61 | 10         30         28         22         89         41         18         74         39           1         1         1         1         2         1         1         1           1         1         1         1         2         1         1         1           1         1         1         1         1         1         1         1           46         28         41         41         45         109         58         46         25           192         146         163         245         127         249         288         190         117           98         48         64         59         27         73         62         53         18           1         1         1         1         1         1         1         1           2         1         2         2         2         4         3         2           1         1         1         1         1         1         1         1           2         1         2         2         2         4         3         2           1         1 |

### Annex 8 f) Abundance of fish species (per hour fishing) in roundfish area 6 per year.

|                          | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
|--------------------------|------|------|------|------|------|------|------|------|------|------|
| AMERICAN PLAICE (LR DAB) | 3    | 2    | 1    | 1    | 2    | 2    | 3    | 8    | 34   | 14   |
| ANGLERFISH (MONK)        |      |      | 1    | 1    | 1    | 1    | 1    |      |      |      |
| BRILL                    | 2    | 1    | 3    | 3    | 2    | 1    | 1    | 2    | 2    | 1    |
| COD                      | 5    | 10   | 3    | 1    | 11   | 9    | 9    | 25   | 4    | 1    |
| COMMON DRAGONET          |      | 1    | 1    | 1    | 1    | 139  | 14   | 111  | 103  | 114  |
| DAB                      | 1937 | 1143 | 1176 | 1140 | 1075 | 769  | 1483 | 1391 | 1387 | 1275 |
| EUROPEAN PLAICE          | 524  | 668  | 625  | 657  | 599  | 526  | 785  | 1214 | 1076 | 817  |
| FLOUNDER (EUROPEAN)      | 10   | 16   | 5    | 9    | 5    | 8    | 10   | 12   | 5    | 2    |
| GREY GURNARD             | 24   | 24   | 35   | 35   | 61   | 37   | 36   | 37   | 60   | 95   |
| HADDOCK                  |      |      |      | 1    |      | 1    |      |      | 1    |      |
| JOHN DORY                |      |      |      |      | 1    |      | 1    |      |      |      |
| LEMON SOLE               | 2    | 2    | 1    | 3    | 14   | 10   | 10   | 86   | 7    | 6    |
| LESSER SPOTTED DOGFISH   | 1    | 1    | 1    |      | 1    |      |      | 1    |      | 1    |
| LESSER WEEVER FISH       | 28   | 24   | 33   | 44   | 58   | 59   | 19   | 50   | 37   | 48   |
| POGGE (ARMED BULLHEAD)   | 45   | 62   | 63   | 40   | 157  | 111  | 58   | 189  | 158  | 40   |
| POOR COD                 | 3    | 1    | 1    | 1    | 1    | 5    | 2    | 1    | 6    | 2    |
| RED GURNARD              |      | 1    | 1    | 1    |      | 1    | 2    | 1    | 1    | 1    |
| RED MULLET               | 1    | 1    | 1    | 1    | 4    | 2    | 1    | 1    | 1    | 13   |
| SCALD FISH               | 93   | 70   | 79   | 191  | 92   | 84   | 20   | 43   | 91   | 89   |
| SOLE (DOVER SOLE)        | 89   | 52   | 139  | 82   | 53   | 62   | 30   | 161  | 82   | 51   |
| SOLENETTE                | 79   | 77   | 131  | 178  | 166  | 141  | 37   | 90   | 68   | 297  |
| THICKBACK SOLE           | 1    | 1    |      |      |      | 1    |      |      | 1    |      |
| TUB GURNARD              | 8    | 6    | 14   | 13   | 11   | 6    | 6    | 4    | 7    | 4    |
| TURBOT                   | 5    | 4    | 4    | 3    | 5    | 3    | 2    | 3    | 3    | 3    |
| WHITING                  | 370  | 72   | 79   | 80   | 121  | 110  | 40   | 53   | 219  | 172  |
| WHITING POUT (BIB)       | 27   | 3    | 7    | 2    | 7    | 34   | 5    | 57   | 54   | 101  |

|                          | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
|--------------------------|------|------|------|------|------|------|------|------|------|------|
| AMERICAN PLAICE (LR DAB) | 6    | 4    | 9    | 5    | 8    | 6    | 6    | 1    | 3    | 2    |
| ANGLERFISH (MONK)        | 1    | 1    | 1    | 1    |      | 1    | 1    | 1    |      | 1    |
| BRILL                    | 2    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| COD                      | 3    | 2    | 1    | 1    | 1    | 3    | 3    | 6    | 2    | 1    |
| COMMON DRAGONET          | 64   | 68   | 124  | 95   | 65   | 37   | 64   | 83   | 106  | 61   |
| DAB                      | 988  | 935  | 798  | 853  | 542  | 627  | 463  | 803  | 1156 | 907  |
| EUROPEAN PLAICE          | 590  | 1209 | 759  | 501  | 451  | 463  | 379  | 575  | 616  | 895  |
| FLOUNDER (EUROPEAN)      | 3    | 4    | 4    | 5    | 6    | 6    | 3    | 5    | 6    | 4    |
| GREY GURNARD             | 44   | 25   | 37   | 36   | 36   | 49   | 27   | 26   | 23   | 19   |
| HADDOCK                  | 1    | 1    | 1    | 1    | 1    | 1    | 1    |      | 1    | 1    |
| JOHN DORY                |      |      |      |      | 1    | 1    | 1    | 1    | 1    | 1    |
| LEMON SOLE               | 5    | 8    | 10   | 18   | 10   | 4    | 5    | 18   | 12   | 8    |
| LESSER SPOTTED DOGFISH   | 1    |      | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| LESSER WEEVER FISH       | 37   | 74   | 41   | 61   | 55   | 37   | 45   | 39   | 55   | 22   |
| POGGE (ARMED BULLHEAD)   | 44   | 60   | 86   | 59   | 44   | 23   | 26   | 37   | 71   | 31   |
| POOR COD                 | 1    | 1    | 2    | 2    | 6    | 1    | 1    | 7    | 4    | 1    |
| RED GURNARD              | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| RED MULLET               | 1    | 2    | 4    | 10   | 2    | 1    | 2    | 1    | 1    | 4    |
| SCALD FISH               | 78   | 140  | 168  | 226  | 233  | 171  | 80   | 163  | 192  | 224  |
| SOLE (DOVER SOLE)        | 40   | 42   | 75   | 34   | 16   | 17   | 44   | 34   | 33   | 31   |
| SOLENETTE                | 397  | 220  | 269  | 149  | 192  | 137  | 70   | 107  | 148  | 194  |
| THICKBACK SOLE           |      | 1    |      |      | 1    | 1    | 1    |      |      |      |
| TUB GURNARD              | 6    | 5    | 5    | 8    | 6    | 7    | 7    | 8    | 6    | 6    |
| TURBOT                   | 5    | 3    | 3    | 4    | 3    | 3    | 3    | 3    | 3    | 2    |
| WHITING                  | 179  | 270  | 104  | 81   | 55   | 33   | 19   | 113  | 67   | 53   |
| WHITING POUT (BIB)       | 23   | 16   | 13   | 14   | 14   | 5    | 4    | 29   | 43   | 3    |

## Annex 8 g) Abundance of fish species (per hour fishing) in roundfish area 7 per year.

|                          | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
|--------------------------|------|------|------|------|------|------|------|------|------|------|
| AMERICAN PLAICE (LR DAB) | 27   | 28   |      | 73   |      |      | 184  | 75   | 200  | 63   |
| ANGLERFISH (MONK)        |      | 1    |      |      |      |      | 3    | 1    | 2    | 1    |
| BRILL                    |      |      |      | 1    |      |      | 1    | 1    | 1    | 1    |
| COD                      | 1    | 3    |      | 2    |      |      | 101  | 15   | 18   | 3    |
| COMMON DRAGONET          |      |      |      |      |      |      | 6    | 1    | 11   | 9    |
| DAB                      | 2799 | 1532 |      | 3382 |      |      | 1646 | 467  | 1622 | 574  |
| EUROPEAN PLAICE          | 871  | 692  |      | 286  |      |      | 200  | 291  | 644  | 215  |
| FLOUNDER (EUROPEAN)      | 7    | 3    |      | 1    |      |      | 6    | 2    | 1    | 1    |
| GREY GURNARD             | 110  | 86   |      | 92   |      |      | 84   | 34   | 111  | 63   |
| HADDOCK                  |      |      |      |      |      |      | 3    | 5    | 2    | 5    |
| LEMON SOLE               | 8    | 3    |      | 1    |      |      | 10   | 9    | 8    | 2    |
| LESSER SPOTTED DOGFISH   |      |      |      |      |      |      |      |      |      |      |
| LESSER WEEVER FISH       |      |      |      | 5    |      |      |      |      |      | 1    |
| POGGE (ARMED BULLHEAD)   | 35   | 52   |      | 84   |      |      | 27   | 9    | 25   | 4    |

|                    | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
|--------------------|------|------|------|------|------|------|------|------|------|------|
| POOR COD           |      |      |      |      |      |      |      | 1    |      |      |
| SCALD FISH         | 5    | 18   |      | 21   |      |      |      |      | 4    | 3    |
| SOLE (DOVER SOLE)  | 16   | 12   |      | 9    |      |      | 4    | 1    | 7    | 2    |
| SOLENETTE          | 5    | 3    |      | 24   |      |      | 2    | 1    | 1    | 1    |
| TUB GURNARD        | 3    |      |      | 2    |      |      | 5    | 6    | 3    | 1    |
| TURBOT             | 2    | 1    |      | 1    |      |      | 1    | 1    | 1    | 1    |
| WHITING            | 659  | 152  |      | 89   |      |      | 11   | 2    | 9    | 9    |
| WHITING POUT (BIB) | 1    |      |      |      |      |      |      |      |      |      |

|                          | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
|--------------------------|------|------|------|------|------|------|------|------|------|------|
| AMERICAN PLAICE (LR DAB) | 116  | 88   | 126  | 70   | 63   | 49   | 47   | 10   | 24   | 32   |
| ANGLERFISH (MONK)        | 2    | 1    | 1    | 1    | 1    | 1    | 1    |      | 1    | 1    |
| BRILL                    | 1    |      |      | 1    | 1    | 1    |      | 1    | 1    | 1    |
| COD                      | 15   | 7    | 7    | 17   | 3    | 4    | 2    | 4    | 1    | 1    |
| COMMON DRAGONET          | 7    | 3    | 5    | 33   | 28   | 24   | 17   | 4    | 31   | 17   |
| DAB                      | 2849 | 649  | 473  | 742  | 732  | 723  | 372  | 72   | 541  | 552  |
| EUROPEAN PLAICE          | 671  | 89   | 92   | 155  | 145  | 278  | 102  | 31   | 309  | 196  |
| FLOUNDER (EUROPEAN)      | 1    |      |      | 1    | 1    | 1    |      | 1    | 2    | 1    |
| GREY GURNARD             | 251  | 51   | 36   | 27   | 27   | 95   | 44   | 15   | 40   | 29   |
| HADDOCK                  | 46   | 13   | 2    | 4    | 3    | 8    | 3    | 1    | 1    | 3    |
| LEMON SOLE               | 7    | 8    | 10   | 10   | 7    | 6    | 2    | 2    | 7    | 7    |
| LESSER SPOTTED DOGFISH   |      |      |      |      |      |      |      |      | 1    |      |
| LESSER WEEVER FISH       |      |      | 1    | 1    |      |      |      | 1    | 1    | 1    |
| POGGE (ARMED BULLHEAD)   | 24   | 5    | 2    | 13   | 11   | 5    | 3    | 1    | 13   | 9    |
| POOR COD                 |      |      |      |      |      |      |      |      |      |      |
| SCALD FISH               | 54   | 15   | 10   | 38   | 57   | 38   | 8    | 4    | 42   | 39   |
| SOLE (DOVER SOLE)        | 10   | 2    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| SOLENETTE                | 27   | 13   | 14   | 168  | 211  | 50   | 3    | 1    | 198  | 117  |
| TUB GURNARD              | 2    | 1    | 1    | 1    | 1    | 2    | 1    | 1    | 1    | 1    |
| TURBOT                   | 4    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| WHITING                  | 43   | 153  | 25   | 12   | 10   | 7    | 4    | 1    | 12   |      |
| WHITING POUT (BIB)       |      |      |      |      |      |      |      |      |      |      |

### Annex 9: Abundance (n/hour) of 13 epifauna species for the offshore surveys by roundfish area or Subdivision

Annex 9 a) Abundance of epifauna species (per hour fishing) in roundfish area 1 per year

|                         | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
|-------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Aphrodita aculeata      | 84   | 20   | 242  | 52   | 79   | 154  | 82   | 46   | 52   | 93   | 40   | 66   |
| Asterias rubens         | 420  | 385  | 83   | 127  | 213  | 1080 | 16   | 23   | 10   | 20   | 74   | 885  |
| Astropecten irregularis | 183  | 184  | 2846 | 1018 | 2853 | 9776 | 160  | 402  | 2292 | 948  | 447  | 308  |
| Buccinum undatum        | 8    | 24   | 18   | 10   | 50   | 220  | 26   | 41   | 40   | 48   | 99   | 60   |
| Cancer pagurus          |      |      |      |      |      | 16   |      |      |      | 8    | 6    |      |
| Corystes cassivelaunus  |      |      |      |      |      |      |      |      |      | 4    |      |      |
| Echinocardium sp.       | 1920 | 2    | 88   | 20   | 46   | 63   | 10   |      |      | 16   |      |      |
| Liocarcinus depurator   | 96   |      | 107  | 26   | 113  | 109  | 88   | 27   | 138  | 96   | 20   | 152  |
| Liocarcinus sp.         | 138  | 116  | 56   | 11   | 67   | 42   | 20   | 48   | 23   | 96   | 33   | 125  |
| Nephrops norvegicus     | 12   |      | 102  | 21   | 69   | 571  | 16   | 8    | 90   | 54   |      |      |
| Ophiothrix fragilis     |      |      |      |      | 422  | 94   |      | 33   |      |      | 4    |      |
| Ophiura sp.             | 30   | 944  | 142  | 57   | 98   | 154  | 14   | 36   | 32   | 318  | 373  | 229  |
| Pagurus sp.             | 84   | 536  | 52   | 63   | 326  | 664  | 62   | 232  | 152  | 336  | 556  | 512  |

### Annex 9 b) Abundance of epifauna species (per hour fishing) in roundfish area 2 per year

|                         | 1996 | 1997  | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008  | 2009  |
|-------------------------|------|-------|------|------|------|------|------|------|------|------|------|------|-------|-------|
| Aphrodita aculeata      | 171  | 126   | 75   | 98   | 71   | 76   | 224  | 100  | 110  | 93   | 76   | 156  | 97    | 39    |
| Asterias rubens         | 8340 | 31310 | 87   | 385  | 702  | 366  | 581  | 550  | 745  | 809  | 764  | 735  | 1031  | 904   |
| Astropecten irregularis | 6581 | 2605  | 575  | 2051 | 2984 | 1874 | 1851 | 1757 | 3428 | 3456 | 5379 | 6785 | 13503 | 10634 |
| Buccinum undatum        | 668  | 29    | 99   | 125  | 101  | 104  | 164  | 121  | 241  | 373  | 335  | 364  | 458   | 544   |
| Cancer pagurus          | 10   | 10    |      |      | 2    |      | 6    | 12   | 12   | 5    | 24   | 24   | 13    | 12    |
| Corystes cassivelaunus  | 504  | 364   | 2    | 22   | 28   | 9    | 28   | 27   | 94   | 53   | 38   | 39   | 44    | 83    |
| Echinocardium sp.       | 578  | 141   | 57   | 161  | 114  | 155  | 145  | 71   | 458  | 391  | 139  | 194  | 275   | 602   |
| Liocarcinus depurator   |      |       | 194  | 230  | 11   | 222  | 493  | 103  | 268  | 341  | 286  | 144  | 397   | 517   |
| Liocarcinus sp.         | 485  | 3134  | 90   | 262  | 153  | 47   | 201  | 56   | 131  | 184  | 314  | 294  | 120   | 394   |
| Nephrops norvegicus     |      | 24    |      |      |      | 59   | 50   | 12   | 19   | 4    | 4    | 5    | 12    | 4     |
| Ophiothrix fragilis     |      |       | 251  | 2109 | 438  | 104  | 1523 | 703  | 12   | 163  | 76   | 64   | 72    | 16    |
| Ophiura sp.             | 8557 | 2100  | 87   | 232  | 95   | 43   | 121  | 49   | 60   | 32   | 41   | 53   | 38    | 80    |
| Pagurus sp.             | 247  | 87    | 209  | 196  | 110  | 126  | 186  | 243  | 314  | 334  | 490  | 907  | 888   | 909   |

|                         | 1996 | 1997  | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
|-------------------------|------|-------|------|------|------|------|------|------|------|------|------|------|------|------|
| Aphrodita aculeata      | 140  | 552   | 120  | 47   | 86   | 56   | 84   | 68   | 128  | 105  | 72   | 56   | 106  | 73   |
| Asterias rubens         | 4541 | 25829 | 668  | 942  | 607  | 903  | 4998 | 2692 | 189  | 359  | 877  | 279  | 1119 | 591  |
| Astropecten irregularis | 4784 |       | 66   | 245  | 294  | 384  | 460  | 720  | 191  | 653  | 876  | 184  | 195  | 208  |
| Buccinum undatum        | 216  | 3200  | 64   | 28   | 21   | 14   | 54   | 63   | 70   | 53   | 27   | 49   | 157  | 135  |
| Cancer pagurus          | 7    | 314   | 7    | 3    | 4    | 3    | 48   | 52   | 13   | 10   | 32   | 16   | 12   | 10   |
| Corystes cassivelaunus  |      |       |      | 4    |      |      |      |      |      | 16   |      |      |      |      |
| Echinocardium sp.       | 3984 |       | 81   | 34   | 31   | 58   | 368  | 16   | 10   | 16   | 418  | 331  |      |      |
| Liocarcinus depurator   |      |       | 36   | 33   | 110  | 82   | 115  | 656  | 661  | 426  | 701  | 229  | 229  | 186  |
| Liocarcinus sp.         | 483  | 9739  | 121  | 227  | 62   | 35   | 235  | 273  | 606  | 370  | 168  | 138  | 228  | 229  |
| Nephrops norvegicus     |      |       | 76   | 193  | 132  | 297  | 39   | 1170 | 131  | 1032 | 512  | 118  |      | 326  |
| Ophiothrix fragilis     |      |       | 84   | 9    | 60   | 11   | 1808 | 2837 | 20   | 11   | 48   | 21   | 159  | 34   |
| Ophiura sp.             | 496  | 26123 | 118  | 322  | 62   | 215  | 846  | 120  | 207  | 260  | 226  | 290  | 268  | 383  |
| Pagurus sp.             | 72   | 768   | 307  | 395  | 147  | 69   | 195  | 571  | 429  | 277  | 213  | 584  | 953  | 681  |

Annex 9 c) Abundance of epifauna species (per hour fishing) in roundfish area 3 per year

|                         | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996  | 1997  | 1998 | 1999 |
|-------------------------|------|------|------|------|------|------|-------|-------|------|------|
| Aphrodita aculeata      |      |      |      |      |      |      | 924   |       | 40   | 75   |
| Asterias rubens         |      |      |      |      |      |      | 10648 | 12455 | 210  | 411  |
| Astropecten irregularis |      |      |      |      |      |      | 728   | 56    | 178  | 773  |
| Buccinum undatum        |      |      |      |      |      |      | 96    |       | 48   | 29   |
| Cancer pagurus          | 232  |      |      |      |      |      | 3     | 5     | 29   | 9    |
| Corystes cassivelaunus  |      |      |      |      |      |      |       |       | 22   | 25   |
| Echinocardium sp.       |      |      |      |      |      |      | 1280  |       | 47   | 100  |
| Liocarcinus depurator   |      |      |      |      |      |      |       |       |      |      |
| Liocarcinus sp.         |      |      |      |      |      |      | 2566  | 2137  | 175  | 822  |
| Nephrops norvegicus     |      |      |      |      |      |      | 16    |       |      |      |
| Ophiothrix fragilis     |      |      |      |      |      |      |       |       | 49   | 19   |
| Ophiura sp.             |      |      |      |      |      |      | 264   | 744   | 59   | 69   |
| Pagurus sp.             |      |      |      |      |      |      | 80    | 136   | 94   | 102  |

Annex 9 d) Abundance of epifauna species (per hour fishing) in roundfish area 4 per year

|                         | 2000  | 2001 | 2002 | 2003 | 2004 | 2005 | 2006  | 2007 | 2008 | 2009 |
|-------------------------|-------|------|------|------|------|------|-------|------|------|------|
| Aphrodita aculeata      | 115   | 65   | 136  | 38   | 80   | 81   | 82    | 86   | 158  | 115  |
| Asterias rubens         | 590   | 186  | 885  | 583  | 168  | 1098 | 355   | 1219 | 1717 | 1689 |
| Astropecten irregularis | 1072  | 218  | 578  | 687  | 2445 | 1457 | 2281  | 1682 | 4242 | 1567 |
| Buccinum undatum        | 763   | 24   | 169  | 62   | 22   | 86   | 94    | 178  | 66   | 106  |
| Cancer pagurus          | 18    | 11   | 22   | 14   | 13   | 40   | 12    | 12   | 19   | 23   |
| Corystes cassivelaunus  | 40    | 23   | 26   | 65   | 99   | 122  | 255   | 34   | 176  | 29   |
| Echinocardium sp.       | 12    | 8    | 16   |      | 50   | 225  | 28    | 8    |      |      |
| Liocarcinus depurator   |       |      | 330  | 68   | 423  | 270  | 302   | 403  | 125  | 76   |
| Liocarcinus sp.         | 529   | 108  | 542  | 220  | 1136 | 1143 | 601   | 1438 | 392  | 933  |
| Nephrops norvegicus     | 6     |      | 16   | 32   | 4    | 4    |       | 4    |      | 4    |
| Ophiothrix fragilis     | 38507 | 11   | 373  | 61   | 276  | 133  | 94804 | 540  | 696  | 17   |
| Ophiura sp.             | 101   | 35   | 259  | 58   | 121  | 46   | 70    | 306  | 360  | 148  |
| Pagurus sp.             | 220   | 74   | 241  | 221  | 387  | 580  | 366   | 437  | 765  | 341  |

|                         | 1990 | 1991  | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
|-------------------------|------|-------|------|------|------|------|------|------|------|------|
| Aphrodita aculeata      | 48   |       | 16   | 24   |      |      | 76   | 39   |      |      |
| Asterias rubens         | 32   | 10295 | 1049 | 97   | 872  | 12   | 856  | 3268 | 637  | 1939 |
| Astropecten irregularis |      | 43    | 2488 |      |      |      | 16   | 128  | 112  | 184  |
| Buccinum undatum        | 16   | 245   | 629  | 142  | 32   |      | 48   | 96   | 3    | 534  |
| Cancer pagurus          | 48   | 12    | 7    | 7    | 1    | 569  | 34   | 12   | 103  | 54   |
| Corystes cassivelaunus  |      |       | 505  | 51   |      |      |      |      | 6    | 16   |
| Echinocardium sp.       | 72   | 2609  | 6300 | 53   | 392  |      | 100  | 210  | 2    |      |
| Liocarcinus depurator   |      |       |      |      |      |      |      |      | 69   | 8    |
| Liocarcinus sp.         | 208  | 1746  | 775  | 3268 | 784  | 256  | 3118 | 2032 | 839  | 1555 |
| Nephrops norvegicus     |      |       | 5    |      |      |      | 16   | 1    |      | 18   |
| Ophiothrix fragilis     |      |       |      |      |      |      |      |      | 32   | 64   |
| Ophiura sp.             | 160  | 536   | 915  | 121  | 416  | 112  | 251  | 90   | 20   | 465  |
| Pagurus sp.             | 648  | 2244  | 769  | 791  | 472  | 360  | 448  | 1096 | 57   | 1356 |

Annex 9 e) Abundance of epifauna species (per hour fishing) in roundfish area 5 per year

|                         | 2000 | 2001 | 2002  | 2003   | 2004 | 2005  | 2006  | 2007 | 2008 | 2009 |
|-------------------------|------|------|-------|--------|------|-------|-------|------|------|------|
| Aphrodita aculeata      | 176  | 2    | 103   | 36     | 202  | 866   | 205   | 241  | 6    |      |
| Asterias rubens         | 4697 | 4886 | 1405  | 1064   | 821  | 2069  | 1423  | 3743 | 408  | 5152 |
| Astropecten irregularis | 97   |      | 242   | 581    | 80   | 823   | 1956  | 4648 | 40   | 160  |
| Buccinum undatum        | 60   | 6    | 67    | 44     | 158  | 588   | 780   | 164  | 11   | 96   |
| Cancer pagurus          | 276  | 753  | 132   | 18     | 69   | 19    | 82    | 35   | 9    | 4    |
| Corystes cassivelaunus  | 41   | 14   | 26    | 22     | 49   | 85    | 62    | 57   | 58   | 46   |
| Echinocardium sp.       | 64   | 178  | 832   | 583    | 1761 | 1785  | 1141  | 5938 |      | 37   |
| Liocarcinus depurator   | 2632 | 4510 | 211   | 421    | 202  | 496   | 771   | 1373 | 30   | 67   |
| Liocarcinus sp.         | 2981 | 2234 | 3004  | 2706   | 3465 | 45443 | 7454  | 3256 | 512  | 3720 |
| Nephrops norvegicus     |      |      |       |        |      | 431   | 490   | 2320 |      | 0    |
| Ophiothrix fragilis     | 165  | 8    | 477   | 303109 | 8    | 117   | 228   | 187  | 2    |      |
| Ophiura sp.             | 431  | 53   | 13969 | 593    | 420  | 1482  | 47113 | 854  | 193  | 926  |
| Pagurus sp.             | 320  | 43   | 199   | 138    | 147  | 373   | 630   | 634  | 228  | 243  |

|                         | 1990 | 1991 | 1992 | 1993 | 1994  | 1995 | 1996  | 1997  | 1998  | 1999  |
|-------------------------|------|------|------|------|-------|------|-------|-------|-------|-------|
| Aphrodita aculeata      | 212  | 241  | 541  | 291  | 433   | 196  | 604   | 428   | 190   | 306   |
| Asterias rubens         | 4009 | 7396 | 7529 | 4964 | 2852  | 3912 | 3929  | 4618  | 14469 | 24057 |
| Astropecten irregularis | 4001 | 3407 | 2651 | 2268 | 2127  | 2023 | 3510  | 995   | 3099  | 7325  |
| Buccinum undatum        | 77   | 113  | 68   | 67   | 248   | 66   | 130   | 17    | 942   | 213   |
| Cancer pagurus          | 2    | 2    | 1    | 6    | 2     | 4    | 60    | 4     | 25    | 14    |
| Corystes cassivelaunus  | 134  | 206  | 275  | 130  | 427   | 188  | 720   | 335   | 185   | 434   |
| Echinocardium sp.       | 2614 | 2546 | 1296 | 2270 | 1398  | 952  | 1548  | 10716 | 141   | 5413  |
| Liocarcinus depurator   |      |      |      |      |       |      |       |       |       |       |
| Liocarcinus sp.         | 1777 | 2391 | 3715 | 3106 | 4211  | 4971 | 2129  | 2471  | 4721  | 8487  |
| Nephrops norvegicus     | 20   | 132  | 214  | 69   | 34    | 2    | 45    | 265   | 62    | 53    |
| Ophiothrix fragilis     | 96   | 99   | 36   | 16   | 16    | 40   | 112   |       | 50    | 220   |
| Ophiura sp.             | 574  | 9370 | 6487 | 4350 | 14599 | 698  | 22189 | 18127 | 4658  | 11772 |
| Pagurus sp.             | 327  | 293  | 285  | 282  | 509   | 168  | 456   | 287   | 704   | 431   |

Annex 9 f) Abundance of epifauna species (per hour fishing) in roundfish area 6 per year

|                         | 2000  | 2001 | 2002  | 2003  | 2004  | 2005  | 2006 | 2007 | 2008 | 2009 |
|-------------------------|-------|------|-------|-------|-------|-------|------|------|------|------|
| Aphrodita aculeata      | 375   | 329  | 281   | 453   | 280   | 331   | 495  | 51   | 121  | 156  |
| Asterias rubens         | 10073 | 251  | 8981  | 7547  | 7211  | 5093  | 4012 | 5903 | 6441 | 4195 |
| Astropecten irregularis | 4878  | 1508 | 13182 | 12222 | 10419 | 9274  | 8490 | 7222 | 9457 | ###  |
| Buccinum undatum        | 237   | 14   | 31    | 109   | 135   | 28    | 50   | 863  | 440  | 410  |
| Cancer pagurus          | 14    | 3    | 73    | 26    | 18    | 23    | 36   | 28   | 23   | 14   |
| Corystes cassivelaunus  | 254   | 94   | 214   | 600   | 436   | 496   | 348  | 160  | 378  | 265  |
| Echinocardium sp.       | 526   | 186  | 1343  | 2810  | 1286  | 587   | 566  | 486  | 283  | 2069 |
| Liocarcinus depurator   | 114   | 95   | 184   | 684   | 445   | 330   | 627  | 223  | 383  | 244  |
| Liocarcinus sp.         | 3286  | 540  | 8604  | 14438 | 13200 | 32050 | 5762 | 9549 | 6389 | 7505 |
| Nephrops norvegicus     | 1553  | 8    | 175   | 114   | 171   | 60    | 869  | 340  | 49   | 110  |
| Ophiothrix fragilis     | 70    | 116  | 112   | 52    | 768   | 90    | 111  | 36   | 102  | 175  |
| Ophiura sp.             | 5815  | 217  | 1870  | 1221  | 1232  | 1037  | 2679 | 1983 | 3037 | 3353 |
| Pagurus sp.             | 440   | 58   | 317   | 382   | 227   | 269   | 210  | 457  | 542  | 522  |

|                         | 1990  | 1991  | 1992 | 1993 | 1994 | 1995 | 1996 | 1997  | 1998 | 1999 |
|-------------------------|-------|-------|------|------|------|------|------|-------|------|------|
| Aphrodita aculeata      | 320   | 371   |      | 304  |      |      | 319  | 1     | 41   | 267  |
| Asterias rubens         | 3404  | 1948  |      | 1549 |      |      | 659  | 10155 | 138  | 1129 |
| Astropecten irregularis | 2265  | 4679  |      | 1934 |      |      | 1967 | 48    | 2761 | 2987 |
| Buccinum undatum        | 48    |       |      | 6    |      |      | 11   | 232   | 65   | 219  |
| Cancer pagurus          | 1     | 129   |      | 4    |      |      | 4    | 7     | 4    | 7    |
| Corystes cassivelaunus  | 64    | 443   |      | 81   |      |      | 4376 | 14    | 9    | 86   |
| Echinocardium sp.       | 41593 | 44889 |      | 7294 |      |      | 1111 | 4     | 9    | 1120 |
| Liocarcinus depurator   |       |       |      |      |      |      |      |       |      |      |
| Liocarcinus sp.         | 484   | 255   |      | 797  |      |      | 528  | 867   | 198  | 632  |
| Nephrops norvegicus     |       | 1     |      | 5    |      |      | 15   |       |      | 126  |
| Ophiothrix fragilis     | 192   |       |      | 16   |      |      |      |       | 188  | 115  |
| Ophiura sp.             | 1333  | 2571  |      | 48   |      |      | 872  | 2240  | 342  | 210  |
| Pagurus sp.             | 201   | 238   |      | 203  |      |      | 213  | 187   | 151  | 119  |

Annex 9 g) Abundance of epifauna species (per hour fishing) in roundfish area 7 per year

|                         | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006  | 2007 | 2008 | 2009  |
|-------------------------|------|------|------|------|------|------|-------|------|------|-------|
| Aphrodita aculeata      | 174  | 281  | 407  | 166  | 369  | 58   | 380   | 147  | 75   | 80    |
| Asterias rubens         | 425  | 195  | 475  | 2347 | 523  | 1073 | 466   | 459  | 612  | 3228  |
| Astropecten irregularis | 2656 | 1323 | 2379 | 1916 | 2388 | 4142 | 11348 | 6853 | 8831 | 8162  |
| Buccinum undatum        | 209  | 89   | 357  | 261  | 166  | 223  | 240   | 222  | 109  | 139   |
| Cancer pagurus          | 4    | 12   | 12   | 4    | 4    | 11   | 3     | 8    | 13   | 8     |
| Corystes cassivelaunus  | 223  | 97   | 102  | 22   | 26   | 72   | 118   | 53   | 27   | 117   |
| Echinocardium sp.       | 924  | 154  | 566  | 219  | 1774 | 656  | 501   | 333  | 134  | 10315 |
| Liocarcinus depurator   | 106  | 69   | 207  | 300  | 509  | 166  | 68    | 325  | 452  | 396   |
| Liocarcinus sp.         | 262  | 101  | 182  | 175  | 392  | 1268 | 366   | 823  | 813  | 1127  |
| Nephrops norvegicus     | 14   | 58   | 44   | 230  | 357  | 107  | 9     | 213  | 289  | 386   |
| Ophiothrix fragilis     | 10   | 56   | 4    | 21   | 16   | 28   |       |      |      |       |
| Ophiura sp.             | 239  | 112  | 238  | 274  | 278  | 66   | 27    | 98   | 104  | 49    |
| Pagurus sp.             | 82   | 249  | 400  | 745  | 469  | 209  | 245   | 384  | 447  | 543   |

|                         | 2004  | 2005  | 2006  | 2007  | 2008  | 2009  |
|-------------------------|-------|-------|-------|-------|-------|-------|
| Aphrodita aculeata      | 1136  | 420   | 672   | 644   | 364   | 648   |
| Asterias rubens         | 15060 | 23980 | 22188 | 23268 | 17552 | 19728 |
| Astropecten irregularis | 1696  | 3968  | 1652  | 4844  | 2516  | 1824  |
| Buccinum undatum        | 1148  | 1332  | 564   | 1396  | 2372  | 420   |
| Cancer pagurus          | 180   | 124   | 156   | 104   | 68    | 244   |
| Corystes cassivelaunus  |       | 16    | 4     |       | 64    | 12    |
| Echinocardium sp.       | 108   | 236   | 236   | 364   | 408   | 764   |
| Liocarcinus depurator   | 948   | 592   | 1168  | 304   | 1492  | 880   |
| Liocarcinus sp.         | 1888  | 1804  | 2804  | 3980  | 3096  | 6168  |
| Nephrops norvegicus     | 628   | 428   | 1032  | 504   | 488   | 728   |
| Ophiothrix fragilis     | 3492  | 16    | 224   | 224   | 80    | 1124  |
| Ophiura sp.             | 1372  | 11256 | 2688  | 14392 | 25452 | 8028  |
| Pagurus sp.             | 4176  | 1412  | 4664  | 4272  | 12368 | 2024  |

### Annex 9 h) Abundance of epifauna species (per hour fishing) in ICES Subdivision VIIa per year

#### Annex 9 i) Abundance of epifauna species (per hour fishing) in ICES Subdivision VIId per year

|                        | 2004  | 2005   | 2006    | 2007   | 2008  | 2009  |
|------------------------|-------|--------|---------|--------|-------|-------|
| Aphrodita aculeata     | 352   | 1492   | 148     | 668    | 452   | 836   |
| Asterias rubens        | 18672 | 7452   | 8592    | 69460  | 63520 | 36824 |
| Buccinum undatum       | 1524  | 544    | 148     | 268    | 1236  | 1268  |
| Cancer pagurus         | 16    | 4      | 20      | 28     | 8     | 8     |
| Corystes cassivelaunus | 0     | 4      | 0       | 8      | 4     | 12    |
| Echinocardium sp.      | 28    | 88     | 145600  | 508    | 52    | 128   |
| Liocarcinus depurator  | 432   | 80     | 88      | 4240   | 10752 | 2756  |
| Liocarcinus sp.        | 10248 | 9404   | 11888   | 4684   | 12376 | 12336 |
| Ophiothrix fragilis    | 33656 | 133520 | 1073120 | 104204 | 1304  | 0     |
| Ophiura sp.            | 2844  | 12     | 288     | 768    | 2176  | 1240  |
| Pagurus sp.            | 280   | 728    | 512     | 92     | 2484  | 1332  |

