

Beaked redfish (Sebastes mentella) in subareas 1 and 2 (Northeast Arctic)

ICES advice on fishing opportunities

ICES advises that when the precautionary approach is applied, catches in 2021 should be no more than 66 158 tonnes, and catches in 2022 should be no more than 67 210 tonnes.

Note: This advice sheet is abbreviated due to the Covid-19 disruption. The previous advice issued for 2019–2020 is attached as Annex 1.

Stock development over time

Figure 1 Beaked redfish in subareas 1 and 2. Summary of the stock assessment. The assumed recruitment value is unshaded. Shaded areas (F, SSB) and error bars (R) indicate 95% confidence intervals.

Stock and exploitation status

 Table 1
 Beaked redfish in subareas 1 and 2. State of the stock and the fishery relative to reference points.

	Fishing pressure						Stock size				
		2017	2018		2019			2018	2019		2020
Maximum sustainable yield	F _{MSY}	?	?	9	Undefined		MSY B _{trigger}	0	0	0	Above trigger
Precautionary approach	F _{pa} ,F _{lim}	$ \bigcirc $	$ \bigcirc $	\odot	Below possible reference points		B _{pa} ,B _{lim}	0	0	0	Full reproductive capacity
Management plan	F _{MGT}	_	_	_	Not applicable		B _{MGT}	_	_	-	Not applicable

Catch scenarios

Table 2Beaked redfish in subareas 1 and 2. Assumptions made for the interim year and in the forecast.

Variable	Value	Notes
F _{ages 19+} (2020)	0.045	F ₂₀₁₉
SSB (2021)	948178 tonnes	Short-term forecast
R _{age 2} (2021)	409925 thousands	Regression between survey indices and recruitment time-series
Catch (2020)	48305 tonnes	Short-term forecast

 Table 3a
 Beaked redfish in subareas 1 and 2. Annual catch scenarios for 2021. All weights are in tonnes.

Basis	Total catch (2021)	F _{total} (2021)	SSB (2022)	% SSB change *	% TAC change **	% Advice change ***				
ICES advice basis										
ICES										
Precautionary	66158	0.060	964737	1.7	18.4	18.4				
Approach										
Other scenarios										
F = 0	0	0	1018666	7.4	-100.00	-100.00				
$F_{2021} = F_{2020}$	49703	0.045	978137	3.2	-11.0	-11.0				
$F_{2021} = 1.1 \times F_{2020}$	54566	0.049	974176	2.7	-2.3	-2.3				
$F_{2021} = 1.2 \times F_{2020}$	59409	0.054	970232	2.3	6.4	6.4				
$F_{2021} = 0.9 \times F_{2020}$	44821	0.040	982114	3.6	-19.8	-19.8				
$F_{2021} = 0.8 \times F_{2020}$	39920	0.036	986108	4.0	-28.5	-28.5				
F = 0.08	87441	0.080	947421	-0.1	56.5	56.5				
F = 0.084	91652	0.084	943996	-0.4	64.1	64.1				
F = 0.10	108350	0.100	930423	-1.9	94.0	94.0				
Suggested 50 000 t cap for all evaluated HCRs	50000	0.045	977895	3.1	-10.5	-10.5				

* SSB 2022 relative to SSB 2021 (948178 tonnes).

** Catch in 2021 relative to TAC set by Norway and Russia in 2020 (55860 tonnes).

*** Advice value for 2021 relative to the advice value for 2020.

Table 3b Beaked redfish in subareas 1 and 2. Annual catch scenarios for 2022 with F₂₀₂₁ = 0.06. All weights are in tonnes.

	called realisti in sac		dai eateri secharios			ite in connes.
Basis	Total catch (2022)	F _{total} (2022)	F _{total} (2022) SSB (2023) 9		% TAC change **	% Advice change ***
ICES advice basis	i					
F = 0.06	67210	0.060	985269	3.9	1.6	1.6
Other scenarios						
F = 0.08	87316	0.080	950710	0.3	32.0	32.0
F = 0.084	91209	0.084	943950	-0.4	37.9	37.9
F = 0.10	106354	0.100	917408	-3.2	60.8	60.8
Suggested 50 000 t cap for all evaluated HCRs	50000	0.044	1014319	7.0	-24.4	-24.4

* SSB 2023 relative to SSB 2021 (948178 tonnes).

