Beaked redfish (Sebastes mentella) in subareas 1 and 2 (Northeast Arctic)

ICES advice on fishing opportunities

ICES advises that when the precautionary approach is applied, catches in 2021 should be no more than 66158 tonnes, and catches in 2022 should be no more than 67210 tonnes.

Note: This advice sheet is abbreviated due to the Covid-19 disruption. The previous advice issued for 2019-2020 is attached as Annex 1.

Stock development over time

Figure $1 \quad$ Beaked redfish in subareas 1 and 2. Summary of the stock assessment. The assumed recruitment value is unshaded. Shaded areas (F, SSB) and error bars (R) indicate 95\% confidence intervals.

Stock and exploitation status

Table 1 Beaked redfish in subareas 1 and 2. State of the stock and the fishery relative to reference points.

	Fishing pressure					Stock size				
		2017	2018		2019		2018	2019		2020
Maximum sustainable yield	$\mathrm{F}_{\text {MSY }}$?	?	Undefined	$\begin{aligned} & \mathrm{MSY} \\ & \mathrm{~B}_{\text {trigger }} \end{aligned}$				Above trigger
Precautionary approach		(v)	(v)	(v)	Below possible reference points	$\mathrm{B}_{\mathrm{pa}} \mathrm{B}_{\text {lim }}$	-	(Full reproductive capacity
Management plan	$\mathrm{F}_{\text {MGT }}$	-	-	-	Not applicable	$\mathrm{B}_{\text {MGT }}$	-	-		Not applicable

Catch scenarios

Table 2 Beaked redfish in subareas 1 and 2. Assumptions made for the interim year and in the forecast.

Variable	Value	Notes
$F_{\text {ages 19+ }}$ (2020)	0.045	F2019
SSB (2021)	948178 tonnes	Short-term forecast
Rage 2 (2021)	409925 thousands	Regression between survey indices and recruitment time-series
Catch (2020)	48305 tonnes	Short-term forecast

Table 3a Beaked redfish in subareas 1 and 2. Annual catch scenarios for 2021. All weights are in tonnes.

Basis	Total catch (2021)	$\begin{gathered} \mathrm{F}_{\text {total }} \\ (2021) \end{gathered}$	$\begin{gathered} \text { SSB } \\ (2022) \end{gathered}$	\% SSB change *	\% TAC change **	\% Advice change ***
ICES advice basis						
ICES Precautionary Approach	66158	0.060	964737	1.7	18.4	18.4
Other scenarios						
$\mathrm{F}=0$	0	0	1018666	7.4	-100.00	-100.00
$\mathrm{F}_{2021}=\mathrm{F}_{2020}$	49703	0.045	978137	3.2	-11.0	-11.0
$\mathrm{F}_{2021}=1.1 \times \mathrm{F}_{2020}$	54566	0.049	974176	2.7	-2.3	-2.3
$\mathrm{F}_{2021}=1.2 \times \mathrm{F}_{2020}$	59409	0.054	970232	2.3	6.4	6.4
$\mathrm{F}_{2021}=0.9 \times \mathrm{F}_{2020}$	44821	0.040	982114	3.6	-19.8	-19.8
$\mathrm{F}_{2021}=0.8 \times \mathrm{F}_{2020}$	39920	0.036	986108	4.0	-28.5	-28.5
$\mathrm{F}=0.08$	87441	0.080	947421	-0.1	56.5	56.5
$\mathrm{F}=0.084$	91652	0.084	943996	-0.4	64.1	64.1
$\mathrm{F}=0.10$	108350	0.100	930423	-1.9	94.0	94.0
Suggested 50000 t cap for all evaluated HCRs	50000	0.045	977895	3.1	-10.5	-10.5

* SSB 2022 relative to SSB 2021 (948178 tonnes).
** Catch in 2021 relative to TAC set by Norway and Russia in 2020 (55860 tonnes).
*** Advice value for 2021 relative to the advice value for 2020.
Table 3b Beaked redfish in subareas 1 and 2. Annual catch scenarios for 2022 with $\mathrm{F}_{2021}=0.06$. All weights are in tonnes.

