## HERRING ASSESSMENT WORKING GROUP FOR THE AREA SOUTH OF $62^{\circ} \mathrm{N}$ (HAWG)

## VOLUME 4 | ISSUE 16

ICES SCIENTIFIC REPORTS

RAPPORTS
SCIENTIFIQUES DU CIEM


[^0]
## International Council for the Exploration of the Sea Conseil International pour l'Exploration de la Mer

H.C. Andersens Boulevard 44-46<br>DK-1553 Copenhagen V<br>Denmark<br>Telephone (+45) 33386700<br>Telefax (+45) 33934215<br>www.ices.dk<br>info@ices.dk

ISSN number: 2618-1371

This document has been produced under the auspices of an ICES Expert Group or Committee. The contents therein do not necessarily represent the view of the Council.
© 2022 International Council for the Exploration of the Sea

This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). For citation of datasets or conditions for use of data to be included in other databases, please refer to ICES data policy.


## ICES Scientific Reports

## Volume 4 | Issue 16

# HERRING ASSESSMENT WORKING GROUP FOR THE AREA SOUTH OF $62^{\circ} \mathrm{N}$ (HAWG) 

## Recommended format for purpose of citation:

ICES. 2022. Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$ (HAWG).
ICES Scientific Reports. 4:16. http://doi.org/10.17895/ices.pub. 10072

## Editors

Afra Egan • Cecilie Kvamme

Authors<br>Johnathan Ball • Valerio Bartolino • Kirsten Birch Håkansson • Afra Egan • Chris Griffiths • Ole Henriksen • Espen Johnsen • Cecilie Kvamme • Paul Marchal • Richard Nash • Thomas Regnier • Anna Rindorf • Claus Reedtz Sparrevohn • Mikael van Deurs

## Contents

i Expert group information ..... iv
$9 \quad$ Sandeel in Division 3.a and Subarea 4 and Division 6.a ..... 5
9.1 General. ..... 5
9.1.1 Ecosystem aspects ..... 5
9.1.2 Fisheries ..... 5
9.1.3 ICES Advice ..... 6
9.1.4 Norwegian advice ..... 6
9.1.5 Management ..... 6
Norwegian sandeel management plan ..... 6
Closed periods ..... 6
Closed areas ..... 6
9.1.6 Catch ..... 7
Adjustment of official catches ..... 7
Catch and trends in catches ..... 7
Spatial distribution of catches ..... 7
Effect of vessel size on CPUE ..... 8
9.1.7 Sampling the catch ..... 8
9.1.8 Survey indices ..... 8
9.2 Sandeel in SA 1r ..... 8
9.2.1 Catch data ..... 8
9.2.2 Weight-at-age ..... 8
9.2.3 Maturity ..... 9
9.2.4 Natural mortality ..... 9
9.2.5 Effort and research vessel data ..... 9
Trends in overall effort and CPUE ..... 9
Tuning series used in the assessments ..... 9
9.2.6 Data analysis ..... 9
9.2.7 Final assessment ..... 10
9.2.8 Historic Stock Trends ..... 10
9.2.9 Short-term forecasts ..... 11
Input ..... 11
Output ..... 11
9.2.10 Biological reference points ..... 11
9.2.11 Quality of the assessment. ..... 11
9.2.11.1 Status of the stock ..... 11
9.2.12 Management Considerations ..... 12
9.3 Sandeel in SA $2 r$ ..... 12
9.3.1 Catch data ..... 12
9.3.2 Weight-at-age ..... 12
9.3.3 Maturity ..... 12
9.3.4 Natural mortality ..... 13
9.3.5 Effort and research vessel data. ..... 13
Trends in overall effort and CPUE ..... 13
Tuning series used in the assessments ..... 13
Adjustment to standard settings to accommodate retrospective pattern in recruitment ..... 13
9.3.6 Data analysis ..... 14
9.3.7 Final assessment ..... 14
9.3.8 Historic Stock Trends ..... 14
9.3.9 Short-term forecasts ..... 15
Input ..... 15
Output ..... 15
9.3.10 Quality of the assessment ..... 15
9.3.11 Status of the Stock ..... 15
9.3.12 Management considerations ..... 16
9.4 Sandeel in SA 3r ..... 16
9.4.1 Catch data ..... 16
9.4.2 Weight-at-age ..... 16
9.4.3 Maturity ..... 16
9.4.4 Natural mortality ..... 16
9.4.5 Effort and research vessel data. ..... 17
Trends in overall effort and CPUE ..... 17
Tuning series used in the assessments. ..... 17
Adjustment to standard settings to accommodate retrospective pattern in recruitment ..... 17
9.4.6 Data Analysis ..... 17
9.4.7 Final assessment ..... 18
9.4.8 Historic Stock Trends ..... 18
9.4.9 Short-term forecasts ..... 19
Input ..... 19
Output ..... 19
9.4.10 Biological reference points ..... 19
9.4.11 Quality of the assessment. ..... 19
9.4.12 Status of the Stock ..... 19
9.4.13 Management Considerations ..... 19
9.5 Sandeel in SA 4 ..... 20
9.5.1 Catch data ..... 20
9.5.2 Weight-at-age ..... 20
9.5.3 Maturity ..... 20
9.5.4 Natural mortality ..... 20
9.5.5 Effort and research vessel data. ..... 20
Trends in overall effort and CPUE ..... 20
Tuning series used in the assessments ..... 20
9.5.6 Data analysis ..... 22
9.5.7 Final assessment ..... 23
9.5.8 Historic Stock Trends ..... 23
9.5.9 Short-term forecasts ..... 23
Input ..... 23
Output ..... 23
9.5.10 Biological reference points ..... 23
9.5.10.1 Quality of the assessment ..... 23
9.5.10.2 Status of the Stock ..... 24
9.5.10.3 Management considerations ..... 24
9.6 Sandeel in SA 5r ..... 24
9.6.1 Catch data ..... 24
9.7 Sandeel in SA 6 ..... 24
9.7.1 Catch data ..... 24
9.8 Sandeel in SA 7 ..... 24
9.8.1 Catch data ..... 24
9.9 Sandeel in ICES Division 6.a ..... 25
9.9.1 Catch data ..... 25
9.10 References ..... 25
10 Sprat in Division 3.a and Subarea 4 (Skagerrak, Kattegat and North Sea) ..... 216
10.1 The Fishery ..... 216
10.1.1 ACOM advice applicable to 2020 and 2021 ..... 216
10.1.2 Catches in 2021 ..... 216
10.1.3 Regulations and their effects ..... 216
10.1.4 Changes in fishing technology and fishing patterns ..... 217
10.2 Biological composition of the catch ..... 217
10.3 Fishery Independent Information ..... 217
10.3.1 IBTS Q1 and Q3 ..... 217
10.3.2 Acoustic Survey (HERAS) ..... 218
10.4 Mean weights-at-age and maturity-at-age ..... 218
10.5 Recruitment ..... 218
10.6 StockAssessment ..... 218
10.6.1 Input data ..... 220
10.6.1.1 Catch data ..... 220
10.6.1.2 Weight-at-age ..... 220
10.6.1.3 Surveys ..... 220
10.6.1.4 Natural mortality ..... 220
10.6.1.5 Proportion mature ..... 221
10.6.2 Stock assessment model ..... 221
10.7 Reference points ..... 221
10.8 State of the stock ..... 221
10.9 Short-term projections ..... 222
10.10 Quality of the assessment ..... 222
10.11 ManagementConsiderations ..... 222
10.11.1 Stock units ..... 222
10.12 EcosystemConsiderations ..... 223
10.13 Changes in the environment ..... 223
10.14 References ..... 277
11 Sprat in the North Sea ..... 278
12 Sprat in the English Channel (divisions 7. de) ..... 279
12.1 The Fishery ..... 279
12.1.1 ICES advice applicable for 2022 ..... 279
12.1.2 Landings ..... 279
12.1.3 Fleets ..... 279
12.1.4 Regulations and their effects ..... 280
12.1.5 Changes in fishing technology and fishing patterns ..... 280
12.2 Biological Composition of the Catch ..... 280
12.2.1 Catches in number and weight-at-age ..... 280
12.3 Fishery-independentinformation ..... 280
12.4 Mean weight-at-age and maturity-at-age ..... 281
12.5 Recruitment ..... 281
12.6 StockAssessment ..... 281
12.6.1 Data exploration ..... 283
12.7 State of the Stock ..... 283
12.8 Catch Advice ..... 283
12.9 Short-term projections ..... 284
12.10 Reference Points ..... 284
12.11 Quality of the Assessment ..... 284
12.12 ManagementConsiderations ..... 284
12.13 EcosystemConsiderations ..... 285
12.14 References ..... 295
Annex 1: List of participants ..... 297
Annex 2: Resolutions ..... 299

## i Expert group information

| Expert group name | Herring Assessment Working Group for the Area South of $\left.62^{\circ} \mathrm{N}(\mathrm{HAWG})\right)$ |
| :--- | :--- |
| Expert group cycle | Annual |
| Year cycle started | 2022 |
| Reporting year in cycle | $1 / 1$ |
| Afra Egan, Ireland |  |
| Cecilie Kvamme, Norway |  |
| 25-27 January 2022, virtual meeting (13 participants) |  |
| March-May 2022, by correspondence (13 participants) |  |

## 9 Sandeel in Division 3.a and Subarea 4 and Division 6.a

Larval drift models and studies on recruitment and growth differences have indicated that the assumption of a single stock unit in the area is invalid. As a result, the total stock is divided in several sub-populations (ICES, 2016, Figure 9.1.1), each of which is assessed by area specific assessments. Currently fishing takes place in five out of these seven areas (sandeel area (SA) $1 r, 2 r$, $3 \mathrm{r}, 4$, and 6). Analytical stock assessments are currently carried out in SA $1 \mathrm{r}-3 \mathrm{r}$ and 4 , whereas SA 6 is managed under the ICES approach for data limited stocks (Category 5).

In 2010, the SMS-effort model was used for the first time to estimate fishing mortalities and stock numbers-at-age by half year, using data from 1983 to 2010. This model assumes that fishing mortality is proportional to fishing effort and is still used to assess sandeel in SAs $1 \mathrm{r}, 2 \mathrm{r}, 3 \mathrm{r}$ and 4.

Further information on the stock areas and assessment model can be found in the Stock Annex and in the benchmark report (ICES, 2016).

### 9.1 General

### 9.1.1 Ecosystem aspects

Sandeel in the North Sea can be divided into a number of more or less reproductively isolated sub-populations (see the Stock Annex). A decline in the sandeel population in several areas in recent years concurrent with a marked change in distribution has increased the concern about local depletion, of which there has been some evidence (ICES, 2007; ICES, 2008, ICES 2016). Since 2010 this has been accounted for by dividing the North Sea and 3.a into seven management areas.

Local depletion of sandeel aggregations at a distance less than 100 km from seabird colonies may affect some species of birds, especially black-legged kittiwake and sandwich tern, whereas the more mobile marine mammals and fish are likely to be less vulnerable to local sandeel depletion.

The Stock Annex contains a comprehensive description of ecosystem aspects.

### 9.1.2 Fisheries

General information about the sandeel fishery can be found in the Stock Annex.
The size distribution of the Danish fleet has changed through time, with a clear tendency towards fewer and larger vessels (ICES, 2007). During the last fifteen years, the number of Danish vessels participating in the North Sea sandeel fishery has been stable with around 100 active vessels.

The same tendency has been seen for the Norwegian vessels towards fewer and larger vessels. In 2008, 42 vessels participated in the sandeel fishery, but in 2020, 27 vessels participated in the fishery. From 2011 to 2020, the average GRT per vessel in the Norwegian fleet increased from 1100 to 1540 tonnes.

The rapid changes of the structure of the fleet that have occurred in the past may introduce more uncertainty in the assessment, as the fishing pattern and efficiency of the current fleet may differ from the previous fleet and the participation of fewer vessels has limited the spatial coverage of the fishery. This is to some degree accounted for in the stock assessments through the introduction of separate catchability periods.

The sandeel fishery in 2020 was opened 1 April and continued until the end of July. In NEEZ the fishery opened 15 April and ended 23 June.

### 9.1.3 ICES Advice

ICES advised that the fishery in 2020 should be allowed only if the analytical stock assessment indicated that the stock would be above $\mathrm{B}_{\mathrm{pa}}$ by 2021 (Escapement strategy). This approach resulted in an advised TAC for 2020 in SA 1r, SA 2r, SA 3r, and 4 of 113987 t , 62658 t , 155072 t and 39611 t, respectively. Advised catches for SA 5, SA 6, and SA 7 for 2019 and 2020 were based on data limited approaches and set at $0 \mathrm{t}, 175 \mathrm{t}$ and 0 t , respectively.

### 9.1.4 Norwegian advice

Based on a recommendation from the Norwegian Institute for Marine Research, an opening TAC of 70000 tonnes for 2020 was given. As the acoustic survey abundance estimate of age 1 and the total biomass estimate ( 659000 tonnes, $\mathrm{RSE}=0.18 \%$ ) was the highest observed in the time series the final TAC increased to 250000 tonnes. Fishery was allowed in the subareas 1a, 1c, 2b, 2c, 3b, 3c, 4a (see Stock Annex for area definitions).

### 9.1.5 Management

## Norwegian sandeel management plan

An Area Based Sandeel Management Plan for the Norwegian EEZ was fully implemented in 2011 but was also partly used in 2010. The areas with known sandeel fishing grounds are divided into 5 areas (each divided into subareas). An area is closed for fishery unless the biomass (Age1+) is at least 20000 tonnes. If an Area is open for fishery, one of the sub-areas is closed. A preliminary TAC for all Areas combined is given in February based on a precautionary prediction of total biomass and a harvesting rate of 0.4. An updated in-season TAC is given 15 May as the $40 \%$ percentile of the survey biomass estimate and harvesting rate of 0.4 . Areas can be opened based on the updated information (Johnsen 2020).

## Closed periods

From 2005 to 2007, the fishery in the Norwegian EEZ opened 1 April and closed again 23 June. In 2008, the ordinary fishery was stopped 2 June, and only a restricted fishery with five vessels continued. No fishery was allowed in 2009. From 2010 to 2014 the fishing season was 23 April23 June, and from 2015 and onwards from 15 April to 23 June in the Norwegian EEZ.
Since 2005, Danish vessels have not been allowed to fish sandeel before 31 March and after 1 August.

## Closed areas

The Norwegian EEZ was only open for an exploratory fishery in 2006 based on the results of a three-week RTM fishery. In 2007, no regular fishery was allowed north of $57^{\circ} 30^{\prime} \mathrm{N}$ and in the ICES rectangles 42F4 and 42F5 after the RTM fishery ended. In 2008, the ordinary fishery was closed except in ICES rectangles 42F4 and 44F4, and for five vessels only, the ICES rectangles 44F3, 45F3, 44F2 and 45F2 were open. The Norwegian EEZ was closed to fishery in 2009. In accordance with the Norwegian sandeel management plan, many of the Norwegian management subareas have been closed each year (see Stock Annex for details).