** Catch in 2022 relative to TAC in 2021 under the F = 0.06 scenario (66158 tonnes).

*** Advice value for 2022 relative to the advice value for 2021.

Quality of the assessment

Figure 2Beaked redfish in subareas 1 and 2. Historical assessment results. Prior to 2018, F_{bar} was calculated over the ages 12–
18. Recruitment was revised upwards by the inclusion of an updated Barents Sea ecosystem survey index. Forecast
recruitment is based on regression between survey indices and recruitment time-series for the intermediate year, and
the average of the last ten cohorts for the subsequent forecast years.

	Beaked redfish in subareas 1 and 2. ICES advice,	Predicted catch	3	
Year	ICES advice	corresponding to	Agreed TAC	ICES catches
		advice	0	
1987	Precautionary TAC	70000*	85000	35000
1988	F = F _{0.1} ; TAC	11000	-	41000
1989	Status quo F; TAC	12000	-	47000
1990	Status quo F; TAC	18000	-	63000
1991	F at F _{med} ; TAC	12000	-	68000
1992	If required, precautionary TAC	22000	-	32000
1993	If required, precautionary TAC	18000	18000	12814
1994	If required, precautionary TAC	-	-	12721
1995	Lowest possible F	-	-	10284
1996	Catch at lowest possible level	-	-	8075
1997	Catch at lowest possible level	-	-	8598
1998	No directed fishery, reduce bycatch	-	-	14045
1999	No directed fishery, reduce bycatch	-	-	11209
2000	No directed fishery, bycatch at lowest possible level	-	-	10075
2001	No directed fishery, bycatch at lowest possible level	-	-	18418
2002	No directed fishery, bycatch at lowest possible level	-	-	6993
2003	No directed fishery, bycatch at lowest possible level	-	-	2520
2004	No directed trawl fishery and low bycatch limits	-	-	5493**
2005	No directed trawl fishery and low bycatch limits	-	-	8465**
2006	No directed trawl fishery and low bycatch limits	-	-	33261**
2007	No directed trawl fishery and low bycatch limits	-	15500^	20219**
2008	Protection of juveniles, no directed trawl fishery	_	14500^	13095**
2008	and low bycatch limits	_	14500	13035
2009	Protection of juveniles, no directed trawl fishery	_	10500^	10246**
2005	and low bycatch limits	-	10300	10240
2010	Protection of juveniles, no directed trawl fishery		8600^	11924**
2010	and low bycatch limits		0000	11924
2011	Protection of juveniles, no directed trawl fishery		7900^	12962**

History of the advice, catch, and management

and low bycatch limits

Year	ICES advice	Predicted catch corresponding to advice	Agreed TAC	ICES catches
2012	Protection of juveniles, no directed fishery and low bycatch limits	-	7500^	11059**
2013	F _{0.1}	< 47000	19500^	9474**
2014	Status quo catch	< 24000	36800^^	18780**
2015	Precautionary approach	< 30000	30000#	25836
2016	Precautionary approach	< 30000	30000#	35429
2017	Precautionary approach	< 30000	30000#	31201
2018	Precautionary approach	< 32658	32658#	38739
2019	Precautionary approach	< 53757	53757 [#]	45955
2020	Precautionary approach	< 55860	55860#	
2021	Precautionary approach	< 66158		
2022	Precautionary approach	< 67210		

* Includes both *Sebastes mentella* and *S. norvegicus*.

 $\ast\ast$ Includes the pelagic catches in the Norwegian Sea outside the EEZ.

^ TAC set by the North-East Atlantic Fisheries Commission (NEAFC) for an Olympic fishery in international waters.

^^ Sum of TAC set by NEAFC in international waters and by Norway in the Norwegian Economic Zone.

[#] TAC set by jointly by Norway and Russia.