### Annex 9 j) Abundance of epifauna species (per hour fishing) in ICES Subdivision VIIe per year

|                         | 2004 | 2005 | 2006 | 2007 | 2008  | 2009  |
|-------------------------|------|------|------|------|-------|-------|
| Aphrodite aculeata      | 104  | 8    | 128  | 60   | 72    | 252   |
| Asterias rubens         | 1076 | 60   | 2088 | 512  | 30224 | 27784 |
| Astropecten irregularis | 36   | 48   | 164  | 540  | 276   | 204   |
| Buccinum undatum        | 2032 | 1460 | 680  | 44   | 3136  | 380   |
| Cancer pagurus          | 28   | 0    | 4    | 8    | 0     | 44    |
| Corystes cassivelaunus  | 0    | 4    | 12   | 0    | 4     | 4     |
| Echinocardium sp.       | 8    | 48   | 80   | 4    | 24    | 28    |
| Liocarcinus depurator   | 536  | 0    | 0    | 0    | 0     | 0     |
| Liocarcinus sp.         | 3176 | 556  | 1504 | 1864 | 7100  | 832   |
| Ophiothrix fragilis     | 0    | 0    | 12   | 0    | 0     | 0     |
| Ophiura sp.             | 168  | 40   | 384  | 224  | 6420  | 2172  |
| Pagurus sp.             | 740  | 44   | 700  | 324  | 424   | 228   |

| Species                 | DAY | NIGHT |
|-------------------------|-----|-------|
| Aphrodita aculeata      | N/A | N/A   |
| Asterias rubens         | N/A | N/A   |
| Astropecten irregularis | N/A | N/A   |
| Buccinum undatum        | 22  | 15    |
| Cancer pagurus          | N/A | N/A   |
| Corystes cassivelaunus  | N/A | N/A   |
| Echicardium sp.         | N/A | N/A   |
| Liocarcinus depurator   | N/A | N/A   |
| Liocarcinus sp.         | N/A | N/A   |
| Nephrops norvegicus     | 74  | 60    |
| Ophiotrix fragilis      | N/A | N/A   |
| Ophiura sp.             | N/A | N/A   |
| Pagurus sp.             | N/A | N/A   |

Annex 9 k) Abundance of epifauna species (per hour fishing) in ICES Subdivision VIIIa,b per year

# Annex 10: Population abundance indices for sole and plaice, offshore surveys

Annex 10.1: Catch rate of sole from Netherlands and UK surveys in the North Sea and VII d, a, e, f and g.

a) Netherlands: sole (N.hr^-1/8m trawl) North Sea (IV) RV "Isis".

| Year/Age | 0     | 1       | 2      | 3      | 4     | 5     | 6     | 7     | 8     | 9     | 10+   |
|----------|-------|---------|--------|--------|-------|-------|-------|-------|-------|-------|-------|
| 1985     | 0.000 | 7.031   | 7.121  | 3.695  | 1.654 | 0.688 | 0.276 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1986     | 0.000 | 7.168   | 5.183  | 1.596  | 0.987 | 0.623 | 0.171 | 0.158 | 0.000 | 0.018 | 0.052 |
| 1987     | 0.041 | 6.973   | 12.548 | 1.834  | 0.563 | 0.583 | 0.222 | 0.228 | 0.058 | 0.000 | 0.022 |
| 1988     | 0.000 | 83.111  | 12.512 | 2.684  | 1.032 | 0.123 | 0.149 | 0.132 | 0.103 | 0.014 | 0.126 |
| 1989     | 0.490 | 9.015   | 68.084 | 4.191  | 4.096 | 0.677 | 0.128 | 0.242 | 0.000 | 0.051 | 0.034 |
| 1990     | 0.019 | 37.839  | 24.487 | 21.789 | 0.778 | 1.081 | 0.770 | 0.120 | 0.115 | 0.025 | 0.048 |
| 1991     | 0.815 | 4.035   | 28.841 | 6.872  | 6.453 | 0.136 | 0.135 | 0.063 | 0.045 | 0.013 | 0.059 |
| 1992     | 0.024 | 81.625  | 22.284 | 10.449 | 2.529 | 3.018 | 0.090 | 0.162 | 0.078 | 0.020 | 0.077 |
| 1993     | 0.018 | 6.350   | 42.345 | 1.338  | 5.516 | 3.371 | 6.199 | 0.023 | 0.084 | 0.053 | 0.061 |
| 1994     | 2.172 | 7.660   | 7.121  | 19.743 | 0.124 | 1.636 | 0.088 | 0.983 | 0.009 | 0.000 | 0.008 |
| 1995     | 0.429 | 28.125  | 8.458  | 6.268  | 5.129 | 0.363 | 0.805 | 0.316 | 0.734 | 0.039 | 0.036 |
| 1996     | 0.161 | 3.975   | 7.634  | 1.955  | 1.785 | 2.586 | 0.326 | 0.393 | 0.052 | 0.264 | 0.055 |
| 1997     | 0.542 | 169.343 | 4.919  | 2.985  | 0.739 | 0.710 | 0.380 | 0.096 | 0.035 | 0.042 | 0.055 |
| 1998     | 0.371 | 17.108  | 27.422 | 1.862  | 1.242 | 0.073 | 0.015 | 0.391 | 0.000 | 0.000 | 0.000 |
| 1999     | 6.338 | 11.960  | 18.363 | 15.783 | 0.584 | 1.920 | 0.310 | 0.218 | 0.604 | 0.003 | 0.310 |
| 2000     | 0.190 | 14.594  | 6.144  | 4.045  | 1.483 | 0.263 | 0.141 | 0.060 | 0.007 | 0.150 | 0.069 |
| 2001     | 9.200 | 7.998   | 9.963  | 2.156  | 1.564 | 0.684 | 0.074 | 0.037 | 0.028 | 0.000 | 0.163 |
| 2002     | 5.908 | 20.989  | 4.182  | 3.428  | 0.886 | 0.363 | 0.361 | 0.032 | 0.069 | 0.000 | 0.052 |
| 2003     | 0.321 | 10.507  | 9.947  | 2.459  | 1.670 | 0.360 | 0.187 | 0.319 | 0.000 | 0.020 | 0.000 |
| 2004     | 0.685 | 4.192   | 4.354  | 3.553  | 0.644 | 0.626 | 0.118 | 0.070 | 0.073 | 0.000 | 0.012 |
| 2005     | 0.083 | 5.534   | 3.395  | 2.377  | 1.303 | 0.167 | 0.171 | 0.077 | 0.047 | 0.000 | 0.018 |
| 2006     | 0.060 | 17.089  | 2.332  | 0.278  | 0.709 | 0.479 | 0.151 | 0.088 | 0.000 | 0.007 | 0.030 |
| 2007     | 0.714 | 7.498   | 19.504 | 1.464  | 0.565 | 0.315 | 0.537 | 0.031 | 0.009 | 0.000 | 0.024 |
| 2008     | 3.092 | 15.247  | 9.062  | 12.298 | 1.313 | 0.222 | 0.279 | 0.202 | 0.028 | 0.047 | 0.000 |
| 2009     | 4.911 | 15.950  | 4.999  | 2.858  | 4.791 | 0.252 | 0.124 | 0.272 | 0.079 | 0.000 | 0.000 |

#### b) United Kingdom: sole (N.hr^-1/8m trawl) Eastern Channel (VIId).

| YEAR/AGE | 0 | 1    | 2    | 3    | 4   | 5   | 6   | 7   | 8   | 9   | 10+ |
|----------|---|------|------|------|-----|-----|-----|-----|-----|-----|-----|
| 1988     |   | 8.2  | 14.2 | 9.9  | 0.8 | 1.3 | 0.6 | 0.1 | 0.1 | 0.2 | 0.2 |
| 1989     |   | 2.6  | 15.4 | 3.4  | 1.7 | 0.6 | 0.2 | 0.2 | 0.0 | 0.0 | 0.7 |
| 1990     |   | 12.1 | 3.7  | 3.4  | 0.7 | 0.8 | 0.2 | 0.1 | 0.2 | 0.0 | 0.0 |
| 1991     |   | 8.9  | 22.8 | 2.2  | 2.3 | 0.3 | 0.5 | 0.1 | 0.2 | 0.1 | 0.1 |
| 1992     |   | 1.4  | 12.0 | 10.0 | 0.7 | 1.1 | 0.3 | 0.5 | 0.1 | 0.2 | 0.6 |
| 1993     |   | 0.5  | 17.5 | 8.4  | 7.0 | 0.8 | 1.0 | 0.3 | 0.2 | 0.0 | 0.4 |
| 1994     |   | 4.8  | 3.2  | 8.3  | 3.3 | 3.3 | 0.2 | 0.6 | 0.1 | 0.3 | 0.3 |
| 1995     |   | 3.5  | 10.6 | 1.5  | 2.3 | 1.2 | 1.5 | 0.2 | 0.3 | 0.2 | 0.3 |
| 1996     |   | 3.5  | 7.3  | 3.8  | 0.7 | 1.3 | 0.9 | 1.1 | 0.1 | 0.5 | 0.4 |
| 1997     |   | 19.0 | 7.3  | 3.2  | 1.3 | 0.2 | 0.5 | 0.4 | 0.9 | 0.0 | 0.7 |
| 1998     |   | 2.0  | 21.2 | 2.5  | 1.0 | 0.9 | 0.1 | 0.3 | 0.0 | 0.1 | 0.3 |

| YEAR/AGE | 0 | 1    | 2    | 3    | 4   | 5   | 6   | 7   | 8   | 9   | 10+ |
|----------|---|------|------|------|-----|-----|-----|-----|-----|-----|-----|
| 1999     |   | 28.1 | 9.4  | 13.2 | 2.5 | 1.7 | 1.3 | 0.2 | 0.9 | 1.1 | 0.5 |
| 2000     |   | 10.5 | 22.0 | 4.1  | 4.2 | 1.0 | 0.6 | 0.3 | 0.0 | 0.2 | 1.2 |
| 2001     |   | 9.1  | 21.0 | 8.4  | 1.2 | 1.9 | 0.5 | 0.6 | 0.3 | 0.0 | 1.0 |
| 2002     |   | 31.8 | 11.4 | 5.4  | 3.5 | 0.3 | 0.7 | 0.4 | 0.1 | 0.0 | 0.6 |
| 2003     |   | 6.5  | 28.5 | 4.1  | 2.5 | 1.6 | 0.3 | 0.4 | 0.2 | 0.1 | 0.5 |
| 2004     |   | 7.4  | 8.5  | 7.7  | 1.6 | 1.4 | 1.0 | 0.2 | 0.4 | 0.2 | 0.6 |
| 2005     |   | 25.0 | 5.0  | 2.9  | 3.5 | 1.6 | 1.0 | 0.7 | 0.1 | 0.3 | 0.4 |
| 2006     |   | 6.3  | 29.2 | 2.8  | 2.0 | 1.9 | 0.3 | 0.4 | 0.6 | 0.0 | 0.3 |
| 2007     |   | 2.1  | 21.9 | 12.9 | 1.2 | 0.8 | 1.2 | 0.3 | 0.2 | 0.6 | 1.0 |
| 2008     |   | 2.9  | 6.5  | 7.2  | 4.8 | 0.2 | 0.5 | 0.4 | 0.3 | 0.2 | 0.2 |
| 2009     |   | 30.5 | 13.3 | 5.4  | 4.3 | 3.8 | 0.4 | 0.2 | 0.3 | 0.2 | 0.5 |

### c) United Kingdom: sole (total numbers for 2\*4m beam trawl) Western Channel (VIIe).

| Year/Age | 0 | 1  | 2   | 3   | 4   | 5  | 6  | 7  | 8  | 9  | 10+ | DISTANCE<br>FISHED<br>(KM) |
|----------|---|----|-----|-----|-----|----|----|----|----|----|-----|----------------------------|
| 1989     |   | 5  | 56  | 120 | 107 | 34 | 40 | 17 | 5  | 7  | 12  | 165.66                     |
| 1990     |   | 23 | 52  | 76  | 31  | 24 | 7  | 15 | 3  | 6  | 11  | 175.66                     |
| 1991     |   | 11 | 231 | 79  | 51  | 23 | 21 | 5  | 17 | 4  | 15  | 171.68                     |
| 1992     |   | 5  | 140 | 316 | 44  | 36 | 12 | 7  | 5  | 11 | 11  | 196.60                     |
| 1993     |   | 5  | 54  | 115 | 105 | 14 | 10 | 9  | 3  | 3  | 10  | 189.19                     |
| 1994     |   | 6  | 47  | 106 | 62  | 44 | 5  | 5  | 2  | 3  | 7   | 205.87                     |
| 1995     |   | 14 | 37  | 44  | 42  | 26 | 31 | 4  | 5  | 5  | 13  | 187.15                     |
| 1996     |   | 28 | 112 | 67  | 25  | 32 | 20 | 17 | 3  | 2  | 9   | 184.37                     |
| 1997     |   | 11 | 130 | 126 | 43  | 14 | 16 | 13 | 14 | 5  | 15  | 184.74                     |
| 1998     |   | 11 | 141 | 114 | 76  | 22 | 10 | 14 | 6  | 8  | 11  | 185.49                     |
| 1999     |   | 11 | 97  | 128 | 47  | 23 | 8  | 4  | 4  | 4  | 17  | 187.89                     |
| 2000     |   | 12 | 136 | 70  | 52  | 23 | 16 | 5  | 3  | 5  | 9   | 180.37                     |
| 2001     |   | 9  | 197 | 162 | 52  | 31 | 12 | 12 | 4  | 1  | 7   | 177.98                     |
| 2002     |   | 6  | 37  | 113 | 48  | 27 | 6  | 3  | 2  | 0  | 12  | 179.74                     |
| 2003     |   | 23 | 124 | 78  | 56  | 28 | 6  | 1  | 1  | 2  | 4   | 182.24                     |
| 2004     |   | 16 | 110 | 120 | 24  | 15 | 10 | 16 | 9  | 4  | 4   | 163.99                     |
| 2005     |   | 8  | 110 | 39  | 53  | 12 | 12 | 6  | 2  | 4  | 4   | 186.60                     |
| 2006     |   | 5  | 120 | 95  | 26  | 37 | 10 | 7  | 9  | 0  | 5   | 184.74                     |
| 2007     |   | 7  | 188 | 135 | 50  | 11 | 23 | 3  | 3  | 1  | 4   | 181.02                     |
| 2008     |   | 10 | 85  | 158 | 77  | 40 | 2  | 14 | 3  | 6  | 7   | 174.66                     |
| 2009     |   | 11 | 104 | 126 | 96  | 49 | 13 | 13 | 12 | 1  | 8   | 172.05                     |

### d) United Kingdom: sole (total numbers for 4m beam trawl) Bristol Channel (VIIf).

| Year/Age | 0   | 1   | 2   | 3   | 4  | 5  | 6  | 7 | 8 | 9 | 10+ | DISTANCE<br>FISHED<br>(KM) |
|----------|-----|-----|-----|-----|----|----|----|---|---|---|-----|----------------------------|
| 1988     | 22  | 60  | 242 | 36  | 14 | 4  | 0  | 0 | 0 | 0 | 6   | 74.12                      |
| 1989     | 132 | 204 | 304 | 162 | 18 | 14 | 6  | 4 | 2 | 2 | 4   | 91.91                      |
| 1990     | 21  | 269 | 219 | 35  | 11 | 3  | 5  | 2 | 0 | 0 | 1   | 69.86                      |
| 1991     | 40  | 297 | 638 | 83  | 21 | 18 | 5  | 0 | 3 | 2 | 1   | 123.41                     |
| 1992     | 5   | 493 | 325 | 174 | 37 | 23 | 12 | 1 | 2 | 1 | 5   | 125.08                     |

| Year/Age | 0   | 1    | 2    | 3   | 4   | 5  | 6  | 7  | 8  | 9  | 10+ | DISTANCE<br>FISHED<br>(KM) |
|----------|-----|------|------|-----|-----|----|----|----|----|----|-----|----------------------------|
| 1993     | 3   | 201  | 379  | 51  | 23  | 1  | 2  | 2  | 1  | 1  | 2   | 127.67                     |
| 1994     | 1   | 407  | 473  | 121 | 17  | 9  | 8  | 0  | 0  | 2  | 2   | 120.82                     |
| 1995     | 31  | 142  | 255  | 60  | 13  | 7  | 14 | 1  | 1  | 1  | 4   | 104.14                     |
| 1996     | 3   | 178  | 251  | 64  | 27  | 7  | 3  | 4  | 1  | 3  | 3   | 122.11                     |
| 1997     | 37  | 498  | 207  | 21  | 13  | 14 | 5  | 3  | 6  | 0  | 4   | 116.18                     |
| 1998     | 104 | 885  | 472  | 57  | 11  | 9  | 5  | 2  | 1  | 5  | 5   | 104.69                     |
| 1999     | 29  | 2922 | 297  | 38  | 16  | 7  | 4  | 5  | 1  | 0  | 9   | 117.11                     |
| 2000     | 16  | 1086 | 1608 | 37  | 26  | 6  | 0  | 2  | 1  | 1  | 4   | 105.99                     |
| 2001     | 26  | 449  | 711  | 307 | 23  | 9  | 6  | 2  | 0  | 2  | 8   | 118.22                     |
| 2002     | 9   | 786  | 283  | 151 | 121 | 14 | 7  | 2  | 3  | 0  | 4   | 116.92                     |
| 2003     | 14  | 465  | 628  | 55  | 30  | 56 | 9  | 3  | 3  | 0  | 1   | 111.92                     |
| 2004     | 63  | 862  | 434  | 99  | 15  | 22 | 42 | 4  | 3  | 0  | 5   | 101.92                     |
| 2005     | 44  | 407  | 267  | 38  | 16  | 7  | 5  | 17 | 1  | 2  | 0   | 119.11                     |
| 2006     | 13  | 324  | 238  | 47  | 16  | 8  | 0  | 2  | 12 | 0  | 1   | 120.56                     |
| 2007     | 104 | 424  | 128  | 51  | 16  | 13 | 7  | 3  | 4  | 14 | 3   | 118.59                     |
| 2008     | 6   | 1232 | 124  | 15  | 18  | 7  | 9  | 4  | 3  | 5  | 8   | 118.59                     |
| 2009     | 1   | 604  | 377  | 29  | 8   | 10 | 4  | 3  | 3  | 2  | 11  | 118.59                     |

### e) United Kingdom: sole (total numbers for 4m beam trawl) in Irish Sea (VIIa).

| Year/Age | 0  | 1    | 2    | 3   | 4   | 5   | 6   | 7  | 8  | 9  | 10+ | DISTANCE<br>FISHED<br>(KM) |
|----------|----|------|------|-----|-----|-----|-----|----|----|----|-----|----------------------------|
| 1988     | 2  | 118  | 196  | 180 | 410 | 76  | 40  | 4  | 0  | 4  | 6   | 100.06                     |
| 1989     | 4  | 218  | 304  | 180 | 74  | 284 | 56  | 32 | 8  | 6  | 16  | 129.71                     |
| 1990     | 4  | 1712 | 534  | 122 | 42  | 88  | 194 | 40 | 20 | 6  | 4   | 128.97                     |
| 1991     | 4  | 148  | 1286 | 122 | 26  | 16  | 14  | 55 | 19 | 7  | 4   | 123.78                     |
| 1992     | 2  | 220  | 309  | 657 | 142 | 34  | 22  | 7  | 75 | 17 | 6   | 129.52                     |
| 1993     | 0  | 78   | 320  | 158 | 208 | 28  | 16  | 5  | 14 | 39 | 27  | 131.19                     |
| 1994     | 0  | 62   | 431  | 193 | 95  | 128 | 43  | 10 | 11 | 6  | 36  | 124.89                     |
| 1995     | 24 | 246  | 154  | 253 | 110 | 30  | 67  | 12 | 5  | 5  | 24  | 124.34                     |
| 1996     | 4  | 886  | 126  | 32  | 76  | 46  | 23  | 31 | 8  | 2  | 11  | 127.49                     |
| 1997     | 5  | 1158 | 577  | 72  | 24  | 55  | 27  | 16 | 30 | 7  | 10  | 132.86                     |
| 1998     | 2  | 539  | 716  | 292 | 18  | 6   | 24  | 23 | 5  | 18 | 9   | 129.34                     |
| 1999     | 3  | 385  | 293  | 255 | 203 | 29  | 8   | 26 | 5  | 6  | 21  | 125.26                     |
| 2000     | 0  | 354  | 464  | 147 | 219 | 91  | 13  | 2  | 13 | 6  | 24  | 123.22                     |
| 2001     | 1  | 91   | 284  | 192 | 65  | 96  | 64  | 6  | 3  | 12 | 11  | 127.30                     |
| 2002     | 0  | 205  | 61   | 121 | 126 | 42  | 79  | 49 | 2  | 1  | 19  | 120.26                     |
| 2003     | 0  | 242  | 210  | 51  | 97  | 81  | 40  | 43 | 26 | 1  | 13  | 121.00                     |
| 2004     | 0  | 406  | 240  | 119 | 27  | 77  | 45  | 41 | 17 | 19 | 11  | 113.96                     |
| 2005     | 0  | 53   | 165  | 69  | 25  | 13  | 35  | 25 | 4  | 6  | 17  | 119.70                     |
| 2006     | 0  | 107  | 110  | 90  | 45  | 36  | 9   | 16 | 15 | 10 | 20  | 123.74                     |
| 2007     | 0  | 125  | 93   | 49  | 57  | 41  | 11  | 4  | 6  | 12 | 22  | 126.00                     |
| 2008     | 0  | 126  | 125  | 60  | 21  | 43  | 23  | 6  | 2  | 9  | 17  | 123.30                     |
| 2009     | 0  | 57   | 150  | 68  | 39  | 23  | 30  | 12 | 7  | 1  | 16  | 126.00                     |

Annex10.2. Catch rate of plaice from Netherlands and UK surveys in the North Sea and VII d, a, e, f and g.

| Age  | 0       | 1        | 2       | 3       | 4      | 5     | 6     | 7     | 8     | 9     | 10+   |
|------|---------|----------|---------|---------|--------|-------|-------|-------|-------|-------|-------|
| 1985 | 595.271 | 136.759  | 173.893 | 36.059  | 10.997 | 1.273 | 0.973 | 0.336 | 0.155 | 0.091 | 0.229 |
| 1986 | 9.303   | 667.441  | 131.704 | 50.173  | 9.208  | 3.780 | 0.400 | 0.418 | 0.147 | 0.070 | 0.188 |
| 1987 | 44.126  | 225.822  | 764.186 | 33.841  | 4.880  | 1.842 | 0.607 | 0.252 | 0.134 | 0.078 | 0.186 |
| 1988 | 29.623  | 680.173  | 146.993 | 182.312 | 9.991  | 2.810 | 0.814 | 0.458 | 0.036 | 0.112 | 0.254 |
| 1989 | 31.862  | 467.877  | 319.272 | 38.660  | 47.305 | 5.850 | 0.833 | 0.311 | 0.661 | 0.132 | 0.075 |
| 1990 | 27.000  | 185.344  | 146.071 | 79.339  | 26.351 | 5.469 | 0.758 | 0.189 | 0.383 | 0.239 | 0.198 |
| 1991 | 152.176 | 291.378  | 159.424 | 33.955  | 13.569 | 4.313 | 5.659 | 0.239 | 0.204 | 0.092 | 0.107 |
| 1992 | 26.814  | 360.890  | 174.526 | 29.253  | 5.961  | 3.748 | 2.871 | 1.186 | 0.346 | 0.050 | 0.089 |
| 1993 | 74.272  | 188.988  | 283.400 | 62.783  | 8.272  | 1.128 | 1.130 | 0.584 | 0.464 | 0.155 | 0.071 |
| 1994 | 284.479 | 193.260  | 77.139  | 34.458  | 10.586 | 2.667 | 0.600 | 0.800 | 0.895 | 0.373 | 0.030 |
| 1995 | 108.101 | 265.634  | 40.618  | 13.218  | 7.527  | 1.110 | 0.806 | 0.330 | 1.051 | 0.202 | 0.119 |
| 1996 | 222.510 | 310.287  | 206.883 | 21.469  | 4.470  | 3.134 | 0.838 | 0.044 | 0.161 | 0.122 | 0.110 |
| 1997 | 65.515  | 1046.845 | 59.241  | 17.180  | 2.670  | 0.257 | 0.358 | 0.157 | 0.111 | 0.000 | 0.031 |
| 1998 | 255.654 | 347.575  | 402.657 | 44.960  | 8.294  | 1.224 | 0.339 | 0.149 | 0.213 | 0.072 | 0.081 |
| 1999 | 257.559 | 293.253  | 121.551 | 171.254 | 3.391  | 1.956 | 0.127 | 0.130 | 0.027 | 0.030 | 0.079 |
| 2000 | 209.293 | 267.473  | 69.252  | 29.349  | 22.359 | 0.570 | 0.162 | 0.502 | 0.027 | 0.012 | 0.052 |
| 2001 | 807.932 | 206.531  | 72.236  | 17.840  | 9.174  | 8.716 | 0.270 | 0.131 | 0.038 | 0.040 | 0.170 |
| 2002 | 248.356 | 519.224  | 44.475  | 14.901  | 4.991  | 2.539 | 1.321 | 0.085 | 0.128 | 0.000 | 0.092 |
| 2003 | 225.619 | 132.754  | 159.120 | 10.057  | 5.550  | 1.426 | 1.133 | 0.638 | 0.111 | 0.096 | 0.018 |
| 2004 | 197.940 | 233.707  | 39.623  | 61.912  | 6.152  | 2.464 | 1.492 | 0.952 | 2.842 | 0.000 | 0.012 |
| 2005 | 270.775 | 163.046  | 66.176  | 6.759   | 12.790 | 1.084 | 1.164 | 0.290 | 0.152 | 0.492 | 0.041 |
| 2006 | 250.800 | 128.615  | 36.385  | 18.115  | 2.982  | 5.890 | 0.867 | 0.757 | 0.040 | 0.269 | 0.387 |
| 2007 | 298.086 | 311.997  | 67.169  | 19.707  | 14.416 | 2.942 | 6.085 | 0.684 | 0.831 | 0.156 | 0.651 |
| 2008 | 387.592 | 221.567  | 120.728 | 30.108  | 9.075  | 7.205 | 0.618 | 1.715 | 0.292 | 0.229 | 1.046 |
| 2009 | 555.472 | 408.995  | 105.222 | 45.975  | 13.013 | 4.029 | 3.474 | 0.574 | 2.128 | 0.278 | 0.929 |

a) Netherlands: plaice (N.hr^-1/8m trawl) North Sea (IV) RV "Isis".

| D) Neme  | snana: | s: plaice | 3 (IN.III | -1/011 | iruwij |        | ea (iv) |        | idens . |       |       |
|----------|--------|-----------|-----------|--------|--------|--------|---------|--------|---------|-------|-------|
| YEAR/AGE | 0      | 1         | 2         | 3      | 4      | 5      | 6       | 7      | 8       | 9     | 10+   |
| 1996     | 0.000  | 1.643     | 6.021     | 4.451  | 2.903  | 2.039  | 1.566   | 0.721  | 0.415   | 0.190 | 0.468 |
| 1997     | 0.000  | 0.221     | 7.119     | 9.127  | 3.252  | 2.105  | 1.523   | 0.401  | 0.819   | 0.354 | 0.429 |
| 1998     | 0.000  | 0.228     | 32.249    | 9.572  | 4.874  | 2.202  | 1.274   | 0.929  | 0.762   | 0.304 | 0.540 |
| 1999     | 0.054  | 2.692     | 7.711     | 35.228 | 5.558  | 2.498  | 1.928   | 0.633  | 0.761   | 0.309 | 0.331 |
| 2000     | 0.043  | 4.795     | 13.445    | 12.910 | 16.957 | 2.882  | 1.716   | 0.933  | 0.805   | 0.218 | 0.530 |
| 2001     | 0.178  | 2.154     | 8.612     | 9.901  | 6.681  | 7.360  | 1.055   | 0.592  | 0.418   | 0.505 | 0.543 |
| 2002     | 0.000  | 18.553    | 12.912    | 9.541  | 6.411  | 4.181  | 4.420   | 0.743  | 0.741   | 0.394 | 0.933 |
| 2003     | 0.338  | 3.975     | 41.692    | 13.378 | 9.059  | 5.077  | 2.806   | 3.920  | 0.703   | 0.740 | 1.562 |
| 2004     | 0.014  | 5.985     | 15.784    | 31.488 | 9.430  | 4.316  | 2.439   | 1.242  | 2.500   | 0.409 | 1.405 |
| 2005     | 0.043  | 6.876     | 23.366    | 12.234 | 17.672 | 2.824  | 6.871   | 1.565  | 0.567   | 3.574 | 2.482 |
| 2006     | 0.236  | 6.725     | 32.192    | 25.727 | 11.367 | 10.918 | 1.985   | 3.897  | 0.864   | 0.723 | 3.262 |
| 2007     | 0.000  | 26.571    | 23.735    | 19.551 | 23.175 | 4.900  | 10.147  | 1.974  | 3.786   | 0.323 | 5.471 |
| 2008     | 0.000  | 17.467    | 50.462    | 25.585 | 18.392 | 18.974 | 6.243   | 12.747 | 2.657   | 6.749 | 8.411 |
| 2009     | 0.116  | 12.110    | 41.685    | 43.331 | 19.126 | 12.052 | 11.768  | 3.081  | 10.119  | 1.567 | 8.025 |
|          |        |           |           |        |        |        |         |        |         |       |       |

b) Netherlands: plaice (N.hr^-1/8m trawl) North Sea (IV) – RV "Tridens".

#### c) United Kingdom: plaice (N.hr^-1/8m trawl) Eastern Channel (VIId).

| YEAR/AGE | 0 | 1    | 2    | 3    | 4    | 5    | 6   | 7   | 8   | 9   | 10+ |
|----------|---|------|------|------|------|------|-----|-----|-----|-----|-----|
| 1988     |   | 26.5 | 31.3 | 43.8 | 7.0  | 4.6  | 1.5 | 0.8 | 0.7 | 0.6 | 1.2 |
| 1989     |   | 2.3  | 12.1 | 16.6 | 19.9 | 3.3  | 1.5 | 1.3 | 0.5 | 0.3 | 1.7 |
| 1990     |   | 5.2  | 4.9  | 5.8  | 6.7  | 7.5  | 1.8 | 0.7 | 1.0 | 0.8 | 0.4 |
| 1991     |   | 11.8 | 9.1  | 7.0  | 5.3  | 5.4  | 3.2 | 1.2 | 1.0 | 0.1 | 1.2 |
| 1992     |   | 16.5 | 12.5 | 4.2  | 4.2  | 5.6  | 4.9 | 3.4 | 0.7 | 0.5 | 0.7 |
| 1993     |   | 3.2  | 13.4 | 5.0  | 1.7  | 1.9  | 1.6 | 2.0 | 2.8 | 0.4 | 0.6 |
| 1994     |   | 8.3  | 7.5  | 9.2  | 5.6  | 1.9  | 0.8 | 0.9 | 1.8 | 1.2 | 0.8 |
| 1995     |   | 11.3 | 4.1  | 3.0  | 3.7  | 1.5  | 0.6 | 0.6 | 1.3 | 0.8 | 0.8 |
| 1996     |   | 13.2 | 11.9 | 1.3  | 0.7  | 1.3  | 0.9 | 0.4 | 0.3 | 0.4 | 2.8 |
| 1997     |   | 33.1 | 13.5 | 4.2  | 0.6  | 0.3  | 0.3 | 0.2 | 0.2 | 0.2 | 1.9 |
| 1998     |   | 11.4 | 27.3 | 7.0  | 3.1  | 0.3  | 0.2 | 0.2 | 0.1 | 0.0 | 1.0 |
| 1999     |   | 11.3 | 14.1 | 15.9 | 2.9  | 1.0  | 0.2 | 0.1 | 0.3 | 0.1 | 0.9 |
| 2000     |   | 13.2 | 21.0 | 14.4 | 13.8 | 3.5  | 0.9 | 0.6 | 0.2 | 0.4 | 1.5 |
| 2001     |   | 17.9 | 13.0 | 10.0 | 7.1  | 10.9 | 1.9 | 0.5 | 0.3 | 0.2 | 1.0 |
| 2002     |   | 20.7 | 15.9 | 7.7  | 3.5  | 1.8  | 3.5 | 0.7 | 0.1 | 0.1 | 0.6 |
| 2003     |   | 6.2  | 22.8 | 6.0  | 2.9  | 1.6  | 0.8 | 1.8 | 0.6 | 0.1 | 0.3 |
| 2004     |   | 36.2 | 15.0 | 13.2 | 3.4  | 0.9  | 0.2 | 0.7 | 1.2 | 0.2 | 0.2 |
| 2005     |   | 10.8 | 31.2 | 13.8 | 10.3 | 2.9  | 1.2 | 0.8 | 0.4 | 0.9 | 0.7 |
| 2006     |   | 17.2 | 16.1 | 9.2  | 3.3  | 2.6  | 0.8 | 0.6 | 0.3 | 0.1 | 0.5 |
| 2007     |   | 42.6 | 18.8 | 8.7  | 3.9  | 1.7  | 2.0 | 0.8 | 0.3 | 0.1 | 1.1 |
| 2008     |   | 30.3 | 26.5 | 7.2  | 3.0  | 2.3  | 1.1 | 0.5 | 0.4 | 0.1 | 0.3 |
| 2009     |   | 46.7 | 22.8 | 15.8 | 5.1  | 2.0  | 1.7 | 0.7 | 0.8 | 0.3 | 1.0 |

| Year/Age | 0  | 1   | 2   | 3   | 4   | 5  | 6  | 7  | 8  | 9 | 10+ | DISTANCE<br>FISHED<br>(KM) |
|----------|----|-----|-----|-----|-----|----|----|----|----|---|-----|----------------------------|
| 1989     | 0  | 31  | 70  | 281 | 188 | 23 | 11 | 14 | 8  | 6 | 18  | 165.66                     |
| 1990     | 0  | 25  | 38  | 220 | 87  | 75 | 2  | 6  | 1  | 6 | 7   | 175.66                     |
| 1991     | 2  | 22  | 27  | 63  | 79  | 62 | 41 | 9  | 0  | 1 | 3   | 171.68                     |
| 1992     | 0  | 152 | 44  | 72  | 24  | 40 | 20 | 17 | 3  | 5 | 4   | 196.60                     |
| 1993     | 0  | 21  | 70  | 60  | 24  | 13 | 25 | 13 | 11 | 2 | 2   | 189.19                     |
| 1994     | 0  | 34  | 32  | 98  | 30  | 10 | 2  | 9  | 13 | 8 | 2   | 205.87                     |
| 1995     | 0  | 50  | 46  | 45  | 48  | 12 | 4  | 5  | 6  | 1 | 4   | 187.15                     |
| 1996     | 1  | 33  | 106 | 30  | 17  | 25 | 5  | 1  | 3  | 7 | 8   | 184.37                     |
| 1997     | 0  | 53  | 122 | 197 | 24  | 6  | 12 | 7  | 1  | 1 | 7   | 184.74                     |
| 1998     | 0  | 81  | 125 | 125 | 85  | 9  | 6  | 7  | 4  | 0 | 3   | 185.49                     |
| 1999     | 1  | 38  | 44  | 182 | 53  | 30 | 3  | 2  | 6  | 4 | 2   | 187.89                     |
| 2000     | 0  | 48  | 63  | 125 | 179 | 38 | 22 | 1  | 2  | 0 | 5   | 180.37                     |
| 2001     | 21 | 32  | 64  | 51  | 111 | 97 | 25 | 13 | 0  | 3 | 5   | 177.98                     |
| 2002     | 0  | 138 | 102 | 87  | 23  | 23 | 40 | 5  | 2  | 0 | 2   | 179.74                     |
| 2003     | 0  | 29  | 137 | 60  | 50  | 5  | 18 | 27 | 7  | 0 | 2   | 182.24                     |
| 2004     | 0  | 11  | 33  | 59  | 23  | 10 | 3  | 1  | 10 | 0 | 4   | 163.99                     |
| 2005     | 2  | 30  | 75  | 91  | 70  | 13 | 3  | 3  | 5  | 2 | 3   | 186.60                     |
| 2006     | 0  | 55  | 102 | 103 | 30  | 31 | 3  | 4  | 0  | 5 | 2   | 184.74                     |
| 2007     | 0  | 37  | 91  | 121 | 34  | 27 | 6  | 6  | 1  | 3 | 4   | 181.02                     |
| 2008     | 0  | 15  | 146 | 68  | 31  | 12 | 8  | 10 | 4  | 1 | 3   | 174.66                     |
| 2009     | 3  | 16  | 156 | 214 | 29  | 15 | 11 | 8  | 5  | 1 | 3   | 172.05                     |

d) United Kingdom: plaice (total numbers for 2\*4m beam trawl) Western Channel (VIIe).