In the light of studies linking low sandeel availability to poor breeding success of kittiwake, there has been a moratorium on sandeel fisheries on Firth of Forth area along the U.K. coast since 2000. Note that a limited fishery for stock monitoring purposes occurs in May-June in this area.

### 9.1.6 Catch

## Adjustment of official catches

Previously, there has been substantial misreporting of catches between areas (ICES, 2015, 2016b (HAWG)). Since 2015, the Danish regulation has not allowed fishing in several stock areas on a single fishing trip. This eliminated the misreporting issue for Danish catches. However, German and Swedish catches were still high in the four rectangles, and an analysis of Swedish VMS for the years 2012 to 2015 indicated that misreporting had also occurred of Swedish catches in 2014 and 2015 (see HAWG 2017). Because of this, the working in accordance with previous year's reallocated reported catches ( 14781 t ) from rectangles 41F2, 41F3 and 41F4 to SA 1 in 2015. From 2016 onwards, no correction was made.

## Catch and trends in catches

Catch statistics for Division 4 are given by country in Table 9.1.1. Catch statistics and effort by assessment area are given in Tables 9.1.2-9.1.7. Figure 9.1.1 shows the areas for which catches are tabulated.

The sandeel fishery developed during the 1970s, and catches peaked in 1997 and 1998 with more than 1 million $t$. Since 1983 the total catches have fluctuated between 1.2 million t (1997) and 73420 t (2016) (Figure 9.1.3).

## Spatial distribution of catches

Yearly catches for the period 2000-2020 distributed by ICES rectangle are shown in Figure 9.1.2 (with no spatial adjustment of official catches distribution in 2014 and 2015). The spatial distribution is variable from one year to the next, however with common characteristics. The Dogger Bank area includes the most important fishing banks for SA 1r sandeel. The fishery in SA 3r has varied over time, primarily as a result of changes in regulations and very low abundance of sandeel on the northern fishing grounds.

Table 9.1.2 shows catch weight by area. There are large differences in the regional patterns of the catches. SAs 1 r and 3 r have consistently been the most important with regard to sandeel catches. On average, these areas together have contributed $\sim 76 \%$ of the total sandeel catches in the period since 1983.

The third most important area for the sandeel fishery is SA 2r. In the period since 2003 catches from this area contributed $\sim 16 \%$ of the total catches on average.
SA 4 has contributed about $6 \%$ of the total catches since 1994, but there have been a few outstanding years with particular high catches (1994, 1996 and 2003 contributing 19, 17 and $20 \%$ of the total catches, respectively). In 2017 and 2018, the first non-monitoring fishery was advised in the area since 2011 with a total TAC of 54043 t and 59345 t , respectively. In 2019, only a monitoring TAC was advised but in 2020, a TAC of 39 611t was advised

Several banks in the northern areas of Norwegian EEZ have not provided catches between 2001 and 2008. In this period, almost all catches from the Norwegian EEZ came from the Vestbank area (Norwegian management area 3 in Figure 9.1.5). From 2010, catches have been taken mainly from the Norwegian management areas 1, 2 and 3, and from area 4 from 2016.

## Effect of vessel size on CPUE

In order to avoid bias in effort introduced by changes in the average size of fishing vessels over time, the CPUEs are used to estimate a vessel standardization coefficient, $b$. The parameter $b$ was estimated using a mixed model for separate periods. Because the model estimates the parameter from several years of data, the time-series for the most recent period is updated for all years as the parameter $b$ is updated with the most recent data. More information can be found in the Stock Annex.

### 9.1.7 Sampling the catch

Sampling activity for commercial catches is shown in Table 9.1.8.

### 9.1.8 Survey indices

Abundance of sandeel is monitored by a Danish/Norwegian dredge survey (covering SA 1r-3r) and a Scottish dredge survey (SA 4) in November/December. See the Stock Annex for more details. An acoustic survey was carried out in Norwegian EEZ in April/May following the standard procedures described in the benchmark report (ICES, 2010a).

The dredge survey in 2020 was carried out as planned in areas $1 \mathrm{r}, 2 \mathrm{r}$ and 3 r and nearly all planned positions were covered in accordance with the survey protocol. However, because of bad weather and a temporary technical obstacle, the survey was extended by 1 week and a few of the low-priority stations were not visited (all high-priority stations were visited).. The survey in area 1 r and 2 r was expanded to the south in 2017 , where new positions were visited south of $54^{\circ} \mathrm{N}$. Since 2017 two vessels were used to complete the survey. This was arranged to ensure that all positions can be visited within the 3-week period of the survey (note that new positions have been included gradually over time). All available data were included in the estimated dredge index by area. In area 4 , the coverage of the dredge survey was low in 2020, and only 11 stations were sampled and only two out of four main banks (compared to around 50 stations in 2019).

### 9.2 Sandeel in SA 1r

### 9.2.1 Catch data

Total catch weight by year for SA 1 is given in tables 9.1.2-9.1.4. Catch numbers-at-age by halfyear is given in Table 9.2.1.

In 2021, 1-group and 2-group were equally represented in the catches. The catches contained very few 3-group and older (Figure 9.2.1).

### 9.2.2 Weight-at-age

The methods applied to compile age-length-weight keys and mean weights-at-age in the catches and in the stock are described in the Stock Annex.

The mean weights-at-age observed in the catch are given in Table 9.2.2 and Figure 9.2.2 by half year. Mean weight-at-age in the first half year decreased in 2021 and is below the long term mean.

### 9.2.3 Maturity

Maturity estimates are obtained from the average observed in the Danish dredge survey in December as described in the Stock Annex. The values used are given in Table 9.2.3.

### 9.2.4 Natural mortality

In 2020, WGSAM provided updated estimates of natural mortality-at-age from multispecies modelling of southern sandeel (SMS, WGSAM 2020). Natural mortality was therefore updated. The full time-series was replaced and 3-year moving averages was used (same procedure as last time the time-series was updated). The new time-series did not affect the stock-recruitment plot to an extent that required a revision of reference points. The new time-series contains values of $M$ that are equal to or slightly higher than the values in the old time-series, except for 2018 and onward where the new values are slightly lower in the $1^{\text {st }}$ half of the year. The values used in the 2018 and 2019 assessments were simply replicates of the 3-year average value from 2015. Natural mortalities are listed in Table 9.2.8.

### 9.2.5 Effort and research vessel data

## Trends in overall effort and CPUE

Tables 9.1.5-9.1.7 and Figure 9.2.3 show the trends in the international effort over years measured as number of fishing days standardized to a 200 GRT vessel. The standardization includes just the effect of vessel size and does not take changes in efficiency into account. Total international standardized effort peaked in 2001, after which substantial effort reduction has taken place. Effort has fluctuated without a trend since 2006.

The average CPUE in the period 1994 to 2002 was around $60 \mathrm{t}^{\text {-day. }}$. In 2003, CPUE declined to the all-time lowest at $21 \mathrm{t}^{\text {-day. }}$. Since 2004, the CPUE has increased and reached the all-time highest ( $101 \mathrm{t}^{\text {-day }}$ ) in 2010 followed by progressively lower CPUEs ending with CPUEs in 2013-2014 below long-term average. CPUE peaked again in 2016-2017, but have decreased to levels below average in 2018, 2019, 2020, and 2021.

## Tuning series used in the assessments

A commercial tuning series (RTM) describing the average catch in numbers-at-age per fishing day of a standard vessel in April/early May is used in the assessment.

CPUE data from the dredge survey (Table 9.2.4 and Figure 9.2.5) in 2021 show indices of age 0 and 1 well below the average.

The internal consistency, i.e. the ability of the RTM to follow cohorts, (shows a good consistency correlation between the 1-group and 2-group as well as between 2 and 3-group (i.e. $\mathrm{r}^{2}=0.47$ and 0.54 , respectively on log scales).

### 9.2.6 Data analysis

Following the two latest Benchmark assessments (ICES, 2010, 2016) the SMS-effort model was used to estimate fishing mortalities and stock numbers-at-age by half year, using data from 1983 to 2021. In the SMS model, it is assumed that fishing mortality is proportional to fishing effort. For details about the SMS model and model settings, see the Stock Annex.

The diagnostics output from SMS are shown in Table 9.2.5. The seasonal effect on the relation between effort and F ("F, Season effect" in the table) is rather constant over the 5-year ranges
used. The "age selection" ("F, age effect" in the table) shows a change in the fishery pattern where the fishery was mainly targeting the age $2+$ sandeel in the beginning of the assessment period, to a fishery targeting age $1+$ in a similar way, and then in the most recent period back to mainly targeting $2+$ sandeel.

The CV of the dredge survey ("sqrt (Survey variance) $\sim$ CV" in the table) is low (0.49) for age 0 and high (0.78) for age 1. The survey residual plot (Figure 9.2.6) shows no clear patterns.

The CV of the RTM time-series is low to moderate for ages 1,2 , and 3 ( $0.53,0.43$, and 0.49 ). The survey residual plot (Figure 9.2.6b) shows no clear patterns.

The model CV of catch-at-age ("sqrt(catch variance) $\sim \mathrm{CV}$ ", in Table 9.2 .5 is low (0.35) for age 1 and age 2 in the first half of the year and moderate to high $(>0.5)$ for the remaining ages and season combinations. The catch-at-age residuals (Figure 9.2.7) show a tendency for the cohorts to die out more rapidly than expected in 2019, 2020 and 2021 (negative catch residuals for all ages).

The CV of the fitted Stock recruitment relationship (Table 9.2.5) is high (0.86), which is also indicated by the stock recruitment plot (Figure 9.2.8). The high CV of recruitment is probably due to biological characteristic of the stock (i.e. weak stock-recruitment relationship) and not so much due to the quality of the assessment. The a priori weight on likelihood contributions from SSR-R observations is therefore set low ( 0.05 in "objective function weight" in Table 9.2.5) such that SSB-R estimates do not contribute much to the overall likelihood and model fit.

The retrospective analysis (Figure 9.2.9) shows consistent assessment results from one year to the next for F. For recruitment and SSB, there seems to have been an overestimation in the previous assessments. It is likely that this is connected to the short period used for the latest exploitation pattern, a decision made under the benchmark to accommodate an intermediate period around 2009 with a significantly different exploitation pattern. Further, the negative catch and dredge residuals observed in 2019-2021 will tend to decrease the recruitment estimate as fish of the different cohorts are observed less frequently than expected after the initial dredge index of recruitment. The stability of F estimates is partly due to the assumed robust relationship between effort and F, which is rather insensitive to removal of a few years. Recruitment and SSB estimates show a retrospective bias (5-year Mohn's Rho for $R$ and SSB is 0.43 and 0.87 , respectively).

Uncertainties of the estimated SSB, F and recruitment (Figure 9.2.10) are in general small. The overall pattern with a lower F:effort ratio for older data indicates that the model assumption of no efficiency creeping is violated across periods but not within catchability periods.

### 9.2.7 Final assessment

The output from the assessment is presented in Tables 9.2 .6 (fishing mortality-at-age by year), 9.2.7 (fishing mortality-at-age by half year), 9.2.9 (stock numbers-at-age) and 9.2.10 (stock summary).

### 9.2.8 Historic Stock Trends

The stock summary (Figure 9.2.13 and Table 9.2.10) shows that SSB have been at or below Blim from 2004 to 2007 and again in 2013-2015. $\mathrm{F}_{(1-2)}$ is estimated to have been just below the long-time average since 2010. Recruitment in 2017 was estimated to be the lowest observed in the timeseries. 2018 recruitment was also low whereas 2019 shows average recruitment. In 2020 and 2021 the recruitment was below average again.

### 9.2.9 Short-term forecasts

## Input

Input to the short-term forecast is given in Table 9.2.11. Stock numbers in the TAC year are taken from the assessment for age 1 and older. Recruitment in 2022 is the geometric mean of the recruitment 1983-2020 (111 billion-at-age 0). The exploitation pattern and $\mathrm{F}_{\mathrm{sq}}$ is taken from the assessment values in 2021. However, as the SMS-model assumes a fixed exploitation pattern since 2010, the choice of years is not critical. Mean weight-at-age in the catch and in the sea is the average value for the years 2017-2021. Natural mortality is the same as applied in the assessment in the final year. The Stock Annex gives more details about the forecast methodology.

## Output

The short-term forecast (Table 9.2.12) shows that even a fishing mortality of zero will bring SSB below $B_{\text {pa. }}$ However, a monitoring TAC of $5000 t$ is recommended to ensure the quality of the assessment, consistent with previous year's advice (ICES, 2019).

### 9.2.10 Biological reference points

$B_{\lim }$ is set at $110000 t$ and $B_{p a}$ at $145000 t$. MSY $B_{\text {trigger }}$ is set at $B_{p a}$.
Further information about biological reference points for sandeel in 1 can be found in the Stock Annex.

### 9.2.11 Quality of the assessment

The quality of the present assessment has improved compared to the combined assessment for the whole of the North Sea previously presented by ICES before 2010. This is mainly due to the fact that the present division of stock assessment areas better reflects the spatial stock structure and dynamics of sandeel. Addition of fishery independent data from the dredge survey has also improved the quality of the assessment. Together with the application of the statistical assessment model SMS-effort, this has removed the retrospective bias in F and SSB for the most recent years. The model provides rather narrow confidence limits for the model estimates of F, SSB and recruitment, but a poorer fit for the oldest data.

The model uses effort as basis for the calculation of F. The total international effort is derived from Danish CPUE and total international catches. Danish catches are by far the largest in the area, but effort data from the other countries could improve the quality of the assessment.

Abundance of the 1-group, which in most years dominates the catches, is estimated on the basis of the 0 -group index from the dredge survey in December of the preceding year. The model estimates a low variance on the survey index for age 0 . There are indications of a retrospective pattern in recent years as older fish do not seem to appear in the catches at the expected level. This pattern can be caused by uncertainty in the selection pattern when using a relatively short period to estimate this or unallocated mortality caused by e.g. overwintering mortality increasing when fish condition is low.

### 9.2.11.1 Status of the stock

The SSB was below Blim in 2019 and 2020. In 2021, it was estimated to be above Blim, but below $B_{p a .}$ SSB in 2022 is similar to 2021. As noted in last year's report (ICES, 2019), the introduction of a very low recruitment in 2018 combined with a continued decrease in mean weight-at-age led to a stock below MSY Blim and $B_{\text {trigger }}$ at the beginning of 2020. The SSB in 2022 is slightly lower
than expected from the forecast in 2021. There can be several reasons for that, such as reduced weight-at-age and catches exceeding the TAC advice (due to borrowing and banking).

### 9.2.12 Management Considerations

A management plan needs to be developed. The ICES approach for MSY based management of a short-lived species such as sandeel is the so-called escapement strategy, i.e. to maintain SSB above MSY B trigger after the fishery has taken place. Management strategy evaluations presented at the ICES WKMSYREF2 and WKMSYREF5 meetings (ICES, 2014a, 2017) indicated that the es-capement-strategy is not sustainable for short-lived species, unless the strategy is combined with a ceiling ( $\mathrm{F}_{\text {cap }}$ ) on the fishing mortality. This means that if the TAC that comes out of the escapement strategy corresponds to an $F_{b a r}$ that exceeds $F_{\text {cap, }}$ then the escapement strategy should be disqualified and the TAC is instead determined based on a fishing mortality corresponding to $\mathrm{F}_{\text {cap. }} \mathrm{F}_{\text {cap }}$ for SA 1 r is 0.49 (ICES, 2017).