Table 5	Beaked redfish in subareas 1 a	and 2. Catches inside and outside	the NEAFC Regulatory Are	a (RA) as estimated by ICES.

Year	Inside the NEAFC RA (tonnes)	Outside the NEAFC RA (tonnes)	Total catches (tonnes)	Proportion inside the NEAFC RA (%)	
2017	6463	24738	31201	21%	
2018	7826	30913	38739	20%	
2019	6060	39895	45955	13.2%	

Summary of the assessment

 Table 6
 Beaked redfish in subareas 1 and 2. Assessment summary. Weights are in tonnes.

	Re	ecruitment		Spaw	ning-stock bic	mass		Fishing mortality		
Year	Recruitment age 2	High 95%	Low 95%	SSB	High 95%	Low 95%	Catches	F ages	High 95%	Low 95%
		housands			tonr			19+		
1992	417153	528945	328989	254448	344979	187675	15590	0.044	0.059	0.032
1993	278015	349985	220845	316887	414833	242066	12814	0.031	0.041	0.023
1994	194668	245034	154654	398183	510259	310724	12721	0.027	0.036	0.021
1995	183773	230453	146549	457415	578782	361498	10284	0.021	0.027	0.0160
1996	146256	183484	116582	379363	488111	294843	8075	0.0140	0.0190	0.0110
1997	102907	129084	82039	465175	583976	370542	8598	0.0140	0.0180	0.0110
1998	52516	66249	41629	525004	652130	422659	14045	0.0190	0.024	0.0150
1999	45519	57363	36120	590128	723931	481055	11209	0.0150	0.0190	0.0120
2000	34891	43911	27723	683117	829643	562469	10075	0.0120	0.0140	0.0100
2001	36120	46197	28241	634228	773026	520352	18418	0.021	0.026	0.0170
2002	40387	51288	31803	714557	863309	591435	6993	0.0070	0.0090	0.0060
2003	42998	54849	33708	786173	944415	654446	2520	0.0030	0.0030	0.0020
2004	54143	68859	42573	790256	946824	659578	5493	0.0060	0.0070	0.0050
2005	133043	169540	104403	844035	1008034	706717	8465	0.0080	0.0100	0.0070
2006	244520	310999	192251	831383	993879	695455	33261	0.039	0.051	0.030
2007	368760	475656	285887	965725	1152187	809439	20219	0.023	0.031	0.0170
2008	360302	467973	277404	904291	1083339	754835	13095	0.0180	0.024	0.0140
2009	368411	486229	279142	939826	1124533	785457	10246	0.0120	0.0170	0.0090
2010	455484	613278	338290	894833	1072690	746466	11924	0.0130	0.0180	0.0100
2011	603049	830030	438138	882102	1057228	735984	12962	0.0150	0.020	0.0110
2012	436063	616081	308646	876057	1049094	731560	11056	0.0130	0.0180	0.0100
2013	253115	374344	171145	829231	995217	690928	9474	0.0120	0.0170	0.0090
2014	222022	340304	144852	777639	935618	646334	18780	0.024	0.032	0.0180

ICES Advice on fishing opportunities, catch and effort reb.27.1-2

	Recruitment			Spaw	ning-stock bio	ing-stock biomass			Fishing mortality			
Year	Recruitment age 2	High 95%	Low 95%	SSB	High 95%	Low 95%	Catches	F ages	High 95%	Low 95%		
	t	housands			tonnes			19+	95%	95%		
2015	346890	599459	200736	802654	961976	669719	25856	0.034	0.044	0.027		
2016	443804	859959	229037	832279	994631	696427	35646	0.045	0.057	0.035		
2017	511637	1062561	246360	835969	999671	699074	30934	0.038	0.049	0.030		
2018	445345	1050183	188855	856590	1023395	716973	38739	0.042	0.055	0.033		
2019	423351	1187156	150971	885553	1057688	741433	45955	0.045	0.059	0.034		
2020	264746*			917578								

* Assumed value (regression between survey indices and recruitment time-series).