Basis	$\begin{gathered} \text { Total catch } \\ \text { (2022) } \end{gathered}$	$\mathrm{F}_{\text {total }}(2022)$	SSB (2023)	\% SSB change *	\% TAC change **	\% Advice change ***
ICES advice basis						
F = 0.06	67210	0.060	985269	3.9	1.6	1.6
Other scenarios						
$\mathrm{F}=0.08$	87316	0.080	950710	0.3	32.0	32.0
$\mathrm{F}=0.084$	91209	0.084	943950	-0.4	37.9	37.9
$\mathrm{F}=0.10$	106354	0.100	917408	-3.2	60.8	60.8
Suggested 50000 t cap for all evaluated HCRs	50000	0.044	1014319	7.0	-24.4	-24.4

* SSB 2023 relative to SSB 2021 (948178 tonnes).
** Catch in 2022 relative to TAC in 2021 under the $F=0.06$ scenario (66158 tonnes).
*** Advice value for 2022 relative to the advice value for 2021.

Quality of the assessment

Figure 2 Beaked redfish in subareas 1 and 2. Historical assessment results. Prior to 2018, $\mathrm{F}_{\mathrm{bar}}$ was calculated over the ages 1218. Recruitment was revised upwards by the inclusion of an updated Barents Sea ecosystem survey index. Forecast recruitment is based on regression between survey indices and recruitment time-series for the intermediate year, and the average of the last ten cohorts for the subsequent forecast years.

History of the advice, catch, and management

Table 4 Beaked redfish in subareas 1 and 2. ICES advice, agreed TACs, and catches. All weights are in tonnes.

Year	ICES advice	Predicted catch corresponding to advice	Agreed TAC	ICES catches
1987	Precautionary TAC	70000*	85000	35000
1988	$\mathrm{F}=\mathrm{F}_{0.1}$; TAC	11000	-	41000
1989	Status quo F; TAC	12000	-	47000
1990	Status quo F; TAC	18000	-	63000
1991	F at $F_{\text {med }}$; TAC	12000	-	68000
1992	If required, precautionary TAC	22000	-	32000
1993	If required, precautionary TAC	18000	18000	12814
1994	If required, precautionary TAC	-	-	12721
1995	Lowest possible F	-	-	10284
1996	Catch at lowest possible level	-	-	8075
1997	Catch at lowest possible level	-	-	8598
1998	No directed fishery, reduce bycatch	-	-	14045
1999	No directed fishery, reduce bycatch	-	-	11209
2000	No directed fishery, bycatch at lowest possible level	-	-	10075
2001	No directed fishery, bycatch at lowest possible level	-	-	18418
2002	No directed fishery, bycatch at lowest possible level	-	-	6993
2003	No directed fishery, bycatch at lowest possible level	-	-	2520
2004	No directed trawl fishery and low bycatch limits	-	-	5493**
2005	No directed trawl fishery and low bycatch limits	-	-	8465**
2006	No directed trawl fishery and low bycatch limits	-	-	33261**
2007	No directed trawl fishery and low bycatch limits	-	$1550{ }^{\wedge}$	20219**
2008	Protection of juveniles, no directed trawl fishery and low bycatch limits	-	14500^	13095**
2009	Protection of juveniles, no directed trawl fishery and low bycatch limits	-	10500^	10246**
2010	Protection of juveniles, no directed trawl fishery and low bycatch limits	-	8600^	11924**
2011	Protection of juveniles, no directed trawl fishery and low bycatch limits	-	7900^	12962**