Based on the misreporting of catches as observed in 2014 and 2015, management measures to avoid area misreporting (only one fishing area per trip) have been mandatory for the Danish fishery since 2015. There are indications of area misreporting for other nations (e.g. Sweden) in 2015 but likely not in the most recent years. Similar management measures as used for the Danish fishery would reduce further the risk of misreporting for other nations as well.
Self-sampling on board the commercial vessels for biological data should be mandatory for all nations utilising a monitoring TAC. Today samples are only obtained from the Danish fishery.

### 9.3 Sandeel in SA 2r

### 9.3.1 Catch data

Total catch weight by year for SA 2 r is given in tables 9.1.2-9.1.4. Catch numbers-at-age by halfyear are given in Table 9.3.1.

The proportion of the 1-group in the catch was high in both 2020 and 2021, although not as high as in 2017 ( $98 \%$ ), following the high recruitment in 2016. The 2016 year class was even seen in the 2019 catch as a high proportion of 3-group fish (52\%) (Figure 9.3.1).

### 9.3.2 Weight-at-age

The methods applied to compile age-length-weight keys and mean weights-at-age in the catches and in the stock are described in the Stock Annex.

The mean weights-at-age observed in the catch are given in Table 9.3.2 by half year. It is assumed that the mean weights in the sea are the same as in the catch. The time-series of mean weight in the catch and in the stock is shown in Figure 9.3.2. Mean weight-at-age for all age groups in 2019 was above the historic average, reaching 108\% of the long-term average on average. In 2020, a slight decrease in weights was observed for the 1-group compared to 2019, whereas weight at age of older age-groups increased. In 2021, weights had declined across all age-groups compared to 2020 .

### 9.3.3 Maturity

Maturity estimates are obtained from the average observed in the Danish dredge survey in December as described in the Stock Annex. The values used are given in Table 9.3.3.

### 9.3.4 Natural mortality

Long-term averages of natural mortality-at-age from multispecies modelling of southern and northern sandeel (SMS, WGSAM 2015, ICES 2016) were used. More details are given in the Stock Annex. Natural mortalities are listed in Table 9.3.8. Mortalities were not updated in response to the new WGSAM key run (WGSAM 2020) as the update is not likely to affect long-term averages greatly.

### 9.3.5 Effort and research vessel data

## Trends in overall effort and CPUE

Tables 9.1.5-9.1.7 and Figure 9.3.3 show the trends in the international effort over years measured as number of fishing days standardised to a 200 GRT vessel. The standardisation includes just the effect of vessel size and does not take changes in efficiency into account.

Total international standardized effort in 2021 was the second lowest in the time-series, but also the CPUE was the second lowest, coming down from a relatively high CPUE in 2020.

## Tuning series used in the assessments

No commercial tuning series are used in the present assessment.
The dredge survey in SA 2r (Table 9.3.4 and Figure 9.3.5) increased coverage in 2010 and this is therefore used as the start year of the dredge time-series for the assessment. The coverage has however varied somewhat in this period and the time-series is still short. Details about the dredge survey are given in the Stock Annex and the benchmark report (ICES, 2016). Dredge CPUEs were high in 2021, and in particularly high in the Northern parts, resulting in the second highest age- 0 index in the time-series. This year a few explorative hauls were taken close to some of the existing stations. However, catch rates in these hauls were not much different from the adjacent fixed station hauls. The explorative hauls were uploaded to the database as valid hauls, and were therefore included in the survey index.

## Adjustment to standard settings to accommodate retrospective pattern in recruitment

In previous years, there has been a large overestimation of recruitment in the terminal year in cases where the dredge survey showed large abundance of age 0 . In 2020, the working group examined the relationship between dredge survey catches-at-age 0 and the number of recruits as estimated in the SPALY run and considered that the retrospective pattern could be caused by ignoring density dependence in catchability (increased catchability at high abundance). The relationship seemed to be well fitted using a power relationship between dredge index and abundance, with no indication of this given errors in estimated abundance in high or low abundance years. The use of a power model for survey catchability of the youngest age groups is routinely used for North Sea sprat (ICES 2018). It is an adjustment of the model where one additional parameter is estimated. HAWG evaluated the retrospective bias in recruitment in 2020 without density dependent catchability (Mohn's ro $=0.63$ ) and with density dependent catchability (Mohn's ro $=0.52$ ). The AIC of the model including density dependent was unchanged. Based on these considerations, HAWG 2020 decided to include density dependent catchability in the final run. HAWG 2021 re-examined the density dependent parameter and found it still to be significant.

### 9.3.6 Data analysis

The diagnostics output from SMS-effort are shown in Table 9.3.5.
The CV of the dredge survey (Table 9.3.5) is low ( 0.30 for the 0 -group) after the introduction of the density dependent catchability for age 0 , indicating a high consistency between the results from the dredge survey and the overall model results. The residual plot (Figure 9.3.6) shows no bias for this time-series.

The model CV of catch-at-age 1 and 2 is low (0.40) in the first half of the year and medium or high ( $>0.70$ ) for the remaining ages and season combinations. The residual plots for catch-at-age (Figure 9.3.7) confirm that the fit is generally poor except for age 1 and 2 in the first half year. The residual plot (Figure 9.3.7) shows no long-term bias for this time-series for ages 1 and 2 in the first half year.

The CV of the fitted stock recruitment relationship (Table 9.3.5) is high (1.02 which is also indicated by the stock recruitment plot (Figure 9.3.8). The high CV of recruitment is probably due to highly variable recruitment success and less due to the quality of the assessment.

Uncertainties of the estimated SSB, F and recruitment (Figure 9.3.10) are in general low, which gives narrow confidence limits on estimated values (Figure 9.3.11).

The plot of standardized fishing effort and estimated F (Figure 9.3.12) shows a good relationship between effort and F as specified by the model. As the model assumes a different efficiency and catchability for the five periods 1983-1988, 1989-1998, 1999-2004, 2005-2009, and 2010-2020, the relation between effort and F varies between these periods. An effort unit in the early part of the time-series gives a smaller F than an effort unit in the most recent years. This indicates technical creep, i.e. a standard 200 GT vessel has become more efficient over time (see Stock Annex for further discussion, ICES 2016).

The retrospective analysis (Figure 9.3.9) shows consistent assessment estimates of From one year to the next. There has been a systematic overestimation of SSB in most years since 2011 (with few exceptions), some times, but not always, as a result of an overestimation of recruitment (and therefore lower than expected abundance of these cohorts in the subsequent catches). This pattern was improved by the introduction of density dependent catchability in the model. The 5year Mohn's Rho values are, however, still fairly high ( 0.55 and 0.37 for SSB and recruitment, respectively). Reasons for the previous pattern can be connected to either overestimation of recruitment in the dredge survey lower than expected survival of the two cohorts, or lower than expected catchability of these cohorts in the fishery. Both the selectivity pattern and the dredge survey are based on a relatively short time-series, and hence variation between years is to be expected.

### 9.3.7 Final assessment

The output from the assessment is presented in tables 9.3.6 (fishing mortality-at-age by year), 9.3.7 (fishing mortality-at-age by half year), 9.3.9 (stock numbers-at-age) and 9.3.10 (stock summary).

### 9.3.8 Historic Stock Trends

The stock summary (Figure 9.3.13 and Table 9.3.10) show that recruitment has been highly variable and with a weak decreasing trend over the full time-series until the 2016 year class, which is estimated to be the $4^{\text {th }}$ strongest on record, followed by a 2017 year class which is estimated to be the lowest observed and a 2018 year class which was the fifth lowest on record. In 2019, the
recruitment was average and in 2020 below average. SSB has been at or below Blim in 1989, 2002, from 2004 to 2010 and again from 2012 to 2017 and 2019 to 2022. Since 2004, SSB has been below $\mathrm{B}_{\mathrm{pa}}$ in all years. $\mathrm{F}_{1-2}$ is estimated to have been below the long-time average since 2010 with the exception of 2013, 2017 and 2020.

### 9.3.9 Short-term forecasts

## Input

Input to the short-term forecast is given in Table 9.3.11. Stock numbers for age 1 and older in the TAC year are taken from the assessment. Recruitment in 2022 is the geometric mean of the recruitment in 2011-2020. The exploitation pattern and $\mathrm{F}_{\mathrm{sq}}$ is taken from the assessment values in 2021. As the SMS-model assumes a fixed exploitation pattern since 2010, the choice of year is not critical. Mean weight-at-age in the catch and in the sea is the average (i.e. 5-year mean) value for the years 2017-2021. Natural mortality and proportion mature are the fixed values applied in the terminal year in the assessment.

## Output

The short-term forecast (Table 9.3.12) shows that a fishing mortality of 0.57 will bring SSB down to $\mathrm{B}_{\mathrm{pa}}$ in 2023. However, since $\mathrm{F}_{\text {cap }}$ for this area is 0.44 , the TAC should instead be based on a fishing mortality of 0.44 , which results in a TAC of 71859 tonnes in 2022.
$B_{\text {lim }}$ is set at 56000 t and $\mathrm{B}_{\mathrm{pa}}$ at 84000 t . MSY $\mathrm{B}_{\text {trigger }}$ is set at $\mathrm{B}_{\text {pa }}$. Fcap is set at 0.44 (ICES, 2016). Further information about biological reference points can be found in the Stock Annex and Benchmark report from 2016 (WKSAND, 2016).

### 9.3.10 Quality of the assessment

This stock was benchmarked between the 2016 and 2017 assessments where the ICES statistical rectangles included in sandeel area 2 changed. The assessment now includes fisheries independent information from a dredge survey representative for the area. The assessment is considered to be of good quality but with some indications of a retrospective pattern in recent years as older fish do not seem to appear in the catches at the expected level. This pattern can be caused by uncertainty in the selection pattern when using a relatively short period to estimate this or unallocated mortality caused by e.g. overwintering mortality increasing when fish condition is low (van Deurs et al., 2011.). HAWG also highlighted that the pattern might also have a link to the possible multispecies fishery within this area (i.e. suspected to catch Ammodytes tobianus). The dredge survey time-series in SA 2 is still short (2010-2021) and the quality of the assessment will likely improve once a longer time-series becomes available. Next benchmark will take place in 2022.

### 9.3.11 Status of the Stock

A moderate F in most of the years from 2010 in combination with a low recruitment have given a slow increase in SSB since the historical low values in 2004 to 2010. SSB in 2020 are estimated below Blim for the second year in a row. In 2021 the stock is expected to be just above Blim. The stock has been below $B_{\lim }$ in 17 out of the last 20 years and only at or above $B_{p a}$ in 1 out of 20 years (20 years ago)., Recruitment in 2016 is estimated to be the fourth highest on record. The 2019recruitment was estimated to be the fifth highest since 1997. Recruitment in 2017 and 2018 were extremely low. Recruitment in 2019 was average and recruitment in 2020 was low is medium. The recruitment in 2021 appears to be high. However, based on the retrospective patterns of this stock, we anticipate some down-scaling in the coming years.

### 9.3.12 Management considerations

A management plan needs to be developed. The ICES approach for MSY based management of a short-lived species such as sandeel is the escapement strategy, i.e. to maintain SSB above MSY $B_{\text {trigger }}$ after the fishery has taken place. Management strategy evaluations (ICES, 2016) established that the escapement-strategy is not sustainable for short-lived species, unless the strategy is combined with a ceiling ( $\mathrm{F}_{\text {cap }}$ ) on the fishing mortality and estimated this $\mathrm{F}_{\text {cap }}$ for SA 2 r sandeel at 0.44. This means that if the TAC that results from the escapement strategy corresponds to an $\mathrm{F}_{\mathrm{bar}}$ that exceeds $\mathrm{F}_{\text {cap, }}$, then the TAC is determined based on a fishing mortality corresponding to $\mathrm{F}_{\text {cap }}$.

### 9.4 Sandeel in SA 3r

### 9.4.1 Catch data

Total catch weight by year for SA 3 is given in tables 9.1.2-9.1.4. Catch numbers-at-age by halfyear is given in Table 9.4.1.
In 2021, the 1-group and 2-group fish dominated the catches, but also a large proportion (second largest in the time-series) of 4-groups was observed. 3-groups were the least frequent.

### 9.4.2 Weight-at-age

The mean weights-at-age observed in the catch are given in Table 9.4 .2 by half year. It is assumed that the mean weights in the sea are the same as in the catch. The time-series of mean weight in the catch and in the stock is shown in Figure 9.4.2. Mean weight-at-age in the first half-year has increased for four consecutive years in all age-groups, and is now the highest ever observed for age- 1 and age- 2 .

### 9.4.3 Maturity

Maturity estimates are obtained from the average observed in the dredge survey in December as described in the Stock Annex. The values used are given in Table 9.4.3.

### 9.4.4 Natural mortality

In 2020, WGSAM provided updated estimates of natural mortality-at-age from multispecies modelling of northern sandeel (SMS, WGSAM 2020).

The effect of using 3-year averages of these new values on historical development and stock recruitment relationship of the stock was evaluated by the working group and it was decided that the new natural mortality values resulted in a substantial change in the historic perception of the stock, including possible changes to reference points. For this reason, it was decided not to use the new natural mortalities but to refer to HAWG for consideration of whether new reference points should be estimated.

3-year averages of natural mortality-at-age from the 2015 multispecies modelling of southern and northern sandeel (SMS, WGSAM 2015, ICES 2016) were used. The last value provided was used for all years following the latest data point. More details are given in the stock annex. Natural mortalities are listed in Table 9.4.8.

### 9.4.5 Effort and research vessel data

## Trends in overall effort and CPUE

Tables 9.1.5-9.1.7 and Figure 9.4.3 show the trends in the international effort over years measured as number of fishing days standardised to a 200 GRT vessel. The standardisation includes just the effect of vessel size and does not take changes in efficiency into account. Total international standardized effort peaked in 1998 and declined thereafter and has been less than 2000 days per year since 2003. The last two years, effort has increased, reaching 3492 days in 2020. In 2021, effort is down to the same level as in 2021. CPUE has been increasing for four consecutive years, and in 2021 it was the fourth highest of the time-series.

## Tuning series used in the assessments

CPUE data from the dredge survey (Table 9.4.4 and Figure 9.4.5) in 2021 show average indices for both age 0 and age 1 (Table 9.4.4). The internal consistency plot (Figure 9.4.4) shows medium consistency for age 0 vs. age 1 (i.e. $\mathrm{r}^{2}=0.38$ on log scales). In 2014, 13 new positions were included in the survey in SA 3r. Only two of the new positions were taken in squares not included before (42F5 and 42F6). All the new positions have been included in the survey index since 2014 (Table 9.4.4) for assessment purposes, to obtain a better spatial coverage. Details about the dredge survey are given in the Stock Annex and the benchmark report (ICES, 2016).