Sources and references

ICES. 2020. Arctic Fisheries Working Group (AFWG). ICES Scientific Reports. 2:52. http://doi.org/10.17895/ices.pub.6050

Recommended citation: ICES. 2020. Beaked redfish (*Sebastes mentella*) in subareas 1 and 2 (Northeast Arctic). *In* Report of the ICES Advisory Committee, 2020. ICES Advice 2020, reb.27.1-2. https://doi.org/10.17895/ices.advice.19478510

Annex 1

ICES Advice on fishing opportunities, catch, and effort Arctic Ocean, Barents Sea, Faroes, Greenland Sea, Icelandic Waters, and Norwegian Sea Ecoregions reb.27.1-2

Beaked redfish (Sebastes mentella) in subareas 1 and 2 (Northeast Arctic)

ICES advice on fishing opportunities

ICES advises that when the precautionary approach is applied, catches in 2019 should be no more than 53 757 corries, and catches in 2020 should be no more than 55 860 tonnes.

Stock development over time

Spawning–stock biomass (SSB) increased steadily from 1992 to 2007, followed by stabilizer ion lightly below that peak. Whilst the year classes 1996–2003 were weak, there is evidence for strong year classes 2005 + 2010. Recent recruitments are slightly above the long-term average. Fishing mortality has been low but has increased sin to 7 J14.

Stock and exploitation status

ICES assesses that fishing pressure on the stock is below possible precautionary levels; and spawning stock size is above MSY B_{trigger} and above B_{pa} and B_{lin}

 Table 1
 Beaked redfision subareas 1 and 2. State of the stock and fishery relative to reference points.

		Fishing pressure				_	Stock size					
		2015	2016		2017			2016	2017		2018	
Maximum sus vinable yield	F _{MSY}	?	?	?	Undefined		MSY B _{trigger}	0	0	0	Above trigger	
Precaulon y approach	F _{pa} ,F _{lim}	\bigcirc	\odot	\odot	Below possible reference points		B _{pa} ,B _{lim}	0	0	0	Full reproductive capacity	
Management plan	F _{MGT}	-	-	-	Not applicable		B _{MGT}	_	-	_	Not applicable	

Catch scenarios

 Table 2
 Beaked redfish in subareas 1 and 2. Assumptions made for the interim year and in the forecast.

Variable	Value	Notes
F _{ages 19+} (2018)	0.039	F ₂₀₁₇
SSB (2019)	841 973 tonnes	Short term forecast
R _{age 2} (2018)	266 341 thousands	Regression between survey indices and recruitment the series
Catch (2018)	33 386 tonnes	Short-term forecast

Table 3a Beaked redfish in subareas 1 and 2. Annual catch scenarios for 2019. All weights are into the scenari

Basis	Total catch (2019)	F _{total} (2019)	SSB (2020)	% SSB change *	% TAC ange *	% Advice change ***			
ICES advice basis									
ICES									
Precautionary	53 757	0.060	860 231	2,2	64.6	64.6			
Approach: F=0.06									
Other scenarios									
F = 0	0	0	905 559	76	-100	-100			
F ₂₀₁₉ = F ₂₀₁₈	35 264	0.039	875 810	4.0	8.0	8.0			
$F_{2019} = 1.1 \times F_{2018}$	38 724	0.043	872 894	3.7	18.6	18.6			
$F_{2019} = 1.2 \times F_{2018}$	42 173	0.047	869 988	3.3	29.1	29.1			
$F_{2019} = 0.9 \times F_{2018}$	31 792	0.035	878 737	4.4	-2.7	-2.7			
$F_{2019} = 0.8 \times F_{2018}$	28 308	0.031	881 67	4.7	-13.3	-13.3			
F=0.06	53 757	0.060	860 21	2.2	64.6	64.6			
F=0.08	71 056	0.080	84. 572	0.4	117.6	117.6			
F=0.084	74 479	0.084	42 79	0.1	128.1	128.1			
F=0.10	88 053	0.100	د ۲۱٬381	-1.3	169.6	169.6			
Suggested 50kt									
cap for all	50 000	0.056	86. 395	2.5	53.1	53.1			
evaluated HCRs									

* SSB 2020 relative to SSB 2019.