Year	ICES advice	Predicted catch corresponding to advice	Agreed TAC	ICES catches
2012	Protection of juveniles, no directed fishery and low bycatch limits	-	7500^	11059**
2013	$\mathrm{F}_{0.1}$	< 47000	19500^	9474**
2014	Status quo catch	< 24000	$36800 \wedge \wedge$	18780**
2015	Precautionary approach	< 30000	$3000{ }^{\#}$	25836
2016	Precautionary approach	< 30000	30000\#	35429
2017	Precautionary approach	< 30000	30000\#	31201
2018	Precautionary approach	< 32658	32658\#	38739
2019	Precautionary approach	< 53757	53757\#	45955
2020	Precautionary approach	< 55860	55860\#	
2021	Precautionary approach	<66158		
2022	Precautionary approach	<67210		

* Includes both Sebastes mentella and S. norvegicus.
** Includes the pelagic catches in the Norwegian Sea outside the EEZ.
\wedge TAC set by the North-East Atlantic Fisheries Commission (NEAFC) for an Olympic fishery in international waters.
$\wedge \wedge$ Sum of TAC set by NEAFC in international waters and by Norway in the Norwegian Economic Zone.
\# TAC set by jointly by Norway and Russia.
Table 5 Beaked redfish in subareas 1 and 2. Catches inside and outside the NEAFC Regulatory Area (RA) as estimated by ICES.

Year	Inside the NEAFC RA (tonnes)	Outside the NEAFC RA (tonnes)	Total catches (tonnes)	Proportion inside the NEAFC RA (\%)
2017	6463	24738	31201	21%
2018	7826	30913	38739	20%
2019	6060	39895	45955	13.2%

Summary of the assessment

Table 6 Beaked redfish in subareas 1 and 2. Assessment summary. Weights are in tonnes.

Year	Recruitment			Spawning-stock biomass			Catches	Fishing mortality		
	Recruitment age 2	$\begin{aligned} & \text { High } \\ & 95 \% \end{aligned}$	$\begin{aligned} & \text { Low } \\ & 95 \% \end{aligned}$	SSB	$\begin{aligned} & \text { High } \\ & 95 \% \end{aligned}$	$\begin{aligned} & \text { Low } \\ & 95 \% \end{aligned}$		$\begin{gathered} \mathrm{F} \\ \text { ages } \end{gathered}$	High 95\%	Low 95\%
	thousands			tonnes				19+		
1992	417153	528945	328989	254448	344979	187675	15590	0.044	0.059	0.032
1993	278015	349985	220845	316887	414833	242066	12814	0.031	0.041	0.023
1994	194668	245034	154654	398183	510259	310724	12721	0.027	0.036	0.021
1995	183773	230453	146549	457415	578782	361498	10284	0.021	0.027	0.0160
1996	146256	183484	116582	379363	488111	294843	8075	0.0140	0.0190	0.0110
1997	102907	129084	82039	465175	583976	370542	8598	0.0140	0.0180	0.0110
1998	52516	66249	41629	525004	652130	422659	14045	0.0190	0.024	0.0150
1999	45519	57363	36120	590128	723931	481055	11209	0.0150	0.0190	0.0120
2000	34891	43911	27723	683117	829643	562469	10075	0.0120	0.0140	0.0100
2001	36120	46197	28241	634228	773026	520352	18418	0.021	0.026	0.0170
2002	40387	51288	31803	714557	863309	591435	6993	0.0070	0.0090	0.0060
2003	42998	54849	33708	786173	944415	654446	2520	0.0030	0.0030	0.0020
2004	54143	68859	42573	790256	946824	659578	5493	0.0060	0.0070	0.0050
2005	133043	169540	104403	844035	1008034	706717	8465	0.0080	0.0100	0.0070
2006	244520	310999	192251	831383	993879	695455	33261	0.039	0.051	0.030
2007	368760	475656	285887	965725	1152187	809439	20219	0.023	0.031	0.0170
2008	360302	467973	277404	904291	1083339	754835	13095	0.0180	0.024	0.0140
2009	368411	486229	279142	939826	1124533	785457	10246	0.0120	0.0170	0.0090
2010	455484	613278	338290	894833	1072690	746466	11924	0.0130	0.0180	0.0100
2011	603049	830030	438138	882102	1057228	735984	12962	0.0150	0.020	0.0110
2012	436063	616081	308646	876057	1049094	731560	11056	0.0130	0.0180	0.0100
2013	253115	374344	171145	829231	995217	690928	9474	0.0120	0.0170	0.0090
2014	222022	340304	144852	777639	935618	646334	18780	0.024	0.032	0.0180