### e) United Kingdom: plaice (total numbers for 4m beam trawl) Bristol Channel (VIIf).

| Year/Age | 0   | 1   | 2   | 3  | 4  | 5  | 6 | 7 | 8 | 9 | 10+ | DISTANCE<br>FISHED<br>(KM) |
|----------|-----|-----|-----|----|----|----|---|---|---|---|-----|----------------------------|
| 1988     | 0   | 77  | 271 | 69 | 0  | 2  | 2 | 0 | 0 | 2 | 0   | 74.12                      |
| 1989     | 2   | 206 | 313 | 72 | 15 | 5  | 0 | 2 | 0 | 0 | 0   | 91.91                      |
| 1990     | 12  | 161 | 215 | 64 | 15 | 6  | 0 | 0 | 2 | 0 | 1   | 69.86                      |
| 1991     | 2   | 841 | 33  | 65 | 21 | 12 | 3 | 0 | 1 | 0 | 0   | 123.41                     |
| 1992     | 3   | 487 | 307 | 13 | 5  | 15 | 2 | 5 | 0 | 0 | 2   | 125.08                     |
| 1993     | 4   | 121 | 107 | 43 | 2  | 5  | 0 | 1 | 0 | 0 | 0   | 127.67                     |
| 1994     | 150 | 131 | 39  | 19 | 10 | 1  | 0 | 0 | 0 | 0 | 0   | 120.82                     |
| 1995     | 1   | 275 | 103 | 19 | 3  | 8  | 2 | 0 | 0 | 2 | 0   | 104.14                     |
| 1996     | 10  | 265 | 342 | 37 | 1  | 3  | 1 | 0 | 0 | 0 | 0   | 122.11                     |
| 1997     | 8   | 259 | 117 | 40 | 5  | 2  | 2 | 1 | 0 | 0 | 0   | 116.18                     |
| 1998     | 6   | 272 | 144 | 54 | 10 | 2  | 1 | 0 | 0 | 0 | 1   | 104.69                     |
| 1999     | 192 | 181 | 94  | 34 | 23 | 8  | 0 | 0 | 2 | 0 | 0   | 117.11                     |
| 2000     | 100 | 403 | 75  | 37 | 8  | 7  | 0 | 1 | 0 | 0 | 0   | 105.99                     |
| 2001     | 42  | 251 | 185 | 19 | 10 | 5  | 4 | 2 | 0 | 0 | 0   | 118.22                     |
| 2002     | 1   | 162 | 208 | 95 | 7  | 7  | 2 | 4 | 1 | 0 | 0   | 116.92                     |
| 2003     | 72  | 117 | 95  | 72 | 26 | 3  | 2 | 1 | 1 | 2 | 0   | 111.92                     |
| 2004     | 188 | 297 | 38  | 31 | 15 | 3  | 1 | 1 | 3 | 0 | 2   | 101.92                     |

| Year/Age | 0   | 1   | 2   | 3  | 4  | 5  | 6  | 7 | 8 | 9 | 10+ | DISTANCE<br>FISHED<br>(KM) |
|----------|-----|-----|-----|----|----|----|----|---|---|---|-----|----------------------------|
| 2005     | 3   | 228 | 89  | 25 | 10 | 13 | 3  | 1 | 0 | 0 | 1   | 119.11                     |
| 2006     | 96  | 102 | 121 | 41 | 11 | 2  | 11 | 0 | 3 | 1 | 0   | 120.56                     |
| 2007     | 41  | 178 | 109 | 56 | 18 | 2  | 3  | 1 | 2 | 1 | 0   | 118.59                     |
| 2008     | 7   | 167 | 257 | 57 | 19 | 6  | 1  | 3 | 0 | 0 | 1   | 118.59                     |
| 2009     | 222 | 192 | 66  | 93 | 25 | 13 | 5  | 2 | 0 | 1 | 0   | 118.59                     |

### f) United Kingdom: plaice (total numbers for 4m beam trawl) Irish Sea (VIIa).

| Year/Age | 0   | 1    | 2    | 3    | 4   | 5   | 6   | 7  | 8  | 9  | 10+ | DISTANCE<br>FISHED<br>(KM) |
|----------|-----|------|------|------|-----|-----|-----|----|----|----|-----|----------------------------|
| 1988     | 19  | 670  | 1035 | 275  | 3   | 117 | 13  | 4  | 0  | 8  | 12  | 100.06                     |
| 1989     | 13  | 309  | 441  | 530  | 77  | 13  | 44  | 3  | 0  | 0  | 3   | 129.71                     |
| 1990     | 57  | 1688 | 405  | 176  | 90  | 54  | 30  | 3  | 1  | 20 | 5   | 128.97                     |
| 1991     | 35  | 591  | 481  | 68   | 47  | 4   | 4   | 24 | 3  | 0  | 8   | 123.78                     |
| 1992     | 41  | 1043 | 470  | 267  | 23  | 19  | 14  | 14 | 3  | 0  | 11  | 129.52                     |
| 1993     | 7   | 1007 | 836  | 111  | 90  | 11  | 5   | 9  | 2  | 1  | 6   | 131.19                     |
| 1994     | 100 | 736  | 642  | 339  | 63  | 29  | 12  | 16 | 9  | 2  | 9   | 124.89                     |
| 1995     | 281 | 1283 | 387  | 179  | 84  | 16  | 18  | 0  | 1  | 3  | 8   | 124.34                     |
| 1996     | 105 | 1701 | 601  | 124  | 74  | 49  | 9   | 11 | 1  | 2  | 8   | 127.49                     |
| 1997     | 31  | 1363 | 668  | 322  | 65  | 50  | 23  | 8  | 7  | 0  | 7   | 132.86                     |
| 1998     | 169 | 1167 | 767  | 212  | 95  | 34  | 23  | 14 | 3  | 1  | 7   | 129.34                     |
| 1999     | 180 | 1189 | 965  | 344  | 113 | 38  | 17  | 7  | 7  | 4  | 0   | 125.26                     |
| 2000     | 132 | 2112 | 659  | 298  | 141 | 73  | 22  | 7  | 3  | 3  | 5   | 123.22                     |
| 2001     | 249 | 1468 | 663  | 218  | 130 | 89  | 28  | 10 | 7  | 6  | 4   | 127.30                     |
| 2002     | 16  | 1734 | 1615 | 647  | 243 | 79  | 51  | 16 | 17 | 5  | 7   | 120.26                     |
| 2003     | 258 | 1480 | 1842 | 827  | 296 | 122 | 62  | 39 | 10 | 4  | 4   | 121.00                     |
| 2004     | 218 | 1816 | 1187 | 1184 | 404 | 261 | 57  | 57 | 14 | 4  | 3   | 113.96                     |
| 2005     | 288 | 869  | 1295 | 666  | 499 | 297 | 111 | 17 | 17 | 9  | 11  | 119.70                     |
| 2006     | 485 | 1120 | 840  | 722  | 411 | 178 | 83  | 59 | 16 | 15 | 6   | 123.74                     |
| 2007     | 186 | 2667 | 1255 | 525  | 417 | 196 | 95  | 45 | 37 | 6  | 10  | 126.00                     |
| 2008     | 438 | 1293 | 1893 | 628  | 339 | 243 | 76  | 55 | 33 | 5  | 0   | 122.30                     |
| 2009     | 150 | 1460 | 1083 | 1225 | 310 | 189 | 251 | 65 | 31 | 20 | 13  | 126.00                     |

| Ship       | NEW INDEXAREA | OLD INDEXAREA |
|------------|---------------|---------------|
| Isis       | 32F3          | 32F3          |
| Isis       | 33F3          | 33F3          |
| Isis       | 33F4          | 33F4          |
| Isis       | 34F3          | 34F3          |
| Isis       | 34F4          | 34F4          |
| Isis       | 35F3          | 35F3          |
| Isis       | 35F4          | 35F4          |
| Isis       | 36F3          | 36F3          |
| Isis       | 36F4          | 36F4          |
| Isis       | 36F5          | 36F5          |
| Isis       | 36F6          | 36F6          |
| Isis       | 36F7          | 36F7          |
| Isis       | 37F3          | 37F3          |
| Isis       | 37F4          | 37F4          |
| Isis       | 37F5          | 37F5          |
| Isis       | 37F6          | 37F6          |
| Isis       | 37F7          | 37F7          |
| Isis       | 37F8          |               |
| Isis       | 38F3          | 38F3          |
| Isis       | 38F4          | 38F4          |
| Isis       | 38F5          | 38F5          |
| Isis       | 38F6          | 38F6          |
| Isis       | 38F7          | 38F7          |
| Isis       |               | 39F4          |
| Isis       |               | 39F5          |
| Isis       |               | 39F6          |
| Isis       |               | 39F7          |
| Tridens II |               | 34F1          |
| Tridens II |               | 35F0          |
| Tridens II | 35F1          | 35F1          |
| Tridens II | 35F2          | 35F2          |
| Tridens II | 36F0          |               |
| Tridens II | 36F1          | 36F1          |
| Tridens II | 36F2          | 36F2          |
| Tridens II | 37F0          | 37F0          |
| Tridens II | 37F1          | 37F1          |
| Tridens II | 37F2          | 37F2          |
| Tridens II | 37F3          | 37F3          |
| Tridens II | 38F0          | 38F0          |
| Tridens II | 38F1          | 38F1          |
| Tridens II | 38F2          | 38F2          |
| Tridens II | 38F3          | 38F3          |
| Tridens II | 38F4          | 38F4          |
| Tridens II | 39E9          | 39E9          |

Annex10.3. Offshore index areas Dutch survey

| 152 |  |
|-----|--|
|-----|--|

| Ship       | NEW INDEXAREA |      |
|------------|---------------|------|
| Tridens II | 39F0          | 39F0 |
| Tridens II | 39F4          | 39F4 |
| Tridens II | 40E9          | 40E9 |
| Tridens II | 40F0          | 40F0 |
| Tridens II | 40F1          | 40F1 |
| Tridens II | 40F2          | 40F2 |
| Tridens II | 40F3          | 40F3 |
| Tridens II | 40F4          | 40F4 |
| Tridens II | 40F5          | 40F5 |
| Tridens II | 40F6          | 40F6 |
| Tridens II |               | 41E8 |
| Tridens II | 41E9          | 41E9 |
| Tridens II | 41F0          | 41F0 |
| Tridens II | 41F4          | 41F4 |
| Tridens II | 41F5          | 41F5 |
| Tridens II | 41F6          | 41F6 |
| Tridens II |               | 42E8 |
| Tridens II | 42E9          | 42E9 |
| Tridens II | 42F0          | 42F0 |
| Tridens II | 42F1          | 42F1 |
| Tridens II | 42F2          | 42F2 |
| Tridens II | 42F3          | 42F3 |
| Tridens II | 42F4          | 42F4 |
| Tridens II | 42F5          | 42F5 |
| Tridens II | 42F6          | 42F6 |
| Tridens II |               | 43E8 |
| Tridens II | 43E9          | 43E9 |
| Tridens II | 43F0          | 43F0 |
| Tridens II | 43F4          |      |
| Tridens II | 43F5          | 43F5 |
| Tridens II | 43F6          | 43F6 |
| Tridens II |               | 43F7 |
| Tridens II | 44E8          |      |
| Tridens II | 44E9          |      |
| Tridens II | 44F0          |      |
| Tridens II | 44F1          |      |
| Combined*  | 34F2          |      |

\* The combined index area is the combination of the Isis and the Tridens area. 34F2 is only used in the combined index and not in the separate indices. The rectangles as used for the ship separate indices are used in the combined index, too.

### Annex 11: Planimetric data for the continental inshore surveys

The area definitions used for the GIS analyses are presented in Figure 1. These new definitions are an approximation of the old figure (see last year's report). The estimation of the surface area (in km2) by area and depth class is presented in Table 1. The aggregation of the data into regions conform the old table with raising factors is presented in the report.

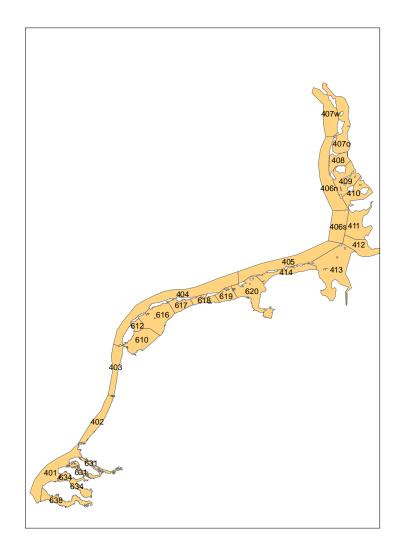



Figure 11.1. Area definitions for the Dutch DFS and German DYFS.

| Area               |           |       | De    | pth class |        |        |      | Total                      | Total |
|--------------------|-----------|-------|-------|-----------|--------|--------|------|----------------------------|-------|
|                    | <0m (>LW) | 0-5m  | 5-10m | 15-20m    | 20-25m | 25-30m | >30m | <lw< th=""><th></th></lw<> |       |
| 401                | 0.3       | 329.7 | 370.2 | 192.1     | 58.1   | 28.0   | 7.1  | 985                        | 986   |
| 402                |           | 44.0  | 78.3  | 174.2     | 199.4  | 3.1    | 0.3  | 499.3                      | 499   |
| 403                | 0.9       | 50.8  | 92.5  | 176.3     | 121.7  | 18.9   | 4.6  | 464.8                      | 466   |
| 404                | 6.4       | 275.6 | 420.1 | 393.8     | 484.9  | 132.4  | 0.4  | 1707.2                     | 1714  |
| Dutchcoast         | 8         | 700   | 961   | 936       | 864    | 182    | 12   | 3656                       | 3664  |
| 405                | 47.2      | 256.3 | 271.9 | 295.5     | 337.5  | 104.2  | 9.2  | 1274.5                     | 1322  |
| 406n               | 4.3       | 246.4 | 322.4 | 489.0     | 14.3   | 1.0    | 0.0  | 1073.1                     | 1077  |
| 406s               | 3.2       | 92.9  | 214.2 | 257.6     | 39.2   | 20.8   | 0.1  | 624.7                      | 628   |
| 407w               |           | 193.1 | 323.5 | 214.3     | 5.5    | 0.2    | 0.1  | 736.7                      | 737   |
| German Bight       | 55        | 789   | 1132  | 1256      | 396    | 126    | 9    | 3709                       | 3764  |
| 4070               |           | 767.4 | 26.9  | 15.4      | 3.7    | 2.2    | 0.8  | 816.4                      | 816   |
| 408                | 158.5     | 118.3 | 19.5  | 7.6       | 1.8    | 0.3    | 0.1  | 147.7                      | 306   |
| 409                | 323.0     | 184.8 | 47.2  | 18.2      | 10.8   | 4.6    | 0.2  | 265.8                      | 589   |
| 410                | 233.2     | 83.3  | 39.4  | 32.6      | 8.9    | 2.0    | 0.2  | 166.3                      | 400   |
| 411                | 324.3     | 220.3 | 56.8  | 21.3      | 1.3    | 0.0    |      | 299.9                      | 624   |
| 412                | 198.3     | 126.2 | 93.9  | 46.0      | 24.5   | 5.1    | 0.6  | 296.3                      | 495   |
| 413                | 740.1     | 325.8 | 161.2 | 106.6     | 50.7   | 12.0   | 1.6  | 657.9                      | 1398  |
| 414                | 295.7     | 83.8  | 9.4   | 3.6       | 0.6    | 0.0    |      | 97.4                       | 393   |
| German & Danish WS | S 2273    | 1910  | 454   | 251       | 102    | 26     | 4    | 2748                       | 5021  |
| 610                | 13.6      | 434.6 | 71.1  | 40.9      | 22.0   | 12.7   | 5.4  | 586.7                      | 600   |
| 612                | 20.7      | 102.3 | 10.7  | 1.5       | 0.1    |        |      | 114.7                      | 135   |
| 616                | 42.5      | 686.0 | 52.8  | 27.7      | 9.6    | 2.6    | 3.1  | 781.8                      | 824   |
| 617                | 35.5      | 207.1 | 15.7  | 4.5       | 3.8    | 1.2    | 0.5  | 232.7                      | 268   |
| 618                | 40.5      | 159.0 | 16.5  | 5.6       | 1.0    |        |      | 182.0                      | 223   |
| 619                | 67.4      | 169.7 | 17.4  | 2.4       | 0.7    |        |      | 190.2                      | 258   |
| 620                | 281.0     | 304.9 | 89.7  | 78.6      | 33.5   | 4.5    | 1.6  | 512.7                      | 794   |
| DutchWS            | 501       | 2064  | 274   | 161       | 71     | 21     | 11   | 2601                       | 3102  |
| 634                | 1.4       | 39.4  | 11.4  | 12.6      | 10.1   | 6.2    | 7.1  | 86.9                       | 88    |
| 638                | 49.8      | 76.8  | 92.2  | 60.6      | 63.4   | 29.5   | 17.0 | 339.5                      | 389   |
| Scheldtestuary     | 51        | 116   | 104   | 73        | 74     | 36     | 24   | 426                        | 478   |
| Total              | 2888      | 5578  | 2925  | 2678      | 1507   | 392    | 60   | 13140                      | 16028 |

### Surface area (km<sup>2</sup>) by area and depth class for the Dutch DFS and German DYFS.

Annex 12 a) Number of hauls by area and year for the Dutch inshore survey (Tridens data are excluded).

| region | Belgian Coast | Ľ   | Outch | Coas | st  | Ger | man I | Bight | Sch | neldt | Est |     | D   | utch | Wad | den S | ea  |     |
|--------|---------------|-----|-------|------|-----|-----|-------|-------|-----|-------|-----|-----|-----|------|-----|-------|-----|-----|
| Area   |               |     |       |      |     |     |       |       |     |       |     |     |     |      |     |       |     |     |
| code   | 400           | 401 | 402   | 403  | 404 | 405 | 406   | 407   | 631 | 634   | 638 | 610 | 612 | 616  | 617 | 618   | 619 | 620 |
| 1970   |               | 6   | 11    | 11   | 22  |     |       |       | 13  | 31    | 26  | 23  |     | 24   | 16  | 10    | 12  | 20  |
| 1971   |               | 9   | 9     | 13   | 19  |     |       |       | 4   | 29    | 30  | 25  |     | 28   | 14  | 8     | 12  | 22  |
| 1972   |               | 8   | 15    | 11   | 20  |     |       |       | 5   | 29    | 28  | 18  |     | 25   | 11  | 10    | 10  | 20  |
| 1973   |               | 8   | 9     | 8    | 19  |     |       |       | 5   | 30    | 31  | 18  | 2   | 24   | 11  | 9     | 9   | 22  |
| 1974   |               | 8   | 16    | 11   | 19  |     |       |       | 6   | 32    | 32  | 19  | 7   | 24   | 12  | 10    | 11  | 21  |
| 1975   |               | 8   | 11    | 10   | 19  |     |       |       | 4   | 31    | 26  | 21  | 7   | 25   | 14  | 9     | 10  | 21  |
| 1976   |               |     |       |      |     |     |       |       | 6   | 30    | 26  | 21  | 7   | 25   | 13  | 10    | 10  | 21  |
| 1977   |               | 10  | 16    | 9    | 23  |     |       |       | 8   | 28    | 27  | 21  | 7   | 26   | 13  | 10    | 11  | 21  |
| 1978   |               | 1   | 15    | 10   | 23  | 8   | 16    | 18    | 5   | 30    | 28  | 21  | 7   | 26   | 13  | 10    | 10  | 21  |
| 1979   |               |     | 15    | 8    | 13  | 7   | 18    | 19    | 6   | 28    | 28  | 21  |     | 26   | 13  | 10    | 10  | 21  |
| 1980   |               | 9   | 7     | 10   | 26  | 7   | 16    | 23    | 6   | 27    | 29  | 21  | 7   | 26   | 13  | 10    | 10  | 21  |
| 1981   |               | 10  | 9     | 9    | 25  | 10  | 10    |       | 6   | 28    | 27  | 19  | 6   | 28   | 13  | 10    | 10  | 21  |
| 1982   | 3             | 18  | 8     | 9    | 28  | 14  | 21    | 6     | 6   | 28    | 27  | 21  | 7   | 26   | 13  | 10    | 10  | 21  |
| 1983   |               | 18  | 13    | 6    | 15  | 8   | 21    | 6     | 7   | 27    | 27  | 21  | 7   | 26   | 13  | 10    | 9   | 21  |
| 1984   |               | 23  | 13    | 8    | 31  | 15  | 22    | 4     | 6   | 27    | 27  | 22  | 7   | 25   | 12  | 10    | 10  | 21  |
| 1985   |               | 17  | 12    | 9    | 28  | 15  | 20    | 7     | 6   | 26    | 27  | 21  | 7   | 26   | 12  | 10    | 8   | 20  |
| 1986   |               | 17  | 13    | 9    | 28  | 15  | 21    | 5     | 6   | 26    | 27  | 21  | 7   | 26   | 13  | 10    | 9   | 21  |
| 1987   |               | 18  | 13    | 9    | 28  | 15  | 21    | 6     |     | 30    | 28  | 17  | 7   | 30   | 13  | 10    | 8   | 23  |
| 1988   |               | 18  | 14    | 8    | 29  | 14  | 22    | 5     |     | 24    | 27  | 21  |     | 26   | 13  | 9     | 8   | 22  |
| 1989   |               | 26  | 13    | 9    | 28  | 10  | 23    | 6     |     | 40    | 30  | 21  |     | 26   | 13  | 10    | 8   | 23  |
| 1990   |               | 25  | 13    | 9    | 28  | 15  | 21    | 6     |     | 39    | 29  | 21  |     | 25   | 13  | 11    | 8   | 23  |
| 1991   |               | 16  | 13    | 9    | 28  | 15  | 21    | 6     |     | 31    | 31  | 23  | 5   | 25   | 13  | 10    | 10  | 24  |
| 1992   |               | 26  | 16    | 13   | 28  | 15  | 21    | 6     |     | 36    | 28  | 23  | 6   | 26   | 12  | 6     |     | 28  |
| 1993   |               | 22  | 20    | 9    | 28  | 15  | 21    | 5     |     | 31    | 27  | 23  |     | 27   | 14  | 11    | 8   | 29  |
| 1994   |               | 21  | 16    | 13   | 28  | 15  | 19    | 6     |     | 35    | 33  | 24  |     | 26   | 12  | 10    | 7   | 25  |
| 1995   |               | 17  | 13    | 9    | 25  | 14  | 22    | 6     |     | 41    | 33  | 31  |     | 23   | 15  | 10    | 9   | 26  |
| 1996   |               | 17  | 12    | 10   | 29  | 14  | 21    | 6     |     | 43    | 33  | 28  | 6   | 28   | 15  | 10    | 9   | 27  |
| 1997   |               | 17  | 13    | 9    | 28  | 13  |       |       |     | 43    | 34  | 27  |     | 28   | 15  | 11    | 9   | 27  |
| 1998   |               | 9   | 10    | 8    |     |     |       |       |     | 43    | 34  | 27  | 6   | 29   | 15  | 10    | 10  | 27  |
| 1999   |               | 17  | 14    | 8    | 14  | 1   |       |       |     | 43    | 35  | 28  |     | 31   | 14  | 13    | 10  | 22  |
| 2000   |               | 15  | 7     | 2    | 17  | 10  | 19    | 6     |     | 45    | 43  | 42  |     | 26   | 15  | 11    | 10  | 26  |
| 2001   |               |     | 13    | 5    | 28  | 15  | 19    | 3     |     | 45    | 49  | 28  |     | 27   | 14  | 11    | 10  | 26  |
| 2002   |               | 21  | 13    | 8    | 26  | 14  |       |       |     | 44    | 41  | 27  |     | 26   | 13  | 11    | 9   | 26  |
| 2003   |               | 16  | 14    | 9    | 28  | 15  | 18    | 6     |     | 42    | 36  | 29  |     | 27   | 13  | 9     | 9   | 26  |
| 2004   |               | 17  | 13    | 4    | 19  | 15  | 17    | 6     |     | 41    | 31  | 28  | 6   | 27   | 14  | 10    | 8   | 27  |
| 2005   |               | 17  | 14    | 14   | 30  | 15  | 15    | 8     |     | 43    | 36  | 29  | 6   | 25   | 13  | 11    | 9   | 34  |
| 2006   |               | 15  | 14    | 10   | 28  | 15  | 17    | 6     |     | 41    | 36  | 28  | 7   | 28   | 16  | 8     | 9   | 29  |
| 2007   |               | 17  | 16    | 13   | 30  | 15  | 17    | 6     |     | 41    | 36  | 30  | 9   | 25   | 13  | 11    | 8   | 25  |
| 2008   |               | 16  | 11    | 8    | 19  | 11  | 4     | 6     |     | 41    | 37  | 30  | 7   | 24   | 12  | 9     | 9   | 30  |
| 2009   |               | 16  | 13    | 16   | 28  | 15  | 16    | 6     |     | 44    | 37  | 32  | 6   | 26   | 12  | 10    | 8   | 28  |
| 2007   |               | 10  | 10    | 10   | 20  | 10  | 10    | 0     |     | 11    | 07  | 52  | v   | 20   |     | 10    | 0   | 20  |

| Region    |     | Germa | an Bight |    |     |     | Ge  | rman/D | K Wado | len Sea |     |         |
|-----------|-----|-------|----------|----|-----|-----|-----|--------|--------|---------|-----|---------|
| area_code | 405 | 406   | NF       | OF | 408 | 409 | 410 | 411    | 412    | 413     | 414 | (blank) |
| 1971      | 4   |       |          |    |     |     |     |        |        |         | 44  |         |
| 1972      |     |       |          |    |     |     |     |        | 10     | 8       | 29  |         |
| 1973      | 3   | 1     |          |    |     |     |     |        | 36     | 27      | 34  |         |
| 1974      | 6   | 17    | 1        | 3  | 10  | 18  | 15  | 42     | 6      |         | 12  |         |
| 1975      |     | 14    |          |    | 9   | 18  | 14  | 46     | 11     |         |     |         |
| 1976      |     | 14    |          | 59 | 8   | 18  | 14  | 46     |        |         |     |         |
| 1977      |     | 14    |          | 19 | 8   | 18  | 14  | 46     | 59     | 2       | 32  |         |
| 1978      |     | 11    |          |    | 4   | 18  | 14  | 45     | 34     |         |     |         |
| 1979      | 4   | 14    |          |    | 8   | 18  | 14  | 46     | 43     |         | 30  |         |
| 1980      |     | 11    |          |    | 9   | 17  | 14  | 46     | 33     |         | 55  |         |
| 1981      | 1   | 10    |          |    | 8   | 22  | 14  | 43     | 65     |         | 64  | 1       |
| 1982      |     | 10    |          |    | 8   | 22  | 14  | 46     | 63     |         | 79  |         |
| 1983      |     | 5     |          |    | 4   | 11  | 7   | 32     | 47     |         | 87  | 1       |
| 1984      | 6   | 8     |          |    | 8   | 16  | 13  | 40     | 55     |         | 78  | 2       |
| 1985      | 21  | 11    |          |    |     |     | 70  |        | 57     |         | 64  |         |
| 1986      | 29  | 39    |          |    |     | 12  | 15  | 44     | 52     |         | 69  | 2       |
| 1987      | 22  | 91    |          |    |     |     | 5   |        | 50     |         | 64  |         |
| 1988      | 18  | 104   |          |    |     |     |     |        | 52     |         | 78  |         |
| 1989      | 17  | 64    |          |    |     |     | 24  | 9      | 52     |         | 82  |         |
| 1990      | 22  | 27    |          |    | 3   | 37  | 44  | 30     | 62     |         | 79  |         |
| 1991      | 23  | 17    |          |    | 5   | 16  | 43  | 45     | 54     |         | 71  | 1       |
| 1992      | 20  | 20    |          |    | 3   | 25  | 35  | 41     | 53     |         | 84  |         |
| 1993      | 28  | 22    |          |    |     | 27  | 20  | 39     | 54     |         | 51  |         |
| 1994      | 17  | 28    |          | 33 | 10  | 29  | 19  | 32     | 50     |         | 11  |         |
| 1995      | 17  | 28    |          |    | 7   | 13  | 14  | 36     | 10     |         | 60  |         |
| 1996      | 13  | 22    |          |    |     | 45  | 26  | 49     | 48     |         | 48  |         |
| 1997      | 62  | 36    |          |    |     | 38  | 18  | 51     | 51     |         | 9   |         |
| 1998      | 30  | 53    |          |    | 9   | 46  | 33  | 87     | 45     |         | 39  |         |
| 1999      | 14  | 51    |          |    |     | 28  | 26  | 70     | 49     |         | 54  |         |
| 2000      | 29  | 34    |          |    | 6   | 34  | 30  | 56     | 48     |         | 52  |         |
| 2001      | 29  | 32    |          |    |     | 31  | 28  | 58     | 45     |         | 49  |         |
| 2002      | 21  | 31    |          |    |     | 28  | 26  | 50     | 47     |         | 47  |         |
| 2003      | 12  | 26    |          |    |     | 29  | 30  | 65     | 46     |         | 49  |         |
| 2004      | 12  | 28    |          |    |     | 29  | 28  | 48     | 49     |         | 44  |         |
| 2005      | 8   | 25    |          |    | 6   | 16  | 12  | 22     | 21     | 32      | 25  |         |
| 2006      | 5   | 16    |          |    | 5   | 14  | 11  | 23     | 28     | 26      | 25  |         |
| 2007      |     | 2     |          |    |     |     |     | 33     | 22     | 31      | 41  |         |
| 2008      | 13  | 28    |          |    |     | 15  | 14  | 22     | 22     | 26      | 22  | 1       |
| 2009      | 13  | 29    |          |    | 24  | 7   | 19  | 10     | 20     | 17      | 13  |         |

### Annex 12 b) Number of hauls by area and year for the German DYFS.

| Region    | Belgian Coast |
|-----------|---------------|
| area_code | 400           |
| 1973      | 35            |
| 1974      | 35            |
| 1975      | 35            |
| 1976      | 35            |
| 1977      | 29            |
| 1978      | 27            |
| 1979      | 29            |
| 1980      | 31            |
| 1981      | 33            |
| 1982      | 33            |
| 1983      | 33            |
| 1984      | 32            |
| 1985      | 33            |
| 1986      | 33            |
| 1987      | 33            |
| 1988      | 29            |
| 1989      | 33            |
| 1990      | 33            |
| 1991      | 33            |
| 1992      | 24            |
| 1993      | 33            |
| 1994      | 33            |
| 1995      | 33            |
| 1996      | 33            |
| 1997      | 33            |
| 1998      | 33            |
| 1999      | 31            |
| 2000      | 27            |
| 2001      | 33            |
| 2002      | 33            |
| 2003      | 33            |
| 2004      | 33            |
| 2005      | 33            |
| 2006      | 33            |
| 2007      | 32            |
| 2008      | 31            |
| 2009      | 23            |
|           |               |

Annex 12 c) Number of hauls by area and year for the Belgian DYFS.

| Annex 12 d) Number of hauls by year for |  |
|-----------------------------------------|--|
| the English DYFS.                       |  |

| region    | Other |
|-----------|-------|
| area_code |       |
| 1981      | 290   |
| 1982      | 312   |
| 1983      | 239   |
| 1984      | 304   |
| 1985      | 271   |
| 1986      | 292   |
| 1987      | 288   |
| 1988      | 323   |
| 1989      | 322   |
| 1990      | 367   |
| 1991      | 373   |
| 1992      | 361   |
| 1993      | 385   |
| 1994      | 370   |
| 1995      | 372   |
| 1996      | 373   |
| 1997      | 364   |
| 1998      | 360   |
| 1999      | 377   |
| 2000      | 433   |
| 2001      | 469   |
| 2002      | 469   |
| 2003      | 477   |
| 2004      | 395   |
| 2005      | 407   |
| 2006      | 406   |
| 2007      | 159   |
| 2008      | 156   |
| 2009      | 161   |