The Norwegian acoustic survey (2009-2021) carried out in Norwegian EEZ is used as tuning series in the assessment in SA 3r (Table 9.4.13 and figures 9.4.14-9.4.16). The survey covers the main sandeel grounds in SA 3r. This year a few explorative hauls were taken close to one of the existing stations. However, catch rates in these hauls were not much different from the adjacent fixed station hauls. The explorative hauls were uploaded to the database as valid hauls, and were therefore included in the survey index. The acoustic estimate in number of individuals by age and survey is presented in Table 9.4.13.

## Adjustment to standard settings to accommodate retrospective pattern in recruitment

In previous years, there has been a large overestimation of recruitment in the terminal year in cases where the dredge survey showed large abundance of age 0 . The working group examined the relationship between dredge survey catches-at-age 0 and the number of recruits as estimated in the SPALY run (see Figure below, where I is the survey index of age-0 and N0 the number of recruits) and considered that the retrospective pattern could be caused by ignoring density dependence in catchability (increased catchability at high abundance). The relationship seemed to be well fitted using a power relationship between dredge index and abundance, with no indication of this given errors in estimated abundance in high or low abundance years. The use of a power model for survey catchability of the youngest age groups is routinely used for North Sea sprat (ICES 2018). It is an adjustment of the model where one additional parameter is estimated. HAWG evaluated the retrospective bias in recruitment without density dependent catchability (Mohn's rho $=0.57$ ) and with density dependent catchability (Mohn's rho $=0.13$ ). The AIC of the model including density dependent was unchanged. Based on these considerations, HAWG 2020 decided to include density dependent catchability in the final run. This approach was continued in 2021 and 2022.

### 9.4.6 Data Analysis

The diagnostics output from SMS-effort model is shown in Table 9.4.5.
The CV of the dredge survey (Table 9.4.5) is medium for age $0(0.69)$ and high for age 1 (0.79), showing an overall poor consistency between the results from the dredge survey of age 1 and
the overall model results. The internal consistency of the survey seems to indicate the large and small year classes can be followed in the dredge, but the exact size of small or large cohorts cannot.

The CV of the acoustic survey (Table 9.4.5) is medium for both age 1 and age $2(0.60)$ and high for age 3 (1.08), showing an overall medium consistency between the results from the acoustic survey and the overall model results. The residual plot shows high positive residuals in 2020, indicating that the very high acoustic indices were not confirmed by the model.

The model CV of catch-at-age is medium (0.69) for age 1 and age 2 in the first half of the year (Table 9.4.5). For the older ages and for all ages in the second half year, the CVs are high (>1.00). The catch residual plots for catch-at-age (Figure 9.4.7) confirm that the fits are generally very poor except for age 1 and 2 in the first half year. There is a tendency for clusters of negative or positive residuals for ages 1 and 2 but no trend in recent years.
The CV of the fitted stock recruitment relationship (Table 9.4.5) is high (1.07), which is also indicated by the stock recruitment plot (Figure 9.4.8). The high CV of recruitment is probably due to the biological characteristics of the stock and less due to the quality of the assessment. The a priori weight on likelihood contributions from SSR-R observations is therefore set low ( 0.01 in "objective function weight" in Table 9.4.5) such that SSB-R estimates do not contribute much to the overall model likelihood and fit.

There used to be a large retrospective pattern in the recruitment that consistently overestimated large recruiting year-classes. However, after implementing density dependence on the relationship between recruitment and the dredge survey in 2020 (i.e. increasing catchability with increasing densities), the retrospective bias was reduced from a Mohn's Rho $>0.5$ to -0.10 in the present year's assessment.

Uncertainties of the estimated SSB, F and recruitment (Figure 9.4.10) are in general medium, which gives wide confidence limits (Figure 9.4.11) on output variables.

The plot of standardized fishing effort and estimated F (Figure 9.4.12) shows a moderate relation between effort and F as assumed by the model specification. As the model assumes a different catchability-at-age for the three periods 1986-1998, 1999-present, the relation between effort and F varies between these periods. There is a shift in the ratio between effort and F over the full time-series. In the year range 1986-1998, F is in generally lower than effort on the plot, while the opposite is the case for the remaining periods, corresponding to a technical creep over time (ICES, 2016).

### 9.4.7 Final assessment

The output from the final assessment is presented in Tables 9.4.6 (fishing mortality-at-age), 9.4.7 (fishing mortality-at-age by half year), 9.4.9 (stock numbers-at-age) and 9.4.10 (Stock summary).

### 9.4.8 Historic Stock Trends

SSB has been at or below Blim from 1999 to 2006 after which SSB increased to above $B_{p a}$ in 2008. This was followed by SSB below Blim in 2013 (Figure 9.4.16 and Table 9.4.17). Above average recruitments in 2016, 2018, 2019 and 2020 together with a fishing mortality below average in most years and increased weights have resulted in SSB being above $B_{p a}$ in 2015 onwards.

### 9.4.9 Short-term forecasts

## Input

Input to the short-term forecast is given in Table 9.4.11. Stock numbers in the TAC year are taken from the assessment for age 1 and older. Recruitment in 2022 is the geometric mean of the recruitment 1986-2020 (112 billion-at-age 0). The exploitation pattern and $\mathrm{F}_{\mathrm{sq}}$ is taken from the assessment values in 2020. As the SMS-model assumes a fixed exploitation pattern since 1999, the choice of year is not critical. Mean weight-at-age in the catch and in the sea is the average value (i.e. 5-year mean) for the years 2017-2021. Proportion mature and natural mortality are equal to the terminal assessment year.

The Stock Annex gives more details about the forecast methodology.

## Output

The short-term forecast (Table 9.4.12) shows that a TAC of 85559 t in 2021 will result in a fishing mortality of 0.29, identical to Fcap, and leave SSB at 151563 t , well above MSY B trigger of 129000 t , in 2021. The TAC according to the escapement strategy is therefore 151563 t in 2021.

### 9.4.10 Biological reference points

$B_{\text {lim }}$ is set at 80000 t and $\mathrm{B}_{\mathrm{pa}}$ is estimated to 129000 t . MSY $\mathrm{B}_{\text {trigger }}$ is set at $\mathrm{B}_{\mathrm{pa}}$. Further information about biological reference points can be found in the Stock Annex and in the benchmark report from 2016 (WKSAND, 2016).

### 9.4.11 Quality of the assessment

This stock was benchmarked between the 2016 and 2017 assessment. The new sandeel area 3 r is slightly different from the previous sandeel area 3, and mainly consists of fishing grounds in Norwegian EEZ. There is a large retrospective pattern in the recruitment that overestimates high recruitments. This pattern may be caused by a variety of issues in the assessment, most likely of which are the shift in 2011 from using Danish to using Norwegian effort data and the change in the spatial coverage of the dredge survey. Even though the new assessment for SA 3r sandeel is considered uncertain, it is considered adequate as the basis for TAC advice.

### 9.4.12 Status of the Stock

The SSB has increased from below Blim in 2013 to above $B_{p a}$ since 2015, due to above average recruitment in 2013, 2014, 2016, 2018 to 2020 combined with a low fishing mortality. However, fishing mortality has increased since 2016, peaking in 2020. SSB decreased considerably between 2021 and 2022, due to high fishing mortality and decreasing recruitment (but SSB is still well above $\mathrm{B}_{\mathrm{pa}}$ ). Recruitment estimates for 2018-2020 were all above average, but declining since 2019 . Recruitment in 2021 was estimated to be below average.

### 9.4.13 Management Considerations

Since 2011 the Norwegian sandeel fishery in the current SA3r has been managed according to an area-based management plan for the Norwegian EEZ and an advice provided by the IMR in Bergen

### 9.5 Sandeel in SA 4

### 9.5.1 Catch data

Catch numbers-at-age by half-year from area SA 4 is given in Table 9.5.1. Total catch weight by year for SA 4 is given in tables 9.5.2-9.5.4. In 2021, catch numbers were dominated by ages of 1 and 2-groups, whereas older age-groups were not common. This was also the case in 2016 (Figure 9.5.1).

### 9.5.2 Weight-at-age

The methods applied to compile age-length-weight keys and mean weights-at-age in the catches and in the stock are described in the Stock Annex. The mean weights-at-age observed in the catch are given in Table 9.5.2 and Figure 9.5.2 by half year. Mean weight-at-age in the first half year seems to have recovered to above average and currently stable for all ages after the very low levels in 2001 to 2005. The second half year the mean weights are affected by the very limited sampling at this time of year.

### 9.5.3 Maturity

Maturity estimates are obtained from the averages observed in the dredge survey (1983-2016) in December as described in the Stock Annex. Maturities are listed in Table 9.5.3.

### 9.5.4 Natural mortality

Long-term averages of natural mortality-at-age from multispecies modelling of northern sandeel (SMS, WGSAM 2015, ICES 2016) were used. More details are given in the stock annex. Natural mortalities are listed in Table 9.5.8. Mortalities were not updated in response to the new WGSAM key run (WGSAM, 2020) as the update is not likely to affect long-term averages greatly.

### 9.5.5 Effort and research vessel data

## Trends in overall effort and CPUE

Table 9.5.5-9.5.7 and Figure 9.5.3 show the trends in the international effort over years measured as number of fishing days standardized to a 200 GRT vessel. The standardization includes just the effect of vessel size and does not take changes in efficiency into account. Total international standardized effort peaked in 1994, after which substantial effort reduction has taken place. The effort in 2021 were the third highest in the time-series reflecting the high TAC given. This is in contrast to the most recent decades since 2004 with the effort reflects either a closed or very limited fishery, where only 2018 showed any evident effort that lower than average.

## Tuning series used in the assessments

No commercial tuning series are used in the present assessment. CPUE data from the dredge survey (Table 9.5.4 and Figure 9.5.5) show that 2021 around average, whereas for consecutive two years prior (2019 and 2020) strong year-classes have entered.
The ability of the area 4 dredge survey to provide accurate estimates of abundance by age was discussed in detail. All of the values are estimated as stratified mean values (mean within position followed by mean within square followed by mean across squares), an approach which is known to be sensitive to skewed data at low sampling levels. Up to 2018, indices of cohorts at
age 1 averaged at 1.22 times the catch of the index of the cohort at age 0 (range $0.6-2.35$ ). The corresponding number from age 1 to 2 was 0.46 (range $0.09-1.58$ ). In 2019, the index of 1 -year olds ( 2018 cohort) was 5.75 times the index of the cohort at age 0 . This pattern persisted in 2020 where the index of 1-year olds ( 2019 cohort) was 5.10 times the index of the cohort at age 0 . The 2020 index of the 2018 cohort was 1.87 times the 2019 index of the cohort. In all cases, these values represent all time high appearance relative to earlier estimates of the cohort. In the 2021 survey index, the 2019 and the 2020 cohorts were registered as 0.24 and 0.03 times the values observed in 2020. Both of these values are the lowest relative changes observed in the time series. This led to the question of whether the 2020 should be considered a year where the survey for unknown reasons had much higher than usual catchability or the 2020 survey was accurate but a large mortality even had eliminated the sandeel. As the decline was observed in both the fished and closed area, it was considered most likely that the large mortality was caused by factors other than fishing. A possible reason mentioned was harmful algal blooms. A first look at the sandeel dredge data at the station level indicated that internal consistency (abundance of age 0 at $t$ and abundance of age 1 at $t+1$ ) was normal between 2019 (age 0) and 2020 (age 1) and followed the general relationship observed at station level between 2008 and 2021. However, between 2020 (age 0 ) and 2021 (age 1) the relationship showed a clear lack of age 1 fish in 2021. This suggests that catchability was not the issue as values consistent with the time-series were observed for the 2019 cohort and that the issue with the recent indices are likely related to the stratified mean approach in years with reduced sampling at the most productive stations. In addition, the lack of age 1 fish of the 2020 cohort in 2021, also apparent from the station level analysis, is consistent with a large mortality event. In the 2021 assessment, the 2020 index was downscaled to account for changes in sampling distribution as the 2020 index was considered to be likely to be too high due to differences in sampling distribution in this year. The group decided to keep the revised values from 2020 but to run an exploratory assessment excluding this survey year to investigate the impact that the 2020 survey index had on the 2022 assessment.

The internal consistency, i.e. the ability of the survey to follow cohorts, (Figure 9.5.4) shows a high correlation between the 0-group and 1-group explaining $54 \%$ of the variation.


Relationship between index estimated for all stations (vertical axis) and index estimated for the $\mathbf{1 1}$ stations sampled in 2020 (horizontal axis).

### 9.5.6 Data analysis

Following the Benchmark assessment (ICES, 2016) the SMS-effort model was used to estimate fishing mortalities and stock numbers-at-age by half year, using data from 1993 to 2021. In the SMS model, it is assumed that fishing mortality is proportional to fishing effort. For details about the SMS model and model settings, see the Stock Annex.

The diagnostics output from SMS are shown in Table 9.5.5. The CV of the dredge survey ("sqrt (Survey variance) $\sim \mathrm{CV}^{\prime \prime}$ in the table) is low to moderate ( $<0.60$ ) for all ages. However, the CV have increased for age 0 from 0.3 to 0.55 from the 2021 to the 2022 assessment. The survey residuals in 2020 are large and positive for both ages, indicating that the large observed indices in 2020 are not supported by other information about the abundance of these cohorts.

The model CV of catch-at-age ("sqrt(catch variance) $\sim$ CV", in Table 9.5.5 is moderate (0.74) for age 1 and 2. The catch-at-age residuals (Figure 9.5.6) show no alarming patterns, except for a tendency to positive residuals (observed catch is higher than model catch) for age 1 in the beginning of the time-series.

The CV of the fitted Stock recruitment relationship (Table 9.5.5) is high (1.50), which is also indicated by the stock recruitment plot (Figure 9.5.7). The high CV of recruitment is probably due to biological characteristic of the stock and not so much due to the quality of the assessment. The $a$ priori weight on likelihood contributions from SSR-R observations is therefore set low ( 0.05 in "objective function weight" in Table 9.5.5) such that SSB-R estimates do not contribute much to the overall likelihood and model fit.

The retrospective analysis (Figure 9.5.9) shows very consistent assessment results from one year to the next with the exception of the 2020 peel. The high recruitment in the 2019 and 2020 cohort expected from the 2020 survey was downscaled after adding the 2021 survey, leading to a very high retrospective bias in both recruitment and SSB in 2019 and 2020.

As a result of the indications that the 2020 survey may have had an abnormally high catchability, an explorative assessment was conducted removing the 2020 survey index. The results showed an assessment where the 0 -group CV of the dredge survey returned to previous levels:

| Assessment | CV 0-group in <br> the survey | CV 1-group in <br> the survey | Recruitment 2020 <br> $\left(10^{9}\right)$ | Recruitment 2021 <br> $\left(10^{9}\right)$ | SSB 2022 <br> $\left(10^{\mathbf{3}} \mathbf{t}\right)$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 2020 | 0.30 | 0.40 |  |  |  |
| 2021 | 0.30 | 0.37 | 303 | 46.5 | 72.8 |
| 2022 all data | 0.55 | 0.30 | 62.4 | 63.5 | 53.5 |
| 2022 without 2020 <br> survey | 0.30 | 0.42 | 36.3 |  |  |

The impact on the latest two recruitments and terminal year SSB were substantial ( -40 to $+37 \%$ ). Having considered these changes, the group decided that the survey index should be investigated in detail at the upcoming benchmark but that excluding individual years in the survey time series in an update assessment should be avoided. Therefore, the final assessment presented below includes all survey data.