Year	Recruitment			Spawning-stock biomass			Catches	Fishing mortality		
	Recruitment age 2	$\begin{aligned} & \text { High } \\ & 95 \% \end{aligned}$	$\begin{aligned} & \text { Low } \\ & 95 \% \end{aligned}$	SSB	$\begin{aligned} & \text { High } \\ & 95 \% \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { 95\% } \end{aligned}$		$\begin{gathered} \mathrm{F} \\ \text { ages } \end{gathered}$	High 95\%	Low 95\%
	thousands			tonnes				19+		
2015	346890	599459	200736	802654	961976	669719	25856	0.034	0.044	0.027
2016	443804	859959	229037	832279	994631	696427	35646	0.045	0.057	0.035
2017	511637	1062561	246360	835969	999671	699074	30934	0.038	0.049	0.030
2018	445345	1050183	188855	856590	1023395	716973	38739	0.042	0.055	0.033
2019	423351	1187156	150971	885553	1057688	741433	45955	0.045	0.059	0.034
2020	264746*			917578						

* Assumed value (regression between survey indices and recruitment time-series).

Sources and references

ICES. 2020. Arctic Fisheries Working Group (AFWG). ICES Scientific Reports. 2:52. http://doi.org/10.17895/ices.pub.6050

Recommended citation: ICES. 2020. Beaked redfish (Sebastes mentella) in subareas 1 and 2 (Northeast Arctic). In Report of the ICES Advisory Committee, 2020. ICES Advice 2020, reb.27.1-2. https://doi.org/10.17895/ices.advice. 19478510

Annex 1

ICES
CIEM
Published 28 September 2018
Arctic Ocean, Barents Sea, Faroes, Greenland Sea,
DOI: 10.17895/ices.pub. 4538
reb.27.1-2

Beaked redfish (Sebastes mentella) in subareas 1 and 2 (Northeast Arctic)

ICES advice on fishing opportunities
ICES advises that when the precautionary approach is applied, catches in 2019 should be no more th 5375% es, and catches in 2020 should be no more than 55860 tonnes.

Stock development over time
Spawning-stock biomass (SSB) increased steadily from 1992 to 2007, followed by stab wLo ion below that peak. Whilst the year classes 1996-2003 were weak, there is evidence for strong year classe 2005 -2010. Recent recruitments are slightly above the long-term average. Fishing mortality has been low but has increased sir :e 7 J .

Figure 1
Beaked redfish in subareas unshaded.
d 2. Summary of the stock assessment. Assumed recruitment value for 2018 is

Stock and exploitation status

ICES assesses that fishing ressu on the stock is below possible precautionary levels; and spawning stock size is above MSY Btrigger and above $R_{\text {pa }}$ a $+B_{\text {lir }}$

Table $1 \quad$ Beake redfisio in subareas 1 and 2. State of the stock and fishery relative to reference points.

Catch scenarios

Table 2 Beaked redfish in subareas 1 and 2. Assumptions made for the interim year and in the forecast.