# Annex 13: Number of hauls by depth class, country and year for the inshore surveys

| Region     |     |      | Belgiar | n Coast |     |     |     | Dutch | Coast |     |     |     | Germ | an Big | ht    |       |     |     |
|------------|-----|------|---------|---------|-----|-----|-----|-------|-------|-----|-----|-----|------|--------|-------|-------|-----|-----|
| depth zone | 0–5 | 5–10 | 10-20   | 10–20   | 20- |     | 0–5 | 5–10  | 10-20 | 20- | 0–5 | 0–5 | 5-10 | 5–10   | 10–20 | 10–20 | 20- | 20- |
| country    | BEL | BEL  | BEL     | NED     | BEL | BEL | NED | NED   | NED   | NED | GFR | NED | GFR  | NED    | GFR   | NED   | GFR | NED |
| 1970       |     |      |         |         |     |     | 1   | 18    | 25    | 6   |     |     |      |        |       |       |     |     |
| 1971       |     |      |         |         |     |     |     | 17    | 24    | 9   | 2   |     | 2    |        |       |       |     |     |
| 1972       |     |      |         |         |     |     |     | 18    | 30    | 6   |     |     |      |        |       |       |     |     |
| 1973       |     | 14   | 18      |         | 3   |     |     | 16    | 18    | 10  |     |     | 1    |        | 3     |       |     |     |
| 1974       |     | 12   | 16      |         | 7   |     |     | 13    | 30    | 11  | 18  |     | 5    |        | 3     |       | 1   |     |
| 1975       |     | 10   | 22      |         | 3   |     |     | 12    | 23    | 13  | 7   |     | 7    |        |       |       |     |     |
| 1976       |     | 10   | 19      |         | 6   |     |     |       |       |     | 53  |     | 17   |        | 3     |       |     |     |
| 1977       |     | 12   | 16      |         | 1   |     | 12  | 15    | 26    | 5   | 7   |     | 14   |        | 12    |       |     |     |
| 1978       |     | 9    | 18      |         |     |     |     | 21    | 22    | 6   | 4   |     | 7    | 16     |       | 25    |     | 1   |
| 1979       |     | 11   | 14      |         | 4   |     | 1   | 20    | 15    |     | 10  | 1   | 8    | 20     |       | 23    |     |     |
| 1980       |     | 12   | 17      |         | 2   |     | 22  | 11    | 15    | 4   | 4   | 22  | 7    | 18     |       | 6     |     |     |
| 1981       |     | 9    | 20      |         | 4   |     | 22  | 10    | 21    |     | 3   | 3   | 8    | 4      |       | 13    |     |     |
| 1982       |     | 15   | 15      | 3       | 3   |     | 19  | 18    | 24    | 2   | 2   | 14  | 8    | 13     |       | 14    |     |     |
| 1983       | 4   | 13   | 15      |         | 1   |     | 26  | 9     | 17    |     | 1   | 13  | 4    | 13     |       | 9     |     |     |
| 1984       | 2   | 12   | 17      |         | 1   |     | 19  | 15    | 31    | 10  | 3   | 5   | 8    | 16     | 3     | 19    |     | 1   |
| 1985       | 3   | 12   | 16      |         | 2   |     | 20  | 16    | 26    | 4   | 7   | 11  | 18   | 18     | 7     | 13    |     |     |
| 1986       | 4   | 12   | 14      |         | 3   |     | 13  | 23    | 24    | 7   | 23  | 12  | 36   | 11     | 9     | 18    |     |     |
| 1987       | 5   | 15   | 10      |         | 3   |     | 27  | 10    | 27    | 4   | 58  | 12  | 46   | 13     | 9     | 17    |     |     |
| 1988       | 3   | 15   | 10      |         | 1   |     | 10  | 26    | 30    | 3   | 54  | 3   | 54   | 18     | 14    | 20    |     |     |
| 1989       | 9   | 14   | 9       |         | 1   |     | 4   | 37    | 28    | 7   | 40  | 1   | 23   | 20     | 18    | 18    |     |     |
| 1990       |     | 9    | 21      |         | 3   |     | 8   | 40    | 22    | 5   | 14  | 6   | 18   | 14     | 17    | 22    |     |     |
| 1991       | 2   | 17   | 14      |         |     |     | 13  | 21    | 26    | 6   | 12  | 5   | 12   | 23     | 16    | 14    |     |     |
| 1992       | 4   | 12   | 7       |         | 1   |     | 19  | 21    | 27    | 16  | 16  | 9   | 14   | 15     | 10    | 18    |     |     |
| 1993       | 3   | 20   | 8       |         | 2   |     | 14  | 30    | 29    | 6   | 8   | 6   | 19   | 18     | 23    | 17    |     |     |
| 1994       | 8   | 13   | 11      |         | 1   |     | 18  | 17    | 30    | 13  | 43  | 5   | 21   | 12     | 14    | 23    |     |     |
| 1995       | 5   | 14   | 12      |         | 2   |     | 11  | 22    | 25    | 6   | 11  | 3   | 16   | 25     | 18    | 14    |     |     |
| 1996       | 5   | 15   | 12      |         | 1   |     | 1   | 36    | 27    | 4   | 10  | 1   | 9    | 21     | 14    | 19    | 2   |     |
| 1997       | 4   | 16   | 12      |         | 1   |     | 1   | 31    | 29    | 6   | 41  |     | 39   | 7      | 18    | 6     |     |     |
| 1998       | 7   | 18   | 6       |         | 2   |     |     | 12    | 15    |     | 18  |     | 39   |        | 20    |       | 6   |     |
| 1999       | 3   | 17   | 9       |         | 1   | 1   |     | 8     | 37    | 8   | 16  |     | 32   |        | 17    | 1     |     |     |
| 2000       | 1   | 11   | 15      |         |     |     |     | 16    | 18    | 7   | 10  |     | 32   | 13     | 20    | 22    | 1   |     |
| 2001       | 4   | 16   | 11      |         | 2   |     |     | 7     | 26    | 13  | 15  |     | 27   | 2      | 19    | 31    |     | 4   |
| 2002       | 2   | 19   | 9       |         | 3   |     | 5   | 27    | 29    | 7   | 14  |     | 27   | 5      | 10    | 9     | 1   |     |
| 2003       |     |      |         |         |     | 33  | 9   | 32    | 26    |     | 7   | 1   | 18   | 26     | 13    | 12    |     |     |
| 2004       |     |      |         |         |     | 33  | 1   | 21    | 28    | 3   | 8   |     | 18   | 17     | 14    | 21    |     |     |
| 2005       |     |      |         |         |     | 33  | 2   | 35    | 29    | 9   | 7   | 2   | 17   | 16     | 8     | 20    | 1   |     |
| 2006       |     |      |         |         |     | 33  | 3   | 27    | 31    | 6   | 2   | 1   | 14   | 18     | 5     | 19    |     |     |
| 2007       |     |      |         |         |     | 32  | 4   | 28    | 36    | 8   | 1   |     | 1    | 16     |       | 22    |     |     |
| 2008       | 2   | 16   | 11      |         | 2   |     | 7   | 26    | 16    | 5   | 15  | 2   | 16   | 11     | 4     | 8     | 1   |     |
| 2009       | 7   | 9    | 7       |         |     |     | 4   | 28    | 33    | 8   | 10  | 1   | 15   | 20     | 14    | 16    | 3   |     |

### Annex 13 a) Number of hauls by depth class, year and country for the continental coastal areas.

| Region                |            | Dut         | ch Wadd      | en Sea     |                | German/DK Wadden Sea |           |              |            |
|-----------------------|------------|-------------|--------------|------------|----------------|----------------------|-----------|--------------|------------|
| 1                     | 0 (        | ( 10        | 12.20        | 20         | (1-11-)        | 0.6                  | 6-        | 12 20        | 20         |
| depth zone<br>Country | 0–6<br>NED | 6–12<br>NED | 13–20<br>NED | 20-<br>NED | (blank)<br>NED | 0–6<br>GFR           | 12<br>GFR | 13–20<br>GFR | 20-<br>GFR |
| · · · ·               |            |             | 2            | NED        | NED            | GFK                  | GFK       | GFK          | GFK        |
| 1970                  | 64<br>50   | 39          |              |            |                | 20                   | 15        | 1            |            |
| 1971                  | 50         | 56          | 3            | 1          |                | 28                   | 15        | 1            |            |
| 1972                  | 44         | 40          | 9            | 1          |                | 7                    | 33        | 7            |            |
| 1973                  | 39         | 51          | 5            |            |                | 7                    | 82        | 7            | 1          |
| 1974                  | 37         | 59          | 8            |            |                | 85                   | 18        | _            |            |
| 1975                  | 45         | 57          | 5            |            |                | 75                   | 21        | 2            |            |
| 1976                  | 53         | 47          | 7            |            |                | 72                   | 14        |              |            |
| 1977                  | 44         | 54          | 11           |            |                | 151                  | 26        | 2            |            |
| 1978                  | 46         | 51          | 11           |            |                | 101                  | 14        |              |            |
| 1979                  | 40         | 51          | 10           |            |                | 139                  | 20        |              |            |
| 1980                  | 46         | 52          | 10           |            |                | 158                  | 16        |              |            |
| 1981                  | 41         | 55          | 11           |            |                | 187                  | 29        |              |            |
| 1982                  | 48         | 49          | 11           |            |                | 198                  | 33        | 1            |            |
| 1983                  | 56         | 40          | 11           |            |                | 154                  | 32        | 2            |            |
| 1984                  | 50         | 48          | 9            |            |                | 183                  | 26        | 1            |            |
| 1985                  | 50         | 45          | 9            |            |                | 141                  | 48        | 1            | 1          |
| 1986                  | 58         | 42          | 6            | 1          |                | 130                  | 54        | 8            |            |
| 1987                  | 54         | 42          | 12           |            |                | 96                   | 23        |              |            |
| 1988                  | 55         | 33          | 11           |            |                | 114                  | 14        | 2            |            |
| 1989                  | 47         | 40          | 14           |            |                | 149                  | 18        |              |            |
| 1990                  | 45         | 46          | 10           |            |                | 204                  | 49        | 2            |            |
| 1991                  | 59         | 45          | 6            |            |                | 181                  | 45        | 7            | 1          |
| 1992                  | 45         | 51          | 5            |            |                | 192                  | 44        | 5            |            |
| 1993                  | 60         | 44          | 8            |            |                | 132                  | 51        | 8            |            |
| 1994                  | 58         | 39          | 7            |            |                | 102                  | 44        | 4            | 1          |
| 1995                  | 55         | 50          | 9            |            |                | 93                   | 43        | 3            | 1          |
| 1996                  | 62         | 51          | 10           |            |                | 147                  | 63        | 5            | 1          |
| 1997                  | 62         | 44          | 10           | 1          |                | 130                  | 31        | 4            | 2          |
| 1998                  | 54         | 52          | 15           | 3          |                | 181                  | 61        | 15           | 2          |
| 1999                  | 50         | 54          | 12           | 2          |                | 174                  | 43        | 10           |            |
| 2000                  | 42         | 71          | 15           | 2          |                | 181                  | 37        | 8            |            |
| 2001                  | 49         | 55          | 11           | 1          |                | 152                  | 48        | 11           |            |
| 2002                  | 54         | 45          | 12           | 1          |                | 159                  | 35        | 4            |            |
| 2003                  | 43         | 59          | 11           |            |                | 166                  | 44        | 8            | 1          |
| 2004                  | 40         | 59          | 16           | 3          | 2              | 144                  | 44        | 10           |            |
| 2005                  | 47         | 59          | 19           | 1          | 1              | 96                   | 30        | 8            |            |
| 2006                  | 51         | 55          | 17           | 1          | 1              | 94                   | 32        | 5            | 1          |
| 2007                  | 42         | 56          | 22           | 1          |                | 56                   | 24        | 6            |            |
| 2008                  | 44         | 54          | 21           | 2          |                | 58                   | 24        | 7            | 2          |
| 2009                  | 47         | 47          | 26           | 1          | 1              | 78                   | 28        | 4            |            |

Annex 13 b) Number of hauls by depth class, year and country for the Wadden Sea.

| esidary.              |            |             |           |            |
|-----------------------|------------|-------------|-----------|------------|
| Region                |            | Scheldt     | Estuary   |            |
| dowth                 | 0.5        | E 10        | 10-       | 20         |
| depth zone<br>Country | 0–5<br>NED | 5–10<br>NED | 20<br>NED | 20-<br>NED |
| -                     |            |             |           |            |
| 1970                  | 11         | 36          | 21        | 2          |
| 1971                  | 11         | 36          | 15        | 1          |
| 1972                  | 8          | 44          | 9         | 1          |
| 1973                  | 11         | 42          | 13        |            |
| 1974                  | 4          | 47          | 18        | 1          |
| 1975                  | 3          | 48          | 10        |            |
| 1976                  | 2          | 29          | 28        | 3          |
| 1977                  | 1          | 9           | 42        | 11         |
| 1978                  |            | 15          | 40        | 8          |
| 1979                  |            | 10          | 45        | 7          |
| 1980                  | 7          | 17          | 29        | 9          |
| 1981                  |            | 16          | 41        | 4          |
| 1982                  |            | 16          | 43        | 2          |
| 1983                  |            | 20          | 37        | 4          |
| 1984                  | 17         | 20          | 21        | 2          |
| 1985                  | 8          | 24          | 25        | 2          |
| 1986                  | 7          | 27          | 25        |            |
| 1987                  | 10         | 19          | 27        | 2          |
| 1988                  | 8          | 21          | 19        | 3          |
| 1989                  | 22         | 14          | 29        | 5          |
| 1990                  | 1          | 20          | 32        | 15         |
| 1991                  | 1          | 17          | 40        | 4          |
| 1992                  | 15         | 19          | 23        | 7          |
| 1993                  | 1          | 16          | 34        | 7          |
| 1994                  | 13         | 18          | 27        | 10         |
| 1995                  | 12         | 22          | 30        | 10         |
| 1996                  | 15         | 19          | 33        | 9          |
| 1997                  | 15         | 22          | 30        | 10         |
| 1998                  | 14         | 21          | 34        | 8          |
| 1999                  | 14         | 26          | 25        | 13         |
| 2000                  | 12         | 20          | 48        | 8          |
| 2001                  | 17         | 27          | 39        | 11         |
| 2002                  | 22         | 24          | 31        | 8          |
| 2003                  | 21         | 19          | 26        | 12         |
| 2004                  | 23         | 20          | 23        | 6          |
| 2004                  | 17         | 15          | 34        | 12         |
| 2005                  | 12         | 22          | 32        | 11         |
| 2007                  | 12         | 23          | 28        | 11         |
| 2007                  | 15         | 23          | 28<br>29  | 9          |
|                       |            |             |           |            |
| 2009                  | 16         | 22          | 34        | 9          |

Annex 13 c) Number of hauls by depth class and year for the Scheldt estuary.

## Annex 14: Abundance of fish species and *Crangon* sp. in the inshore surveys

## Annex 14 a) Abundance of fish species and *Crangon* sp. for the continental coastal areas.

Dutch coast

Dutch data

| Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1970       | 1971  | 1972   | 1973  | 1974  | 1975  | 1976  | 1977  | 1978  | 1979  | 1980   | 1981  | 1982  | 1983  | 1984  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|--------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|
| 9.3         29.2         22.4         32.3         32.4         32.4         32.4         32.3         32.4         33.5         31.7         33.5         32.5         32.3         32.3         32.3         32.5         32.5         32.3         32.3         32.5         32.5         32.3         32.5         33.5         33.7         33.5         1.6         1.0         23.0         1.0         33.5         1.6         1.0         23.0         1.0         33.5         1.6         1.0         23.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16         | 148   | 62     | 8.8   | 26    | 72    |       | 36    | 64    | 8.5   | 3.5    | 76    | 15    | 13    | 27    |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |       |        |       |       |       |       | 1.2   |       |       | 0.14   | 19    | 335   |       |       |
| 94         2.3         2.3         6.3         2.4         2.2         2.2         1.3         1.6         1.0         2.9         1.6         1.0         2.9         1.6         1.0         2.9         1.6         1.0         2.9         1.6         1.0         2.9         1.6         1.0         2.10         1.5         3.0         1.5         3.0         1.5         3.0         1.5         3.0         1.5         3.0         1.5         3.0         1.5         3.0         1.5         3.0         1.5         3.0         1.5         3.0         1.5         3.0         1.5         3.0         1.5         3.0         1.5         3.0         1.5         3.0         1.5         3.0         1.5         1.5         1.0         1.5         1.0         1.5         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0 <td>9.3</td> <td>29</td> <td>224</td> <td>31</td> <td>9.8</td> <td>14</td> <td></td> <td>3.7</td> <td>0.94</td> <td>0.13</td> <td>0.95</td> <td>111</td> <td>17</td> <td>3.3</td> <td>3.9</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.3        | 29    | 224    | 31    | 9.8   | 14    |       | 3.7   | 0.94  | 0.13  | 0.95   | 111   | 17    | 3.3   | 3.9   |
| 1     233     55     32     2.2     2.2     2.2     2.5     3.3     12     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15     15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 54         | 2.3   | 2.3    | 63    | 44    | 21    |       | 32    | 3.2   | 1     | 3.3    | 9.2   | 16    | 21    | 31    |
| 61     72     72     72     73     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     74     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121        | 48    | 52     | 335   | 189   | 237   |       | 140   | 32    | 1.6   | 10     | 29    | 189   | 65    | 59    |
| 1969         448         1823         5948         4025         520         774         2189         65.         66.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67.         67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 233        | 5.5   | 3.2    | 0.38  | 2.9   | 0.25  |       | 31    | 70    | 381   | 641    | 519   | 2130  | 703   | 135   |
| 0.71     1.4     1.5     0.43     0.55     0.67     1.41     506     1.41     507     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62 <td< td=""><td>61</td><td>2.2</td><td>2.2</td><td>2.2</td><td>2.5</td><td>3.3</td><td></td><td>12</td><td>15</td><td>15</td><td>9</td><td>13</td><td>15</td><td>33</td><td>4</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61         | 2.2   | 2.2    | 2.2   | 2.5   | 3.3   |       | 12    | 15    | 15    | 9      | 13    | 15    | 33    | 4     |
| 699         193         99         68         59         113         110         110         120         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130         130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1690       | 4481  | 1823   | 5948  | 4025  | 3209  |       | 794   | 2189  | 0.5   | 5238   | 8971  | 1897  | 2114  | 446   |
| 10     11     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10    <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.71       | 4     | 1.5    | 0.43  | 0.55  | 0.37  |       | 0.5   | 0.65  |       | 0.66   | 2.4   | 0.71  | 0.31  | 0.57  |
| 14     0.07     0.06     0.13     0.0     0.1     0.1     0.1     0.1     0.1     0.2     0.1     0.2     0.1     0.2     0.1     0.2     0.1     0.2     0.1     0.2     0.1     0.2     0.1     0.2     0.1     0.2     0.1     0.2     0.1     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10     0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <br>699    | 3193  |        | 668   | 593   | 482   |       | 141   | 5839  | 1396  | 3642   | 1076  | 1243  | 1627  |       |
| 1         2         3         3         1         9         6         11         12         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         1333         1333         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <br>69     | 55    |        | 35    | 113   | 110   |       | 150   | 181   | 686   | 274    | 514   | 238   | 999   | 51    |
| 662         1095         289         280         135         301         128         365         180         178         130         1300         1305         1000         128         403           11117         1725         2         0.53         2         0.59         100         100         100         100         100         128         44         49         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4 </td <td>14</td> <td></td> <td>0.07</td> <td></td> <td>0.06</td> <td>0.13</td> <td></td> <td></td> <td></td> <td>0.38</td> <td></td> <td>0.44</td> <td>16</td> <td>5.3</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14         |       | 0.07   |       | 0.06  | 0.13  |       |       |       | 0.38  |        | 0.44  | 16    | 5.3   |       |
| 1112         172         72         877         887         84         448         173         1303         1303         1303         134         134         135         136           1557         2667         1979         5681         5220         618         0.25         618         5336         3316         5336         3136         5336         3136         533         416         534         4348           1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |       |        |       |       |       |       |       |       |       |        |       |       |       |       |
| 0.32     0.63     2.2     0.59     0.71     0.26     1.476     91.0     155     283     44     34.4     1.474       15557     2667     1970     5811     5207     6184     1472     3113     3104     1990     8207     9461     6951     4383       1985     1986     1987     1988     1989     1990     1992     199     1994     1995     1996     199     1998     1997     1986     1997     1986     1997     1986     1997     1986     1997     1986     1997     1986     1997     1986     1997     1986     1997     1986     1997     1986     1997     1986     1997     1986     1997     1986     1997     198     1997     198     1987     1987     1987     1987     1987     1987     1987     1987     1987     1987     198     1987     198     1988     198     117     198     1988     1987     198     1987     198     1987     198     1987     198     198     198     198     198     198     198     198     198     198     198     198     198     198     198     198     198     198     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |       |        |       |       |       |       |       |       |       |        |       |       |       |       |
| 1557         2667         1970         58811         5207         69184         14726         39136         39304         1990         82073         94616         69154         43483           1985         1986         1987         1988         1989         1990         1991         1992         193         1994         1995         1996         1997         1998         1997         1993         1994         1995         1996         1997         1998         1997         1993         1994         1995         1996         1997         1998         1997         1993         1994         1995         1996         1997         1998         1997         1993         1994         1995         1996         1997         1996         1997         1932         1934         101         15         24         101         101         101         102         113         130         113         113         113         113         113         113         113         113         114         137         137         188         199         199         199         199         194         145         144         141         140         137         128         141         141 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |       |        |       |       |       |       |       |       |       |        |       |       |       |       |
| Image: black         Image: black <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |        |       |       |       |       |       |       |       |        |       |       |       |       |
| 207       73       64       22       10       3.4       26       5.8       29       11       15       24       21       16       19         0.11       0.2       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       10       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <br>15557  | 26676 | 19790  | 56811 | 52207 | 69184 |       | 14726 | 39136 | 35304 | 193910 | 82073 | 94616 | 69514 | 43483 |
| 207       73       64       22       10       3.4       26       5.8       29       11       15       24       21       16       19         0.11       0.2       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       10       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1985       | 1986  | 1987   | 1988  | 1989  | 1990  | 1991  | 1992  | 1993  | 1994  | 1995   | 1996  | 1997  | 1998  | 1999  |
| 1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 <td></td> <td>19</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |       |        |       |       |       |       |       |       |       |        |       |       |       | 19    |
| 16     2.2     3.8     4.7     2.6     5.7     7.1     159     2.13     4.12     7.3     3.2     3.4     1.3     2.08       6.1     1.8     3.17     8.6     3.17     8.66     3.17     8.66     3.17     3.66     4.41     3.19     6.16     1.13     1.13     1.13     1.13     6.11     6.13     1.14     0.14     0.13     0.16     0.12     0.16     0.12     0.8     3.77     0.8     4.5     0.40       1737     227     9406     2.77     500     158     520     150     0.12     0.48     1.1     0.12     0.48     1.1     0.13     0.14     0.13     0.14     0.14     0.13     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14     0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |       |        |       | 0.92  |       |       |       |       |       |        |       |       |       |       |
| IndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23         | 3.8   | 4.1    | 9     | 47    | 23    | 28    | 11    | 10    | 25    | 25     | 117   | 25    | 7.4   | 50    |
| 104     66     171     86     33     99     211     18     37     61     481     319     146     7.5     120       5.8     4.5     7.23     4.9     1.3     1.6     1.2     0.16     0.18     3.7     2.8     4.6     19     2.4       1873     227     9406     0.78     0.78     5.8     6.84     1.51     6.84     6.83     6.44     1.0     1.02     1.62     1.58     6.44     1.51     6.44     1.51     6.44     1.61     1.23     6.84     1.31     6.44     6.54     1.41     6.55     5.15     4.34     6.64       100     911     64     0.23     0.33     0.21     1.72     0.51     4.44     2.01     4.84     3.10     1.41     2.3     3.3     6.14     2.7     1.5     4.7     4.6     3.8     3.5     1.41     3.3     1.9     1.5     0.43     1.32       1111     900     1105     0.27     0.55     0.45     0.58     0.21     0.38     0.21     0.31     0.41     0.31     0.41     0.31     0.41     0.31     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41 </td <td>16</td> <td>2.2</td> <td>38</td> <td>47</td> <td>26</td> <td>57</td> <td>71</td> <td>159</td> <td>213</td> <td>412</td> <td>73</td> <td>32</td> <td>34</td> <td>13</td> <td>208</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16         | 2.2   | 38     | 47    | 26    | 57    | 71    | 159   | 213   | 412   | 73     | 32    | 34    | 13    | 208   |
| 1     1     1     1     1     1     1     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 <td>61</td> <td>18</td> <td>213</td> <td>80</td> <td>1899</td> <td>277</td> <td>211</td> <td>324</td> <td>407</td> <td>37</td> <td>57</td> <td>18</td> <td>77</td> <td></td> <td>148</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 61         | 18    | 213    | 80    | 1899  | 277   | 211   | 324   | 407   | 37    | 57     | 18    | 77    |       | 148   |
| 1873     277     9406     2707     5000     158     250     1602     2845     158     251     453     6484     574     3859       1.4     0.44     1.5     0.48     4.5     5.6     3.6     5.7     3.8     11     23     5.8     3.4     5.7     3.2       1.60     406     1.7     6.88     1243     6.14     20     3.8     6.14     20     3.8     6.14     20     3.8     6.14     20     3.8     6.14     20     3.8     6.1     4.9     4.9       1.61     0.62     0.63     0.7     7.5     7.5     7.6     7.6     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8     7.8 <t< td=""><td>104</td><td>63</td><td>171</td><td>86</td><td>33</td><td>39</td><td>211</td><td>18</td><td>37</td><td>61</td><td>481</td><td>319</td><td>146</td><td>7.5</td><td>120</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 104        | 63    | 171    | 86    | 33    | 39    | 211   | 18    | 37    | 61    | 481    | 319   | 146   | 7.5   | 120   |
| 14.0.341.50.484.55.53.65.93.81.12.36.83.40.43.28089181774981817828761243541461805147865551543464446411764293.88.11.42208.83.41.488051.488.90.510.474641.336.36.032.71.54.73.662.82.77.31.91.50.461.3181790011052.71.54.73.662.83.632.042.181.101.062.233.044.063.93.612.93.633.622.33.613.69.93.633.613.63.93.633.623.633.613.63.93.633.633.633.633.644.064.933.643.643.633.633.643.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.63.6<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.8        | 4.5   | 2.3    | 4.9   | 1.3   | 1.6   | 1.2   | 0.16  | 0.12  | 0.8   | 3.7    | 2.8   | 4.6   | 19    | 2.4   |
| 98091891798181782876124354146180514786555154346141441176429386114716412018835111233149451441333136121251356146181261261314113314114914314114012331612714514513612812812811211461431419001105227450191140136238171087945399141140171714114014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1873       | 227   | 9406   | 2707  | 5000  | 1585  | 2520  | 1602  | 2845  | 1589  | 2517   | 4538  | 6484  | 574   | 3859  |
| 4611766293841444208.83.54.12.33.14.94.51000.320.360.322.01.54.71.21.01.01.48.90.570.0712.33.36.12.71.54.73.602.82.152.73.82.123.061.3101010152.271.501.915.1203.662.83.123.183.104.153.164072.753.029.89.92.1123.601.033.602.033.614.093.623.63.64092.753.029.73.573.572.1123.653.633.644.094.094.094.094.094.094.094.093.233.234001.081.922.033.673.673.673.674.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.094.09 </td <td>1.4</td> <td>0.34</td> <td>1.5</td> <td>0.48</td> <td>4.5</td> <td>5</td> <td>3.6</td> <td>5.9</td> <td>3.8</td> <td>11</td> <td>23</td> <td>6.8</td> <td>3.4</td> <td></td> <td>3.2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.4        | 0.34  | 1.5    | 0.48  | 4.5   | 5     | 3.6   | 5.9   | 3.8   | 11    | 23     | 6.8   | 3.4   |       | 3.2   |
| Image: space of the space of | 808        | 918   | 1774   | 9818  | 1782  | 876   | 1243  | 541   | 461   | 805   | 1478   | 655   | 515   | 434   | 614   |
| 11336111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46         | 117   | 64     | 29    | 38    | 41    | 44    | 20    | 8.8   | 35    | 41     | 23    | 31    | 49    | 45    |
| 181799011052274501935403183102042181121426223420497275302498962511203662938171087945991089238511221271936746183469260140406490480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480480 </td <td></td> <td>0.32</td> <td>0.36</td> <td>0.03</td> <td>2.2</td> <td></td> <td>1.2</td> <td></td> <td></td> <td></td> <td>1.4</td> <td>8.9</td> <td>0.57</td> <td></td> <td>0.47</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 0.32  | 0.36   | 0.03  | 2.2   |       | 1.2   |       |       |       | 1.4    | 8.9   | 0.57  |       | 0.47  |
| 49740750249089089251120326912032891212075322240.641.7742443.86.22.33231068972384511221227193567211426108346932240340194409645954644120035211068972384511221227193567211426108346932243340194409645954644120035211068972000200020072001200520072005200720082009200400940094009400940094009400940094009400940094009400940094009400940094009400940094009400940094009400940094009400940094009400940094009400940094009400940094009400940094009400940094009400940094009400940094009400940094009400940094009400940094009400940094009400940094009400940094009400940094009400940094009400940094009400940094009400940094009400940094009400940094009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.3        | 3.3   | 6.1    | 2.7   | 1.5   | 4.7   | 3.6   | 2.8   | 2.5   | 2.7   | 3      | 1.9   | 1.5   | 0.46  | 1.3   |
| 1.91.42.70.750.32.40.641.774.24.43.86.22.32.3310689723845119212271935679219426108346932240340619440964595046444120035421106971069710710101010010010010010010036211069720082001200220032004200520062007200820091001001001001001071081095.7101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101101 <td>1817</td> <td>900</td> <td>1105</td> <td>227</td> <td>450</td> <td>193</td> <td>540</td> <td>318</td> <td>310</td> <td>204</td> <td>218</td> <td>1121</td> <td>426</td> <td>223</td> <td>420</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1817       | 900   | 1105   | 227   | 450   | 193   | 540   | 318   | 310   | 204   | 218    | 1121  | 426   | 223   | 420   |
| 10689723845119221227193567921914261083469322403406194409645950464441204035421100020002001200220032004200520062007200820092002008200920002001200220032004200520052006200720082009200920082009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009200920092009 <td>497</td> <td>275</td> <td>3024</td> <td>98</td> <td>96</td> <td>25</td> <td>1120</td> <td>36</td> <td></td> <td>38</td> <td>17</td> <td>108</td> <td>79</td> <td>45</td> <td>99</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 497        | 275   | 3024   | 98    | 96    | 25    | 1120  | 36    |       | 38    | 17     | 108   | 79    | 45    | 99    |
| 1 $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.9        | 1.4   | 2.7    | 0.75  | 3     | 2.4   | 0.64  | 1.7   | 7     | 42    | 4      | 3.8   | 6.2   | 2.3   | 23    |
| 3.516195.7154.96.31377110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110111110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110 <th><br/>106897</th> <th>23845</th> <th>119221</th> <th>22719</th> <th>35679</th> <th>21914</th> <th>26108</th> <th>34693</th> <th>22403</th> <th>40619</th> <th>44096</th> <th>45950</th> <th>46444</th> <th>12040</th> <th>35421</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <br>106897 | 23845 | 119221 | 22719 | 35679 | 21914 | 26108 | 34693 | 22403 | 40619 | 44096  | 45950 | 46444 | 12040 | 35421 |
| 3.516195.7154.96.31377110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110111110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110 <th>2000</th> <th>2001</th> <th>2002</th> <th>2003</th> <th>2004</th> <th>2005</th> <th>2006</th> <th>2007</th> <th>2008</th> <th>2009</th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2000       | 2001  | 2002   | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  | 2009  |        |       |       |       |       |
| Image: series of the series  |            |       |        |       |       |       |       |       |       |       |        |       |       |       |       |
| 88.558.8117.23.3.52.231.553.223.253.231.661.601.161.441.701.261.921.661.661.661.661335553.231.651.021.011.011.211.261.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.92<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |       | 0.05   |       |       |       |       |       |       |       |        |       |       |       |       |
| 13355321661601161441701261921001001001001003858515202101310217886985668566666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.5        | 5.8   |        |       | 3.5   |       |       | 58    | 32    | 23    |        |       |       |       |       |
| 38581512021013102178569856666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |       |        |       |       |       |       |       |       |       |        |       |       |       |       |
| 6642121154445108123712244514<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |       |        |       |       |       |       |       |       |       |        |       |       |       |       |
| 1.11.02.81.76.42.61.35.92.12.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |       |        |       |       | 108   |       |       | 45    |       |        |       |       |       |       |
| 11       3.2       9.6       4.8       3.5       1.5       3.6       5.5       3.5       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 10    | 2.8    | 1.7   | 6.4   | 2.6   | 13    | 5.9   | 2.1   | 2.4   |        |       |       |       |       |
| 298       274       223       1320       417       528       199       713       437       1697 <td< td=""><td>2102</td><td>797</td><td>2436</td><td>7073</td><td>2511</td><td>3004</td><td>4303</td><td>2232</td><td>1389</td><td>4524</td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2102       | 797   | 2436   | 7073  | 2511  | 3004  | 4303  | 2232  | 1389  | 4524  |        |       |       |       |       |
| 298       274       223       1320       417       528       199       713       437       1697 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |       |        |       |       |       |       |       |       |       |        |       |       |       |       |
| 81       164       241       75       130       38       40       273       97       133       97       133         0.07       0.07       1.2       1.6       0.14       1.1       2.1       4.7       1.5       1.5         2.03       1.2       1.6       0.14       1.1       2.1       4.7       1.5       4.2       1.5         2.04       1.2       1.6       0.31       2.5       0.93       1.5       4.6       5       4.2       1.4       1.4       1.4         2.05       1.12       1.6       0.31       2.5       0.93       1.5       4.6       5       4.2       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4       1.4 <td< td=""><td>298</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1697</td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 298        |       |        |       |       |       |       |       |       | 1697  |        |       |       |       |       |
| 0.07       0.07       1.2       1.6       0.14       1.1       2.1       4.7       1.5       1.5       1.6       1.1         2.5       1.2       1.6       3.1       2.5       0.93       1.5       4.6       5       4.2       1.5       1.5       1.6       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |       |        |       |       |       |       |       |       |       |        |       |       |       |       |
| 1.2       1.6       3.1       2.5       0.93       1.5       4.6       5       4.2         239       414       339       573       398       171       666       193       326       324         209       226       23       62       10       666       23       14       52       45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |       |        |       |       |       |       |       |       |       |        |       |       |       |       |
| 239       414       339       573       398       171       666       193       366       324         29       226       23       62       10       666       23       14       52       45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 1.2   |        |       |       |       |       |       | 5     |       |        |       |       |       |       |
| 29         226         23         62         10         66         23         14         52         45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |       |        |       |       |       |       |       |       |       |        |       |       |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |        |       |       |       |       |       |       |       |        |       |       |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |        |       |       |       |       |       |       |       |        |       |       |       |       |
| <u>39141</u> 16636 28942 47496 21036 29468 46472 13105 35317 57722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39141      | 16636 | 28942  | 47496 | 21036 | 29468 | 46472 | 13105 | 35317 | 57722 |        |       |       |       |       |