Uncertainties of the estimated SSB, F and recruitment (Figure 9.5.9) are moderate to high.

### 9.5.7 Final assessment

The output from the assessment is presented in tables 9.5.6 (fishing mortality-at-age by year), 9.5.7 (fishing mortality-at-age by half year), 9.5.9 (stock numbers-at-age) and 9.5.10 (stock summary).

### 9.5.8 Historic Stock Trends

The stock summary (Figure 9.5.13 and Table 9.5.10) shows that SSB have been at or below $\mathrm{B}_{\mathrm{lim}}$ from 2007 to 2010. Since 2010, SSB has been above $B_{\lim }$ in 2011, 2016 and 2021, but below $B_{p a}$ in 2015 only. SSB is estimated at 72766 in 2022. $\mathrm{F}_{(1-2)}$ is estimated to have been very low since 2005 increasing in 2018 to the highest since 2004 with a decrease in 2019 and 2020, to a record-high (second) F in 2021. Recruitment has been high in 2014, 2016, 2017 and 2019. The high F in 2021 was the result of the lack of confirmation in the 2021 survey of the high survey indices in 2020. The biomass did however not decline below Blim.

### 9.5.9 Short-term forecasts

## Input

Input to the short-term forecast is given in Table 9.5.11. Stock numbers in the TAC year are taken from the assessment for age 1 and older. Recruitment in 2022 is the geometric mean of the recruitment 2011-2020 (55 billion-at-age 0). The exploitation pattern and $\mathrm{F}_{\mathrm{sq}}$ is taken from the assessment values in 2021. However, as the SMS-model assumes a fixed exploitation pattern, the choice of years is not critical. Mean weight-at-age in the catch and in the sea is the average value (i.e. 5-year mean) for the years 2017-2021. Natural mortality and maturity are as applied in the assessment in final year. The Stock Annex gives more details about the forecast methodology.

## Output

The short-term forecast (Table 9.3.12) shows that a SSB will be below the MSY B trigger of 102000 t and above $B_{l i m}$ of 48.000 t in 2022. Although, even a fishing mortality of zero will bring SSB below Bpa. The TAC is therefore 0 t in 2022. However, a monitoring TAC of 5000 t is recommended to ensure the quality of the assessment, consistent with previous year's advice (ICES, 2019).

### 9.5.10 Biological reference points

$B_{\lim }$ is set at 48000 t and $\mathrm{B}_{\mathrm{pa}}$ at 102000 t . MSY $\mathrm{B}_{\text {trigger }}$ is set at $\mathrm{B}_{\mathrm{pa}}$.
Further information about biological reference points for sandeel in SA 4 can be found in the Stock Annex.

### 9.5.10.1 Quality of the assessment

The analytical assessment of SA 4 was initiated in 2017 following the 2016 benchmark of the stock.

Abundance of the 1-group, which in most years dominates the catches in most years, is estimated on the basis of the 0 -group index from the dredge survey in December of the preceding year. The model estimates a low variance on the survey index for age 0 but the CV on SSB in 2022 is high (0.40).

### 9.5.10.2 Status of the Stock

Recruitment in 2014, 2016, 2017, 2019, 2020 and 2021 are all above the long-term average, while 2018 is lower. A very restrictive F since 2005 together with the return of recruitment to historic levels has resulted in SSB above $B_{p a}$ in 2016 to 2019 and in 2021. It is between $B_{l i m}$ and $B_{p a}$ in 2020 and 2022.

### 9.5.10.3 Management considerations

A management plan needs to be developed. The ICES approach for MSY based management of a short-lived species such as sandeel is the escapement strategy, i.e. to maintain SSB above MSY $B_{\text {trigger }}$ after the fishery has taken place. Management strategy evaluations presented at the ICES WKMSYREF2 and WKMSYREF5 meeting (ICES, 2014a, 2017) indicated that the escapementstrategy is not sustainable for short-lived species, unless the strategy is combined with a ceiling ( $\mathrm{F}_{\text {cap }}$ ) on the fishing mortality. This means that if the TAC that comes out of the Escapementstrategy corresponds to an $\mathrm{F}_{\text {bar }}$ that exceeds $\mathrm{F}_{\text {cap }}$, then the Escapement-strategy should be disqualified and the TAC is instead determined based on a fishing mortality corresponding to $\mathrm{F}_{\text {cap }}$. $\mathrm{F}_{\text {cap }}$ for SA 4 (in accordance with the concepts of a conventional management strategy evaluation and a selection criterion of 0.05 probability of $\mathrm{SSB}<\mathrm{Blim}_{\mathrm{lim}}$ ) is set at 0.15 (ICES, 2016).

However, it is important to acknowledge that the assessment model does not consider that a significant part of SA 4 (East coast of Scotland, sand banks covered by the dredge survey) is closed to fishing. Accordingly, the estimated TAC would in practice be achieved in a much smaller region than the whole SA 4 which raises concerns of local depletion. Therefore, such a high TAC may not be sustainable and future work should consider how to incorporate the spatial management in place in future advice.

### 9.6 Sandeel in SA 5r

### 9.6.1 Catch data

Total catch weight by year for SA 5 is given in tables 9.1.2-9.1.4. No catches from this area have been taken since 2004. Acoustic surveys have been carried out since 2005 on Vikingbanken, which is the main sandeel ground in SA 5. The survey estimates show that the biomass of sandeel on Vikingbanken still is very low (Table 9.6.1)

### 9.7 Sandeel in SA 6

### 9.7.1 Catch data

Total catch weight by year for SA 6 is given in tables 9.1.2-9.1.4.

### 9.8 Sandeel in SA 7

### 9.8.1 Catch data

Total catch weight by year for SA 7 is given in tables 9.1.2-9.1.4 No catches from this area have been taken since 2003.

### 9.9 Sandeel in ICES Division 6.a

### 9.9.1 Catch data

Total catch weight by year for sandeel in ICES Division 6.a is given in Table 9.9.1 Catches from this area have been zero or very low since 2005.

### 9.10 References

ICES. 2007. Report of the Ad Hoc Group on Sandeel. ICES CM 2007/ACFM:38
ICES. 2008. Report of the Ad Hoc Group on Sandeel. ICES CM 2008/ACOM:59
ICES. 2016. Report of the Benchmark on Sandeel (WKSand 2016), 31 October - 4 November 2016, Bergen, Norway. ICES CM 2016/ACOM:33. 301pp.

ICES. 2016 - also reference to WGSAM 2015 (published in 2016?)
ICES. 2018. Benchmark Workshop on Sprat (WKSPRAT 2018). ICES WKSPRAT Report 2018, 5-9 November 2018. ICES HQ, Copenhagen, Denmark. ICES CM 2018/ACOM:35.60 pp.

ICES. 2019. Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$ (HAWG). ICES Scientific Reports. 1:2. 971 pp. http://doi.org/10.17895/ices.pub. 5460 - WD01 Marine Scotland Science sandeel dredge survey indices for SA4.

Johnsen, E. (2020). Råd for tobisfiskeriet i norsk sone for 2020 og rapport for tobistokt i Nordsjøen 23. april - 13. mai. Toktrapport/Havforskningsinstituttet/ISSN 1503 6294/Nr.9-2020. Summary in English in Vedlegg3. (https://www.hi.no/resources/publikasjoner/toktrapporter/2020/Toktrapport2020281 VersionFinal.pdf)
van Deurs, M., Hartvig, M., \& Steffensen, J. F. (2011). Critical threshold size for overwintering sandeels (Ammodytes marinus). Marine biology, 158(12), 2755-2764.

Table 9.1.1 Sandeel. Official catches (' $\mathbf{O 0 0} \mathbf{t}$ ), 1952-2021 for area 27.4 and 27.3.a. Note that catches from 27.3.a are only available from 1973-2021.

| Year | Area | Denmark | Germany | Faroes | Ireland | Netherlands | Norway | Sweden | UK | Lithuania | France | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1952 | 27.4 | 1.6 | - | - | - | - | - | - | - | - | - | 1.6 |
| 1953 | 27.4 | 4.5 | - | - | - | - | - | - | - | - | - | 4.5 |
| 1954 | 27.4 | 10.8 | - | - | - | - | - | - | - | - | - | 10.8 |
| 1955 | 27.4 | 37.6 | - | - | - | - | - | - | - | - | - | 37.6 |
| 1956 | 27.4 | 81.9 | 5.3 | - | - | - | 1.5 | - | - | - | - | 88.7 |
| 1957 | 27.4 | 73.3 | 25.5 | - | - | 3.7 | 3.2 | - | - | - | - | 105.7 |
| 1958 | 27.4 | 74.4 | 20.2 | - | - | 1.5 | 4.8 | - | - | - | - | 100.9 |
| 1959 | 27.4 | 77.1 | 17.4 | - | - | 5.1 | 8 | - | - | - | - | 107.6 |
| 1960 | 27.4 | 100.8 | 7.7 | - | - | - | 12.1 | - | - | - | - | 120.6 |
| 1961 | 27.4 | 73.6 | 4.5 | - | - | - | 5.1 | - | - | - | - | 83.2 |
| 1962 | 27.4 | 97.4 | 1.4 | - | - | - | 10.5 | - | - | - | - | 109.3 |
| 1963 | 27.4 | 134.4 | 16.4 | - | - | - | 11.5 | - | - | - | - | 162.3 |
| 1964 | 27.4 | 104.7 | 12.9 | - | - | - | 10.4 | - | - | - | - | 128.0 |
| 1965 | 27.4 | 123.6 | 2.1 | - | - | - | 4.9 | - | - | - | - | 130.6 |
| 1966 | 27.4 | 138.5 | 4.4 | - | - | - | 0.2 | - | - | - | - | 143.1 |
| 1967 | 27.4 | 187.4 | 0.3 | - | - | - | 1 | - | - | - | - | 188.7 |
| 1968 | 27.4 | 193.6 | - | - | - | - | 0.1 | - | - | - | - | 193.7 |
| 1969 | 27.4 | 112.8 | - | - | - | - | - | - | 0.5 | - | - | 113.3 |
| 1970 | 27.4 | 187.8 | - | - | - | - | - | - | 3.6 | - | - | 191.4 |
| 1971 | 27.4 | 371.6 | 0.1 | - | - | - | 2.1 | - | 8.3 | - | - | 382.1 |
| 1972 | 27.4 | 329.0 | - | - | - | - | 18.6 | 8.8 | 2.1 | - | - | 358.5 |
| 1973 | 27.3.a + 27.4 | 282.9 | - | 1.4 | - | - | 17.2 | 1.1 | 4.2 | - | - | 306.8 |
| 1974 | 27.3.a + 27.4 | 432.0 | - | 6.4 | - | - | 78.6 | 0.2 | 15.5 | - | - | 532.7 |


| Year | Area | Denmark | Germany | Faroes | Ireland | Netherlands | Norway | Sweden | UK | Lithuania | France | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1975 | 27.3.a + 27.4 | 372.0 | - | 4.9 | - | - | 54 | 0.179 | 13.6 | - | - | 444.7 |
| 1976 | 27.3.a + 27.4 | 446.1 | - | - | - | - | 44.2 | 0.067 | 18.7 | - | - | 509.1 |
| 1977 | 27.3.a + 27.4 | 680.4 | - | 11.4 | - | - | 78.7 | 6.132 | 25.5 | - | - | 802.1 |
| 1978 | 27.3.a + 27.4 | 669.2 | - | 12.102 | - | - | 93.5 | 2.321 | 32.5 | - | - | 809.7 |
| 1979 | 27.3.a + 27.4 | 483.1 | - | 13.2 | - | - | 101.4 | 0.003 | 13.4 | - | - | 611.1 |
| 1980 | 27.3.a + 27.4 | 581.6 | - | 7.2 | - | - | 144.8 | 0.009 | 34.3 | - | - | 767.9 |
| 1981 | 27.3.a + 27.4 | 523.8 | - | 4.9 | - | - | 52.6 | 0.044 | 46.7 | - | - | 628.1 |
| 1982 | 27.3.a + 27.4 | 528.4 | - | 4.9 | - | - | 46.5 | 0.405 | 52.2 | - | - | 632.4 |
| 1983 | 27.3.a + 27.4 | 515.2 | - | 2 | - | - | 12.378 | 0.23 | 37 | - | - | 566.8 |
| 1984 | 27.3.a + 27.4 | 618.9 | - | 11.3 | - | - | 28.3 | - | 32.6 | - | - | 691.1 |
| 1985 | 27.3.a + 27.4 | 601.7 | - | 3.9 | - | - | 13.1 | - | 17.2 | - | - | 635.9 |
| 1986 | 27.3.a + 27.4 | 832.7 | - | 1.2 | - | - | 82.1 | 0.002 | 12 | - | - | 928.0 |
| 1987 | 27.3.a + 27.4 | 609.2 | - | 18.6 | - | - | 193.4 | - | 7.2 | - | - | 828.4 |
| 1988 | 27.3.a + 27.4 | 708.8 | - | 15.5 | - | - | 185.265 | - | 5.8 | - | - | 915.3 |
| 1989 | 27.3.a + 27.4 | 841.6 | - | 16.6 | - | - | 186.84 | - | 11.5 | - | - | 1056.3 |
| 1990 | 27.3.a + 27.4 | 512.1 | - | 2.2 | - | 0.3 | 88.999 | - | 3.9 | - | - | 607.5 |
| 1991 | 27.3.a + 27.4 | 726.5 | - | 11.2 | - | - | 128.8 | - | 1.2 | - | - | 867.7 |
| 1992 | 27.3.a + 27.4 | 803.7 | - | 9.1 | - | - | 89.349 | 0.588 | 4.9 | - | - | 907.6 |
| 1993 | 27.3.a + 27.4 | 533.4 | - | 0.344 | - | - | 95.5 | - | 1.5 | - | - | 630.8 |
| 1994 | 27.3.a + 27.4 | 688.6 | - | 10.3 | - | - | 165.8 | 0.02 | 5.9 | - | - | 870.7 |
| 1995 | 27.3.a + 27.4 | 672.6 | - | - | - | - | 263.4 | 0.04 | 6.7 | - | - | 942.8 |
| 1996 | 27.3.a + 27.4 | 649.5 | - | 5 | - | - | 160.7 | - | 9.7 | - | - | 824.8 |
| 1997 | 27.3.a + 27.4 | 831.8 | - | 11.2 | - | - | 350.209 | 0.001 | 24.6 | - | - | 1217.8 |
| 1998 | 27.3.a + 27.4 | 628.2 | - | 11 | - | - | 343.3 | 8.565 | 23.8 | - | - | 1014.8 |
| 1999 | 27.3.a + 27.4 | 511.3 | - | 13.2 | $0.4$ |  | 187.6 | 23.21 | 11.5 | - | - | 747.1 |