Variable	Value	Notes	
$F_{\text {ages 19+ }}(2018)$	0.039	F_{2017}	
SSB (2019)	841973 tonnes	Short term forecast	
$R_{\text {age 2 }}$ (2018)	266341 thousands	Regression between survey indices and recruitment	ne serie
Catch (2018)	33386 tonnes	Short-term forecast	

Table 3a Beaked redfish in subareas 1 and 2. Annual catch scenarios for 2019. All weights are tonne

Basis	Total catch (2019)	$\mathrm{F}_{\text {total }}(2019)$	SSB (2020)	\% SSB change *	\% TAC ange *	\% Advice change ***
ICES advice basis						
ICES Precautionary Approach: F=0.06	53757	0.060	860231		64.6	64.6
Other scenarios						
$\mathrm{F}=0$	0	0	905559		-100	-100
$\mathrm{F}_{2019}=\mathrm{F}_{2018}$	35264	0.039	875810	$\checkmark \quad 4.0$	8.0	8.0
$\mathrm{F}_{2019}=1.1 \times \mathrm{F}_{2018}$	38724	0.043	872894	3.7	18.6	18.6
$\mathrm{F}_{2019}=1.2 \times \mathrm{F}_{2018}$	42173	0.047	869988	3.3	29.1	29.1
$\mathrm{F}_{2019}=0.9 \times \mathrm{F}_{2018}$	31792	0.035	878737	4.4	-2.7	-2.7
$\mathrm{F}_{2019}=0.8 \times \mathrm{F}_{2018}$	28308	0.031	88167	4.7	-13.3	-13.3
$\mathrm{F}=0.06$	53757	0.060	8602	2.2	64.6	64.6
$\mathrm{F}=0.08$	71056	0.080	84. 672	0.4	117.6	117.6
$\mathrm{F}=0.084$	74479	0.084	4279	0.1	128.1	128.1
$\mathrm{F}=0.10$	88053	0.100	1381	-1.3	169.6	169.6
Suggested 50kt cap for all evaluated HCRs	50000	0.056	86._395	2.5	53.1	53.1

* SSB 2020 relative to SSB 2019.
** Catch in 2019 relative to TAC set by Norway and R1 sia in .18 (32 658 t).
*** Advice value for 2019 relative to advice value for 118.

Table 3b Beaked redfish in subareas 1 ana Annual catch scenarios for 2020 with $F_{2019}=0.06$. All weights are in tonnes.

Scenarios	Total catch (2020)	$\mathrm{F} \text { tal }\left(20_{<}\right)$	SSB (2021)	\% SSB change *	\% TAC change **	\% Advice change ***
$\mathrm{F}=0.06$	55860	. 060	876101	1.8	3.9	3.9
$\mathrm{F}=0.08$	73832	080	861062	0.1	37.3	37.3
$F=0.084$	77	0.084	858088	-0.2	44.0	44.0
$\mathrm{F}=0.10$	91	0.100	846299	-1.6	70.2	70.2
Suggested 50kt cap for all evaluated HCRs	5000	0.054	881007	2.4	-7.0	-7.0

* SSB 2021 relative to SऽB $\angle{ }^{\circ} 0$.
** Catch in 2020 relative o TÁun 2019 under the $F=0.06$ scenario.
*** Advice value fs 2020 lative to advice value for 2019.

This year's a sice i. 65% higher than last year and this is mainly due to higher fishing mortality, which was shown to be precautionar in the recent MSE evaluations (ICES, 2018b).

Basis of the advice

Table $4 \quad$ Beaked redfish in subareas 1 and 2. The basis of the advice.

Advice basis	ICES precautionary approach
Management plan	There is no agreed management plan for this stock. Long-term management plan ptiol evaluated by ICES (ICES, 2018b). The evaluated HCRs will be considered by the fisheries commission in October 2018.

Quality of the assessment

The stock was benchmarked in 2018. The choice of a scaling coefficient for the Norwegian- ssian eu system survey is a source of potential bias of up to 50%, but the advice is robust to this uncertainty.

Data from the pelagic survey in the Norwegian Sea was reviewed in the recent benchmark ass ssm ht and is now included in the assessment model. However, the survey series still does not appropriately cover the gec "phical distribution of the adult population, and further inclusion of the slope survey should be prioritized.