** Catch in 2019 relative to TAC set by Norway and Ru sia in 2 118 (32 658 t).

*** Advice value for 2019 relative to advice value for 2018.

Table 3bBeaked redfish in subareas 1 and
Annual catch scenarios for 2020 with F2019 = 0.06. All weights are in tonnes.

Scenarios	Total catch (2020)	F. tal (202)	SSB (2021)	% SSB change *	% TAC change **	% Advice change ***
F = 0.06	55 860	.060	876 101	1.8	3.9	3.9
F = 0.08	73 832	080	861 062	0.1	37.3	37.3
F = 0.084	77 3 5	0.084	858 088	-0.2	44.0	44.0
F = 0.10	91 90	0.100	846 299	-1.6	70.2	70.2
Suggested 50kt cap for all evaluated HCRs	50 00	0.054	881 007	2.4	-7.0	-7.0

* SSB 2021 relative to SSB 2 20.

** Catch in 2020 relative to TAC in 2019 under the F = 0.06 scenario.

*** Advice value for 2020 Plative to advice value for 2019.

This year's ac vice 1, 65% higher than last year and this is mainly due to higher fishing mortality, which was shown to be precautionar, in the recent MSE evaluations (ICES, 2018b).

Basis of the advice

Table 4Beaked redfish in subareas 1 and 2. The basis of the advice.							
Advice basis	ICES precautionary approach						
Management plan	There is no agreed management plan for this stock. Long-term management plan ptiol shave been evaluated by ICES (ICES, 2018b). The evaluated HCRs will be considered by the integration ussian fisheries commission in October 2018.						

Quality of the assessment

The stock was benchmarked in 2018. The choice of a scaling coefficient for the Norwegian–Frssian ec system survey is a source of potential bias of up to 50%, but the advice is robust to this uncertainty.

Data from the pelagic survey in the Norwegian Sea was reviewed in the recent benchma.k assissment and is now included in the assessment model. However, the survey series still does not appropriately cover the ged pupplical distribution of the adult population, and further inclusion of the slope survey should be prioritized.

Age determination is lacking for some surveys and catches in recent years. To smooth out purious variations in SSB, caused by biologically unfounded year-to-year variations in the weight-at-age of the 19+ group, a fixed weight-at-age function (i.e. common across years) was adopted for the assessment model during the Au tic Fisheries Working Group (AFWG) meeting. Fish over age 19 (used as plus group) constitute the majority of the fit nable biomass, and age data are not currently available for this component. Expanding the age range in the assessment t in the future will improve the quality of the assessment.

Issues relevant for the advic

Long-term management plan options have been proposed by Norway and Russia and evaluated by ICES (ICES, 2018b). In the absence of an agreed manage nnt plan, ICES advice is based on the MSY approach. In the absence of a defined F_{MSY} the advice is based on F = 0.06. This is the highest fishing mortality of those tested during the MSE evaluations (ICES, 2018b) that was found to be precautionary. A value of F=0.08 was also tested and found not to be precautionary.

There is no incrnational greement on the sharing of TAC among countries and between national and international waters.

Reference points

Table 5	Beaked redfish in subareas 1 and 2. Reference points, values, and their technical basis.

		······ ···· ···· ···· ····· ·····	
Reference point	Value	Technical basis	ource
MSY B _{trigger}	315 000 t	B _{pa}	s (201 3b)
F _{MSY}	Not defined		N
B _{lim}	227 000 t	~B _{loss} (SSB in 1992)	CES (2018b)
B _{pa}	315 000 t	$^{\sim}B_{lim} \times e^{(1.645 \times 0.2)}$	ICES (2018b)
Flim			
F _{pa}			
SSB _{mgt}			
F _{mgt}			
	Reference point MSY Btrigger F _{MSY} Blim Bpa Flim Fpa SSBmgt	Reference pointValueMSY Btrigger315 000 tFMSYNot definedBlim227 000 tBpa315 000 tFlimFpaSSBmgt	point Value Technical basis MSY Btrigger 315 000 t Bpa FMSY Not defined Blim 227 000 t ~Bloss (SSB in 1992) Bpa 315 000 t ~Blim × e ^(1.645 × 0.2) Flim Fpa SSBmgt