| Year | Area | Denmark | Germany | Faroes | Ireland | Netherlands | Norway | Sweden | UK | Lithuania | France | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2000 | 27.3.a + 27.4 | 557.3 | - | - | - | - | 119 | 28.643 | 10.8 | - | - | 715.7 |
| 2001 | 27.3.a + 27.4 | 650.0 | - | - | - | - | 183 | 49.979 | 1.3 | - | - | 884.3 |
| 2002 | 27.3.a + 27.4 | 659.5 | - | 0.025 | - | - | 176 | 19.211 | 4.9 | - | - | 859.6 |
| 2003 | 27.3.a + 27.4 | 282.8 | - | - | - | - | 29.6 | 21.822 | 0.5 | - | - | 334.7 |
| 2004 | 27.3.a + 27.4 | 288.8 | 2.7 | - | - | - | 48.5 | 33.331 | - | - | - | 373.3 |
| 2005 | 27.3.a + 27.4 | 158.9 | - | - | - | - | 17.3 | 0.472 | - | - | - | 176.6 |
| 2006 | 27.3.a + 27.4 | 255.4 | 3.2 | - | - | - | 5.6 | 27.858 | - | - | - | 292.8 |
| 2007 | 27.3.a + 27.4 | 166.9 | 1 | 2 | - | - | 51.1 | 7.875 | 1 | - | - | 229.9 |
| 2008 | 27.3.a + 27.4 | 246.9 | 4.4 | 2.4 | - | - | 81.6 | 12.51 | - | - | - | 347.8 |
| 2009 | 27.3.a + 27.4 | 293.0 | 12.2 | 2.5 | - | 1.8 | 27.4 | 12.4 | 3.6 | - | - | 352.9 |
| 2010 | 27.3.a + 27.4 | 285.9 | 13 | - | - | - | 78 | 32.72 | 4 | 0.6 | - | 414.2 |
| 2011 | 27.3.a + 27.4 | 278.5 | 9.8 | - | - | - | 109 | 32.717 | 6.1 | 1.65 | - | 437.8 |
| 2012 | 27.3.a + 27.4 | 51.8 | 1.70844 | - | - | 0.317 | 42.4804 | 5.652 | - | - | 0.00328 | 101.9 |
| 2013 | 27.3.a + 27.4 | 208.7 | 7.89833 | - | - | 0.387 | 30.44615 | 26.811 | 2.436 | 1.32035 | 0.00387 | 278.0 |
| 2014 | 27.3.a + 27.4 | 156.5 | 5.05196 | - | - | - | 82.49885 | 18.815 | 0.03 | 0.82463 | 0.00262 | 263.8 |
| 2015 | 27.3.a + 27.4 | 166.5 | 9.09745 | - | - | - | 100.85862 | 33.43879 | 2.00003 | - | $4 \mathrm{e}-05$ | 311.9 |
| 2016 | 27.3.a + 27.4 | 28.4 | - | - | - | - | 40.86736 | 4.2595 | - | - | - | 73.5 |
| 2017 | 27.3.a + 27.4 | 353.9 | 5.7985 | - | - | - | 120.20534 | 42.33624 | 3.32389 | - | - | 525.5 |
| 2018 | 27.3.a + 27.4 | 175.6 | 5.937 | - | - | - | 69.53076 | 16.655512 | 1.848779 | - | - | 269.6 |
| 2019 | 27.3.a + 27.4 | 93.7 | 3.95 | - | - | $1.2 \mathrm{e}-05$ | 124.7855 | 11.54334 | 1.05792 | - | - | 235.1 |
| 2020 | 27.3.a + 27.4 | 169.2 | 3.81522 | - | - | - | 244.37908 | 25.5189974 | 3.89595 | - | 2e-05 | 446.8 |
| 2021 | 27.3.a + 27.4 | 69.9 | 1.8223 | - | - | - | 146.442119 | 14.977623 | - | - | - | 233.2 |

Table 9.1.2 Sandeel. Total catch (tonnes) by area as estimated by ICES.

|  | Area 1r | Area 2r | Area 3r | Area 4 | Area 5r | Area 6 | Area 7r | All |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 382629 | 156208 | 24828 | 2782 | 0 | 364 | 0 | 566810 |
| 1984 | 498671 | 133398 | 49111 | 2563 | 5821 | 791 | 744 | 691098 |
| 1985 | 460057 | 111889 | 20859 | 38122 | 3004 | 1927 | 0 | 635858 |
| 1986 | 382844 | 225581 | 282334 | 12718 | 628 | 13219 | 10650 | 927973 |
| 1987 | 373021 | 49067 | 395298 | 8154 | 1713 | 1163 | 0 | 828417 |
| 1988 | 422805 | 151543 | 336919 | 1338 | 0 | 2726 | 0 | 915330 |
| 1989 | 446129 | 227292 | 374252 | 4384 | 2903 | 909 | 450 | 1056318 |
| 1990 | 306302 | 133796 | 163224 | 3314 | 374 | 499 | 0 | 607508 |
| 1991 | 332204 | 215565 | 274839 | 41372 | 1168 | 17 | 2529 | 867694 |
| 1992 | 558602 | 184241 | 87022 | 68905 | 1099 | 4277 | 3455 | 907600 |
| 1993 | 144389 | 147964 | 200123 | 133136 | 586 | 4490 | 80 | 630768 |
| 1994 | 193241 | 244944 | 267281 | 158690 | 2757 | 3748 | 4 | 870666 |
| 1995 | 400759 | 122155 | 213168 | 52591 | 152274 | 1830 | 0 | 942776 |
| 1996 | 291709 | 186460 | 159304 | 158490 | 27570 | 1263 | 1 | 824796 |
| 1997 | 426414 | 242680 | 474093 | 58446 | 10772 | 2372 | 3061 | 1217839 |
| 1998 | 372604 | 99305 | 474843 | 58911 | 3010 | 941 | 5228 | 1014841 |
| 1999 | 425478 | 70085 | 193621 | 53338 | 145 | 0 | 4415 | 747083 |
| 2000 | 374724 | 101952 | 196525 | 37792 | 303 | 0 | 4371 | 715667 |
| 2001 | 540248 | 97210 | 196209 | 47918 | 1678 | 26 | 971 | 884260 |
| 2002 | 610161 | 120520 | 115207 | 12762 | 8 | 493 | 453 | 859604 |
| 2003 | 178642 | 56248 | 35365 | 64049 | 44 | 111 | 260 | 334718 |
| 2004 | 215352 | 116837 | 33658 | 6882 | 0 | 573 | 0 | 373302 |
| 2005 | 126261 | 34569 | 13994 | 1557 | 0 | 259 | 0 | 176640 |
| 2006 | 247510 | 37952 | 7094 | 86 | 0 | 161 | 0 | 292802 |
| 2007 | 110395 | 44069 | 75376 | 11 | 4 | 0 | 0 | 229855 |
| 2008 | 236069 | 35655 | 74943 | 1168 | 0 | 0 | 0 | 347836 |
| 2009 | 309712 | 37049 | 6161 | 0 | 0 | 0 | 0 | 352922 |
| 2010 | 300896 | 52470 | 60542 | 275 | 0 | 0 | 0 | 414183 |
| 2011 | 320241 | 24310 | 92450 | 270 | 0 | 489 | 0 | 437761 |
| 2012 | 45954 | 12672 | 40141 | 2618 | 0 | 214 | 0 | 101599 |
| 2013 | 214787 | 48172 | 9838 | 5119 | 0 | 72 | 0 | 277989 |
| 2014 | 99059 | 64707 | 95426 | 4505 | 0 | 65 | 0 | 263762 |
| 2015 | 162861 | 39492 | 104607 | 4736 | 0 | 198 | 0 | 311894 |
| 2016 | 15407 | 9569 | 44074 | 6232 | 0 | 123 | 0 | 75405 |
| 2017 | 242069 | 141314 | 115642 | 18474 | 0 | 0 | 0 | 517499 |
| 2018 | 131898 | 20240 | 75143 | 42298 | 0 | 0 | 0 | 269579 |


|  | Area 1r | Area 2r | Area 3r | Area 4 | Area 5r | Area 6 | Area 7r | All |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2019 | 86723 | 5151 | 136901 | 6666 | 0 | 96 | 0 | 235537 |
| 2020 | 108944 | 70198 | 247411 | 20116 | 0 | 97 | 0 | 446765 |
| 2021 | 16944 | 4980 | 157752 | 53370 | 0 | 133 | 0 | 233178 |
| arith. mean | 284941 | 99423 | 151938 | 30619 | 5535 | 1119 | 940 | 574516 |

Table 9.1.3 Sandeel. Total catch (tonnes) by area, first half year as estimated by ICES.

|  | Area 1r | Area 2r | Area 3r | Area 4 | Area 5r | Area 6 | Area 7r | All |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 314744 | 92566 | 21008 | 2782 | 0 | 364 | 0 | 431465 |
| 1984 | 419640 | 86141 | 43578 | 2563 | 5821 | 735 | 744 | 559223 |
| 1985 | 377702 | 76422 | 17131 | 37900 | 3004 | 973 | 0 | 513132 |
| 1986 | 346053 | 181733 | 138020 | 12539 | 108 | 12020 | 7832 | 698305 |
| 1987 | 307194 | 36400 | 394339 | 7833 | 1713 | 1091 | 0 | 748570 |
| 1988 | 395186 | 107289 | 288174 | 1257 | 0 | 2114 | 0 | 794020 |
| 1989 | 435721 | 173510 | 371557 | 4382 | 1587 | 897 | 450 | 988104 |
| 1990 | 285321 | 101899 | 105554 | 2926 | 0 | 485 | 0 | 496185 |
| 1991 | 257591 | 153869 | 215770 | 17140 | 1168 | 17 | 2529 | 648083 |
| 1992 | 521575 | 135823 | 83068 | 67068 | 1099 | 4270 | 3455 | 816357 |
| 1993 | 129403 | 86179 | 155984 | 123143 | 250 | 4393 | 3 | 499354 |
| 1994 | 177685 | 184792 | 242027 | 147019 | 2754 | 3222 | 4 | 757503 |
| 1995 | 365681 | 70518 | 203151 | 52497 | 152269 | 1829 | 0 | 845945 |
| 1996 | 257507 | 63193 | 110862 | 48496 | 14551 | 1168 | 0 | 495777 |
| 1997 | 345199 | 178735 | 394181 | 47668 | 8615 | 2194 | 2448 | 979040 |
| 1998 | 352275 | 70075 | 354639 | 57373 | 2907 | 939 | 4565 | 842773 |
| 1999 | 395813 | 27461 | 94655 | 51183 | 145 | 0 | 2152 | 571409 |
| 2000 | 333044 | 82405 | 192474 | 37792 | 288 | 0 | 3808 | 649812 |
| 2001 | 368782 | 49319 | 59951 | 47492 | 1678 | 26 | 735 | 527983 |
| 2002 | 604584 | 105397 | 114646 | 12762 | 8 | 493 | 101 | 837991 |
| 2003 | 155006 | 25111 | 22803 | 62580 | 44 | 111 | 187 | 265841 |
| 2004 | 199483 | 91405 | 21632 | 6860 | 0 | 571 | 0 | 319951 |
| 2005 | 121795 | 24841 | 13982 | 1557 | 0 | 259 | 0 | 162434 |
| 2006 | 241345 | 23497 | 6959 | 55 | 0 | 160 | 0 | 272015 |
| 2007 | 110389 | 44069 | 75376 | 11 | 4 | 0 | 0 | 229849 |
| 2008 | 232249 | 32602 | 74943 | 1168 | 0 | 0 | 0 | 340963 |
| 2009 | 293529 | 25399 | 6024 | 0 | 0 | 0 | 0 | 324952 |
| 2010 | 293359 | 44910 | 60251 | 275 | 0 | 0 | 0 | 398796 |
| 2011 | 316351 | 24045 | 92450 | 270 | 0 | 489 | 0 | 433605 |
| 2012 | 45946 | 11520 | 40141 | 2618 | 0 | 213 | 0 | 100438 |
| 2013 | 207886 | 43818 | 9838 | 5119 | 0 | 72 | 0 | 266733 |
| 2014 | 94278 | 62110 | 95426 | 4505 | 0 | 65 | 0 | 256383 |
| 2015 | 162860 | 38723 | 104607 | 4736 | 0 | 197 | 0 | 311123 |


|  | Area 1r | Area 2r | Area 3r | Area 4 | Area 5r | Area 6 | Area 7r | All |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2016 | 15407 | 9519 | 44074 | 6232 | 0 | 123 | 0 | 75354 |
| 2017 | 239742 | 130640 | 115642 | 18474 | 0 | 0 | 0 | 504498 |
| 2018 | 125303 | 19957 | 74567 | 42298 | 0 | 0 | 0 | 262126 |
| 2019 | 71590 | 5148 | 136896 | 6666 | 0 | 96 | 0 | 220396 |
| 2020 | 107762 | 69894 | 247411 | 19896 | 0 | 97 | 0 | 445060 |
| 2021 | 16481 | 4978 | 157627 | 51075 | 0 | 133 | 0 | 230293 |
| arith. mean | 257473 | 71690 | 128242 | 26057 | 5077 | 1021 | 744 | 490304 |

Table 9.1.4 Sandeel. Total catch (tonnes) by area, second half year as estimated by ICES.