Age determination is lacking for some surveys and catches in recent years. To smou hour purious variations in SSB, caused by biologically unfounded year-to-year variations in the weight-at-age of the $19+$ grour a fixed weight-at-age function (i.e. common across years) was adopted for the assessment model during the A_{1} tic Fisheries Working Group (AFWG) meeting. Fish over age 19 (used as plus group) constitute the majority of the fi rable 'iomass, and age data are not currently available for this component. Expanding the age range in the assessme t in t e future will improve the quality of the assessment.

Figure 2 Beaked redfish in subarea and Historical assessment results. Prior to 2018, $\mathrm{F}_{\mathrm{bar}}$ was calculated over ages 12-18. Since the 2018 assessment, trin fst year of each recruitment line is the assumed value used in the forecast.

Issues relevant for the advic

Long-term management p'op have been proposed by Norway and Russia and evaluated by ICES (ICES, 2018b). In the absence of an agreed tanage nnt plan, ICES advice is based on the MSY approach. In the absence of a defined Fmsy the advice is based on $F=06$. thic st the highest fishing mortality of those tested during the MSE evaluations (ICES, 2018b) that was found to be rec tionary. A value of $\mathrm{F}=0.08$ was also tested and found not to be precautionary.

There is no in rnation greement on the sharing of TAC among countries and between national and international waters.

Reference points

Table 5 Beaked redfish in subareas 1 and 2. Reference points, values, and their technical basis.

Framework	Reference point	Value	Technical basis	ource
MSY approach	MSY $\mathrm{B}_{\text {trigger }}$	315000 t	$\mathrm{B}_{\text {pa }}$	S (20) b$)$
	$\mathrm{F}_{\mathrm{MSY}}$	Not defined		
Precautionary approach	$\mathrm{B}_{\mathrm{lim}}$	227000 t	$\sim \mathrm{B}_{\text {loss }}(\mathrm{SSB}$ in 1992)	CES (2018b)
	B_{pa}	315000 t	$\sim \mathrm{B}_{\lim } \times \mathrm{e}^{(1.645 \times 0.2)}$	ICES (2018b)
	$\mathrm{F}_{\text {lim }}$			
	F_{pa}			
Management plan	SSB ${ }_{\text {mgt }}$			
	$\mathrm{F}_{\mathrm{mgt}}$			

Table 5 Beaked redfish in subareas 1 and 2. Basis of the assessment and advice.

ICES stock data category	1 (ICES, 2016)
Assessment type	Statistical catch-at-age model
Input data	Commercial catches: international landings (tonne, age ${ }^{\text {crequencies and weight-at-age from catch }}$ sampling of the pelagic and demersal fisheries and fro the si vey; survey indices: numbers-at-age from BS-NoRu-Q1-Btr, Eco-NoRu Q4-Btr; proportion-at-age from deep pelagic ecosystem sur annual maturity data from BS-NoRu-Q1- $-E c c$, Ru- 3 -Btr, and commercial catch sampling; natural mortalities were fixed at 0.05 .
Discards and bycatch	Discarding and bycatch are assumed neg sible.
Indicators	Survey-based biomass estimate in we No egiar sea (Red-Nor-Q3)
Other information	Last benchmark was in January 2018 WKREDFISH; ICES, 2018a). Proposed management plans were evaluated in 2018 (WKREBMSE; ICES 2018
Working group	Arctic Fisheries Working Group ${ }^{\text {cIWG/ }}$

Information from stakeholders

There is no additional available information

History of the advice, catch, and manal emer.

Table 6 Beaked redfish in subareas 1 a. 2. ICES advice, agreed TACs, and catches. All weights are in tonnes.