Basis of the assessment

Table 5		Beaked r	edfish in subareas 1 and 2. Basis of the assessment and advice
LCEC	at a she	و به و او	

ICES stock data	1 (ICES, 2016)
category	
Assessment type	Statistical catch-at-age model
Input data	Commercial catches: international landings (tonne), age frequencies and weight-at-age from catch sampling of the pelagic and demersal fisheries and from the survey; survey indices: numbers-at-age from BS-NoRu-Q1-Btr, Eco-NoRu CC-Btr,Q4-Btr; proportion-at-age from deep pelagic ecosystem survey annual maturity data from BS-NoRu-Q1-tre, Eco-MRu-C 3-Btr, and commercial catch sampling; natural mortalities were fixed at 0.05.
Discards and bycatch	Discarding and bycatch are assumed neg gible.
Indicators	Survey-based biomass estimate in the Not, regian Sea (Red-Nor-Q3)
Other information	Last benchmark was in January 2018. WKREDFISH; ICES, 2018a). Proposed management plans were evaluated in 2018 (WKREBMSE; ICES, 2018b).
Working group	Arctic Fisheries Working Group

Information from stakeholders

There is no additional available information

History of the advice, catch, and managemen

Table 6	Beaked redfish in subareas 1 a.	2. ICES advice, agreed TACs, and catches. All weights are in tonnes.

Year	ICES advice	Predicted catch corresponding to advice	Agreed TAC	ICES catches
1987	Precautionary TAC	70000*	85000	35000
1988	F=F0.1; TAC	11000	-	41000
1989	Status quo F; TA	12000	-	47000
1990	Status quo F, TAC	18000	-	63000
1991	F at F _{med} ; T C	12000	-	68000
1992	If required, p. •cautionary TAC	22000	-	32000
1993	In auirea, autionary TAC	18000	18000	12814
1994	If requerd, precautionary TAC	-	-	12721
1995	L vest pc Sible F	-	-	10284
1996	Cate Jwest possible level	-	-	8075
19. 7	t lowest possible level	-	-	8598
1998	No directed fishery, reduce bycatch	-	-	14045
1999	No directed fishery, reduce bycatch	-	-	11209
2000	No directed fishery, bycatch at lowest possible level	-	-	10075

Year	ICES advice	Predicted catch corresponding to advice	Agreed TAC	ICES catches
2001	No directed fishery, bycatch at lowest possible level	-	-	18418
2002	No directed fishery, bycatch at lowest possible level	-	-	6993
2003	No directed fishery, bycatch at lowest possible level	-	-	2520
2004	No directed trawl fishery and low bycatch limits	-	C	5493**
2005	No directed trawl fishery and low bycatch limits	-		8465**
2006	No directed trawl fishery and low bycatch limits	-	-	33261**
2007	No directed trawl fishery and low bycatch limits	-	1550.4	20219**
2008	Protection of juveniles, no directed trawl fishery and low bycatch limits	-	14500^	13095**
2009	Protection of juveniles, no directed trawl fishery and low bycatch limits		10500^	10246**
2010	Protection of juveniles, no directed trawl fishery and low bycatch limits	_(8600^	11924**
2011	Protection of juveniles, no directed trawl fishery and low bycatch limits		7900^	12962**
2012	Protection of juveniles, no directed fishery and low bycatch limits		7500^	11059**
2013	F0.1	< 47 00	19500^	9474**
2014	Status quo catch	<u>_</u> 4000	36800^^	18780**
2015	Precautionary approach	30000	30000#	25836
2016	Precautionary approach	< 30000	30000#	35429
2017	Precautionary approach	< 30000	30000#	31201
2018	Precautionary approach	< 32658	32658#	
2019	Precautionary approach	<53757		
2020	Precautionary approach	<55860		

* Includes both Sebastes mentella and S. norvenicus.
 ** Includes the pelagic catches in the Norwe jian Se outside the EEZ.
 ^ TAC set by the North East Atlantic Fisherie. Comm. sion (NEAFC) for an Olympic fishery in international waters.
 ^^ Sum of TAC set by NEAFC in international waters and by Norway in the Norwegian Economic Zone.