#### German Bight

#### Dutch data

|   | 1970  | 1971  | 1972  | 1973  | 1974  | 1975  | 1976  | 1977  | 1978      | 1979     | 1980  | 1981   | 1982  | 1983  | 1984  |
|---|-------|-------|-------|-------|-------|-------|-------|-------|-----------|----------|-------|--------|-------|-------|-------|
|   |       |       |       |       |       |       |       |       | 25        | 29       | 23    | 31     | 99    | 41    | 38    |
|   |       |       |       |       |       |       |       |       |           |          | 0.04  | 0.8    | 20    |       |       |
|   |       |       |       |       |       |       |       |       | 4.2       | 1.4      | 7.1   | 1.7    | 14    | 1.2   | 4.8   |
|   |       |       |       |       |       |       |       |       | 0.88      |          |       |        | 3.4   | 0.5   | 3.3   |
|   |       |       |       |       |       |       |       |       | 38        | 2.3      | 2.6   | 63     | 91    | 21    | 8.2   |
|   |       |       |       |       |       |       |       |       | 20        | 37       | 121   | 27     | 474   | 114   | 26    |
|   |       |       |       |       |       |       |       |       | 339       | 637      | 50    | 102    | 13    | 387   | 9.6   |
|   |       |       |       |       |       |       |       |       | 499       |          | 1097  | 893    | 2810  | 166   | 914   |
|   |       |       |       |       |       |       |       |       | 5.5       | 0.17     | 3.3   | 1.2    | 1.8   | 0.48  | 2.9   |
|   |       |       |       |       |       |       |       |       | 566       | 709      | 1150  | 467    | 705   | 979   | 1112  |
|   |       |       |       |       |       |       |       |       | 308       | 287      | 99    | 164    | 104   | 1158  | 95    |
|   |       |       |       |       |       |       |       |       | 6.8       | 4.1      | 5.1   | 30     | 39    | 8     | 2.5   |
|   |       |       |       |       |       |       |       |       | 16        | 14       | 51    | 36     | 32    | 14    | 22    |
|   |       |       |       |       |       |       |       |       | 338       | 706      | 608   | 1051   | 1848  | 1157  | 596   |
|   |       |       |       |       |       |       |       |       | 11        | 134      | 629   | 603    | 52    | 20    | 224   |
|   |       |       |       |       |       |       |       |       | 0.72      | 1.4      | 16    | 8.9    | 200   | 4.2   |       |
|   |       |       |       |       |       |       |       |       | 18842     | 35533    | 85419 | 28766  | 94817 | 18674 | 36030 |
|   |       |       |       |       |       |       |       |       | 100.2     | 50000    | 50.17 | 207.00 | 2.017 |       | 50050 |
|   | 1985  | 1986  | 1987  | 1988  | 1989  | 1990  | 1991  | 1992  | 1993      | 1994     | 1995  | 1996   | 1997  | 1998  | 1999  |
|   | 52    | 61    | 45    | 90    | 53    | 170   | 25    | 23    | 30        | 92       | 70    | 43     | 26    |       | 3     |
|   | 15    | 9.2   | 9.9   | 61    | 22    | 71    | 146   | 15    | 26        | 17       | 92    | 50     | 54    |       | 2     |
|   |       |       |       | 61    | 22    |       | 146   | 45    | 26        |          |       | 50     |       |       | 2     |
|   | 0.27  | 2.4   | 1.1   | 3.2   | 12    | 24    | 2.8   | 53    | 122       | 44       | 22    | 0.51   | 0.62  |       |       |
|   | 1.7   | 6.9   | 19    | 21    | 77    | 18    | 14    | 80    | 56        | 88       | 17    | 0.71   | 3.5   |       | 4     |
|   | 42    | 92    | 51    | 27    | 14    | 18    |       | 11    | 44        | 16       | 34    | 18     | 13    |       |       |
|   | 184   | 84    | 27    | 29    | 5     | 53    | 19    | 3.3   | 2.1       | 26       | 16    | 103    | 4.1   |       |       |
|   | 639   | 309   | 1242  | 968   | 857   | 329   | 598   | 479   | 688       | 456      | 738   | 3021   | 1329  |       | 64    |
|   | 0.4   | 0.21  | 5.6   | 2.8   | 0.43  | 0.38  | 4.4   | 0.53  | 0.14      | 52       | 6.9   | 2.9    | 0.92  |       |       |
|   | 1391  | 5299  | 986   | 2775  | 1059  | 1154  | 647   | 346   | 157       | 173      | 302   | 629    | 203   |       | 7     |
|   | 165   | 594   | 146   | 97    | 42    | 1814  | 80    | 25    | 111       | 396      | 202   | 24     | 11    |       | 1     |
|   | 5.7   | 9.4   | 11    | 4.4   | 8     | 2.3   | 4.2   | 11    | 2.1       | 4.5      | 24    | 33     | 4.5   |       |       |
|   | 2.3   | 7.7   | 13    | 10    | 6.5   | 7.1   | 12    | 12    | 7         | 5.6      | 12    | 3.3    | 2.4   |       |       |
|   | 1945  | 5444  | 938   | 464   | 626   | 1021  | 748   | 419   | 317       | 619      | 152   | 787    | 167   |       | 6     |
|   | 335   | 37    | 217   | 28    | 57    | 5.3   | 126   | 19    | 12        | 57       | 2.2   | 26     | 12    |       |       |
|   | 6.4   | 1.7   | 14    | 1.2   | 9.4   |       | 1.8   | 41    | 0.81      | 11       | 0.9   | 11     | 6.3   |       |       |
|   | 38685 | 38940 | 69830 | 38224 | 25017 | 13095 | 24791 | 40439 | 18740     | 51177    | 10671 | 49547  | 12052 |       | 1568  |
|   | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008      | 2009     |       |        |       |       |       |
|   | 54    | 61    | 31    | 9.5   | 2001  | 5.2   | 2000  | 37    | 67        | 66       |       |        |       |       |       |
|   |       |       |       | 1.3   | -0    | 0.07  | 1.2   | 27    |           | 20       |       |        |       |       |       |
|   | 8.3   | 3.5   | 0.57  | 0.47  | 6.2   | 12    | 142   | 12    | 15        | 7        |       |        |       |       |       |
|   | 20    | 11    | 1.3   | 26    | 4     | 11    | 3     | 35    | 5.6       | 13       |       |        |       |       |       |
|   | 32    | 55    | 4     | 36    | 59    | 16    | 37    | 53    | 36        | 15       |       |        |       |       |       |
|   | 9.5   | 9.4   | 0.43  | 4.4   | 13    | 0.39  | 35    | 6     | 42        | 8.7      |       |        |       |       |       |
|   | 3.4   | 57    | 0.43  | 1.8   | 13    | 4.8   | 5.2   | 21    | 42        | 11       |       |        |       |       |       |
|   | 1092  | 1130  | 581   | 1022  | 3007  | 1781  | 1476  | 552   | 390       | 1234     |       |        |       |       |       |
|   | 5.1   | 7.1   | 0.43  | 4.1   | 3.4   | 1.6   | 0.83  | 332   | 590       | 12.54    |       |        |       |       |       |
|   | 62    | 345   | 80    | 24    | 393   | 92    | 26    | 325   | 247       | 401      |       |        |       |       |       |
|   | 255   | 808   | 201   | 16    | 595   | 4.3   | 11    | 94    | 77        | 96       |       |        |       |       |       |
|   | 233   | 6.3   | 0.93  | 7.6   | 42    | 4.5   | 43    | 24    | , ,       | 28       |       |        |       |       |       |
|   | 3.1   | 2.6   | 1.1   | 4.3   | 2.6   | 1.7   | 43    | 4.7   | 4         | 2.8      |       |        |       |       |       |
|   |       |       |       |       |       |       |       |       |           |          |       |        |       |       |       |
|   | 217   | 559   | 78    | 284   | 163   | 103   | 127   | 130   | 176<br>14 | 456<br>4 |       |        |       |       |       |
|   | 3.2   | 4.5   | 11    | 4.7   | 2     | 11    | 4.1   | 1.8   |           |          |       |        |       |       |       |
|   | 108   | 4.5   | 163   | 47    | 12    | 28    | 18    | 2.2   | 13        | 14       |       |        |       |       |       |
| L | 28703 | 19054 | 12105 | 27057 | 25414 | 40865 | 84103 | 14800 | 24763     | 28275    |       |        |       |       |       |

#### German data

|   | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979  | 1980 | 1981 | 1982 | 1983  | 1984 |
|---|------|------|------|------|------|------|------|------|------|-------|------|------|------|-------|------|
|   |      | 1.2  |      | 7    | 3    | 2.1  | 2.3  | 1.6  | 0.68 | 2.4   | 2.5  | 1.9  | 0.63 | 2.9   | 2    |
|   |      |      |      |      |      |      | 0    |      |      |       | 0.02 |      |      |       |      |
|   |      | 0.84 |      |      | 0.06 | 0.07 | 0.05 | 0.18 | 0.09 | 0.07  |      | 0.2  |      |       |      |
|   |      |      |      | 0.08 |      | 0.07 | 0.04 | 0.38 | 0.02 |       |      |      |      | 0.05  |      |
|   |      | 0.64 |      | 0.75 | 0.01 |      |      | 0.78 |      |       |      |      |      |       | 0.21 |
|   |      |      |      |      | 0.09 |      | 0.05 | 0.02 | 0.68 | 0.73  | 0.07 | 0.08 | 0.2  | 0.2   | 0.79 |
|   |      |      |      | 0.25 | 0.38 | 0.3  | 0.99 | 1.8  | 1.9  | 43    | 0.56 | 0.73 | 0.4  |       | 0.27 |
|   |      |      |      | 113  | 130  | 7.6  | 24   | 7.1  | 2.7  | 13    | 5.3  | 13   | 23   | 7.4   | 20   |
|   |      |      |      |      |      |      | 0.04 | 0.09 |      |       |      |      |      |       | 0.03 |
|   |      | 2.8  |      | 8.8  | 84   | 11   | 27   | 12   | 5.1  | 117   | 6.5  | 37   | 7    | 3     | 11   |
|   |      |      |      |      | 2.7  | 1    | 3.4  | 1.2  | 0.93 | 0.27  | 2.1  | 0.95 | 0.55 | 0.2   | 0.94 |
|   |      | 0.15 |      | 5.5  | 1.3  | 0.04 | 0.38 | 1.1  | 0.05 | 0.21  | 0.52 | 0.28 | 0.1  | 0.7   | 0.06 |
|   |      | 0.94 |      | 0.83 | 0.68 | 0.01 | 1.7  | 0.19 | 0.32 | 0.32  | 0.84 | 0.38 | 0.33 | 0.6   | 0.16 |
|   |      | 106  |      | 13   | 12   | 3.7  | 1.7  | 13   | 11   | 54    | 12   | 106  | 9.1  | 7.1   | 55   |
|   |      | 1.1  |      | 0.08 | 0.32 | 0.75 | 0.19 | 3.8  | 0.16 | 112   | 0.89 | 5.6  | 0.68 | 2.7   | 7.1  |
|   |      | 0.08 |      | 0.08 |      | 0.14 | 0.19 |      |      |       |      |      |      |       |      |
|   |      |      |      | 675  | 2122 |      |      | 36   | 0.18 | 3.5   | 0.02 | 1.1  | 0.48 | 0.2   | 0.13 |
| L |      | 154  |      | 675  | 3133 | 1317 | 5779 | 582  | 1023 | 10169 | 878  | 1425 | 1575 | 1524  | 937  |
|   | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994  | 1995 | 1996 | 1997 | 1998  | 1999 |
|   | 2.6  | 8.6  | 8.3  | 1988 | 1989 | 7    | 1991 | 2.2  | 4.2  | 1994  | 4    | 3.3  | 5.3  | 1,998 | .,,, |
|   | 2.0  | 0.0  | 0.5  | .,   | 14   | ,    | 11   | 2.2  | 7.2  | 10    | 0.01 | 0.01 | 5.5  | 0.1   |      |
|   |      | 0.03 | 0.12 | 0.08 | 0.59 | 0.23 | 0.03 | 0.18 | 0.05 |       | 0.01 | 0.01 | 0.04 | 0.08  |      |
|   |      | 0.03 | 1.3  | 0.08 | 0.16 | 0.25 | 2.2  | 0.18 | 1.1  | 5.4   | 0.56 | 0.24 | 0.04 | 0.08  |      |
|   |      |      | 1.5  |      |      |      | 0.4  | 0.39 |      |       | 0.00 | 0.02 | 0.02 |       |      |
|   | 0.5  | 0.02 | 6.4  | 0.29 | 0.35 | 1.7  |      | 0.39 | 0.43 | 0.07  |      |      |      | 0.45  |      |
|   | 8.5  | 1.7  | 6.4  | 0.92 | 1.2  | 5.2  | 0.3  | 0.01 | 1.8  | 3.2   | 2    | 0.16 | 1.3  | 1.2   |      |
|   | 0.3  | 0.48 | 0.25 | 0.36 | 0.2  | 1.1  | 1.8  | 0.01 | 0.01 | 0.42  | 0.6  | 1.1  | 0.82 | 0.9   |      |
|   | 24   | 76   | 6    | 12   | 38   | 2.8  | 22   | 2.8  | 7.5  | 15    | 7.6  | 35   | 39   | 4.4   |      |
|   | 0.33 | 0.21 |      |      |      | 0.03 |      | 0.04 | 0.02 | 0.02  |      |      | 0.02 | 0.06  |      |
|   | 38   | 55   | 36   | 59   | 24   | 63   | 100  | 20   | 12   | 28    | 12   | 20   | 16   | 31    |      |
|   | 0.51 | 11   | 9.9  | 13   | 4.9  | 21   | 15   | 0.7  | 0.82 | 3.5   | 3.7  | 0.92 | 0.67 | 6     |      |
|   | 0.02 | 0.47 | 2.6  | 10   | 2.3  | 0.4  | 0.28 | 0.29 | 0.22 | 0.52  | 0.57 | 0.57 | 3.7  | 0.97  |      |
|   | 0.77 | 0.28 | 1.1  | 2.8  | 0.93 | 1.1  | 0.27 | 0.38 | 0.07 | 1.7   | 0.17 | 0.1  | 1.4  | 0.17  |      |
|   | 21   | 52   | 80   | 67   | 18   | 40   | 79   | 10   | 10   | 12    | 9.4  | 87   | 28   | 5.9   |      |
|   | 1.1  | 3.4  | 2.9  | 10   | 2.7  | 2.5  | 2.5  | 1.1  | 0.37 | 0.44  | 0.1  | 2.6  | 1.1  | 0.18  |      |
|   | 1    | 0.58 | 0.53 | 1.3  | 4.2  | 0.56 | 0.18 | 0.19 | 9    | 4.8   | 0.17 | 0.29 | 0.3  | 0.97  |      |
|   | 1471 | 1712 | 2806 | 1388 | 1359 | 468  | 1171 | 818  | 727  | 1494  | 692  | 2085 | 3555 | 1139  |      |
|   |      |      |      |      |      |      |      |      |      |       |      |      |      |       |      |
|   | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009  |      |      |      |       |      |
|   | 2    | 4.5  | 7    | 1.4  | 2.4  | 0.25 | 0.06 | 118  | 1    | 3.3   |      |      |      |       |      |
|   |      | 0.02 | 0.1  |      | 0.04 | 0.09 | 0.06 |      |      |       |      |      |      |       |      |
|   | 0.02 | 0.08 | 0.02 | 0.03 |      | 0.05 |      |      | 0.12 | 0.12  |      |      |      |       |      |
|   | 0.78 | 0.56 | 0.09 | 1    | 3    |      | 0.8  |      |      | 0.1   |      |      |      |       |      |
|   | 2.1  | 2    | 1.3  | 0.79 | 2.4  | 0.11 | 3.8  |      | 0.88 | 1.1   |      |      |      |       |      |
|   | 0.11 | 1.5  | 0.75 | 0.05 | 0.38 | 0.07 | 0.26 | 1.6  | 39   | 0.54  |      |      |      |       |      |
|   | 0.05 | 1.2  | 0.01 | 0.02 | 0.02 | 0.03 | 0.2  | 5.2  | 0.07 | 0.53  |      |      |      |       |      |
|   | 8.4  | 11   | 13   | 5.9  | 15   | 10   | 27   | 6    | 24   | 5.1   |      |      |      |       |      |
|   | 0.91 | 0.05 | 0.02 | 0.01 |      | 0.05 | 0.06 |      | 0.08 | 0.07  |      |      |      |       |      |
|   | 19   | 21   | 5.4  | 1.7  | 17   | 2.3  | 2.1  | 4.5  | 3.7  | 2.9   |      |      |      |       |      |
|   | 1    | 12   | 1.2  | 0.4  | 0.08 | 0.04 |      | 13   | 1.7  | 3.8   |      |      |      |       |      |
|   | 0.68 | 0.97 | 1.9  | 0.68 | 4.1  | 2.2  | 1.6  | 21   | 48   | 4.6   |      |      |      |       |      |
|   | 0.22 | 0.12 | 0.37 | 0.15 | 0.18 | 0.06 | 0.13 |      | 0.59 | 0.2   |      |      |      |       |      |
|   | 3.3  | 12   | 3.6  | 2.2  | 4.4  | 2.7  | 10   | 20   | 15   | 8.5   |      |      |      |       |      |
|   | 0.05 | 0.13 | 0.58 | 0.04 | 0.08 | 0.2  | 0.13 | 20   | 0.07 | 0.29  |      |      |      |       |      |
|   | 0.03 | 1.8  | 3.9  | 7.4  | 9.9  | 5.6  | 3.6  | 4    | 27   | 1.5   |      |      |      |       |      |
|   | 1247 | 683  | 1857 |      | 2078 | 2092 | 6179 | 4756 | 3459 | 1.5   |      |      |      |       |      |
| L | 1247 | 083  | 100/ | 1126 | 2078 | 2092 | 01/9 | 4/30 | 3439 |       |      |      |      |       |      |

#### Belgian data

| 1970  | 1971 | 1972  | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983  | 1984 |
|-------|------|-------|------|------|------|------|------|------|------|------|------|------|-------|------|
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
|       |      |       |      |      |      |      |      |      | 150  | 103  | 106  | 47   | 112   | 120  |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
|       |      |       | 8.7  | 2.3  | 12   | 2.7  | 2.9  | 8.8  | 16   | 8.4  | 22   | 7.1  | 14    | 6    |
|       |      |       | 26   | 2.1  | 49   | 8.2  | 6.4  | 46   | 390  | 134  | 11   | 76   | 41    | 53   |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
|       |      |       |      |      | Î    | Î    |      |      |      |      |      |      | Ì     |      |
| 100-  | 100  | 10.05 | 1005 | 1005 | 1007 | 100  | 100- | 1005 |      | 1005 |      | 1005 | 10.05 | 100- |
| 1985  | 1986 | 1987  | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998  | 1999 |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
| 152   | 72   | 229   | 312  | 40   | 102  | 26   | 34   | 19   | 43   |      |      |      |       |      |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
| 62    | 35   | 35    | 36   | 4.1  | 23   | 20   | 9    | 5.6  | 39   | 61   | 135  | 127  | 86    | 54   |
| 156   | 36   | 18    | 9.7  | 8    | 3.6  | 44   | 8.7  | 9.9  | 16   | 26   | 74   | 46   | 86    | 52   |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
| 2000  | 2001 | 2002  | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |      |      |      |       |      |
| 2000  | 2001 | 2002  | 2003 | 2004 | 2005 | 2000 | 2007 | 2000 | 2007 |      |      |      |       |      |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
|       |      |       | 0.10 |      |      |      | 10   | 0.50 | 0.42 |      |      |      |       |      |
|       |      |       | 0.12 |      |      | 4    | 10   | 0.58 | 0.43 |      |      |      |       |      |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
|       |      | 29    | 83   | 93   | 30   | 11   | 343  | 404  | 167  |      |      |      |       |      |
|       |      |       | 74   |      | 2.0  | 53   | 1    | 223  | 133  |      |      |      |       |      |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
|       |      |       |      |      |      |      |      |      | 4.7  |      |      |      |       |      |
| 48    | 48   | 165   | 74   | 115  | 82   | 33   | 85   | 76   | 121  |      |      |      |       |      |
| 11    | 190  | 320   | 43   | 234  | 142  | 38   | 39   | 9.2  | 111  |      |      |      |       |      |
| <br>+ |      |       |      |      |      |      |      |      |      |      |      |      |       |      |
|       |      |       |      |      |      |      |      |      |      |      |      |      |       |      |

### Annex 14 b Abundance of fish species and *Crangon* sp. for the Wadden Sea.

Dutch data

|   | 1970   | 1971  | 1972   | 1973  | 1974  | 1975  | 1976   | 1977  | 1978  | 1979  | 1980   | 1981   | 1982   | 1983   | 1984   |
|---|--------|-------|--------|-------|-------|-------|--------|-------|-------|-------|--------|--------|--------|--------|--------|
|   | 20     | 18    | 10     | 23    | 13    | 32    | 5.3    | 78    | 70    | 14    | 29     | 14     | 14     | 39     | 65     |
|   | 0.5    | 0.15  | 2      |       | 0.5   | 0.1   | 0.08   | 1.4   | 0.18  | 0.05  | 1.3    | 0.25   | 27     | 0.88   |        |
|   | 6.1    | 0.92  | 0.53   | 0.81  | 1.7   | 4.8   | 4.5    | 2.6   | 3.7   | 0.71  | 0.83   | 0.48   | 5.1    | 6.5    | 9.6    |
|   |        |       |        |       |       |       |        |       |       |       |        |        |        |        |        |
|   | 0.83   | 0.08  | 0.64   | 0.55  | 0.87  | 1.4   | 1      | 5.6   | 1.8   |       | 0.38   | 2.8    | 0.83   | 3.8    | 4.7    |
|   | 8.4    | 3.6   | 2      | 15    | 24    | 7.9   | 7.8    | 7.3   | 40    | 112   | 45     | 151    | 185    | 455    | 310    |
|   | 115    | 1.8   | 0.49   | 0.13  | 2.8   | 0.04  | 44     | 128   | 166   | 58    | 54     | 15     | 1.2    | 98     | 2.9    |
|   | 256    | 149   | 337    | 760   | 1450  | 1792  | 817    | 99    | 346   | 40    | 414    | 481    | 941    | 540    | 714    |
|   | 0.09   |       | 0.04   | 0.04  | 0.09  | 0.11  |        | 0.32  | 0.3   | 0.31  | 0.09   | 1.2    | 1.1    | 0.22   | 1.3    |
|   | 2017   | 1437  | 150    | 1921  | 1893  | 952   | 1903   | 1481  | 5304  | 622   | 1723   | 893    | 881    | 1865   | 1224   |
|   | 54     | 24    | 26     | 1921  | 81    | 50    | 137    | 95    | 197   | 165   | 107    | 94     | 50     | 384    | 93     |
|   | 19     | 24    | 19     | 49    | 123   | 87    | 24     | 31    | 33    | 24    | 96     | 21     | 74     | 145    | 104    |
|   | 22     | 26    | 23     | 94    | 46    | 84    | 54     | 32    | 18    | 19    | 44     | 43     | 21     | 64     | 33     |
|   |        | 642   |        |       |       |       |        |       |       |       |        |        |        |        |        |
|   | 373    |       | 216    | 649   | 436   | 876   | 1867   | 657   | 2672  | 1229  | 1064   | 1731   | 1131   | 3408   | 2039   |
|   | 438    | 604   | 59     | 102   | 57    | 76    | 165    | 118   | 324   | 561   | 692    | 209    | 225    | 128    | 145    |
|   | 69     | 3.4   | 19     | 53    | 41    | 38    | 35     | 10    | 5.2   | 5.2   | 149    | 100    | 1918   | 181    | 116    |
|   | 77134  | 94762 | 74567  | 82994 | 88978 | 86618 | 110112 | 20019 | 86832 | 97394 | 130347 | 43794  | 128503 | 112866 | 119295 |
|   | 1985   | 1986  | 1987   | 1988  | 1989  | 1990  | 1991   | 1992  | 1993  | 1994  | 1995   | 1996   | 1997   | 1998   | 1999   |
|   | 1985   | 21    | 37     | 1988  | 1989  | 1990  | 24     |       |       | 1994  | 53     | 1996   | 68     | 1998   | 2.7    |
|   |        |       | 57     | 20    |       |       | 24     | 5     |       |       |        |        |        |        |        |
|   | 4.2    | 12    | 1.2    | 2.0   | 11    | 0.2   | 0.7    | 0.48  | 0.03  | 2.1   | 0.03   | 0.04   | 0.37   | 0.07   | 0.33   |
|   | 11     | 6.4   | 1.3    | 3.9   | 2.4   | 1.2   | 0.7    | 0.69  | 0.23  | 0.73  | 1.5    | 4.5    | 6.7    | 3.5    | 2.6    |
|   | 0.40   | 2.5   | 0.00   |       | 0.08  |       | 0.04   | 0.00  | 0.51  | 0.04  | 0.01   | 0.07   |        | 0.00   | 1.0    |
|   | 0.43   | 2.5   | 0.38   | 1     | 1.7   | 4.1   | 0.04   | 0.33  | 0.51  | 0.04  | 0.31   | 0.07   | 1      | 0.83   | 1.8    |
|   | 149    | 376   | 285    | 81    | 48    | 221   | 43     | 93    | 109   | 255   | 794    | 90     | 48     | 108    | 84     |
|   | 16     | 7.2   | 2      | 4     | 0.64  | 0.87  | 8.4    | 0.21  | 1.3   | 14    | 4.9    | 8.1    | 5      | 9.8    | 0.29   |
|   | 671    | 20    | 619    | 481   | 417   | 302   | 6915   | 412   | 675   | 1225  | 455    | 1889   | 1020   | 355    | 915    |
|   | 3.1    | 0.36  | 0.35   | 0.19  | 0.12  |       | 0.04   | 0.15  | 0.38  | 0.3   | 2.4    | 0.55   | 0.36   | 1      | 0.32   |
|   | 459    | 748   | 263    | 3108  | 766   | 526   | 1280   | 206   | 159   | 119   | 440    | 164    | 16     | 55     | 126    |
|   | 41     | 54    | 160    | 44    | 22    | 289   | 39     | 57    | 18    | 184   | 41     | 9.4    | 6.3    | 22     | 27     |
|   | 176    | 100   | 426    | 44    | 40    | 138   | 9.7    | 52    | 54    | 141   | 69     | 122    | 23     | 29     | 70     |
|   | 7.9    | 26    | 27     | 24    | 23    | 18    | 35     | 11    | 20    | 112   | 55     | 38     | 15     | 11     | 63     |
|   | 1728   | 1015  | 1723   | 1811  | 821   | 760   | 840    | 240   | 615   | 489   | 617    | 1567   | 359    | 484    | 314    |
|   | 192    | 113   | 869    | 62    | 67    | 8.4   | 233    | 8.7   | 45    | 9.6   | 8.6    | 103    | 69     | 25     | 97     |
|   | 2.9    | 11    | 241    | 168   | 334   | 154   | 186    | 89    | 606   | 245   | 104    | 109    | 186    | 139    | 315    |
|   | 110127 |       | 173902 | 81243 | 57356 |       | 105672 | 50752 | 60403 | 90409 |        | 136230 | 75015  | 27238  | 87913  |
|   |        |       |        |       |       |       |        |       |       |       |        |        |        |        |        |
|   | 2000   | 2001  | 2002   | 2003  | 2004  | 2005  | 2006   | 2007  | 2008  | 2009  |        |        |        |        |        |
|   | 4.7    | 5.2   | 5.4    | 11    | 3.4   | 1.5   | 1.5    | 16    | 4.4   | 24    |        |        |        |        |        |
|   |        | 0.09  |        | 1.9   | 0.04  | 0.26  | 6      |       | 0.11  |       |        |        |        |        |        |
|   | 4      | 11    | 15     | 8.9   | 24    | 2.7   | 0.34   | 1.6   | 12    | 0.94  |        |        |        |        |        |
|   |        |       |        | 0.04  |       |       |        |       |       |       |        |        |        |        |        |
|   | 0.55   | 1.3   | 0.37   |       | 0.7   | 0.03  | 0.07   | 0.13  | 0.08  | 0.08  |        |        |        |        |        |
|   | 36     | 90    | 22     | 78    | 260   | 31    | 44     | 433   | 377   | 19    |        |        |        |        |        |
|   | 2.7    | 9.6   | 0.45   | 0.59  | 3.4   | 0.95  | 2.4    | 13    | 1.2   | 1.6   |        |        |        |        |        |
|   | 288    | 574   | 272    | 252   | 1299  | 1236  | 111    | 346   | 256   | 415   |        |        |        |        |        |
|   | 0.69   | 0.65  | 0.95   | 0.66  | 0.26  | 0.15  | 0.25   | 0.62  | 0.57  | 0.67  |        |        |        |        |        |
|   | 13     | 789   | 2.6    | 5.3   | 76    | 20    | 0.23   | 89    | 2.6   | 3     |        |        |        |        |        |
|   |        | 35    |        | 1.7   | 4.9   | 5.3   | 0.27   | 40    |       | 12    |        |        |        |        |        |
|   | 16     |       | 6.4    |       |       |       |        |       | 13    |       |        |        |        |        |        |
|   | 150    | 49    | 55     | 16    | 14    | 132   | 82     | 82    | 103   | 21    |        |        |        |        |        |
|   | 57     | 178   | 18     | 38    | 23    | 27    | 38     | 48    | 81    | 47    |        |        |        |        |        |
|   | 297    | 552   | 131    | 546   | 237   | 176   | 396    | 214   | 333   | 124   |        |        |        |        |        |
|   | 107    | 74    | 105    | 21    | 34    | 183   | 60     | 56    | 48    | 72    |        |        |        |        |        |
|   | 141    | 83    | 306    | 295   | 114   | 260   | 19     | 11    | 81    | 24    |        |        |        |        |        |
| 1 | 57465  | 80663 | 37291  | 55285 | 97350 | 72659 | 41510  | 42081 | 91125 | 70272 |        |        |        |        |        |
|   |        |       |        |       |       |       |        |       |       |       |        |        |        |        |        |

#### German data

| <b></b> | 1970       | 1971       | 1972       | 1973       | 1974       | 1975        | 1976        | 1977       | 1978       | 1979      | 1980  | 1981 | 1982 | 1983 | 1984 |
|---------|------------|------------|------------|------------|------------|-------------|-------------|------------|------------|-----------|-------|------|------|------|------|
|         | 1770       | 0.41       | 2.7        | 6.7        | 1974       | 1975        | 2.1         | 1977       | 4.4        | 3.4       | 1980  | 1981 | 3.9  | 5.1  | 2.8  |
|         |            | 0.41       | 2.7        | 0.7        | 17         | 0.05        | 0.1         | 0.05       | 0.17       | 5.4       | 0.01  | 12   | 0.01 | 0.01 | 2.0  |
|         |            | 0.04       | 0.05       | 0.2        | 0.47       | 0.36        | 0.57        | 1.4        | 0.17       | 0.39      | 0.3   | 0.57 | 1.2  | 0.35 | 1.3  |
|         |            | 0.01       | 0.01       | 0.06       |            | 0.09        | 0.05        | 0.35       | 0.11       | ,,        |       |      |      |      |      |
|         |            | 0.04       | 0.07       | 2.3        |            |             |             | 1.9        |            | 0.04      | 0.1   | 0.02 | 0.07 | 0.01 | 0.14 |
|         |            | 0.02       | 0.33       | 0.09       | 0.23       | 0.62        | 0.2         | 1.3        | 1.9        | 5.4       | 5.7   | 4    | 6.3  | 5.3  | 8.8  |
|         |            | 0.23       | 0.24       | 0.41       | 1.9        | 2.3         | 5.8         | 25         | 8.3        | 7.4       | 11    | 5.1  | 1.9  | 22   | 2.8  |
|         |            | 1.7        | 40         | 40         | 118        | 88          | 57          | 43         | 11         | 29        | 55    | 59   | 57   | 20   | 55   |
|         |            |            |            |            |            |             |             | 0.01       |            | 0.03      |       | 0.1  | 0.03 | 0.01 | 0    |
|         |            | 8          | 9.7        | 55         | 121        | 161         | 59          | 157        | 59         | 102       | 205   | 221  | 21   | 23   | 85   |
|         |            | 0.01       | 2          | 1.4        | 3.3        | 1.5         | 2           | 6.9        | 5.9        | 0.89      | 2.3   | 3.1  | 0.94 | 20   | 3    |
|         |            | 0.6        | 3.2        | 2.9        | 3.2        | 3.5         | 3.9         | 21         | 33         | 49        | 24    | 18   | 21   | 9.3  | 13   |
|         |            | 1.2        | 1.2        | 1.6        | 1.5        | 0.44        | 0.83        | 26         | 16         | 4.2       | 9.5   | 10   | 7.2  | 5.6  | 3.4  |
|         |            | 26         | 14         | 21         | 80         | 54          | 68          | 139        | 94         | 148       | 139   | 182  | 79   | 99   | 42   |
|         |            | 2.7        | 5.7        | 9.9        | 1.1        | 10          | 1.3         | 11         | 5.2        | 67        | 22    | 14   | 2.7  | 5.4  | 5.4  |
|         |            | 0.31       | 4.7        | 1.8        | 7.2        | 6.1         | 5.2         | 4.4        | 3          | 1.2       | 2.5   | 1.6  | 7.8  | 11   | 0.49 |
|         |            | 522        | 7710       | 3627       | 8513       | 11884       | 6625        | 5562       | 7567       | 17273     | 13775 | 6474 | 7927 | 3996 | 5544 |
|         | 1985       | 1986       | 1987       | 1988       | 1989       | 1990        | 1991        | 1992       | 1993       | 1994      | 1995  | 1996 | 1997 | 1998 | 1999 |
|         | 7.5        | 7.6        | 4.4        | 8.3        | 16         | 12          | 12          | 9.4        | 5.1        | 11        | 4.5   | 11   | 12   | 6.2  |      |
|         | 0.13       | 0.33       |            | 0.02       | 0.29       | 0.12        | 0.01        | 0.06       | 0.04       | 0.2       | 0.04  | 0.12 | 0.03 | 0.03 |      |
|         | 0.15       | 0.23       | 0.3        | 0.42       | 0.59       | 0.51        | 0.48        | 0.13       | 0.33       | 0.26      | 0     | 0.05 | 0.21 | 0.45 |      |
|         |            | 0.02       | 0.28       |            |            |             | 0.1         | 0          | 0.08       | 1.7       | 0.12  |      | 0.12 |      |      |
|         | 0.05       | 0.03       | 0.15       | 0.01       | 0.02       | 0.04        | 0.08        | 0.03       | 0.07       |           | 0.02  |      | 0.14 | 0.38 |      |
|         | 22         | 14         | 23         | 8          | 9.1        | 14          | 8.1         | 6.1        | 21         | 9.1       | 1.3   | 4.3  | 5.9  | 3.1  |      |
|         | 2.4        | 5.3        | 0.37       | 1.5        | 2.2        | 2.2         | 3.4         | 0.45       | 0.37       | 3.6       | 1.1   | 3.2  | 4.7  | 7.7  |      |
|         | 122        | 94         | 33         | 26         | 145        | 15          | 84          | 141        | 49         | 51        | 5.4   | 34   | 115  | 38   |      |
|         | 0.11       | 0.49       |            |            |            | 0.09        | 0.13        | 0.02       | 0.34       | 0.11      |       | 0.04 |      | 0.07 |      |
|         | 91         | 69         | 8.1        | 33         | 82         | 42          | 62          | 21         | 4.3        | 2.8       | 18    | 11   | 20   | 13   |      |
|         | 1.3        | 10         | 5.3        | 0.52       | 4.6        | 36          | 20          | 1.3        | 1.9        | 11        | 1.4   | 0.51 | 2.1  | 27   |      |
|         | 8.5        | 15         | 14         | 7.6        | 15         | 5.6         | 9.4         | 11         | 7.7        | 41        | 21    | 10   | 22   | 18   |      |
|         | 2.9        | 5.6        | 5.3        | 16         | 14         | 8.4         | 7.8         | 8.6        | 3.7        | 29        | 52    | 7.7  | 6.6  | 3.9  |      |
|         | 82         | 52         | 43         | 57         | 114        | 91          | 101         | 91         | 48         | 67        | 85    | 167  | 73   | 43   |      |
|         | 2.5        | 8.9        | 14         | 15         | 15         | 6.6         | 9.9         | 9.7        | 1.9        | 3.5       | 7.5   | 5.9  | 7    | 1.7  |      |
|         | 5.7        | 9.4        | 3.3        | 12         | 62         | 8.7         | 4.4         | 46         | 35         | 133       | 2.7   | 0.26 | 15   | 7.9  |      |
|         | 4611       | 8903       | 3938       | 2041       | 10161      | 3057        | 9539        | 9116       | 7463       | 18576     | 3617  | 5923 | 7420 | 5426 |      |
|         | 2000       | 2001       | 2002       | 2003       | 2004       | 2005        | 2006        | 2007       | 2008       | 2009      |       |      |      |      |      |
|         | 2.8        | 2.5        | 5.3        | 5.5        | 2.5        | 1.9         | 6.3         | 71         | 9.6        | 8.8       |       |      |      |      |      |
|         | 0.22       | 0.03       | 0.07       | 0.07       | 1.1        | 0.17        | 5.2         | 0.05       | 0.05       |           |       |      |      |      |      |
|         | 0.21       | 0.28       | 0.15       | 0.33       | 0.19       | 0.15        | 1.2         | 0.72       | 0.62       | 0.47      |       |      |      |      |      |
|         | 0.01       | 0.1        | 0.04       | 0.22       | 0.06       |             |             |            | 0.28       |           |       |      |      |      |      |
|         | 1.1        | 0.71       | 0.02       | 0.12       | 0.16       | 0.09        | 0.59        | 0.12       | 2.4        | 0.12      |       |      |      |      |      |
|         | 2.8        | 6.2        | 3.6        | 2.2        | 6.6        | 0.79        | 3.5         | 85         | 121        | 3.5       |       |      |      |      |      |
|         | 0.6        | 4          | 0.08       | 0.05       | 0.61       | 0.39        | 7.1         | 30         | 0.75       | 1         |       |      |      |      |      |
|         | 47         | 30         | 50         | 61         | 69         | 93          | 151         | 57         | 40         | 83        |       |      |      |      |      |
|         | 0.02       | 0.05       | 0.04       | 0.05       | 0.04       | 0.03        | 0.14        | 0.09       | 0.07       | 0.06      |       |      |      |      |      |
|         | 4.2        | 2.6        | 3.3        | 0.9        | 9.5        | 13          | 2.7         | 23         | 16         | 17        |       |      |      |      |      |
|         | 2.9        | 52         | 3          | 0.75       | 1.6        | 0.31        | 1.5         | 71         | 10         | 11        |       |      |      |      |      |
|         | 15         | 17         | 14         | 22         | 29         | 21          | 64          | 91         | 221        | 45        |       |      |      |      |      |
|         | 6.6        | 11         | 6.9        | 3.8        | 5.8        | 3.2         | 28          | 29         | 29         | 9.7       |       |      |      |      |      |
|         | 36         | 92         | 20         | 39         | 35<br>0.51 | 25<br>4.2   | 248<br>5.8  | 138<br>5.1 | 132<br>2.4 | 94<br>2.7 |       |      |      |      |      |
|         | 0.76       | 0.49       | 1.1        | 0.34       |            |             | 5.8<br>2477 | 28         | 2.4<br>53  | 42        |       |      |      |      |      |
|         | 16<br>6755 | 11<br>3786 | 54<br>7253 | 28<br>7815 | 30<br>6768 | 23<br>12892 | 57778       | 13820      | 18089      | 42        |       |      |      |      |      |
| L       | 0/33       | 3/80       | 1233       | 1013       | 0/08       | 12092       | 51118       | 13820      | 10009      |           |       |      |      |      |      |