Year	ICES ady:	Predicted catch corresponding to advice	Agreed TAC	ICES catches
1987	Precautionary TAC	70000*	85000	35000
1988	F=F0.1; TAC	11000	-	41000
1989	Status quo F; TA	12000	-	47000
1990	Status quo $\mathrm{F}^{\text {TAC }}$	18000	-	63000
1991	F at $\mathrm{F}_{\text {med }} ; 7 \mathrm{C}$	12000	-	68000
1992	If required, p ?cautionary TAC	22000	-	32000
1993	If ruireu, qutionary TAC	18000	18000	12814
1994	If -qua d, precautionary TAC	-	-	12721
1995	L vest po vible F	-	-	10284
1996	Catu owest possible level	-	-	8075
19.7	- at lowest possible level	-	-	8598
1998	No directed fishery, reduce bycatch	-	-	14045
1999	No directed fishery, reduce bycatch	-	-	11209
2000	No directed fishery, bycatch at lowest possible level	-	-	10075

Year	ICES advice	Predicted catch corresponding to advice	Agreed TAC	ICES catches
2001	No directed fishery, bycatch at lowest possible level	-	-	18418
2002	No directed fishery, bycatch at lowest possible level	-	-	6993
2003	No directed fishery, bycatch at lowest possible level	-	-	- 2520
2004	No directed trawl fishery and low bycatch limits	-		5493**
2005	No directed trawl fishery and low bycatch limits	-		8465**
2006	No directed trawl fishery and low bycatch limits	-		33261**
2007	No directed trawl fishery and low bycatch limits	-	~1550,	20219**
2008	Protection of juveniles, no directed trawl fishery and low bycatch limits	-	14500^{\wedge}	13095**
2009	Protection of juveniles, no directed trawl fishery and low bycatch limits		10500^	10246**
2010	Protection of juveniles, no directed trawl fishery and low bycatch limits		8600^	11924**
2011	Protection of juveniles, no directed trawl fishery and low bycatch limits		7900^	12962**
2012	Protection of juveniles, no directed fishery and low bycatch limits		7500^	11059**
2013	F0.1	$\triangle \quad<4700$	$1950{ }^{\wedge}$	9474**
2014	Status quo catch	-4000	$36800{ }^{\wedge}$	18780**
2015	Precautionary approach	¢ 30000	$3000{ }^{\text {\# }}$	25836
2016	Precautionary approach	$\square<30000$	$3000{ }^{\text {\# }}$	35429
2017	Precautionary approach	$-<30000$	30000\#	31201
2018	Precautionary approach	< 32658	32658\#	
2019	Precautionary approach	<53757		
2020	Precautionary approach	<55860		

* Includes both Sebastes mentella and S. norvoniaus.
** Includes the pelagic catches in the Norwe sian St outside the EEZ.
\wedge TAC set by the North East Atlantic Fisheric Comm sion (NEAFC) for an Olympic fishery in international waters.
$\wedge \wedge$ Sum of TAC set by NEAFC in international wa s and by Norway in the Norwegian Economic Zone.
\# TAC set by jointly by Norway and Russia.

History of the catch and landir

Table 7 Beaked res ish in s bareas 1 and 2. Catch distribution by fleet in 2017 as estimated by ICES.

* Provisional figures. ** Includes UK (E\&W) since ${ }^{29} 00$.

[^0]
Sources and references

ICES. 2016. Advice basis. In Report of the ICES Advisory Committee, 2016. ICES Advice 2016, Book 1, Section 1.2.
ICES. 2018a. Report of the Benchmark Workshop on Redfish Stocks (WKREDFISH). 29 January -2 Fer (uai 2018, Copenhagen, Denmark. ICES CM 2018/ACOM:34, 174 pp.

ICES. 2018b. Workshop on the evaluation of harvest control rules for Sebastes mentella in ICE areas 2 (WKREBMSE). June -August 2018, by correspondence. ICES CM 2018/ACOM:52, IN PRESS.
ICES. 2018c. Report of the Arctic Fisheries Working Group (AFWG), 18-24 April 2018 sma Ispra, Italy. ICES CM 2018/ACOM:06, 857 pp.

[^0]: * Assumed value (regression between survey indices and ecr. +ment time series)