TAC set by jointly by Norway and Russia.

History of the catch and landir

Table 7 Beaked rect is	sh in s bareas 1 and 2. Catch distribut	tion by fleet in 2017 as estimated by ICES		
Catch (2017)	Lanc	lings	Discards	
31 201 tonnes	21 % International waters (pelagic trawl)	79 % NEZ and Svalbard (predominantly demersal trawl)	Assumed to be	
	31 201	negligible		
PO				

5		ark	ia	lands	e	h		pu						and	lare i to		c	2	Ś	16
Year		Denmark	Estonia	Faroe Islands	France	Germany	Greenland	Iceland	Ireland	Latvia	Lithuania	Netherlands	JON		Portugal	Russia	Spain	England & Wales	Scotland **	Total
1993	Can 8	4		13	50	35	1						5.82		963	6260	5	293	-	12814
1994		28		4	74	18	1		3				6511		895	5021	30	124	12	12721
1995				3	16	176	2		4				2646		927	6346	67	93	4	10284
1996				4	75	119	3		2				6053		467	925	328	76	23	8075
1997				4	37	81	16		6				4657	1	474	2972	272	71	7	8598
1998				20	73	100	14		9				9733	13	125	3646	177	93	41	14045
1999				73	26	202	50		3		OX		7884	6	65	2731	29	112	28	11209
2000				50	12	62	29	48	1				6020	2	115	3519	87		130	10075
2001				74	16	198	17	3	4				13937	5	179	3775	90		120	18418
2002			15	75	58	99	18	41	4)`		2152	8	242	3904	190		188	6993
2003				64	22	32	8	5	5				1210	7	44	952	47		124	2520
2004	Swe1			588	13	10	4	10	3				1375	42	235	2879	257		76	5493
2005			5	1147	46	33	39	4	4			7	1760		140	5023	163		95	8465
2006	Can. –433		396	3808	215	2483	63	2513		341	845		4710	2496	1804	11413	710		1027	33261
2007			684	2197	234	520	29	158	17	349	785		3209	1081	1483	5660	2181		202	20219
2008				1849	187	16	25		9	267	117	13	2220	8	713	7117	463		83	13096
2009	EU –889			1343	15	42						3	2677	338	806	3843	177		80	10246
2010				979	175	21	12	2		243	457		2065		293	6414	1184		79	11924
2011				984	175	835				536	565		2471	11	613	5037	1678		55	12962
2012				259		517		36		447	449		2114	318	1038	4101	1780			11059
2013				697		80		1		280	262		1835	84	1078	3677	1459			9474
2014				743	215	44F		-		215	167	3	13503	103	505	1704	1162			18780
2015				657	49	24	18	3		537	192	3	19720	5	678	1142	2529		52	25856
2016				491	134	<u>5</u> 76	74		8	1243	1064		19083	206	1066	8419	3138		121	35429
2017*	al figures. *	4		667 &W) sinc	45	763	66	3		562	790		17281	102	1060	6583	2838		436	31200

Table 8	Beaked redfish in subareas 1 and 2. History of nominal catch for each country participating in the fishery. All weig, a	re 🕦 tonnes.