### Annex 14 c) Abundance of fish species and *Crangon* sp. for the Scheldt estuary.

Dutch data

| 197  | ) 1971  | 1972     | 1973       | 1974 | 1975 | 1976 | 1977        | 1978      | 1979    | 1980  | 1981 | 1982 | 1983  | 1984  |
|------|---------|----------|------------|------|------|------|-------------|-----------|---------|-------|------|------|-------|-------|
| 7.   | 2.5     | 0.31     | 2.8        | 4.1  | 3.2  | 2.3  | 6           | 15        | 3.7     | 9.4   | 7.4  | 0.76 | 6     | 10    |
|      | 0.03    |          |            |      |      |      |             |           |         |       |      |      |       |       |
|      | 0.2     | 2        | 0.5        | 1.9  | 0.97 | 0.21 | 1.1         | 0.17      | 0.67    | 0.62  | 13   | 2.1  | 6.8   | 5     |
|      |         |          |            |      |      | 0.04 |             |           |         |       |      |      |       |       |
| 1.   | 3 2.7   | 0.28     | 1.4        | 0.82 | 1.6  | 1.5  | 2.2         | 0.9       | 3.9     | 0.59  | 1.7  | 1.5  | 6     | 12    |
| 9.   | 0.87    | 0.07     | 16         | 1.4  | 0.17 | 1.4  |             | 3.5       | 6.5     | 4.6   | 3.4  | 3.7  | 14    | 31    |
| 0.4  |         | 0.21     | 0.23       | 0.22 | 0.17 | 0.29 | 1.1         | 1.8       | 4.1     | 0.36  | 1.5  | 0.81 | 1     | 0.33  |
| 22   |         | 103      | 260        | 110  | 277  | 231  | 66          | 127       | 312     | 591   | 345  | 270  | 206   | 478   |
| 0.3  |         |          | 0.2        |      |      | 0.1  |             | 1         | 0.29    | 1.4   |      |      |       | 1     |
| 7    |         | 11       | 26         | 224  | 36   | 9.3  | 164         | 245       | 75      | 314   | 97   | 43   | 103   | 317   |
| 0.6  |         | 1.1      | 0.96       | 3.7  | 1.2  | 11   | 3.8         | 3.1       | 10      | 1.1   | 8.5  | 2.9  | 22    | 1.8   |
| 2.5  |         | 0.21     | 0.70       | 0.33 | 1.2  | 0.17 | 0.04        | 0.1       | 10      | 0.04  | 0.15 | 2.7  | 0.04  | 1.0   |
| 1    |         | 2.5      | 2.2        | 1.5  | 2    | 4    | 6.2         | 4.6       | 3       | 8.1   | 5.6  | 1.6  | 2.4   | 11    |
| 7    |         | 30       | 75         | 44   | 73   | 33   | 70          | 4.0<br>99 | 49      | 154   | 97   | 73   | 164   | 198   |
| 12   |         | 3.7      | 46         | 16   | 20   | 9.9  | 25          | 57        | 67      | 216   | 52   | 38   | 55    | 91    |
|      |         |          |            |      |      |      |             |           |         |       |      |      |       |       |
| 3.   |         | 0.11     | 9.5        | 1.9  | 4.8  | 1.7  | 4.8         | 2.2       | 8.3     | 2.9   | 1.2  | 1.1  | 4.2   | 2.2   |
| 1061 | 11423   | 8942     | 14466      | 7606 | 7641 | 9708 | 3107        | 5125      | 14866   | 11725 | 7159 | 8750 | 10838 | 15390 |
| 198  | 5 1986  | 1987     | 1988       | 1989 | 1990 | 1991 | 1992        | 1993      | 1994    | 1995  | 1996 | 1997 | 1998  | 1999  |
| 1.   |         | 6.8      | 2          | 1.3  | 2.5  | 3.2  | 0.84        | 0.2       | - / / / | 0.78  | 0.51 | 4.5  | 3.7   | 0.59  |
|      | 0.04    | 0.0      | -          | 0.03 | 2.0  | 5.2  | 0.01        | 0.2       |         | 0.03  | 0.01 | 112  | 5.7   | 0.07  |
| 1.   |         | 0.18     | 2.7        | 0.11 | 1.3  | 2.2  | 0.29        | 0.23      | 0.48    | 0.27  | 2.3  | 1.5  | 1.8   | 0.53  |
| 1.   | 1.0     | 0.10     | 2.7        | 0.11 | 1.5  | 2.2  | 0.27        | 0.25      | 0.40    | 0.27  | 2.5  | 1.5  | 1.0   | 0.55  |
|      | 2 8.5   | 5.3      | 7.3        | 2.4  | 10   | 0.71 | 0.98        | 1.3       | 8.3     | 5.2   | 5.7  | 0.87 | 10    | 3     |
| 1    |         | 25       | 30         | 2.7  | 24   | 14   | 48          | 2.3       | 58      | 0.08  | 4.9  | 66   | 28    | 13    |
| 3.   |         | 1.2      | 2          | 0.03 | 0.07 | 0.26 | .0          | 2.0       | 0.3     | 0.06  | 0.31 | 0.31 | 2.1   | 0.48  |
| 17   |         | 466      | 244        | 138  | 122  | 477  | 230         | 99        | 316     | 63    | 57   | 218  | 228   | 95    |
| 0.1  |         | 0.1      | 0.48       | 0.33 | 0.03 | 0.32 | 0.57        | 0.18      | 0.03    | 0.37  | 0.71 | 0.4  | 0.26  | 0.14  |
| 2    |         | 169      | 568        | 11   | 46   | 69   | 22          | 5.4       | 9.7     | 35    | 33   | 7.5  | 45    | 24    |
| 6.   |         | 9.5      | 308        | 0.27 | 1.3  | 1.2  | 4.2         | 0.95      | 0.48    | 0.08  | 8.2  | 1.6  | 7.6   | 4     |
| 0.   | , 1)    | 7.5      | 5          | 0.27 | 0.03 | 1.2  | 4.2         | 0.75      | 0.40    | 0.00  | 0.03 | 0.29 | 0.46  | 0.09  |
| 6.   | 6.4     | 5.8      | 2.2        | 1.4  | 0.67 | 1.5  | 8.7         | 1.1       | 2.3     | 6.8   | 12   | 2    | 1.7   | 1.3   |
|      |         |          |            |      |      |      |             |           |         |       |      |      |       |       |
| 11   |         | 265      | 432        | 45   | 145  | 34   | 52          | 27        | 53      | 60    | 140  | 61   | 146   | 60    |
| 2    |         | 66       | 27         | 3.1  | 22   | 12   | 13          | 11        | 5.1     | 14    | 29   | 19   | 13    | 16    |
| 0.9  |         | 3        | 0.56       | 0.34 | 4.1  | 3.2  | 1.6         | 0.75      | 0.26    | 0.3   | 0.38 | 0.77 | 4     | 1.2   |
| 740  | 3 22133 | 11622    | 5238       | 4936 | 1501 | 5102 | 17142       | 2206      | 7518    | 1185  | 3628 | 4243 | 1341  | 1616  |
| 200  | 2001    | 2002     | 2003       | 2004 | 2005 | 2006 | 2007        | 2008      | 2009    |       |      |      |       |       |
| 5.   |         | 1.7      | 1.2        | 0.83 | 1.4  | 0.26 | 0.32        | 0.21      | 0.34    |       |      |      |       |       |
| 5.   | 1.7     | 1./      | 1.2        | 0.05 | 17   | 0.20 | 0.02        | 0.21      | 5.54    |       |      |      |       |       |
|      | 0.55    | 0.47     | 0.38       | 2.5  | 1.2  | 1    | 0.39        | 0.7       | 0.33    |       |      |      |       |       |
|      | 0.55    | 0.47     | 0.58       | 2.5  | 0.51 | 1    | 0.59        | 0.7       | 0.55    |       |      |      |       |       |
| 1.   | 1 7.3   | 12       | 3.7        | 3.9  | 4.5  | 6    | 1.5         | 0.29      | 0.35    |       |      |      |       |       |
| 4    |         | 80       | 116        | 26   | 4.5  | 40   | 39          | 0.29      | 40      |       |      |      |       |       |
|      |         |          |            |      |      |      |             | 0.34      |         |       |      |      |       |       |
| 0.0  |         | 0.51 212 | 0.06<br>78 | 0.05 | 2.1  | 0.58 | 0.71<br>188 | 0.34      | 0.14    |       |      |      |       |       |
|      |         |          |            |      | 167  |      |             |           |         |       |      |      |       |       |
| 0.3  |         | 0.05     | 0.15       | 0.17 | 0.29 | 0.37 | 0.35        | 0.35      | 0.47    |       |      |      |       |       |
| 6    |         | 19       | 2.4        | 10   | 13   | 0.07 | 28          | 5.2       | 18      |       |      |      |       |       |
| 1.   |         | 0.14     | 1.5        | 1.8  | 4.4  | 0.77 | 5.6         | 3.8       | 1.7     |       |      |      |       |       |
| 0.3  |         | 0.05     | 0.17       | 0.2  | 0.06 | 0.14 | 0.17        | 0.3       | 1.3     |       |      |      |       |       |
| 1.   |         | 5.7      | 3.1        | 3.7  | 1.1  | 1.4  | 15          | 33        | 24      |       |      |      |       |       |
|      |         | 45       | 122        | 79   | 92   | 64   | 95          | 104       | 62      |       |      |      |       |       |
| 4    |         | 27       | 16         | 12   | 48   | 12   | 47          | 38        | 28      |       |      |      |       |       |
| 2.   |         | 0.64     | 1.7        | 0.79 | 2.9  | 2.5  | 0.39        | 0.3       | 0.6     |       |      |      |       |       |
| 158  | 3 4825  | 2003     | 1796       | 1203 | 3957 | 2086 | 1485        | 1562      | 3574    |       |      |      |       |       |

| 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
|------|------|------|------|------|------|------|------|------|------|
| 13   | 7.9  | 12   | 7.4  | 4.8  | 3.7  | 3.5  | 7.3  | 8    | 12   |
|      |      |      | 0.03 |      |      |      |      |      |      |
|      |      |      |      | 0.04 | 0.07 | 0.14 |      | 0.8  |      |
| 0.76 | 0.18 | 0.19 | 0.13 | 0.12 | 1.7  | 0.14 | 0.71 | 1    | 2    |
| 9.2  | 4.9  | 6.4  | 5.7  | 12   | 8.8  | 4.1  | 13   | 11   | 4.9  |
| 0.74 | 0.64 | 0.68 | 0.5  | 0.63 | 0.33 | 0.5  | 0.35 | 2.2  | 0.28 |
|      |      |      |      | 0.35 | 0.48 | 1.8  | 0.05 |      | 0.08 |
| 172  | 0.12 | 0.66 |      | 0.07 | 0.02 |      |      | 306  | 433  |
|      |      |      |      |      |      |      |      |      |      |
| 14   | 101  | 31   | 50   | 104  | 9.7  | 28   | 42   | 38   | 16   |
| 24   | 13   | 6    | 5    | 8    | 12   | 7.4  | 6.3  | 6.3  | 5.1  |
| 1.8  | 0.11 | 0.06 | 1.1  |      |      | 0.78 |      | 0.26 | 0.66 |
| 2.4  | 1    | 0.81 | 2.2  | 2.4  | 1.6  | 1.3  | 0.33 | 1.4  | 2.3  |
| 31   | 97   | 53   | 43   | 83   | 21   | 70   | 54   | 32   | 18   |
| 46   | 84   | 69   | 26   | 63   | 40   | 53   | 72   | 58   | 46   |
| 79   | 36   | 24   | 44   | 22   | 27   | 57   | 11   | 14   | 42   |
|      |      |      |      |      |      |      |      |      |      |

## Annex 14 d) Abundance of fish species and *Crangon* sp. for the UK coastal waters.

UK data

# Annex 15: Population abundance indices for sole and plaice, inshore surveys

### Annex 15.1. Indices of juvenile sole abundance from inshore beam trawl surveys.

a) Young fish surveys. Sole abundance indices are given as numbers per 1000 m<sup>2</sup> (Netherlands, Belgium and Germany) and as millions of fish sampled (UKYFS and international index).

|      | UKYI  | FS (VIID) | UKY   | FS (IVc) | NETHER | LANDS DFS | BELGI | UM DYFS | Germ | ANY DYFS | INTERNA | TIONAL (IV) |
|------|-------|-----------|-------|----------|--------|-----------|-------|---------|------|----------|---------|-------------|
| Age  | 0     | 1         | 0     | 1        | 0      | 1         | 0     | 1       | 0    | 1        | 0       | 1           |
| 1970 |       |           |       |          | 25.79  | 1.96      |       |         |      |          |         |             |
| 1971 |       |           |       |          | 19.96  | 0.97      |       |         |      |          |         |             |
| 1972 |       |           |       |          | 0.50   | 0.11      |       |         |      |          |         |             |
| 1973 |       |           |       |          | 6.88   | 0.25      | 3.82  | 0.01    |      |          |         |             |
| 1974 |       |           |       |          | 1.34   | 0.51      | 0.2   | 0.05    | 0.21 | 0.31     |         |             |
| 1975 |       |           |       |          | 9.90   | 0.12      | 6.44  | 0.02    | 3.79 | 0.47     |         |             |
| 1976 |       |           |       |          | 3.47   | 0.20      | 1.23  | 0.08    | 0.55 | 0.35     |         |             |
| 1977 |       |           |       |          | 1.15   | 0.23      | 0.77  | 0.1     | 2.8  | 0.93     |         |             |
| 1978 |       |           |       |          | 2.50   | 0.02      | 8.27  | 0.01    | 3.1  | 0.43     |         |             |
| 1979 |       |           |       |          | 10.64  | 0.04      | 63.91 | 0.02    | 1.33 | 0        |         |             |
| 1980 |       |           |       |          | 20.94  | 1.05      | 12.97 | 6.64    | 3.56 | 2.73     |         |             |
| 1981 | 0.11  | 0.45      | 32.06 | 5.99     | 16.78  | 0.43      | 0.92  | 0.55    | 2.1  | 0.87     | 293.93  | 13.39       |
| 1982 | 4.63  | 0.36      | 26.99 | 4.02     | 17.00  | 0.60      | 14.2  | 0.77    | 1.11 | 0.17     | 328.52  | 14.28       |
| 1983 | 25.45 | 1.52      | 70.66 | 5.64     | 4.14   | 0.73      | 3.65  | 0.8     | 2.14 | 1.28     | 104.38  | 20.32       |
| 1984 | 4.33  | 4.04      | 59.84 | 11.3     | 9.18   | 0.26      | 5.49  | 0.8     | 1.14 | 0.36     | 186.53  | 11.89       |
| 1985 | 7.65  | 2.94      | 20.53 | 2.8      | 16.13  | 0.09      | 16.27 | 0.16    | 0.03 | 0.18     | 315.03  | 3.43        |
| 1986 | 6.45  | 1.45      | 28.98 | 3.1      | 3.47   | 0.26      | 2.47  | 0.97    | 0.31 | 0.7      | 73.22   | 10.47       |
| 1987 | 16.85 | 1.38      | 20.87 | 1.89     | 30.83  | 0.27      | 2.36  | 0.05    | 1.27 | 0.4      | 523.86  | 6.43        |
| 1988 | 2.59  | 1.87      | 35.55 | 9.7      | 1.81   | 0.56      | 0.67  | 0.49    | 3.17 | 7.11     | 50.07   | 35.04       |
| 1989 | 6.67  | 0.62      | 47.2  | 3.78     | 3.63   | 0.22      | 1.06  | 0.13    | 0.43 | 2.12     | 77.80   | 11.59       |
| 1990 | 6.7   | 1.9       | 36.82 | 12.27    | 0.52   | 0.17      | 0.35  | 0.05    | 0.23 | 1.37     | 21.09   | 11.25       |
| 1991 | 1.81  | 3.69      | 22.72 | 19.69    | 22.88  | 0.02      | 2.17  | 0.01    | 0.87 | 0.37     | 391.93  | 8.26        |
| 1992 | 2.26  | 1.5       | 33.45 | 5.21     | 0.89   | 0.53      | 0.08  | 0.39    | 0.19 | 2.06     | 25.30   | 17.90       |
| 1993 | 14.19 | 1.33      | 36.42 | 24.46    | 0.80   | 0.03      | 0.25  | 0.03    | 0.12 | 0.51     | 25.13   | 10.67       |
| 1994 | 13.07 | 2.68      | 27.32 | 9.14     | 3.57   | 0.01      | 0.65  | 0.12    | 0.15 | 0.81     | 69.11   | 6.18        |
| 1995 | 7.53  | 2.91      | 33.55 | 13.04    | 0.26   | 0.12      | 1.71  | 0.09    | 0.09 | 0.99     | 19.07   | 9.82        |
| 1996 | 1.85  | 0.57      | 50.16 | 6.78     | 1.79   | 0.01      | 5.2   | 0.47    | 0.55 | 0        | 59.62   | 3.99        |
| 1997 | 4.23  | 1.12      | 14.87 | 4.91     | 2.17   | 0.31      | 1.4   | 0.82    | 0.03 | 3.3      | 44.08   | 19.02       |
| 1998 | 7.97  | 1.12      | 37.99 | 2.12     | *      |           | 3.63  | 2.7     | 0.18 | 0.32     |         |             |
| 1999 | 2.63  | 1.47      | 19.02 | 7.67     | *      |           | 2.13  | 0.43    | 0.10 | 0.25     |         |             |
| 2000 | 1.16  | 2.47      | 13.54 | 9.76     | 0.59   | 0.03      | 0.56  | 0.1     | 0.12 | 0.08     | 15.51   | 4.53        |
| 2001 | 4.75  | 0.38      | 42.12 | 3.83     | 2.81   | 0.02      | 9.91  | 0.62    | 0.05 | 0.1      | 85.31   | 3.93        |
| 2002 | 4.45  | 4.15      | 31.12 | 7.30     | 1.40   | 0.04      | 12.19 | 4.33    | 0.18 | 0.43     | 64.97   | 18.19       |
| 2003 | 4.55  | 1.44      | 8.91  | 4.46     | 0.72   | 0.12      | 0.75  | 0.44    | 0.1  | 0.07     | 16.82   | 5.19        |
| 2004 | 10.19 | 3.65      | 20.77 | 2.40     | 0.29   | 0.03      | 10.98 | 2.33    | 0.05 | 0.01     | 40.10   | 8.68        |
| 2005 | 9.97  | 4.07      | 16.03 | 6.79     | 1.42   | 0.03      | 6.1   | 1.33    | 0.99 | *        | 46.81   | *           |
| 2006 | 3.09  | 2.21      | 17.56 | 5.69     | 0.50   | 0.16      | 0.35  | 2.54    | 0.12 | *        | 14.69   | *           |
| 2007 | *     | *         | 35.93 | 3.67     | 0.49   | 0.02      | 1.7   | 0.23    | 0.05 | *        | 23.51   | *           |
| 2008 | *     | *         | 28.70 | 8.40     | 1.02   | 0.01      | 0.47  | 0.06    | 0.02 | *        | 26.74   | *           |
| 2009 | *     | *         | 20.30 | 3.40     | 1.05   | 0.04      | **    | **      | 0.31 | *        | 25.36   | *           |
|      |       |           |       |          |        |           |       |         |      |          |         |             |

\* No (valid) survey

\*\* Data not yet available, for international index 2008 values taken

|      |       |       | NETH | ERLANDS SNS |     |     |
|------|-------|-------|------|-------------|-----|-----|
| Age  | 0     | 1     | 2    | 3           | 4   | 5   |
| 1970 | 623   | 5410  | 734  | 238         | 35  | 4   |
| 1971 | 10685 | 903   | 1831 | 113         | 3   | 29  |
| 1972 | 16    | 1455  | 272  | 149         | 0   | 28  |
| 1973 | 896   | 5587  | 935  | 84          | 37  | 13  |
| 1974 | 174   | 2348  | 361  | 65          | 0   | 0   |
| 1975 | 577   | 525   | 864  | 177         | 18  | 0   |
| 1976 | 465   | 1399  | 74   | 229         | 27  | 6   |
| 1977 | 1585  | 3743  | 776  | 104         | 43  | 32  |
| 1978 | 10370 | 1548  | 1355 | 294         | 28  | 99  |
| 1979 | 3923  | 94    | 408  | 301         | 77  | 0   |
| 1980 | 5146  | 4313  | 89   | 109         | 61  | 3   |
| 1981 | 3241  | 3737  | 1413 | 50          | 20  | 0   |
| 1982 | 2147  | 5856  | 1146 | 228         | 7   | 10  |
| 1983 | 769   | 2621  | 1123 | 121         | 40  | 0   |
| 1984 | 3334  | 2493  | 1100 | 318         | 74  | 8   |
| 1985 | 2713  | 3619  | 716  | 167         | 49  | 4   |
| 1986 | 742   | 3705  | 458  | 69          | 31  | 17  |
| 1987 | 13610 | 1948  | 944  | 65          | 21  | 0   |
| 1988 | 523   | 11227 | 594  | 282         | 82  | 10  |
| 1989 | 1743  | 2831  | 5005 | 208         | 53  | 18  |
| 1990 | 51    | 2856  | 1120 | 914         | 100 | 50  |
| 1991 | 3640  | 1254  | 2529 | 514         | 624 | 27  |
| 1992 | 303   | 11114 | 144  | 360         | 195 | 285 |
| 1993 | 231   | 1291  | 3420 | 154         | 213 | 0   |
| 1994 | 4693  | 652   | 498  | 934         | 10  | 59  |
| 1995 | 1375  | 1362  | 224  | 143         | 411 | 7   |
| 1996 | 2322  | 218   | 349  | 30          | 36  | 90  |
| 1997 | 803   | 10279 | 154  | 190         | 26  | 58  |
| 1998 | 328   | 4095  | 3126 | 142         | 99  | 0   |
| 1999 | 2188  | 1649  | 972  | 456         | 10  | 21  |
| 2000 | 70    | 1639  | 126  | 166         | 118 | 0   |
| 2001 | 8340  | 970   | 655  | 107         | 35  | 56  |
| 2002 | 1128  | 7547  | 379  | 195         | 0   | 31  |
| 2003 | *     | *     | *    | *           | *   | *   |
| 2004 | 162   | 1370  | 624  | 393         | 69  | 53  |
| 2005 | 305   | 568   | 163  | 124         | 0   | 21  |
| 2006 | 16    | 2726  | 117  | 25          | 30  | 0   |
| 2007 | 467   | 849   | 911  | 33          | 40  | 14  |
| 2008 | 755   | 1259  | 259  | 325         | 0   | 10  |
| 2009 | 2291  | 1932  | 344  | 62          | 103 | 0   |

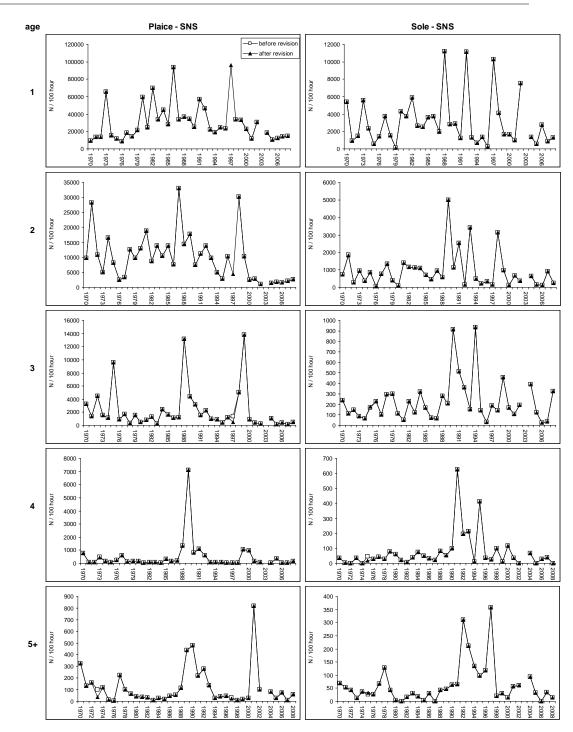
### b) Sole Net Survey (SNS): Sole abundance indices are given as numbers per 100 hour fishing

\* No survey.

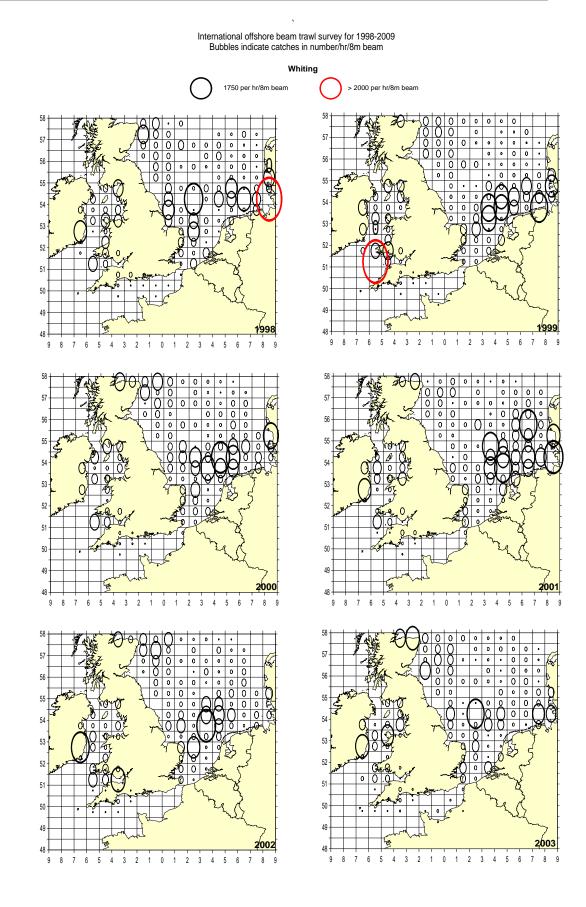
### Annex 15.2. Indices of juvenile plaice abundance from inshore beam trawl surveys.

a) Young fish surveys: Plaice abundance indices are given as numbers per 1000 m<sup>2</sup> (Netherlands, Belgium and Germany) and as millions of fish sampled (UKYFS and international index).

|      | UKYF  | S (VIID) | UKYI  | S (IVc) | NETHER |       | BELGI | JM DYFS | Germa | NY DYFS | INTERNA | TIONAL (IV) |
|------|-------|----------|-------|---------|--------|-------|-------|---------|-------|---------|---------|-------------|
| Age  | 0     | 1        | 0     | 1       | 0      | 1     | 0     | 1       | 0     | 1       | 0       | 1           |
| 1970 |       |          |       |         | 22.02  | 9.97  |       |         |       |         |         |             |
| 1971 |       |          |       |         | 16.04  | 2.31  |       |         |       |         |         |             |
| 1972 |       |          |       |         | 4.83   | 5.35  |       |         |       |         |         |             |
| 1973 |       |          |       |         | 3.16   | 10.05 | 1.21  | 0.01    |       |         |         |             |
| 1974 |       |          |       |         | 2.23   | 2.32  | 0.01  | 0.3     | 14.38 | 5.38    |         |             |
| 1975 |       |          |       |         | 4.35   | 3.63  | 1.12  | 0.02    | 9.02  | 10.31   |         |             |
| 1976 |       |          |       |         | 7.76   | 4.64  | 0.18  | 0.08    | 37.09 | 2.22    |         |             |
| 1977 |       |          |       |         | 3.98   | 7.25  | 0.13  | 0.17    | 39.12 | 19.74   |         |             |
| 1978 |       |          |       |         | 8.06   | 3.90  | 1.47  | 0.13    | 26.37 | 10.94   |         |             |
| 1979 |       |          |       |         | 18.09  | 8.98  | 1.49  | 0.63    | 22.21 | 14.61   |         |             |
| 1980 |       |          |       |         | 5.85   | 11.13 | 0.11  | 0.59    | 21.48 | 35.06   |         |             |
| 1981 | 0.55  | 0.11     | 59.24 | 5.95    | 29.90  | 8.57  | 1.69  | 0.11    | 34.3  | 14.33   | 605.96  | 169.78      |
| 1982 | 0.58  | 0.06     | 11.65 | 13.15   | 24.98  | 15.94 | 0.54  | 0.57    | 6.37  | 14.47   | 433.67  | 299.36      |
| 1983 | 10.71 | 0.77     | 74.11 | 6.86    | 19.65  | 8.77  | 1.02  | 0.37    | 26.41 | 7.32    | 431.72  | 163.53      |
| 1984 | 3.62  | 0.41     | 76.52 | 10.85   | 11.65  | 6.76  | 0.45  | 0.19    | 6.01  | 1.04    | 261.80  | 124.19      |
| 1985 | 5.18  | 1.16     | 48.33 | 13.74   | 40.16  | 5.25  | 3.76  | 0.15    | 5.51  | 1.81    | 716.29  | 103.27      |
| 1986 | 12.53 | 1.08     | 23.62 | 17.93   | 10.48  | 15.88 | 1.6   | 0.81    | 3.38  | 4.68    | 200.11  | 288.27      |
| 1987 | 13.95 | 1.07     | 20.38 | 5.41    | 28.49  | 11.25 | 3.16  | 1.8     | 13.46 | 1.32    | 516.84  | 195.87      |
| 1988 | 9.31  | 0.81     | 28.12 | 7.72    | 16.22  | 5.97  | 0.72  | 1.77    | 14.93 | 4.74    | 318.36  | 116.45      |
| 1989 | 2.26  | 0.70     | 27.8  | 12.90   | 22.92  | 6.37  | 0.38  | 0.13    | 19.09 | 4.89    | 435.70  | 125.72      |
| 1990 | 4.73  | 0.52     | 31.75 | 10.25   | 23.78  | 6.85  | 2.39  | 1.21    | 23.59 | 3.18    | 465.47  | 130.13      |
| 1991 | 1.34  | 0.43     | 14.89 | 9.06    | 26.97  | 7.65  | 1.19  | 0.19    | 21.24 | 10.79   | 498.49  | 152.35      |
| 1992 | 2.92  | 1.09     | 26.16 | 5.64    | 19.55  | 6.82  | 0.31  | 0.2     | 4.72  | 12.03   | 351.59  | 137.08      |
| 1993 | 5.77  | 0.64     | 43.10 | 7.96    | 13.49  | 3.80  | 0.14  | 0.13    | 3.86  | 2.73    | 262.26  | 75.16       |
| 1994 | 12.63 | 0.59     | 19.14 | 9.38    | 25.15  | 0.93  | 1.03  | 0.33    | 7.71  | 3.42    | 445.66  | 30.60       |
| 1995 | 7.42  | 2.47     | 51.58 | 11.65   | 7.29   | 0.98  | 2.83  | 0.79    | 10.44 | 5.56    | 184.51  | 37.74       |
| 1996 | 1.22  | 0.72     | 60.16 | 4.07    | 25.44  | 6.77  | 14.25 | 0.31    | 41.77 | 0.45    | 572.80  | 116.89      |
| 1997 | 1.2   | 0.26     | 11.19 | 5.48    | 6.37   | 10.94 | 2.02  | 4.46    | 16.67 | 10.71   | 149.19  | 209.92      |
| 1998 | 5.23  | 0.29     | 40.26 | 0.92    | *      | *     | 3.01  | 1.74    | 8.11  | 1.36    | *       |             |
| 1999 | 4.83  | 0.16     | 14.38 | 1.65    | *      | *     | 1.2   | 1.79    | 2.94  | 1.07    | *       |             |
| 2000 | 0.29  | 0.72     | 10.57 | 4.82    | 9.30   | 0.17  | 1.48  | 1.1     | 10.28 | 1.18    | 183.83  | 11.31       |
| 2001 | 2.52  | 0.05     | 78.80 | 1.64    | 23.40  | 0.17  | 1.63  | 0.63    | 27.47 | 0.24    | 500.43  | 5.90        |
| 2002 | 0.33  | 1.61     | 36.75 | 3.18    | 10.40  | 0.08  | 4.73  | 5.28    | 1.12  | 2.9     | 210.70  | 17.79       |
| 2003 | 8.20  | 0.16     | 28.18 | 3.38    | 19.11  | 0.32  | 2.95  | 1.35    | 9.2   | 0.26    | 359.59  | 11.31       |
| 2004 | 12.20 | 1.46     | 64.38 | 1.82    | 10.68  | 0.54  | 4.84  | 2.16    | 4.7   | 0.45    | 243.15  | 14.97       |
| 2005 | 3.00  | 0.21     | 9.89  | 4.33    | 6.55   | 0.10  | 4.35  | 0.3     | 2.68  | *       | 129.25  | *           |
| 2006 | 2.63  | 0.33     | 37.13 | 3.96    | 11.79  | 0.19  | 1.24  | 0.79    | 4.00  | *       | 232.28  | *           |
| 2007 | *     | *        | 56.82 | 1.04    | 6.88   | 0.12  | 4.63  | 0.26    | 5.41  | *       | 175.65  | *           |
| 2008 | *     | *        | 22.90 | 3.40    | 9.52   | 0.09  | 4.24  | 0.76    | 2.23  | *       | 186.87  | *           |
| 2009 | *     | *        | 14.20 | 1.40    | 11.62  | 0.17  | **    | **      | 9.05  | *       | 227.98  | *           |


\* No (valid) survey.