|  | Area 1r | Area 2r | Area 3r | Area 4 | Area 5r | Area 6 | Area 7r | All |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 67885 | 63641 | 3820 | 0 | 0 | 0 | 0 | 135345 |
| 1984 | 79031 | 47257 | 5532 | 0 | 0 | 55 | 0 | 131875 |
| 1985 | 82355 | 35468 | 3728 | 222 | 0 | 953 | 0 | 122726 |
| 1986 | 36791 | 43848 | 144314 | 179 | 519 | 1199 | 2818 | 229668 |
| 1987 | 65828 | 12667 | 959 | 321 | 0 | 72 | 0 | 79847 |
| 1988 | 27619 | 44254 | 48744 | 81 | 0 | 612 | 0 | 121310 |
| 1989 | 10407 | 53782 | 2694 | 2 | 1316 | 12 | 0 | 68214 |
| 1990 | 20981 | 31896 | 57670 | 388 | 374 | 14 | 0 | 111323 |
| 1991 | 74613 | 61697 | 59069 | 24232 | 0 | 0 | 0 | 219611 |
| 1992 | 37027 | 48418 | 3954 | 1837 | 0 | 6 | 0 | 91243 |
| 1993 | 14986 | 61785 | 44138 | 9993 | 336 | 97 | 78 | 131414 |
| 1994 | 15557 | 60152 | 25254 | 11671 | 3 | 526 | 0 | 113163 |
| 1995 | 35078 | 51637 | 10017 | 94 | 5 | 1 | 0 | 96831 |
| 1996 | 34202 | 123267 | 48441 | 109994 | 13020 | 95 | 1 | 329019 |
| 1997 | 81215 | 63945 | 79912 | 10779 | 2157 | 179 | 613 | 238799 |
| 1998 | 20329 | 29230 | 120203 | 1538 | 103 | 1 | 663 | 172068 |
| 1999 | 29666 | 42624 | 98967 | 2155 | 0 | 0 | 2263 | 175674 |
| 2000 | 41680 | 19547 | 4051 | 0 | 15 | 0 | 562 | 65855 |
| 2001 | 171466 | 47891 | 136258 | 426 | 0 | 0 | 236 | 356277 |
| 2002 | 5577 | 15123 | 561 | 0 | 0 | 0 | 352 | 21613 |
| 2003 | 23636 | 31137 | 12562 | 1469 | 0 | 0 | 73 | 68877 |
| 2004 | 15869 | 25432 | 12026 | 22 | 0 | 2 | 0 | 53351 |
| 2005 | 4466 | 9728 | 11 | 0 | 0 | 0 | 0 | 14206 |
| 2006 | 6165 | 14455 | 136 | 30 | 0 | 0 | 0 | 20787 |
| 2007 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 6 |
| 2008 | 3821 | 3053 | 0 | 0 | 0 | 0 | 0 | 6873 |
| 2009 | 16183 | 11650 | 137 | 0 | 0 | 0 | 0 | 27970 |
| 2010 | 7537 | 7560 | 291 | 0 | 0 | 0 | 0 | 15387 |
| 2011 | 3891 | 265 | 0 | 0 | 0 | 0 | 0 | 4156 |
| 2012 | 8 | 1153 | 0 | 0 | 0 | 0 | 0 | 1161 |


|  | Area 1r | Area 2r | Area 3r | Area 4 | Area 5r | Area 6 | Area 7r | All |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2013 | 6902 | 4354 | 0 | 0 | 0 | 0 | 0 | 11256 |
| 2014 | 4781 | 2598 | 0 | 0 | 0 | 0 | 0 | 7379 |
| 2015 | 1 | 769 | 0 | 0 | 0 | 0 | 0 | 771 |
| 2016 | 0 | 50 | 0 | 0 | 0 | 0 | 0 | 51 |
| 2017 | 2327 | 10673 | 0 | 0 | 0 | 0 | 0 | 13000 |
| 2018 | 6595 | 283 | 576 | 0 | 0 | 0 | 0 | 7453 |
| 2019 | 15133 | 3 | 5 | 0 | 0 | 0 | 0 | 15141 |
| 2020 | 1182 | 304 | 0 | 220 | 0 | 0 | 0 | 1705 |
| 2021 | 463 | 3 | 125 | 2295 | 0 | 0 | 0 | 2885 |
| arith. mean | 27468 | 27733 | 23696 | 4563 | 458 | 98 | 196 | 84213 |

Table 9.1.5 Sandeel. Effort (days fishing for a standard 200 GT vessel) by area, as estimated by ICES.

|  | Area 1r | Area 2r | Area 3r | Area 4 | Area 5r | Area 6 | Area 7r | All |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 8992 | 4719 | 864 | 63 | 0 | 9 | 0 | 14649 |
| 1984 | 10166 | 4009 | 1378 | 48 | 212 | 50 | 37 | 15901 |
| 1985 | 10876 | 3570 | 619 | 655 | 139 | 65 | 0 | 15923 |
| 1986 | 7372 | 5038 | 4641 | 284 | 12 | 469 | 145 | 17962 |
| 1987 | 5680 | 1153 | 5094 | 177 | 64 | 45 | 0 | 12213 |
| 1988 | 7980 | 3876 | 7472 | 42 | 0 | 90 | 0 | 19460 |
| 1989 | 8553 | 6552 | 7677 | 57 | 31 | 44 | 0 | 22914 |
| 1990 | 8529 | 4209 | 5143 | 55 | 0 | 24 | 0 | 17960 |
| 1991 | 5991 | 5117 | 5864 | 338 | 19 | 1 | 0 | 17330 |
| 1992 | 8805 | 4944 | 2383 | 571 | 0 | 197 | 0 | 16900 |
| 1993 | 3893 | 4396 | 5124 | 1387 | 29 | 265 | 0 | 15093 |
| 1994 | 3149 | 4230 | 4854 | 1588 | 0 | 114 | 0 | 13934 |
| 1995 | 5899 | 2497 | 3791 | 437 | 1915 | 50 | 0 | 14589 |
| 1996 | 5497 | 4608 | 4352 | 1464 | 605 | 48 | 0 | 16573 |
| 1997 | 5366 | 5308 | 7749 | 622 | 0 | 60 | 6 | 19111 |
| 1998 | 6580 | 2743 | 11062 | 611 | 96 | 26 | 0 | 21118 |
| 1999 | 8900 | 1975 | 6179 | 850 | 0 | 0 | 0 | 17904 |
| 2000 | 7141 | 2597 | 4117 | 421 | 5 | 0 | 149 | 14429 |
| 2001 | 11021 | 2505 | 4726 | 669 | 0 | 1 | 0 | 18921 |
| 2002 | 8162 | 3162 | 2491 | 140 | 1 | 13 | 0 | 13968 |
| 2003 | 6805 | 2351 | 1634 | 1098 | 19 | 6 | 0 | 11913 |
| 2004 | 7057 | 4208 | 1264 | 203 | 0 | 27 | 0 | 12758 |
| 2005 | 3412 | 1131 | 468 | 88 | 0 | 10 | 0 | 5109 |
| 2006 | 4160 | 1235 | 205 | 1 | 0 | 5 | 0 | 5606 |
| 2007 | 1560 | 874 | 1214 | 1 | 0 | 0 | 0 | 3650 |
| 2008 | 2878 | 906 | 1344 | 7 | 0 | 0 | 0 | 5136 |
| 2009 | 3551 | 802 | 111 | 0 | 0 | 0 | 0 | 4464 |


|  | Area 1r | Area 2r | Area 3r | Area 4 | Area 5r | Area 6 | Area 7r | All |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2010 | 2859 | 1136 | 1446 | 4 | 0 | 0 | 0 | 5444 |
| 2011 | 3195 | 677 | 924 | 7 | 0 | 18 | 0 | 4821 |
| 2012 | 585 | 472 | 561 | 68 | 0 | 13 | 0 | 1699 |
| 2013 | 3876 | 1799 | 273 | 37 | 0 | 8 | 0 | 5992 |
| 2014 | 2270 | 1416 | 1072 | 51 | 0 | 4 | 0 | 4812 |
| 2015 | 2073 | 1233 | 1412 | 43 | 0 | 5 | 0 | 4767 |
| 2016 | 146 | 429 | 561 | 79 | 0 | 6 | 0 | 1220 |
| 2017 | 2711 | 2082 | 1198 | 166 | 0 | 0 | 0 | 6157 |
| 2018 | 3126 | 563 | 1437 | 524 | 0 | 0 | 0 | 5651 |
| 2019 | 2823 | 136 | 1957 | 203 | 0 | 3 | 0 | 5121 |
| 2020 | 2696 | 1384 | 3392 | 165 | 0 | 5 | 0 | 7642 |
| 2021 | 418 | 336 | 2049 | 1378 | 0 | 4 | 0 | 4185 |
| arith. mean | 5250 | 2574 | 3028 | 374 | 81 | 43 | 9 | 11359 |

Table 9.1.6 Sandeel. Effort (days fishing for a standard 200 GT vessel) by area, first half year as estimated by ICES.

|  | Area 1r | Area 2r | Area 3r | Area 4 | Area 5r | Area 6 | Area 7r | All |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 6926 | 3032 | 739 | 63 | 0 | 9 | 0 | 10770 |
| 1984 | 7910 | 2471 | 1172 | 48 | 212 | 46 | 37 | 11896 |
| 1985 | 8449 | 2564 | 508 | 652 | 139 | 29 | 0 | 12341 |
| 1986 | 6568 | 3884 | 2508 | 281 | 4 | 437 | 81 | 13763 |
| 1987 | 4287 | 779 | 5063 | 161 | 64 | 42 | 0 | 10395 |
| 1988 | 7172 | 2660 | 6030 | 40 | 0 | 69 | 0 | 15970 |
| 1989 | 8240 | 4852 | 7586 | 56 | 31 | 42 | 0 | 20808 |
| 1990 | 8008 | 3380 | 3738 | 49 | 0 | 24 | 0 | 15201 |
| 1991 | 4588 | 3538 | 4750 | 111 | 19 | 1 | 0 | 13008 |
| 1992 | 7926 | 3793 | 2290 | 309 | 0 | 197 | 0 | 14514 |
| 1993 | 3496 | 2597 | 3950 | 1200 | 29 | 256 | 0 | 11527 |
| 1994 | 2852 | 3097 | 4411 | 1410 | 0 | 98 | 0 | 11867 |
| 1995 | 5298 | 1527 | 3589 | 436 | 1915 | 50 | 0 | 12815 |
| 1996 | 4805 | 1627 | 3147 | 519 | 441 | 48 | 0 | 10587 |
| 1997 | 3997 | 3440 | 5895 | 490 | 0 | 52 | 0 | 13874 |
| 1998 | 6011 | 1707 | 7059 | 576 | 93 | 26 | 0 | 15473 |
| 1999 | 7875 | 772 | 3204 | 850 | 0 | 0 | 0 | 12702 |
| 2000 | 6181 | 1991 | 4040 | 421 | 5 | 0 | 149 | 12786 |
| 2001 | 8041 | 1362 | 1681 | 656 | 0 | 1 | 0 | 11741 |
| 2002 | 7942 | 2489 | 2491 | 140 | 1 | 13 | 0 | 13076 |
| 2003 | 5907 | 1034 | 1246 | 1027 | 19 | 6 | 0 | 9239 |
| 2004 | 6601 | 3179 | 862 | 201 | 0 | 27 | 0 | 10870 |
| 2005 | 3288 | 816 | 468 | 88 | 0 | 10 | 0 | 4670 |
| 2006 | 3982 | 858 | 200 | 1 | 0 | 5 | 0 | 5046 |


|  | Area 1r | Area 2r | Area 3r | Area 4 | Area 5r | Area 6 | Area 7r | All |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2007 | 1560 | 874 | 1214 | 1 | 0 | 0 | 0 | 3650 |
| 2008 | 2793 | 797 | 1344 | 7 | 0 | 0 | 0 | 4942 |
| 2009 | 3377 | 608 | 110 | 0 | 0 | 0 | 0 | 4094 |
| 2010 | 2725 | 948 | 1436 | 4 | 0 | 0 | 0 | 5113 |
| 2011 | 3070 | 665 | 924 | 7 | 0 | 18 | 0 | 4684 |
| 2012 | 585 | 447 | 561 | 68 | 0 | 13 | 0 | 1674 |
| 2013 | 3704 | 1618 | 273 | 37 | 0 | 8 | 0 | 5639 |
| 2014 | 2174 | 1344 | 1072 | 51 | 0 | 4 | 0 | 4645 |
| 2015 | 2073 | 1214 | 1412 | 43 | 0 | 5 | 0 | 4748 |
| 2016 | 146 | 413 | 561 | 79 | 0 | 6 | 0 | 1205 |
| 2017 | 2661 | 1827 | 1198 | 166 | 0 | 0 | 0 | 5852 |
| 2018 | 2817 | 558 | 1425 | 524 | 0 | 0 | 0 | 5324 |
| 2019 | 2489 | 136 | 1957 | 203 | 0 | 3 | 0 | 4788 |
| 2020 | 2656 | 1304 | 3392 | 165 | 0 | 5 | 0 | 7522 |
| 2021 | 389 | 259 | 2041 | 1266 | 0 | 4 | 0 | 3959 |
| arith. mean | 4604 | 1807 | 2450 | 318 | 76 | 40 | 7 | 9302 |

Table 9.1.7 Sandeel. Effort (days fishing for a standard 200 GT vessel) by area, second half year as estimated by ICES.

|  | Area 1r | Area 2r | Area 3r | Area 4 | Area 5r | Area 6 | Area 7r | All |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 2066 | 1687 | 126 | 0 | 0 | 0 | 0 | 3879 |
| 1984 | 2256 | 1538 | 207 | 0 | 0 | 4 | 0 | 4005 |
| 1985 | 2427 | 1005 | 110 | 3 | 0 | 35 | 0 | 3582 |
| 1986 | 804 | 1154 | 2133 | 3 | 8 | 32 | 64 | 4199 |
| 1987 | 1393 | 374 | 31 | 16 | 0 | 3 | 0 | 1817 |
| 1988 | 809 | 1215 | 1442 | 2 | 0 | 22 | 0 | 3490 |
| 1989 | 313 | 1700 | 92 | 0 | 0 | 1 | 0 | 2106 |
| 1990 | 520 | 828 | 1405 | 5 | 0 | 0 | 0 | 2759 |
| 1991 | 1403 | 1579 | 1113 | 227 | 0 | 0 | 0 | 4322 |
| 1992 | 879 | 1151 | 93 | 262 | 0 | 0 | 0 | 2385 |
| 1993 | 398 | 1799 | 1174 | 187 | 0 | 10 | 0 | 3567 |
| 1994 | 297 | 1133 | 443 | 178 | 0 | 16 | 0 | 2067 |
| 1995 | 601 | 970 | 201 | 1 | 0 | 0 | 0 | 1774 |
| 1996 | 691 | 2981 | 1205 | 945 | 163 | 0 | 0 | 5986 |
| 1997 | 1369 | 1868 | 1854 | 132 | 0 | 7 | 6 | 5237 |
| 1998 | 568 | 1036 | 4003 | 35 | 3 | 0 | 0 | 5645 |
| 1999 | 1024 | 1203 | 2975 | 0 | 0 | 0 | 0 | 5202 |
| 2000 | 960 | 606 | 78 | 0 | 0 | 0 | 0 | 1643 |
| 2001 | 2979 | 1143 | 3044 | 13 | 0 | 0 | 0 | 7180 |
| 2002 | 220 | 672 | 0 | 0 | 0 | 0 | 0 | 892 |
| 2003 | 898 | 1316 | 388 | 71 | 0 | 0 | 0 | 2673 |


|  | Area 1r | Area 2r | Area 3r | Area 4 | Area 5r | Area 6 | Area 7r | All |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2004 | 456 | 1028 | 402 | 2 | 0 | 0 | 0 | 1888 |
| 2005 | 124 | 316 | 0 | 0 | 0 | 0 | 0 | 439 |
| 2006 | 178 | 377 | 5 | 0 | 0 | 0 | 0 | 560 |
| 2007 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2008 | 85 | 109 | 0 | 0 | 0 | 0 | 0 | 194 |
| 2009 | 174 | 194 | 2 | 0 | 0 | 0 | 0 | 370 |
| 2010 | 134 | 187 | 10 | 0 | 0 | 0 | 0 | 331 |
| 2011 | 126 | 11 | 0 | 0 | 0 | 0 | 0 | 137 |
| 2012 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 25 |
| 2013 | 172 | 181 | 0 | 0 | 0 | 0 | 0 | 353 |
| 2014 | 96 | 71 | 0 | 0 | 0 | 0 | 0 | 167 |
| 2015 | 0 | 19 | 0 | 0 | 0 | 0 | 0 | 19 |
| 2016 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 15 |
| 2017 | 50 | 255 | 0 | 0 | 0 | 0 | 0 | 305 |
| 2018 | 309 | 6 | 12 | 0 | 0 | 0 | 0 | 327 |
| 2019 | 334 | 0 | 0 | 0 | 0 | 0 | 0 | 334 |
| 2020 | 40 | 80 | 0 | 0 | 0 | 0 | 0 | 120 |
| 2021 | 29 | 76 | 8 | 112 | 0 | 0 | 0 | 225 |
| arith. mean | 646 | 767 | 578 | 56 | 4 | 3 | 2 | 2057 |