reb.27.1-2

Summary of the assess	sment
-----------------------	-------

Table 9	Beaked rec	dfish in subare	as 1 and 2. A	Assessment summa	ary. Weights	are in tonnes	5.						
	Recruitment	High	Low	Recruitment	High	Low	SSB	High	Lury	Catches	F	High	Low
Year	age 2	95%	95%	age 6	95%	95%	228	95%	95%	Catches	ages 19+	95%	95%
		Thousands tonnes per year											
1992	413106	519544	328473	133379	172929	102875	227298	751724	.71629	15590	0.048	0.064	0.036
1993	275859	345079	220525	211990	273124	164540	285774	3674 8	222254	12814	0.034	0.045	0.026
1994	211751	264284	169660	311472	397964	243778	362252	4579 3	286551	12721	0.030	0.039	0.023
1995	190387	237075	152894	335140	425667	263865	418442	5_~65J	334371	10284	0.022	0.029	0.0170
1996	155137	193250	124540	338277	425465	268956	345655	439132	272077	8075	0.0160	0.020	0.0120
1997	121120	150874	97234	225989	282702	180654	426388	550053	342997	8598	0.0150	0.0190	0.0120
1998	63476	79208	50869	173480	216523	138994	4 <u></u> 1077	596340	392948	14045	0.021	0.026	0.0170
1999	48431	60586	38715	155994	194249	125273	54 274.	665850	448948	11209	0.0160	0.020	0.0130
2000	38305	47872	30651	127122	158352	102050	65 7308	769204	528028	10075	0.0130	0.0150	0.0100
2001	29084	36679	23061	99249	123630	79676	v 2536	728811	498139	18418	0.022	0.027	0.0180
2002	35770	45233	28287	51992	64880	41664	574 327	809781	561532	6993	0.0080	0.0090	0.0060
2003	38684	49417	30283	39685	49646	3172	745502	890553	624077	2520	0.0030	0.0030	0.0020
2004	50227	64742	38966	31386	39224	251 1.4	752675	896740	631755	5493	0.0060	0.0070	0.0050
2005	96544	123961	75190	23829	30053	<u>1</u> ، ۹94	807097	958747	679434	8465	0.0090	0.0110	0.0070
2006	221288	284557	172085	29307	37061	317	796042	946533	669478	33261	0.040	0.053	0.029
2007	371053	485198	283761	31698	40493	24, 313	933116	1107799	785977	20219	0.024	0.032	0.0180
2008	380087	505446	285818	41157	53051	31930	892111	1062623	748960	13095	0.0150	0.021	0.0110
2009	356090	486132	260834	79110	10157 7	61613	914548	1088688	768262	10246	0.0120	0.0160	0.0090
2010	513031	723959	363557	181329	23 ¹ 173	141011	868970	1036301	728658	11924	0.0140	0.0190	0.0100
2011	467975	677768	323120	304048	2075.1	232519	855846	1020834	717524	12962	0.0150	0.021	0.0110
2012	430551	659362	281142	311453	414.76	234207	853940	1017641	716572	11056	0.0140	0.0180	0.0100
2013	199965	324217	123331	291788	<u>48</u>	213734	811463	969099	679468	9474	0.0120	0.0160	0.0090
2014	130199	238766	70997	420391	593201	297908	810552	965542	680441	18780	0.024	0.046	0.0130
2015	181131	399101	82206	38? +6?	555371	264767	799400	951900	671331	25836	0.034	0.046	0.026
2016	173643	567049	53173	352. 4	540258	230352	795771	947561	668296	35429	0.046	0.060	0.035
2017	166480	742881	37308	1638 9	265632	101041	797447	950537	669014	31201	0.039	0.052	0.030
2018	266341*						814285						

2

Sources and references

ICES. 2016. Advice basis. In Report of the ICES Advisory Committee, 2016. ICES Advice 2016, Book 1, Section 1.2.

ICES. 2018a. Report of the Benchmark Workshop on Redfish Stocks (WKREDFISH). 29 January –2 Feb uar 2018, Copenhagen, Denmark. ICES CM 2018/ACOM:34, 174 pp.

ICES. 2018b. Workshop on the evaluation of harvest control rules for *Sebastes mentella* in ICE areas (WKREBMSE). June –August 2018, by correspondence. ICES CM 2018/ACOM:52, *IN PRESS.*

ICES. 2018c. Report of the Arctic Fisheries Working Group (AFWG), 18–24 April 2018 JNC, Ispra, Italy. ICES CM 2018/ACOM:06, 857 pp.