\*\* Data not yet available, for international index 2008 values taken.


|      |       |       | NETHEI | RLANDS SNS |      |     |
|------|-------|-------|--------|------------|------|-----|
| Age  | 0     | 1     | 2      | 3          | 4    | 5   |
| 1970 | 1200  | 9311  | 9732   | 3273       | 770  | 170 |
| 1971 | 4456  | 13538 | 28164  | 1415       | 101  | 50  |
| 1972 | 7757  | 13207 | 10780  | 4478       | 89   | 84  |
| 1973 | 7183  | 65643 | 5133   | 1578       | 461  | 15  |
| 1974 | 2568  | 15366 | 16509  | 1129       | 160  | 82  |
| 1975 | 1314  | 11628 | 8168   | 9556       | 65   | 15  |
| 1976 | 11166 | 8537  | 2403   | 868        | 236  | 0   |
| 1977 | 4372  | 18537 | 3424   | 1737       | 590  | 213 |
| 1978 | 3267  | 14012 | 12678  | 345        | 135  | 45  |
| 1979 | 29058 | 21495 | 9829   | 1575       | 161  | 17  |
| 1980 | 4210  | 59174 | 12882  | 491        | 180  | 24  |
| 1981 | 35506 | 24756 | 18785  | 834        | 38   | 32  |
| 1982 | 24402 | 69993 | 8642   | 1261       | 88   | 8   |
| 1983 | 32942 | 33974 | 13909  | 249        | 71   | 6   |
| 1984 | 7918  | 44965 | 10413  | 2467       | 42   | 0   |
| 1985 | 47256 | 28101 | 13848  | 1598       | 328  | 17  |
| 1986 | 8820  | 93552 | 7580   | 1152       | 145  | 30  |
| 1987 | 21335 | 33402 | 32991  | 1227       | 200  | 30  |
| 1988 | 15670 | 36609 | 14421  | 13153      | 1350 | 88  |
| 1989 | 24585 | 34276 | 17810  | 4373       | 7126 | 289 |
| 1990 | 9368  | 25037 | 7496   | 3160       | 816  | 422 |
| 1991 | 17257 | 57221 | 11247  | 1518       | 1077 | 128 |
| 1992 | 6472  | 46798 | 13842  | 2268       | 613  | 176 |
| 1993 | 9234  | 22098 | 9686   | 1006       | 98   | 60  |
| 1994 | 26781 | 19188 | 4977   | 856        | 76   | 23  |
| 1995 | 12541 | 24767 | 2796   | 381        | 97   | 38  |
| 1996 | 84042 | 23015 | 10268  | 1185       | 45   | 47  |
| 1997 | 17344 | 95901 | 4473   | 497        | 32   | 0   |
| 1998 | 25522 | 33666 | 30242  | 5014       | 50   | 10  |
| 1999 | 39262 | 32951 | 10272  | 13783      | 1058 | 17  |
| 2000 | 24214 | 22855 | 2493   | 891        | 983  | 17  |
| 2001 | 99628 | 11511 | 2898   | 370        | 176  | 691 |
| 2002 | 31202 | 30809 | 1103   | 265        | 65   | 69  |
| 2003 | *     | *     | *      | *          | *    | *   |
| 2004 | 13537 | 18202 | 1350   | 1081       | 51   | 27  |
| 2005 | 27391 | 10118 | 1819   | 142        | 366  | 8   |
| 2006 | 51124 | 12164 | 1571   | 385        | 52   | 54  |
| 2007 | 40581 | 14175 | 2134   | 140        | 52   | 0   |
| 2008 | 50179 | 14706 | 2700   | 464        | 179  | 34  |
| 2009 | 53259 | 14860 | 2019   | 492        | 38   | 20  |

### b) Sole Net Survey (SNS): Plaice abundance indices are given as numbers per 100 hour fishing

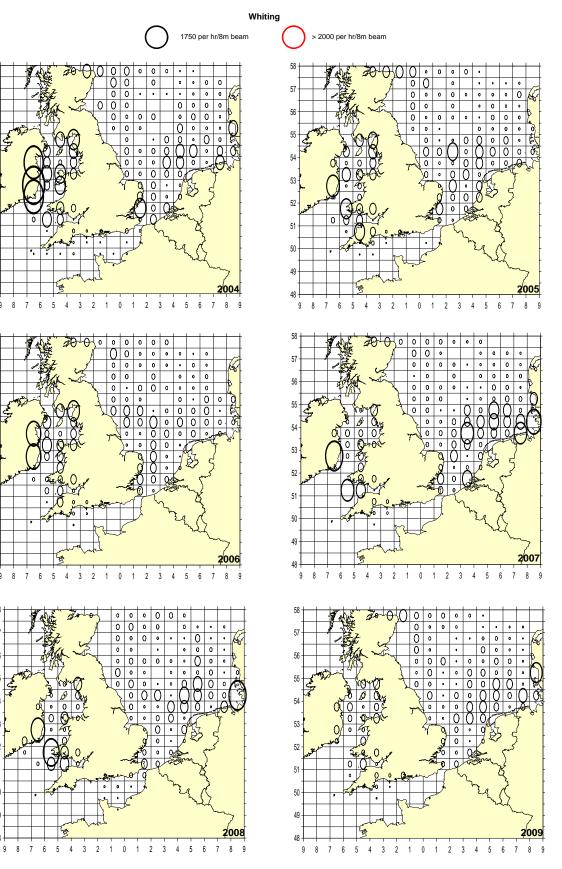
\* No survey.

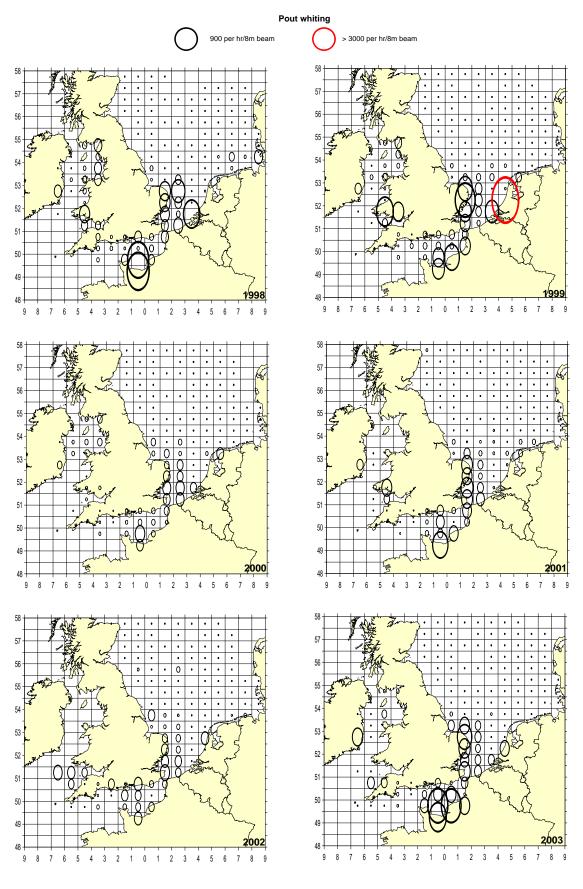


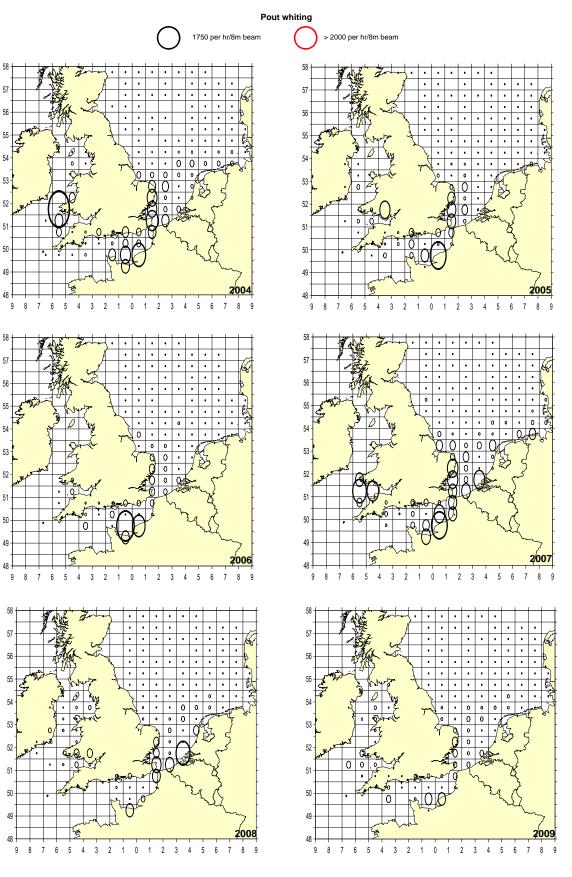
Annex 16: Comparison of Dutch Sole Net Survey (SNS) indices before and after database corrections



## Annex 17: Spatial distribution of whiting, pout whiting, tub gurnard and grey gurnard in offshore survey per year


55 -


48 -


56 -

49 -

48 -







International offshore beam trawl survey for 1998-2009 Bubbles indicate catches in number/hr/8m beam

58

57

56 -

55 -

54

53

52 ·

51 ·

50 ·

49 ·

48 -

58 -

57 ·

56 -

55 -

54 -

53 -

52 -

51 ·

50 -

49 -

48 -

9

58 -

57

56

55

54

53

52

51

50

49

48

9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 78 9

8 7

9 8 7 65 4 3 2 •

٠

•

٠

0

A

0

Z

.

.

•

٠

.

A

Tes .

in the

5

緣

6 4 3 2 1

٠

٠

٠

Tub gurnard 55 per hr/8m beam 58 ٠ ٠ ٠ à ٠ • ٠ • 0 ٠ ٠ 57 • 0 • • ٠ ٠ Ŏ Q Q • ٠ . . ٠ 56 • ٠ . • • . . . ٠ ٠ • 55 ዾ . 0 • ° Q . 54 0 0 0  $\cap$ ٠ 0 C 0 Q 0 53 52 51 50 -0 0 49 2005 2004 48 0 1 2 3 4 5 6 7 8 9 9 6 5 4 3 2 0 1 2 3 4 5 6 7 8 g 8 7 58 -A ٠ . . ٠ ٠ . . ٠ ٠ . ٠ ٠ ٠ . • ٠ 57 ٠ ٠ ٠ ٠ . ٠ ٠ • . . • . . 56 . . • . . . . . 55 0 • 0 0 00 . • • . • 54 0 0 0 53 52 51 50 0 49 2006 2007 (pe 48 0 2 3 4 5 6 7 8 9 7 6 5 4 3 2 0 1 2 3 4 5 6 7 8 9 9 8 1 1 58 de • • . . ٠ . . • . • • . . • • . ٠ . ٠ 57 • • . ٠ • . • • • . K ••• 00 • . ٠ ٠ . ٠ ٠ \$ 56 Ð . Q • . . • ٠ • . ٠ . . • . ٠ . • • • ٠ ٠ 55 o Q . ٠ . . 0 • • θ ٠ 0 ٠ • • 54 0 0 0 0 0 53 Õ 0 52 0 0 0 51 C Ø C 50

C

3 2 0 2 3 4 567

1

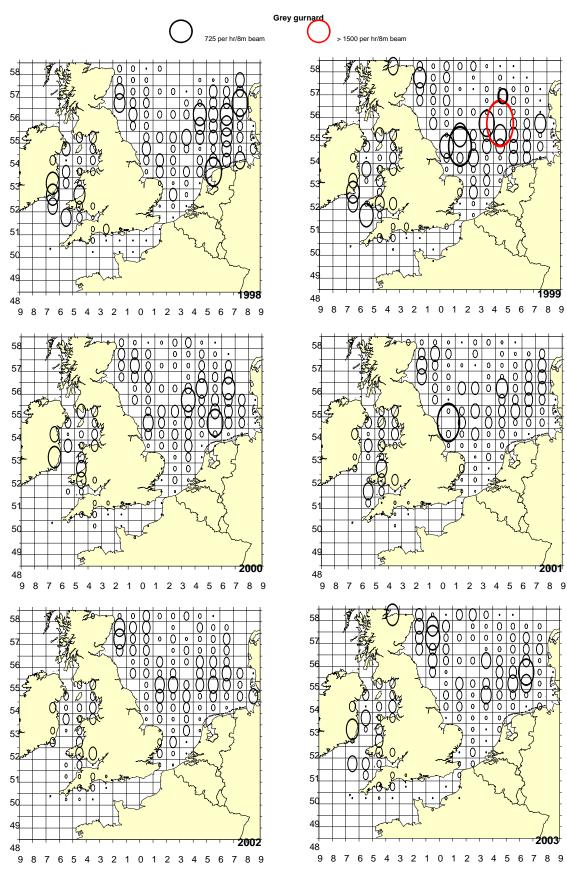
1

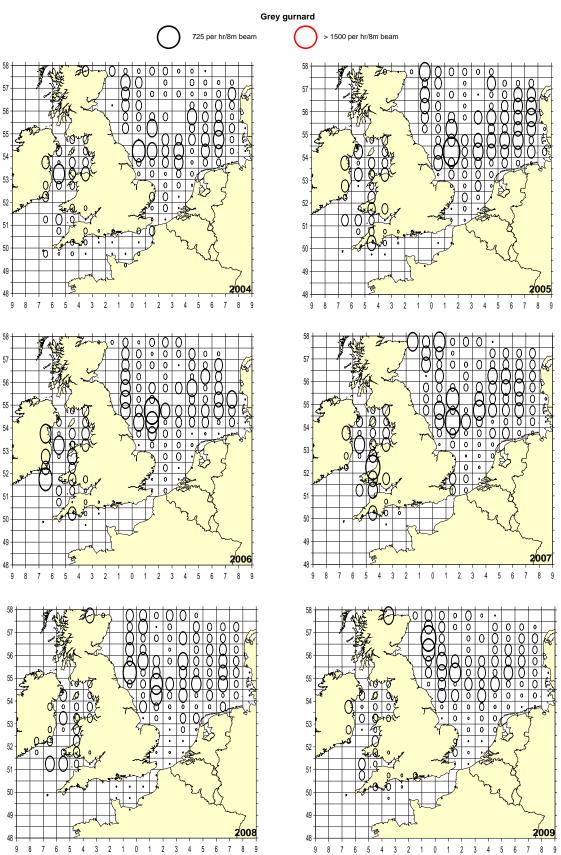
Les

4

2009

8


9


49

48

9 8 7 6 5

2008





# Annex 18: Summary of the results of the Cefas 2009 Young Fish Survey invertebrate catch

#### Gary Burt, Cefas, Lowestoft, June 2010

#### Introduction

With the availability of additional funding last year, which has been secured for this financial year, the opportunity arose for Cefas to increase the level of detail that it was possible to record invertebrates for the survey. These changes went some way to align the invertebrate sampling protocols undertaken by Cefas with the other countries engaged in similar surveys. The increase in funding allowed for an additional 5 days of sea-time (increasing the survey duration from 16 to 21 days) as well as laboratory-time to collect further measurement data.

This report presents a summary of the invertebrate catch data collected during the 2009 survey, with analyses to compare the results from the catch data collected against the recommendations of what the 2008 ICES WGBEAM agreed to report on (refer to ICES WGBEAM Report 2008 (Annex 9)).

#### A brief history invertebrate catch data collected prior to 2009

- Prior to 2002. Invertebrates were observed only.
- 2002–2006. In accordance with a checklist colonial taxa were observed and free-living species recorded using an abundance scale of occasional (1–10), several (11–20), common (21–50) and abundant (>50).
- 2007–2008. At all stations predetermined species were counted (primarily shell-fish) and at 20% of the stations that remained fixed from year to year, in accordance with a checklist, 11 species/genera were counted.
- The shrimp catch was estimated volumetrically in litres, throughout the duration of the survey.

#### Invertebrate catch data collected during the 2009 survey

The invertebrate catch was recorded on a standard sampling sheet (Appendix 1), and the following data were collected at each station:

- Presence of 7 colonial taxa.
- 20 species were counted (13 as recommended by the WGBEAM plus an additional 7 species of shell-fish, which were considered to be of commercial importance).
- Because it was not feasible to count all species, an abundance estimate was obtained for a further 10 species that were considered to be important components of the benthic community but were not recorded as a count.
- Length distributions (carapace length to mm below) were obtained for the shrimp species. A subsample of approximately 50 individuals was measured per haul that was raised to the catch by volume.
- Additional useful information regarding the catch was also recorded, namely: sediment; the volume of the total catch; the dominant invertebrate fauna (by bulk).

#### Results

A total of 160 prime stations out of a total of 161 were successfully sampled (Figure 1). The results for the invertebrate catch (excluding shrimp) are provided in Tables 1, 2 and 3.

Invertebrates (ex. Shrimp)

Table 1. Invertebrate species counted during the survey. (a) The numbers caught, standardized to cpue (No/1000m2) and (b) % of valid hauls with a positive catch, for each survey area.

| * | Sea mouse                |                   |   | 68     | 10% | 41     | 24% | 109     | 17% |
|---|--------------------------|-------------------|---|--------|-----|--------|-----|---------|-----|
| * | spp                      | . 1               |   | 396    | 59% | 779    | 77% | 1,175   | 68% |
| * | Harbour crab             |                   |   | 46     | 10% | 137    | 15% | 183     | 13% |
| * | Swimming crabs           | spp. <sup>2</sup> |   | 755    | 63% | 1,029  | 82% | 1,784   | 73% |
| * | Edible crab              |                   |   | 29     | 4%  | 4      | 4%  | 33      | 4%  |
|   | Lobster                  |                   |   |        |     |        |     |         |     |
| * | Dublin Bay prawn         |                   |   |        |     |        |     |         |     |
| * | Masked crab              |                   |   |        |     | 1      | 1%  | 1       | 1%  |
|   | Spider crab              |                   |   |        |     |        |     |         |     |
|   | Velvet swimming crab     |                   |   | 19     | 2%  | 2      | 3%  | 20      | 3%  |
| * | Common whelk             |                   |   | 295    | 25% | 561    | 49% | 856     | 37% |
|   | Scallop                  |                   |   |        |     |        |     |         |     |
|   | Queen scallop            |                   |   |        |     | 37     | 5%  | 37      | 3%  |
|   | European (native) oyster |                   |   |        |     | 53     | 9%  | 53      | 4%  |
|   | Pacific oyster           |                   |   |        |     | 5      | 3%  | 5       | 1%  |
| * | Sand star                |                   |   |        |     | 15     | 1%  | 15      | 1%  |
| * | Common starfish          |                   |   | 11,907 | 69% | 11,181 | 76% | 23,088  | 73% |
| * | Brittlestar              |                   |   | 9,608  | 11% | 751    | 14% | 10,359  | 13% |
| * | Brittlestars (           |                   | ) | 50,188 | 46% | 60,109 | 70% | 110,298 | 58% |
| * | Sea Potatoes             | spp.              |   | 19     | 6%  | 34,766 | 16% | 34,786  | 11% |

Table 2. The most dominant species encountered at each station, shown as a % of the total number of stations sampled for each survey area.

| * | Common shrimp                  |    | 47% | 14% | 31% |
|---|--------------------------------|----|-----|-----|-----|
| * | Brittlestars (                 | )  | 12% | 19% | 16% |
| * | Common starfish Asterias ruben | IS | 10% | 16% | 13% |
|   | Shore crab                     |    | 17% | 4%  | 11% |
|   | Green sea urchin               |    | 5%  | 14% | 9%  |
|   | Curly weed                     |    | 1%  | 9%  | 5%  |
| * | Swimming crabs spp.            |    |     | 6%  | 3%  |
|   | Hornwrack                      |    | 4%  | 1%  | 3%  |
|   | Hydroids                       |    | 1%  | 4%  | 3%  |
| * | Sea Potatoes spp.              |    |     | 4%  | 2%  |
| * | Brittlestar                    |    |     | 3%  | 19  |
|   | spp.                           |    | 1%  | 1%  | 1%  |
|   | spp.                           |    |     | 1%  | 1%  |
| * | Slipper limpet                 |    |     | 1%  | 1%  |
| * | Common cockle                  |    |     | 1%  | 1%  |
| * | spp                            |    |     | 1%  | 1%  |
| * |                                |    | 1%  |     | 1%  |

\* - Denotes invertebrate species ICES WGBEAM Report 2008 (Annex 9) decided reporting on

Of the species that were counted, the most commonly encountered species were swimming crabs (*Liocarcinus* spp.) and common starfish (*Asterias rubens*) that occurred at nearly three-quarters of the stations sampled (Table 1). The most abundant

species (in terms of numbers) were brittlestars (*Ophiura albida*, *O.ophiura*), which were recorded at over half of the stations, although they were more frequently encountered in the Thames survey area. For the commercial shell-fish species, European (native) oyster *Ostrea edulis* was encountered the most, all of which were found in the Thames survey area.

A summary of the dominant fauna recorded for each station and the species where an abundance estimate was recorded is shown in Tables 2 and 3, respectively. An analysis of these data provides evidence of species that are important components of the benthic community for the UK coast but are not currently included on the WGBEAM list of species to be recorded. After common shrimp (*Crangon crangon*), brittlestars (*Ophiura albida, O.ophiura*) and common starfish (*Asterias rubens*), Shore crab (*Carcinus maenas*) and green sea urchin (*Psammechinus miliaris*) were the most commonly recorded dominant species (Table 2), that occurred at 57% and 28% at the station, respectively (Table 3). Of the other species, although not recorded to be dominant, spider crabs were also frequently encountered (at 55% of stations sampled) and occurred in numbers >100 at nearly 9% of the stations.

Table 3. Estimated species abundance (for those species where abundance was recorded for), shown as a % of the total number of stations for each survey area.

| Shore crab       | 19% | 12% | 10% | 11% | 30% | 81% | 13% | 6%  | 8% | 3%  | 3%  | 32% | 57% |
|------------------|-----|-----|-----|-----|-----|-----|-----|-----|----|-----|-----|-----|-----|
| Spider crabs     | 14% | 12% | 10% | 4%  | 5%  | 44% | 23% | 14% | 6% | 10% | 13% | 66% | 55% |
| Green sea urchin | 4%  | 4%  | 1%  |     | 7%  | 16% | 11% | 9%  | 1% | 4%  | 14% | 39% | 28% |
| Slipper limpet   | 9%  | 2%  |     |     | 1%  | 12% | 14% | 5%  | 3% | 4%  | 1%  | 27% | 19% |
| Common sun star  | 16% | 2%  | 4%  |     |     | 22% | 1%  |     | 1% |     |     | 3%  | 13% |
| Plumose anemone  | 4%  |     |     |     |     | 4%  | 13% | 1%  | 1% |     |     | 15% | 9%  |
| Common mussel    | 1%  |     |     |     |     | 1%  | 6%  | 6%  | 1% |     | 1%  | 15% | 8%  |
| Common cockle    | 1%  |     |     |     |     | 1%  | 6%  |     | 1% |     |     | 8%  | 4%  |
|                  |     |     |     |     |     |     | 6%  | 1%  | 3% |     |     | 10% | 5%  |
| Square crab      |     |     | 1%  |     | 1%  | 2%  | 3%  | 1%  |    |     |     | 4%  | 3%  |

Abundance scale: < or = 10 Occasional (O); 11-20 Several (S); 21-50 Common (C); 51-100 Abundant (A); >100 Profuse (P)

#### Shrimp

The results for the shrimp catch are shown in Figures 2 to 5. 97% (by number) of the catch composed of common shrimp (*Crangon crangon*), although they were found to be more abundant in the Northern survey area (Figure 2). The high catch rates encountered off the south Lincolnshire coast (Figure 3a) was substantiated during the survey where commercial shrimp vessels were observed to be operational in the area. Two other species of shrimp were identified during the survey, pink shrimp (*Pandalus montagui*) and common prawn (*Palaemon serratus*), both of which were more abundant in the Thames survey area, the latter of which was absent from the Northern area.

An analysis of the carapace length distributions (Figure 4) shows that for common shrimp there is no distinctive size class groups for either of the areas or both areas combined, although the proportion per length-group differed, with no obvious modal length group for the Thames survey area. The bulk of this length distribution would probably equate to a 0-group that was just then beginning to be recruited to the fishery (information from Cefas shellfish team). However, for pink shrimp there was a difference in the length distributions between the two areas that were generally of a smaller size for the Thames survey area. A basic analysis of variance in the length distributions between station for 10 randomly selected stations for the Northern survey shows that length distributions vary between stations but when averaged out are similar to the length distribution for the whole of the Northern survey area (Figure 5). However, this was not subjected to more rigorous statistical testing.

### Conclusions

- The "current" list of benthic species provided by the WGBEAM is not sufficient enough to cover those species that are important components of the benthic community for UK waters.
- In light of discussions with the Cefas shell-fish team regarding the introduction of the revised sampling protocols for the shrimp catch further consideration could be given to this area of sampling. Their comments were as follows:
  - The length distribution for common shrimp was primarily comprised of the one (0-group) year class. Natural mortality is regarded to be high with few individuals surviving through to the following year.
  - What is the *utility* of collecting length distributions once a year?
  - Length distributions can be used for modal progression analysis with regular sampling throughout the year.
  - The team was not aware of any length data being used for stock assessment purposes.
  - Cefas does provide data to the Shrimp WG but at the moment these data do not include any collected as part of ECYFS. Currently data are not used for analytical purposes.
  - There is value in recording abundances but volumes/counts would be sufficient, although it would be beneficial if volumes were recorded accurately rather than "guesstimates" as they have been in the past.
  - More accurate abundance estimates for common shrimp and other invertebrates would be preferred over length distributions of shrimps.
- An initial analysis of the common shrimp length distributions suggests that it may be possible to obtain a viable length distribution from randomly selected stations, although this would first benefit from a more rigorous statistical analysis.

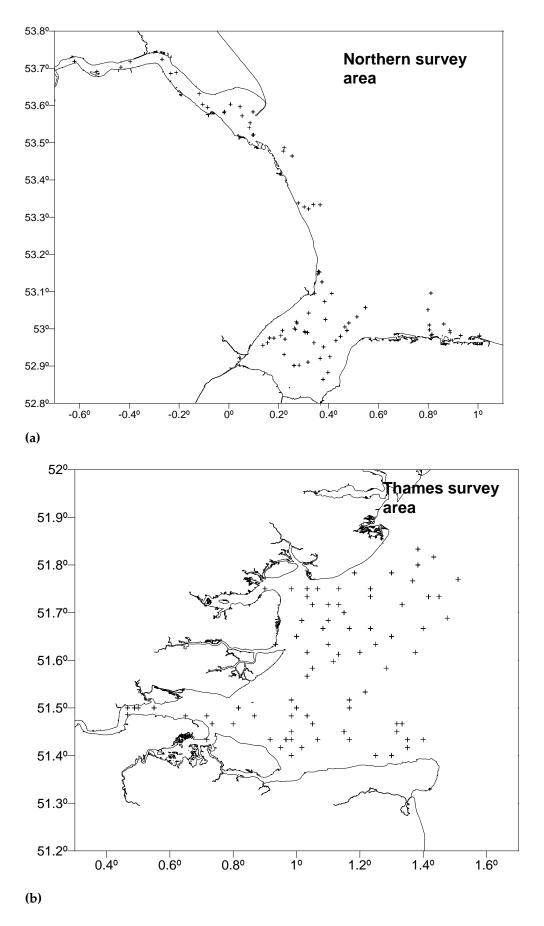



Figure 1. The Young Fish Survey standard survey positions for (a) River Humber to the north Norfolk coast and (b) the Thames Estuary.

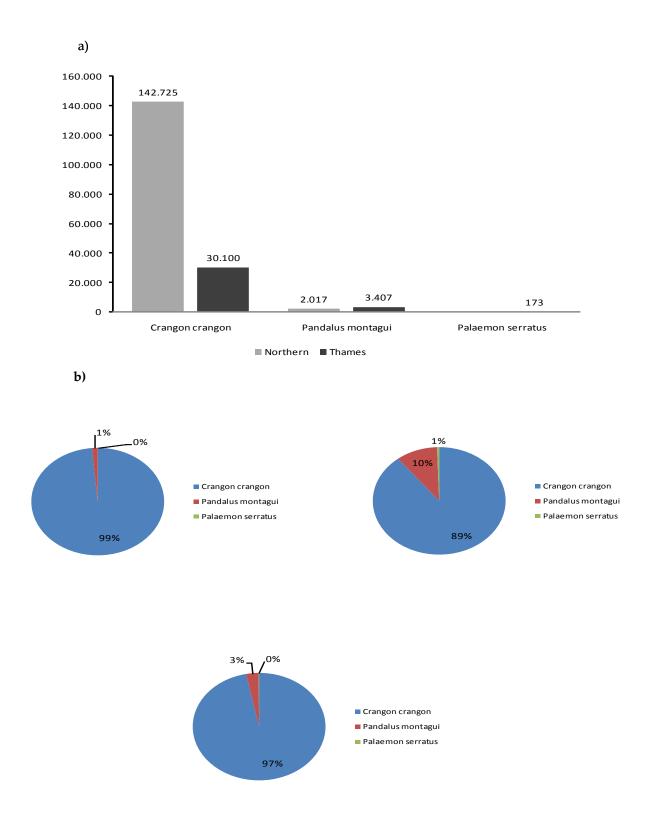
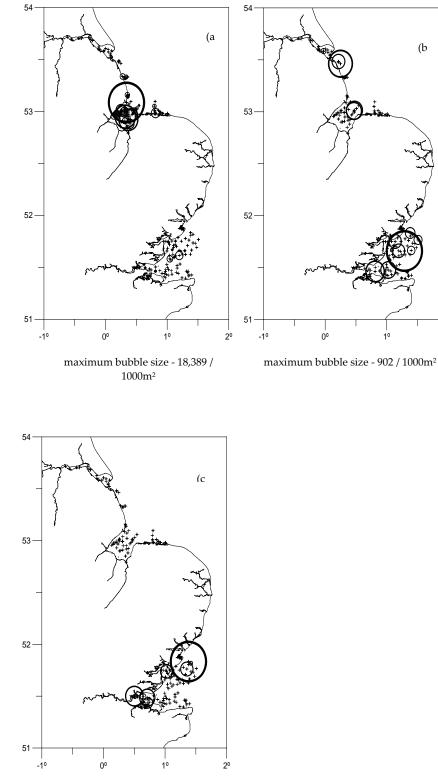




Figure 2. Shrimp abundance by survey area. (a) Total numbers. (b) % species allocation by numbers. (Numbers standardized to cpue (No/1000m<sup>2</sup>)).

20



maximum bubble size - 47 / 1000m<sup>2</sup>

Figure 3. Distribution and relative abundance (No/1000m<sup>2</sup> for (a) Crangon crangon, (b) Pandalus montagui and (c) Palaemon serratus.

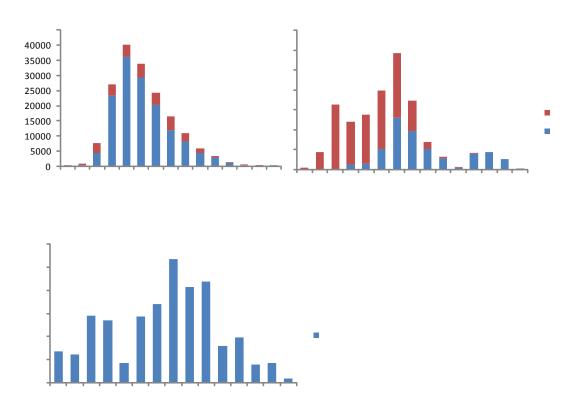



Figure 4. Carapace length distributions. Total numbers of individuals caught standardized to cpue (No/1000m<sup>2</sup>)).

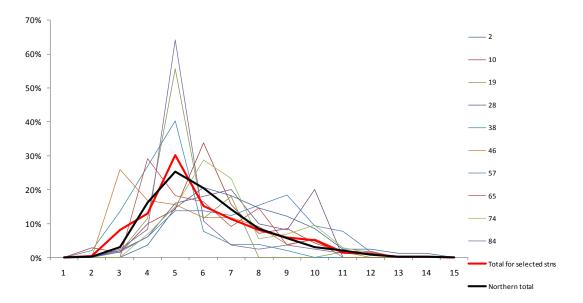



Figure 5. Length distributions of common shrimp (*Crangon crangon*; shown as a %) for 10 randomly selected stations from the Northern survey area compared against the length distributions for the stations combined and the whole of Northern survey area.

# Appendix 1. Invertebrates recorded during the 2009 Young Fish Survey

| Vessel / cruise:    |        |      | [    | Date: Station: |         |           |                       |         |       | Prime: |  |  |
|---------------------|--------|------|------|----------------|---------|-----------|-----------------------|---------|-------|--------|--|--|
| Clean               | Mud    | Sand | Gr   | avel           | Shell h | ash       | Broken shells         | Pebbles | Rocks |        |  |  |
|                     |        |      |      |                |         |           |                       |         |       |        |  |  |
| Number of fish boxe |        |      |      |                | [       |           | Litres:               |         |       |        |  |  |
| Number of fish bask | ets:   |      |      |                | l       |           | Convert catch to lite | res:    |       | L      |  |  |
| Species             |        |      | Code | Present        |         |           | Species               |         | Code  | Pi     |  |  |
| Sponges             |        |      | PFZ  |                | [       |           | Hornwrack             |         | FAF   |        |  |  |
| Hydroids            |        |      | HYD  |                |         |           | Curly weed            |         | ALG   |        |  |  |
| Dead mans fingers   |        |      | DMF  |                |         |           | Ascidians             |         | SSX   |        |  |  |
| spp.                |        |      | RCL  |                | l       |           |                       |         |       |        |  |  |
| Species             |        |      | Code | Count          | RF      | Total No. |                       |         |       |        |  |  |
| Sea mouse           |        |      | AAC  | No.            |         |           | 1                     |         |       |        |  |  |
|                     | spp. 1 |      | PAY  |                |         |           | 1                     |         |       |        |  |  |
| Harbour crab        |        |      | LMD  |                |         |           | 1                     |         |       |        |  |  |
| Swimming crabs      | spp.   | 2    | PUZ  |                |         |           | 1                     |         |       |        |  |  |
| Edible crab         |        |      | CRE  |                |         |           | 1                     |         |       |        |  |  |
| Edible crab         |        |      | CRE  |                |         |           | 1                     |         |       |        |  |  |
| Lobster             |        |      | LBE  |                |         |           | 1                     |         |       |        |  |  |
| Lobster             |        |      | LBE  |                |         |           | 1                     |         |       |        |  |  |
| Dublin Bay prawn    |        |      | NEP  |                |         |           | 1                     |         |       |        |  |  |
| Masked crab         |        |      | CCV  |                |         |           | 1                     |         |       |        |  |  |
| Spider crab         |        |      | SCR  |                |         |           | ]                     |         |       |        |  |  |
| Velvet swimming cr  | ab     |      | MLP  |                |         |           | J                     |         |       |        |  |  |
| Common whelk        |        |      | WHE  |                |         |           | ]                     |         |       |        |  |  |
| Scallop             |        |      | SCE  |                |         |           | ]                     |         |       |        |  |  |
| Queen scallop       |        |      | QSC  |                |         |           | ]                     |         |       |        |  |  |
| European (native) o | yster  |      | OYF  |                |         |           | ]                     |         |       |        |  |  |
| Pacific oyster      |        |      | OYG  |                |         |           | ]                     |         |       |        |  |  |
| Sand star           |        |      | API  |                |         |           | J                     |         |       |        |  |  |
| Common starfish     |        |      | STH  |                |         |           | 1                     |         |       |        |  |  |
| Brittlestar         |        |      | OPF  |                |         |           | 1                     |         |       |        |  |  |
| Brittlestars (      |        | )    | BSY  |                |         |           | 1                     |         |       |        |  |  |
| Sea Potatoes        | spp    |      | ECC  |                |         |           | 1                     |         |       |        |  |  |
| Ray egg cases (live | )      |      | RES  |                |         |           | 1                     |         |       |        |  |  |
|                     | live)  |      | DEG  | 1              |         | 1         | 1                     |         |       |        |  |  |

Record total numbers using the following abundance scale: < or = 10 Occasional (O) 11-20 Several (S)

21-50 Common (C)

PHP

| Species / group name      | Code | Abundand |
|---------------------------|------|----------|
| Plumose anemone           | PMA  |          |
| Spider crabs <sup>3</sup> | MJX  |          |
| Square crab               | GOR  |          |
| Shore crab                | CRG  |          |

| Species / group name |  |
|----------------------|--|
| Slipper limpet       |  |

51-100 Abundant (A)

Common cockle Common mussel Common sun star

Green sea urchin

>100 Profuse (P)

| e | Code | Abundance | e |
|---|------|-----------|---|
|   | ASL  |           |   |
|   | COC  |           |   |
|   | MUS  |           |   |
|   | CTP  |           |   |
|   | PMM  |           |   |

Dominant fauna:

Other comments:

# Appendix 1 (contd), Invertebrates recorded during the 2009 Young Fish Survey

| Г                      | Common | <u> </u>               |        | Common         |
|------------------------|--------|------------------------|--------|----------------|
|                        | shrimp | Pink shrimp            | Shrimp | prawn          |
|                        | onnip  |                        |        | piami          |
|                        |        |                        |        |                |
|                        | CSH    | PRM                    | CGA    | CPR            |
| Total volume (litres)  |        |                        |        |                |
| Sample volume (litres) |        |                        |        |                |
| RF                     |        |                        |        |                |
|                        |        |                        |        |                |
| 0,1                    |        |                        |        |                |
| 0,2                    |        |                        |        |                |
| 0,3                    |        |                        |        |                |
| 0,4                    |        |                        |        |                |
| 0,5                    |        |                        |        |                |
| 0,6                    |        | ┝────┤                 |        |                |
| 0,7                    |        | <b>├</b> ──── <b>│</b> |        |                |
| 0,8                    |        | ļ                      |        |                |
| 0,9                    |        | ļ                      |        | ļ]             |
| 1,0                    |        |                        |        |                |
| 1,1                    |        |                        |        |                |
| 1,2                    |        |                        |        |                |
| 1,3                    |        |                        |        |                |
| 1,4                    |        |                        |        |                |
| 1,5                    |        |                        |        |                |
| 1,6                    |        |                        |        |                |
| 1,7                    |        |                        |        |                |
| 1,8                    |        |                        |        |                |
| 1,9                    |        |                        |        |                |
| 2,0                    |        |                        |        |                |
| 2,1                    |        |                        |        |                |
| 2,2                    |        |                        |        |                |
| 2,3                    |        |                        |        |                |
| 2,4                    |        |                        |        |                |
| 2,5                    |        |                        |        |                |
| 2,6                    |        | <u>├</u> ────┤         |        |                |
| 2,7                    |        |                        |        |                |
| 2,8                    |        |                        |        |                |
| 2,9                    |        |                        |        |                |
| 3,0                    |        |                        |        |                |
| 3,1<br>3,2             |        | ├                      |        |                |
|                        |        |                        |        |                |
| 3,3                    |        | ╂────┤                 |        | <u>├</u> ───┤  |
| 3,4<br>3,5             |        | ╂────┤                 |        | <u>├</u> ───┤  |
| 3,5<br>3,6             |        | ╂────┤                 |        | <u>├</u> ───┤  |
| 3,6<br>3,7             |        | ╂────┤                 |        | <u>├</u> ───┤  |
| 3,7<br>3,8             |        | ╂───┤                  |        | ╂────┤         |
| 3,8<br>3,9             |        | ╂───┤                  |        | ╂────┤         |
| 3,9<br>4,0             |        | ╂────┤                 |        | ╂────┨         |
|                        |        | ┼───┼                  |        | <b>├</b> ────┤ |
| Total                  |        |                        |        |                |

# SHRIMP CATCH ON YOUNG FISH SURVEY

Note:

Common prawn not to be included as part of a percentage split Length distribution: if not all, aim to measure approximately 50 per sample Carapace length (back of eye socket to end of carapace): measure to mm, recorded as cm

Comments:

# Annex 19: Executive summary – Workshop on Sexual Maturity Staging of sole, plaice, dab and flounder (WKMSSPDF)

#### Introduction of common maturity scale

When assigning maturity stages to fish, it is important to have an understanding of the biology of the fish and its reproductive cycle in the sampling area. This helps to distinguish the transitions between the different stages.

WKMSSPDF 2010 proposed to adopt the 6 point scale as proposed by the gadoid workshop WKMSCWHS 2007 (ICES, 2008). From wide ranging discussions it has become evident that outside the spawning period it is not reliably possible to distinguish between what is described as a resting stage 5 and a re-maturing stage 2 (histological pictures have given credence to this). To this end it is recommended for flatfish, stage 5 should only be used during the proposed sampling period (see 'Optimal sampling time') and only to describe a skipped spawning fish.

It is recommended that institutes carry out in-house workshops on the reproductive biology of the fish and maturity staging, also as a follow-up of WKMSSPDF2010 to introduce the new common scale. An important aspect of the introduction of the new common scale is to take care that all institutes will be able to transpose their own scale into the common scale. This will give the flexibility for the institutes sometimes to keep their own scale but to internationalise their data in an easy way.

Classification criteria for maturity stages

For all species, classification criteria were defined in subgroups and presented in a similar way. Plaice and dab were discussed in the same subgroup because only a few experts on dab were present at the workshop. As far as possible, the subgroups worked on a reference picture collection per species per sex.

#### **Comparison of stagings**

The stagings were done by 19 readers, in three rounds (picture-fresh-picture). The first staging (from pictures) had low agreement (<60%) for all species. The fresh staging had a clearly higher agreement (>75%) for all species. In the third staging (from pictures) progress was made in percentage agreement compared to the first staging, but there was still a lower agreement on the stages then the staging from fresh material. This is not surprising because touching is one of the ways to identify maturity stages in fish.

#### Comparison of macroscopic staging with histology

The comparison between the macroscopic staging and histological slides shows that there is an early development stage in gonads seen in the histological samples which cannot easily be indentified macroscopically. The general percentage of agreement between histological slides and macroscopic scales is very low. This might be caused by the number of samples outside the recommended sampling period.

#### **Optimal sampling time**

As it is difficult to identify the proper maturity stage when fish is not clearly developing, data collection for maturity ogives is recommended during the prespawning season. This implies that sampling for maturity staging for sole, plaice, dab and flounder should be done during late fourth quarter until the end of the first quarter. For assessment purposes, only data from one month before the spawning season (to be identified based on the collected data) until the start of the spawning season should be used for the estimation of maturity ogives for sole, plaice, dab and flounder. Any macroscopic staging outside this period can be misinterpreted and should not be used for maturity ogives.

However, collecting maturity information outside the defined period might be interesting for scientific purposes other than stock assessment. For these purposes, it is recommended that histological staging is done.

## Future workshops

Judging from WKMSSPDF a workshop on maturity staging for other commercial flatfish species (turbot, brill, lemon sole, witch flounder) might be useful. However, the lemon sole staging during WKMSSPDF shows that having the expertise in staging one species of flatfish can be adequate to stage other species of flatfish.

To define whether a workshop is necessary, it is recommended to do a calibration exercise prior to organising a workshop based on pictures, for example using the WebGR tool (see http://webgr.berlios.de/doku.php).

Before setting up the next meeting, the number of pictures to stage during the workshop should be considered in order to meet the need for time to discuss individual cases as well as maintaining statistical accuracy. Based on the experiences of WKMSSPDF it is recommended that roughly 30 fish per species would be an adequate number to judge at each round during the workshop. This applies for fresh samples as well as pictures. It is recommended that the process of trial-discussionretrial is based on fresh samples. This means that at least two staging sessions on fresh material have to be done during future workshops. As a consequence, for all species named in a workshop fresh material has to be available in the neighbourhood of the hosting institute.

A workshop on maturity staging should take place when the diversity in maturity stages is high and maturity stages are distinguishable.

WKMSSPDF 2010 developed a set of criteria for pictures to be made for a maturity staging workshop.

Annex 20: Manual for the inshore beam trawl surveys -version 0.1

# Report of the Working Group on Beam Trawl Surveys (WGBEAM)

8-11 June 2010

Lowestoft, UK

### 1. Introduction

Four countries are participating in the inshore beam trawl surveys coordinated by the Working Group on Beam Trawl Surveys (WGBEAM). An overview of the main characteristics of the different surveys is given in Annex 1.

The continental (B, NL, D) surveys date back to a joint international programme that started in 1969 (van Beek *et al.*, 1989). A combined index, including UK data, for prerecruit (0- and 1-group) sole and plaice was first prepared for the North Sea Flatfish WG in 19??. Since 19??, WGBEAM is responsible for coordinating the surveys. While initially two seasons were covered by the surveys, the spring campaign was dropped country by country such that actually only autumn surveys are conducted.

There is no agreed standard gear across the surveys, a situation which lasts since the beginnings. The different countries all have their own sampling areas along their coast with little or no overlap. Because the gears used vary, it is not possible to change sampling protocols from one country to the other without any thorough scientific study beforehand. For the purpose of deriving the combined flatfish indices, a set of conversion factors was compiled, based on experiments (ICES 1985). Additionally, WGBEAM tries to increase standardization in sampling by staff exchange during the surveys and by publishing this manual.

The paragraphs are primarily split up by country to point out clearly differences in the surveys.

## 2. WGBEAM surveys

## 2.1 History of the surveys

#### 2.1. Belgium

The Belgian inshore beam trawl survey, collecting fisheries independent data primarily for juvenile 0- and 1-group plaice and sole along the Belgian coast (IVc), started in 1973. The continuous time-series using a 6m beam trawl as the standard gear started in 1973. 33 fixed stations are fished for 30min at 4 knots. Besides the target species, plaice and sole, only dab, brill, turbot, flounder, cod and whiting have been measured.

#### 2.1.2 Germany

For the "DYFS – Demersal Young Fish Survey" the sampling records date back to 1971–1977, depending on the sampling location. Since 1977, four regions were regularly sampled: East Frisia (from Accumersiel), Elbe estuary (from Cuxhaven), Schleswig-Holstein (from Büsum and Husum). In 2005, a new series for the Weser-Jade estuary (from Wremen and Dorum) was initiated. The trips cover the respective estuary, or the local tidal channels plus an adjacent area seaward of the island chain.

At present, the survey is conducted only in autumn (end of August to beginning of October). A parallel series in spring (April-May) was abandoned after 2004, following the other countries.

Chartered shrimping vessels are employed throughout, differing between locations and changing through time. Boats are different in size, typically between 12 and 18 m length.

Samples are mainly worked up on board by a team of 2–3 persons. The processing has developed through time towards more taxonomic accuracy and more biological detail.

## 2.1.3 Netherlands

The Dutch undertake two inshore beam trawl surveys: the Demersal Survey (DFS) and the Sole Net Survey (SNS).

## 2.1.4 DFS

The DFS was initiated by the Dutch fisheries research institute (formerly RIVO) in 1969. From 1969 to 1986 the DFS was carried out in both spring and autumn. Since 1987, the survey has been carried out once a year in September-October.

The early DFS surveys showed the importance of the Wadden Sea as nursery grounds for flatfish. It was thus decided to continue and expand the DFS in order to collect indices of young flatfish.

The coastal zone from the border between the Netherlands and Belgium up to Esbjerg (DK), the Dutch Wadden Sea, Ems-Dollard estuary, Schelde estuary (Wester-/Oosterschelde) are sampled. (NB: the Belgian coast is sampled by Belgium, the German Wadden Sea sampled by Germany).

## 2.1.5 SNS

The SNS was initiated by the Dutch fisheries research institute (formerly RIVO) in 1969. The survey was designed to continue a Dutch flatfish monitoring programme in the coastal zone ("raaienprogramma"), which had been started in the 1950s. From 1969–1995, the SNS was carried out with RV "Tridens". Since 1996, it has been continued with RV "Isis". The SNS was carried out in both spring and autumn from 1969 to 1989. Since 1990, the SNS has taken place once a year in September-October, with the exception of 2003 when, for only one year, the survey was carried out in spring instead of autumn. From 1974–1991 and in 1994, the area north of Esbjerg was also sampled during the SNS. Because of the difficult (rocky) bottom structure, this area was fished with a heavier beam trawl than the normal one.

## 2.1.6 United Kingdom

Studies in the early 1960s of coastal waters around England and Wales have shown their importance as inshore flatfish nursery grounds, in particular for plaice and sole. More extensive surveys were undertaken during the 1970s to evaluate the extent of these populations and from 1981 onwards the survey was conducted annually. The extent of the area covered by the survey has changed over this period and has been more extensive than the present study area. The survey once covered the English coastline from Flamborough Head on the northeast coast to Portland Bill on the south coast, as well as Morecambe Bay for a short while.

## 2.2 History of the survey gear

## 2.2.1 Belgium

A 6m beam trawl, rigged the same has been used through-out the duration of the survey that begun in 1970.

Gear rigging remained unchanged except for replacing wooden with rubber rollers. Presumably, the netting material available changed properties through time.

### 2.2.3 Netherlands

2.2.4 DFS

Not updated

2.2.5 SNS

Not updated

## 2.2.6 United Kingdom

The 2m wooden beam trawl has been rigged the same through-out the duration of the survey. In addition a 1.5m push-net, designed to have similar efficiency and selectivity, was operated at the low water mark in water depths less than 1m. The use of the push-net ceased in 1999.

## 2.3 Survey design

## 2.3.1 Belgium

A research and training vessel is used for the survey. There is no fixed order in which the stations are fished but a similar yearly pattern is executed as much as possible. During the span of the time-series, some stations have been moved slightly. The rationale for the new locations has been: within 5 nautical miles, similar grounds and depth. The survey commences during September and is conducted during daylight hours.

## 2.3.2 Germany

About 150 stations are covered per year. Fishing is mostly done during daytime (with the exception of Cuxhaven/Elbe), towing 15 minutes with the tide. This results in an average speed over ground of 3 knots.

## 2.3.3 Netherlands

## 2.3.4 DFS

Sampling is stratified by geographical area and by bottom depth (5m depth classes). The survey area can be subdivided into the Wadden Sea, the Schelde estuary, and the coastal zone. The trawl positions are more or less fixed over the various depth strata.

Three research vessels are used. Fishing takes place during daylight hours during, September and October. The 6m beam trawl is currently deployed in the Dutch coastal zone by RV Isis, and 3m beam trawl in the Wadden Sea by RV Stern and in the Scheldt estuary by RV "Schollevaar".

## 2.3.5 SNS

Since 1996, Dutch RV "Isis" surveys the coastal waters from Scheveningen up to Esbjerg (Denmark). The survey station grid consists of 10 standard transects, which run along or perpendicular to the coast.

The SNS is a transect survey using fixed stations originally designed to sample the 1 and 2 year old flatfish. The survey takes place during September and fishing occurs during the hours of daylight.

## 2.3.6 United Kingdom

Small inshore fishing vessels are chartered for the survey. The survey is carried out by two teams of scientific staff, one surveying the area between the River Humber to the north Norfolk coast and the other, the Greater Thames Estuary. For the survey the coast is divided into sectors, referred to as mini-areas, which are based on geographic features, and within these fixed prime stations are fished annually between late August and early September. This is the period when the majority of newly metamorphosed fish occupy shallow nursery grounds in large numbers. Furthermore each fixed station is permanently assigned to a stratum based on the chart depth.

## 2.4 Beam trawl construction and rigging

#### 2.4.1 Belgium

The 6m beam trawl is rigged without tickler chains and an 18mm mesh liner. The warp length is, on average, 7 times the station depth as the warp is used double. The skipper assures that the gear fishes well and is in good contact with the bottom. The chief scientist decides, in accordance with the skipper, when the circumstances are no longer appropriate to deliver valid hauls.

#### 2.4.2 Germany

The gear is a 3m beam trawl rigged as a shrimp trawl with a roller chain and no tickler chain. The steel construction can be taken apart for transportation. Codend mesh opening is 20mm.

## 2.4.3 Netherlands

## 2.4.4 DFS

Both 3 and 6m beam trawls are used that are rigged the same. The beams are rigged with one tickler chain and the mesh sizes of the net and codend are 35 and 20mm, respectively.

## 2.4.5 SNS

A 6m beam with four tickler chains is used for the survey. The size of the mesh of the net is 80mm and the codend 40mm.

## 2.4.6 United Kingdom

The 2m wooden beam trawl is rigged with three tickler chains and a 4mm mesh liner.

## 2.5 Fishing positions

## 2.5.1 Belgium

33 fixed positions are distributed over the survey area, all of which are identified as priority stations for the calculation of the indices.

## 2.5.2 Germany

Survey design has changed through time from fixed-number, fixed stations to variable stations with attempted optimum coverage of tidal channels, creeks and depths.

### 2.5.3 Netherlands

### 2.5.4 DFS

A total of 55 fixed stations are surveyed each year, all of which are completed for the calculation of any indices. Fixed

### 2.5.5 SNS

In total 300 fixed stations are surveyed each year (200 3m beam trawl stations (120 deployed from the RV "Stern" and 80 from the RV "Schollevaar") and 100 6m beam trawl stations by RV "Isis")).

## 2.5.6 United Kingdom

161 fixed stations are fished, 81 for the River Humber to the north Norfolk coast (northern survey area) and 80 for the Thames Estuary (Thames survey area). It is intended for all stations to be fished although no core stations have been identified that require to be completed each for the calculation of any indices.

## 2.6 Standard fishing method

#### 2.6.1 Belgium

A haul consist of 30 minutes trawling during daytime, starting when the gear settles on the bottom and ending when hauling commences. Depending on the circumstances a shorter period is allowed not dropping below 15 minutes. Trawl speed should be 3 knots over the ground against the tide. Warp length is, on average, 7 times the fishing depth (double wire).

## 2.6.2 Germany

Trawling is 15 minutes with the tide. The warp length paid out, and the speed through the water is left to the expertise of the skipper.

## 2.6.3 Netherlands

For both surveys the standard tow duration was 15 minutes, although less than this is acceptable provided it is greater than 7.5 minutes. For the DFS both the gears are towed at a speed of 2–3 knots, whereas the trawl used for the SNS is towed at 3.5–4 knots.

For the DFS, RV "Isis" surveys the coastal zone and uses a 6m beam trawl, rigged with shrimp netting. RV "Stern" and RV "Schollevaar" survey the other areas with a 3m beam trawl.

## 2.6.4 United Kingdom

Fishing is conducted during daylight hours and the 2m beam trawl is towed with the tide for a duration of 10 minutes covering a distance of around 450m. It is towed at a speed of 1 knot using a rope warp. In difficult fishing conditions tows of less than ten minute are valid provided that they are more than five minutes in duration.

#### 2.7 Current objectives

#### 2.7.1 Belgium

To produce commercially independent indices of abundance of commercially important species, primarily sole and plaice, in the Southern North Sea. To collect abundance and length distributions for shrimp.

#### 2.7.2 Germany

To provide prerecruit abundance indices for plaice and sole for assessment purposes, abundance and biological data for brown shrimp dynamics, species composition for faunistic and conservation considerations.

#### 2.7.3 Netherlands

#### 2.7.4 DFS

The main objective of the DFS is to provide recruitment indices of plaice (*Pleuronectes platessa*) and sole (*Solea solea*), focussing on age 0- and 1- groups. Recruitment indices of the previous survey year are used by the ICES Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK) to make short-term projections of stock development. The DFS indices of the current survey year only become available after the meeting of the demersal Working Group and is therefore used in the following year. Additionally, the DFS aims at monitoring the demersal fish fauna and epibenthos in shallow waters of the North Sea. Next to plaice and sole, also brown shrimps (*Crangon crangon*) and non-commercial fish are caught. The DFS is unique in delivering such data for the Wadden Sea region and for the Schelde estuary.

#### 2.7.5 SNS

The primary objective of the SNS is to provide abundance indices for juvenile North Sea plaice (*Pleuronectes platessa*) and sole (*Solea solea*) up to ages 3–4. These indices are used by the ICES Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK) for "tuning" the VPAs and for short-term stock and catch projections. The data are hence important for management advice. Additionally, the SNS monitors non-commercial demersal fish species and benthic fauna. The SNS was initiated in 1969, and has been carried out annually since.

Both surveys provide long time-series of data on changes in abundance and distribution of fish species and benthic fauna in the Dutch coastal zone and estuaries and can thus be used to detect ecosystem changes

#### 2.7.6 United Kingdom

The principal objective is to provide indices of abundance of small dermersal fish, in particular juvenile 0- and 1-group plaice and sole, prior to their recruitment to the fishery.

## 3 Sampling of beam trawl catches

## 3.1 Catch sorting

#### 3.1.1 Belgium

#### Catch sorting

On completion of the tow, the commercial finfish catch is sorted into species and measurements taken for each species unless there are excessive numbers, in which case subsampling and categorization is acceptable. No data are collected for benthic species, and the processing of the shrimp catch is discussed below.

#### Length composition (fish)

Length distributions are recorded for all fish species caught measured to nearest 1 cm below. Length is defined as total length (measured from tip of snout to tip of caudal fin).

#### Sampling for Age, Sex and Maturity

No biological data are collected.

#### Shrimp

Aboard the vessel the shrimp catch is mechanically sorted into three size categories and the volumes recorded for each station. The whole of the shrimp catch is preserved in formaldehyde and returned to the laboratory to be measured. For each size category a maximum subsample of about 500 shrimp, which are sorted into species is measured in 5mm length groups and the raising factors noted.

#### **Benthos**

No biological data are collected.

## 3.1.2 Germany

#### Catch sorting

Ideally the whole catch is sorted by species, but often this is not feasible because of the amount of the catch, such that subsamples are taken by splitting the total catch, or more commonly, by splitting after having sorted out the easier components.

#### Length composition (fish)

All fish species are measured as total length to the cm below, herring and sprat to the 0.5cm. Measuring may be restricted to a subsample.

## Sampling for Age, Sex and Maturity

A subsample of the shrimp taken to the lab is sexed and for the females presence or absence of eggs is recorded. No biological data are taken from fish.

#### Shrimp

A 200-g sample of shrimp per haul is stored frozen and measured home in the lab to the mm. This replaces the 3-class- measurement ( $\leq$ 54, 55–67, > 67mm) performed formerly on board.

#### Benthos

Some selected taxa of benthos are recorded by number:

[List to be provided]

Other taxa are ignored.

#### 3.1.3 Netherlands

#### Catch sorting

Catch is sorted differently on "Isis" and "Tridens" as a result of different size of the vessels and space for sorting.

On-board "Tridens", all fish is sorted. Larger or rare epifauna species are sorted, too. The epifauna are collected in baskets. If the quantities of epifauna are more than one fishing basket, a mixed sample (from different baskets) of one basket is created. This sample is sorted and, if necessary, subsampled. Sub sampling of fish species is generally done by fraction. If the length distribution is homogeneous, the catch per species is sub samples. If there are for example a few larger fish of a species and many small fish of the same species, the smaller fish will be sub sampled and the larger will not be sub sampled. The measured (sub) sample is weighed after measuring.

On-board "Isis", larger fish and larger or rare epifauna species are sorted. Small fish and other epifauna, is collected in baskets of which a mixed sample of one basket is created. This sample is sorted and, if necessary, subsampled.

All species are identified to the lowest taxonomic level. Only if this proves impossible can some be grouped by genus or larger taxonomic group (e.g. *Pomatoschistus* species, Ammodytidae).

#### Length composition (fish)

Length distributions are recorded for all finfish species caught, measured to the cm below. Herring and sprat are measured to the 0.5 cm since 2007. Length is defined as total length (measured from tip of snout to tip of caudal fin). *Nephrops norvegicus* as well as *Cancer pagurus* are measured to the mm below, by sex. Elasmobranch species are measured by sex, to the cm below.

Minimum number of individuals to be measured is 50 per species. Sub sampling is allowed as long as minimum 50 fish will be measured.

For epifauna species, on-board RV "Tridens" for most free-living species minimum and maximum length (to mm below) are measured for the sample, per species.

#### Sampling for Age, Sex and Maturity

Depending on the species, a fixed number of fish per cm class per ICES rectangle, flatfish area ("Isis") or roundfish area ("Tridens") is collected. All fish is measured to the mm below, weighted to the gram and sex is identified. Only for lemon sole maturity is staged.

#### <mark>Shrimp</mark>

No shrimps are sampled for the SNS. For the DFS a subsample of 100 *Crangon* are measured (total length to mm below) per station.

#### **Benthos**

All of the benthic species are counted.

#### Catch sorting

On completion of the tow the finfish catch is sorted into species and measurements taken for each species unless there is excessive numbers, in which case subsampling and categorization is acceptable. All elasmobranchs are sexed. No catch weights are collected. Fish are identified to the species level. Only if this proves impossible can some be grouped by genus or larger taxonomic group (e.g. *Pomatoschistus* species, Ammodytidae). Selected benthic species / taxa are counted (for which subsampling is acceptable), abundances estimated for others and the shrimp quantified/measured (see below).

#### Length composition (fish)

Length distributions are recorded for all fish species caught to nearest 0.5 cm below. Length is defined as total length (measured from tip of snout to tip of caudal fin).

#### Sampling for Age, Sex and Maturity (fish)

In accordance with targets per length group otoliths are collected for age determination purposes from sole and plaice and their sex and maturity recorded.

#### Shrimp

Length distributions for approximately 50 individuals for each shrimp species per station are collected, which is raised to the to the total catch

#### **Benthos**

At each station preselected species are counted. The list of species to be counted includes both those on the WGBEAM list of species as well as shell-fish species. Subsampling is acceptable where appropriate. Colonial taxa are observed and an abundance estimate, in according to a predefined scale is obtained for selected other species considered to be important.

Table 3.1.1 shows from which species biological data will be collected. For this report, a Y is noted when age material is collected. Additionally, weight, sex and maturity might be collected.

|                             | UK | Ne  | THERLANDS | Germany |
|-----------------------------|----|-----|-----------|---------|
| SPECIES                     |    | DFS | SNS       |         |
| Limanda limanda             |    | Y   | Y         |         |
| Phrynorhombus<br>norvegicus |    |     | Y         |         |
| Platichthys flesus          |    | Y   | Y         |         |
| Pleuronectes platessa       | Y  | Y   | Y         |         |
| Scophthalmus maximus        |    | Y   | Y         |         |
| Scophthalmus rhombus        |    | Y   | Y         |         |
| Solea solea                 | Y  | Y   | Y         |         |
| Crangoncrangon              |    |     |           | Y       |

#### Table 3.1.1. Species for which biological data are collected.

## 4 Quality assurance

Gear: In the UK and Netherlands, standard gear descriptions are used to maintain the gear. A check is done before or after each survey. If the gear does not match the description, the gear technicians overhaul the gear. If the gear is damaged during the survey, a check will be performed immediately after the survey.

Germany: The gear technician checks conformity with the standard description after repairs and replacements.

In Belgium, the fishing skipper and the gear technicians check the gear prior to the yearly survey to meet the standard. Every haul, the gear is checked and repaired before deployment.

Identification: WGBEAM will use the outcome of the Workshop on Taxonomic Quality (ICES, 2007b) concerning problem taxa. Generally, literature is used on board to identify species. All countries' sampling procedures allow for continuous feedback on species identification on board. Species that cannot be identified at sea are conserved and taken home for expert identification.

Germany: Quality of taxonomic distinction has improved in the recent years. Remaining species complexes which cannot yet be resolved at sea are *Pomatoschistus* sp. and *Syngnathus* sp.. In future, the gobies will be taken to the lab for identification, whereas for the pipefish the further procedure has not been decided yet.

In the Netherlands, quality assurance of difficult species is done by internal identification workshops after the survey. For near future, a yearly identification workshop will be planned for all seagoing personnel in the institute.

Sub sampling: for the Dutch survey quality assurance for the fraction and numbers subsampled is defined. At least three times during a survey is checked if the last two fractions in the sub sample are equal and the numbers of fish in the sub sample is recorded continuously.

Survey teams: A common inherent problem with inshore surveys is that the sampling is undertaken by small teams (often by two individuals), that does not necessarily offer the skills-base that is available for the offshore surveys. It is therefore important the that the lead scientist is experienced enough to deal with any issues that arise.

General: for the Dutch offshore survey a quality assurance is available in Dutch (2008) but will be available in English within due time.

## 5 Environmental data

Environmental data collected by countries includes temperature, salinity and turbidity.

## 5.1 Belgium

A CTD is attached to the trawl at each station to collected temperature and salinity data.

#### 5.2 Germany

Weather parameters, SST and Secchi depth are recorded about two times per day. Respective water samples are taken to the lab for salinity measurement.

#### 5.3 Netherlands

Since 2002 in the estuarine waters and since 2004 in the coastal waters, hydrographic data (temperature, salinity and visibility profiles) are collected with a data-logging CTD. In earlier years only basic hydrographic measurements (surface water temperature and visibility estimates using a secchi disc) were collected on all DFS cruises.

#### 5.4 United Kingdom

At each station surface and temperature data are collected. At the River Humber stations dissolved oxygen is measured for the Environment Agency.

### 6 Protocol for starting a new beam trawl survey

This manual should be the starting point for any institute or body that wishes to start a beam trawl survey that will be used for indices purposes. Although there are 5 different gears and up to 11 different vessels (RV and charter) participating in the current coordinated surveys, all countries are using similar methods to carry out their surveys. All countries use protocols to ensure that the sampling on their survey is carried out in a standard way, year on year, and many of the processes used are the same across the coordinated surveys. Gear is maintained and deployed to specified standards and this is fundamental to the process of maintaining high quality data suitable for scientific use. Whenever a new survey is commissioned the suitability of the gear is paramount and liaison with the industry and the WGBEAM would be first steps along the correct path to an inaugural survey. Fundamentally the following steps should be carried out before any survey is started.

- Identify the species that are to be targeted.
- Identify the area to be fished.
- Identify the most appropriate gear to use.
- Ensure the gear can be deployed efficiently from your research platform.
- Ensure that you have competent and expert knowledge to deal with the gear and the sampling.
- Design the survey to deliver robust data that is representative of your needs.
- Document the process and ensure that there is repeatability to all of the processes that you carry out.
- Liaise with experts (such as those at WGBEAM) when designing and carrying out your survey.

One of the remits of WGBEAM to provide expert advice on such issues as listed above and one should take advantage of this, to help ensure the success of any new inshore beam trawl survey.

#### 7. References

van Beek, F. A., Rijnsdorp, A. D., De Clerk, R. 1989. Monitoring juvenile stocks of flatfish in the Wadden Sea and the coastal areas of the southeastern North Sea. Monitoring the Wadden Sea. Proceedings of the 6th International Wadden Sea Symposium. Helgoländer Meeresuntersuchungen 43: 461–477.

ICES. 1985. Report of the 0-Group North Sea Flatfish Working Group. ICES CM 1985/G:2.

| COUNTRY                                      | Netherlands<br>(SNS)             |                                  | NETHERLANDS<br>(DFS)             |                                       | UK (YFS)                           | Belgium<br>(DYFS)               | Germany<br>(DYFS)                  |
|----------------------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------------|------------------------------------|---------------------------------|------------------------------------|
| <b>Ship</b>                                  | Tridens /<br>Isis                | Stern /<br>Waddenzee             | Schollevaar                      | Isis /<br>Beukels /<br>WR17 /<br>GO29 | CHARTERED<br>VESSELS               | HINDERS /<br>Broodwinner        | CHARTEREE<br>VESSELS               |
| ship size (m)                                | 73m / 28m                        | 21m / 21m                        | 21m                              | ± 28m                                 | 8–10m                              | 27m                             | 12–18m                             |
| Date started                                 | 1969                             | 1970                             | 1970                             | 1970                                  | 1970                               | 1970                            | 1969*                              |
| Sampling<br>Period                           | Apr/May<br>('69–'89)<br>Sept/Oct | Apr/May<br>('70–'86)<br>Sept/Oct | Apr/May<br>('70–'86)<br>Sept/Oct | Apr/May<br>('70–'86)<br>Sept/Oct      | Sept/Oct                           | Sept/Oct                        | Apr/May<br>('74–'04)<br>Sept/Oct   |
| Usual Start<br>date                          | 12 Sept                          | 29 Aug                           | 5 Sept                           | 26 Sept                               | Late Aug                           | 1–14 Sept                       | 5 Sept                             |
| Number of<br>days per<br>period              | 8–9 within 2<br>weeks            | 20 within<br>5 weeks             | 12 within 3<br>weeks             | 16<br>within 5<br>weeks               | 21                                 | 7 within 2<br>weeks             | 14                                 |
| Beam trawl<br>type                           | 6m beam<br>trawl                 | 3m<br>shrimp<br>trawl            | 3m shrimp<br>trawl               | 6m<br>shrimp<br>trawl                 | 2m<br>shrimp<br>trawl              | 6m shrimp<br>trawl              | 3m<br>shrimp<br>trawl              |
| Number of<br>beams fished                    | 1                                | 1                                | 1                                | 2                                     | 1                                  | 1                               | 1                                  |
| Number of<br>beams sorted                    | 1                                | 1                                | 1                                | 1                                     | 1                                  | 1                               | 1                                  |
| Tickler<br>Chains                            | 4                                | 1                                | 1                                | 1                                     | 3                                  | 0                               | 0                                  |
| Mesh size net                                | 80mm                             | 35mm                             | 35mm                             | 35mm                                  | 10mm                               | 40mm                            | 32mm                               |
| Mesh size<br>codend                          | 40mm                             | 20mm                             | 20mm                             | 20mm                                  | 4mm                                | 22mm                            | 20mm                               |
| Speed fished                                 | 3.5–4 knots                      | 3 knots                          | 3 knots                          | 3 knots                               | 1 knot                             | 3 knots                         | 3 knots                            |
| Time Fished                                  | 15 min                           | 15 min                           | 15 min                           | 15 min                                | 10 min                             | 15 min                          | 15 min                             |
| Approx.<br>number of<br>stations per<br>year | 55                               | 120                              | 80                               | 100                                   | 161                                | 33                              | 150                                |
| Station<br>positions                         | Fixed                            | Fixed                            | Fixed                            | Fixed                                 | Fixed                              | Fixed                           | Pseudo -<br>random                 |
| Target<br>species                            | 0– 4 group<br>sole and<br>plaice | 0–1 group<br>sole and<br>plaice  | 0–1 group<br>sole and<br>plaice  | 0–1<br>group<br>sole and<br>plaice    | 0–1<br>group<br>sole and<br>plaice | 0–2 group<br>sole and<br>plaice | 0–1<br>group<br>sole and<br>plaice |
| Total fish<br>catch<br>quantification        | Weighed                          | Weighed                          | Weighed                          | Weighed                               | LFDs<br>only                       | LFDs only                       | Weighed                            |
| Fish LF<br>distribution                      | All                              | All                              | All                              | All                                   | All                                | Commercial                      | All                                |
| Age data for<br>plaice and<br>sole           | All years                        | All years                        | All years                        | All years                             | Since<br>2001                      | None                            | None                               |
| Total Shrimp<br>catch<br>quatification       | Weighed                          | Weighed                          | Weighed                          | Weighed                               | Volume                             | Volume                          | All                                |

# Annex 1: Overview of WGBEAM inshore surveys

| Total Shrimp<br>catch<br>quatification | Weighed     | Weighed        | Weighed     | Weighed        | Volume                         | Volume                           | All                            |
|----------------------------------------|-------------|----------------|-------------|----------------|--------------------------------|----------------------------------|--------------------------------|
| Shrimp<br>LF<br>distribution           | No          | Crangon        | Crangon     | Crangon        | Crangon                        | Crangon<br>(1973–92,<br>2004–05) | Crangon                        |
| Epibenthos                             | All counted | All<br>counted | All counted | All<br>counted | Selected<br>species<br>Counted | Not<br>quantified                | Selected<br>species<br>Counted |
| Epibenthos<br>since                    | ??          | ??             | ??          | ??             | 2002                           | n/a                              | 71–77                          |

\*Data available from 1971–1977 (depending on location)