Table 9.1.8 Sandeel. Number of samples from commercial catches by year and area.

|  | Area 1 | Area 2 | Area 3 | Area 4 | Area 5 | Area 6 | Area 7 | All |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 79 | 49 | 0 | 0 | 0 | 0 | 0 | 128 |
| 1984 | 116 | 46 | 13 | 0 | 2 | 3 | 0 | 180 |
| 1985 | 101 | 32 | 1 | 19 | 2 | 3 | 0 | 158 |
| 1986 | 26 | 17 | 27 | 1 | 0 | 1 | 0 | 72 |
| 1987 | 62 | 12 | 60 | 1 | 0 | 1 | 0 | 136 |
| 1988 | 42 | 15 | 67 | 0 | 0 | 1 | 0 | 125 |
| 1989 | 40 | 9 | 43 | 0 | 0 | 1 | 0 | 93 |
| 1990 | 1 | 4 | 37 | 0 | 0 | 2 | 0 | 44 |
| 1991 | 25 | 32 | 30 | 1 | 0 | 0 | 0 | 88 |
| 1992 | 56 | 42 | 24 | 4 | 0 | 7 | 0 | 133 |
| 1993 | 23 | 63 | 64 | 15 | 0 | 7 | 0 | 172 |
| 1994 | 20 | 38 | 50 | 15 | 0 | 4 | 0 | 127 |
| 1995 | 41 | 32 | 58 | 7 | 7 | 2 | 0 | 147 |
| 1996 | 43 | 62 | 113 | 27 | 19 | 1 | 0 | 265 |
| 1997 | 41 | 84 | 116 | 25 | 8 | 3 | 0 | 277 |
| 1998 | 53 | 30 | 145 | 7 | 0 | 2 | 0 | 237 |
| 1999 | 263 | 42 | 40 | 44 | 0 | 0 | 0 | 389 |
| 2000 | 102 | 34 | 47 | 59 | 0 | 0 | 0 | 242 |


|  | Area 1 | Area 2 | Area 3 | Area 4 | Area 5 | Area 6 | Area 7 | All |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2001 | 213 | 39 | 32 | 90 | 1 | 0 | 0 | 375 |
| 2002 | 288 | 97 | 50 | 62 | 0 | 0 | 0 | 497 |
| 2003 | 281 | 75 | 30 | 160 | 0 | 1 | 0 | 547 |
| 2004 | 451 | 217 | 26 | 47 | 0 | 1 | 0 | 742 |
| 2005 | 320 | 42 | 34 | 30 | 0 | 1 | 0 | 427 |
| 2006 | 550 | 56 | 72 | 2 | 0 | 2 | 0 | 682 |
| 2007 | 295 | 79 | 95 | 0 | 0 | 0 | 0 | 469 |
| 2008 | 290 | 100 | 45 | 1 | 0 | 0 | 0 | 436 |
| 2009 | 302 | 102 | 3 | 0 | 0 | 0 | 0 | 407 |
| 2010 | 169 | 194 | 30 | 1 | 0 | 0 | 0 | 394 |
| 2011 | 167 | 54 | 17 | 4 | 0 | 4 | 0 | 246 |
| 2012 | 220 | 112 | 31 | 21 | 0 | 12 | 0 | 396 |
| 2013 | 292 | 220 | 41 | 5 | 0 | 3 | 0 | 561 |
| 2014 | 143 | 133 | 29 | 18 | 0 | 5 | 0 | 328 |
| 2015 | 308 | 117 | 48 | 38 | 0 | 4 | 0 | 515 |
| 2016 | 154 | 159 | 42 | 35 | 0 | 0 | 0 | 390 |
| 2017 | 279 | 204 | 50 | 40 | 0 | 0 | 0 | 573 |
| 2018 | 350 | 136 | 162 | 71 | 0 | 0 | 0 | 719 |
| 2019 | 282 | 81 | 140 | 32 | 0 | 0 | 0 | 535 |
| 2020 | 241 | 182 | 184 | 36 | 0 | 1 | 0 | 644 |
| Sum | 6729 | 3042 | 2096 | 918 | 39 | 72 | 0 | 12896 |

Table 9.2.1 Sandeel Area-1r. Catch at age numbers (million) by half year.

|  | Age 0, <br> 2nd half | Age 1, 1st <br> half | Age 1, <br> 2nd half | Age 2, 1st <br> half | Age 2, <br> 2nd half | Age 3, 1st <br> half | Age 3, <br> 2nd half | Age 4+, <br> 1st half | Age 4+, <br> 2nd half |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1983 | 10223 | 1846 | 264 | 28971 | 3085 | 772 | 564 | 320 | 2 |
| 1984 | 0 | 47117 | 9241 | 1701 | 90 | 10002 | 566 | 333 | 43 |
| 1985 | 8524 | 6217 | 1354 | 31364 | 2305 | 1987 | 1595 | 211 | 213 |
| 1986 | 87 | 44940 | 4163 | 7553 | 228 | 1652 | 188 | 31 | 14 |
| 1987 | 187 | 4504 | 1938 | 23572 | 4173 | 1199 | 123 | 171 | 32 |
| 1988 | 0 | 1997 | 0 | 8564 | 162 | 15229 | 1439 | 2354 | 47 |
| 1989 | 0 | 62503 | 757 | 6364 | 77 | 1346 | 16 | 4736 | 58 |
| 1990 | 522 | 16846 | 1257 | 13917 | 417 | 2060 | 62 | 622 | 18 |
| 1991 | 7344 | 14939 | 6917 | 6870 | 209 | 983 | 67 | 338 | 0 |
| 1992 | 104 | 50883 | 3041 | 8451 | 298 | 845 | 122 | 524 | 26 |
| 1993 | 1624 | 2181 | 362 | 5882 | 271 | 1638 | 156 | 491 | 43 |
| 1994 | 0 | 22172 | 1533 | 2669 | 126 | 1195 | 55 | 882 | 78 |
| 1995 | 76 | 36677 | 3440 | 6236 | 940 | 737 | 109 | 289 | 28 |
| 1996 | 6470 | 10402 | 1064 | 12301 | 1027 | 4527 | 211 | 860 | 65 |
| 1997 | 19 | 38667 | 8899 | 2332 | 177 | 3522 | 164 | 713 | 56 |


|  | Age 0, 2nd half | Age 1, 1st half | Age 1, 2nd half | Age 2, 1st half | Age 2, 2nd half | Age 3, 1st half | Age 3, 2nd half | Age 4+, 1st half | Age 4+, 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1998 | 211 | 9387 | 438 | 28364 | 1384 | 2164 | 136 | 1505 | 90 |
| 1999 | 440 | 44621 | 2498 | 5433 | 205 | 10158 | 717 | 699 | 149 |
| 2000 | 7887 | 32625 | 2760 | 3355 | 170 | 630 | 84 | 1076 | 122 |
| 2001 | 47080 | 56780 | 3127 | 8549 | 474 | 1098 | 49 | 972 | 98 |
| 2002 | 16 | 84878 | 605 | 10772 | 108 | 1212 | 15 | 225 | 6 |
| 2003 | 2474 | 3843 | 386 | 13302 | 4390 | 1117 | 141 | 302 | 31 |
| 2004 | 566 | 30654 | 2479 | 786 | 110 | 2364 | 230 | 480 | 47 |
| 2005 | 44 | 11106 | 383 | 4435 | 211 | 263 | 14 | 435 | 27 |
| 2006 | 37 | 33600 | 800 | 2590 | 94 | 817 | 43 | 163 | 19 |
| 2007 | 0 | 10581 | 0 | 4674 | 0 | 315 | 0 | 172 | 0 |
| 2008 | 6 | 26735 | 281 | 4009 | 75 | 1205 | 33 | 214 | 6 |
| 2009 | 979 | 18898 | 2254 | 14265 | 278 | 1556 | 12 | 392 | 3 |
| 2010 | 10 | 39951 | 1184 | 2130 | 35 | 942 | 16 | 108 | 2 |
| 2011 | 5 | 1894 | 39 | 32692 | 325 | 1305 | 14 | 266 | 1 |
| 2012 | 0 | 383 | 0 | 419 | 0 | 3354 | 0 | 129 | 0 |
| 2013 | 3 | 18090 | 598 | 7916 | 131 | 2182 | 100 | 4301 | 49 |
| 2014 | 925 | 8930 | 131 | 3354 | 98 | 401 | 23 | 360 | 25 |
| 2015 | 0 | 25326 | 0 | 1918 | 0 | 579 | 0 | 172 | 0 |
| 2016 | 0 | 208 | 0 | 1193 | 0 | 97 | 0 | 17 | 0 |
| 2017 | 3 | 33038 | 253 | 3015 | 40 | 4604 | 38 | 103 | 7 |
| 2018 | 91 | 1699 | 158 | 14468 | 792 | 971 | 44 | 331 | 10 |
| 2019 | 5947 | 4703 | 96 | 830 | 18 | 1885 | 19 | 101 | 0 |
| 2020 | 54 | 11911 | 80 | 1098 | 12 | 270 | 2 | 457 | 5 |
| 2021 | 4 | 1069 | 41 | 940 | 25 | 50 | 1 | 31 | 1 |
| arith. mean | 2614 | 22380 | 1611 | 8648 | 578 | 2237 | 184 | 664 | 36 |

Table 9.2.2 Sandeel Area-1r. Individual mean weight (gram) at age in the catch and in the sea.

|  | Age 0, <br> 2nd half | Age 1, <br> 1st half | Age 1, <br> 2nd half | Age 2, <br> 1st half | Age 2, <br> 2nd half | Age 3, <br> 1st half | Age 3, <br> 2nd half | Age 4+, <br> 1st half | Age 4+, <br> 2nd half |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1983 | 3.3 | 4.9 | 4.0 | 9.7 | 8.3 | 17.2 | 13.2 | 20.5 | 11.6 |
| 1984 | 3.7 | 5.5 | 7.3 | 10.1 | 12.8 | 14.1 | 16.8 | 13.4 | 15.8 |
| 1985 | 3.0 | 5.1 | 5.8 | 9.2 | 10.7 | 16.4 | 12.9 | 17.9 | 16.6 |
| 1986 | 3.0 | 5.3 | 7.5 | 11.7 | 12.7 | 11.7 | 12.8 | 13.6 | 14.7 |
| 1987 | 4.0 | 7.2 | 7.8 | 10.6 | 11.2 | 18.5 | 20.2 | 14.7 | 16.1 |
| 1988 | 3.9 | 6.1 | 6.8 | 10.4 | 12.0 | 16.0 | 17.0 | 17.8 | 24.4 |
| 1989 | 6.2 | 5.0 | 9.6 | 8.6 | 15.5 | 9.1 | 17.2 | 12.0 | 28.3 |
| 1990 | 5.0 | 6.6 | 9.0 | 9.6 | 13.1 | 14.2 | 19.3 | 17.0 | 23.1 |
| 1991 | 3.8 | 7.8 | 6.1 | 14.2 | 11.8 | 37.8 | 32.0 | 19.6 | 17.2 |
| 1992 | 4.9 | 7.8 | 9.5 | 11.9 | 15.3 | 17.7 | 19.7 | 19.0 | 21.2 |


|  | Age 0, 2nd half | Age 1, 1st half | Age 1, 2nd half | Age 2, 1st half | Age 2, 2nd half | Age 3, 1st half | Age 3, 2nd half | Age 4+, 1st half | Age 4+, 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1993 | 4.0 | 7.3 | 7.5 | 11.5 | 10.5 | 14.4 | 13.6 | 20.2 | 18.2 |
| 1994 | 4.4 | 5.5 | 7.6 | 8.7 | 12.3 | 12.7 | 16.3 | 19.8 | 18.8 |
| 1995 | 3.8 | 7.6 | 6.8 | 11.3 | 9.9 | 14.1 | 14.1 | 19.0 | 19.0 |
| 1996 | 2.9 | 5.6 | 4.6 | 8.4 | 7.6 | 12.2 | 9.5 | 17.7 | 14.2 |
| 1997 | 3.7 | 7.3 | 8.5 | 8.3 | 14.2 | 9.9 | 15.5 | 14.4 | 16.1 |
| 1998 | 3.2 | 6.3 | 6.7 | 8.9 | 10.0 | 11.5 | 11.9 | 13.5 | 14.5 |
| 1999 | 3.4 | 5.3 | 5.9 | 7.5 | 9.6 | 10.3 | 12.8 | 13.1 | 14.7 |
| 2000 | 3.1 | 6.3 | 4.8 | 8.7 | 7.9 | 11.9 | 10.6 | 14.5 | 12.2 |
| 2001 | 3.1 | 4.5 | 5.0 | 8.7 | 12.1 | 11.5 | 16.5 | 16.6 | 23.6 |
| 2002 | 3.8 | 6.0 | 6.7 | 7.4 | 10.8 | 9.8 | 14.4 | 13.8 | 16.5 |
| 2003 | 2.2 | 3.6 | 2.7 | 7.2 | 3.6 | 9.5 | 8.4 | 12.8 | 9.1 |
| 2004 | 3.5 | 5.1 | 4.5 | 8.3 | 6.6 | 9.0 | 6.7 | 10.4 | 8.8 |
| 2005 | 3.0 | 6.5 | 5.3 | 8.7 | 8.5 | 10.3 | 11.3 | 12.1 | 13.0 |
| 2006 | 3.2 | 5.9 | 5.5 | 9.7 | 8.9 | 11.6 | 11.9 | 13.0 | 13.7 |
| 2007 | 4.1 | 5.6 | 7.0 | 9.4 | 11.3 | 13.5 | 15.1 | 14.7 | 17.3 |
| 2008 | 4.5 | 6.3 | 7.8 | 10.9 | 12.6 | 13.3 | 16.8 | 15.8 | 19.3 |
| 2009 | 2.8 | 6.2 | 4.9 | 9.4 | 7.9 | 12.1 | 10.5 | 13.2 | 12.1 |
| 2010 | 3.4 | 6.3 | 5.9 | 12.4 | 9.5 | 13.9 | 12.6 | 17.2 | 14.5 |
| 2011 | 2.8 | 5.3 | 4.9 | 8.7 | 7.8 | 12.7 | 10.4 | 14.8 | 12.0 |
| 2012 | 3.8 | 6.4 | 6.6 | 9.5 | 10.6 | 11.3 | 14.1 | 14.5 | 16.2 |
| 2013 | 3.8 | 4.7 | 6.5 | 6.5 | 10.5 | 10.1 | 14.0 | 11.3 | 16.1 |
| 2014 | 3.0 | 4.7 | 5.2 | 7.1 | 8.5 | 9.5 | 11.3 | 11.7 | 13.0 |
| 2015 | 4.0 | 5.5 | 6.9 | 8.3 | 11.1 | 10.6 | 14.8 | 14.0 | 17.0 |
| 2016 | 3.2 | 5.2 | 5.4 | 10.1 | 8.7 | 12.5 | 11.6 | 14.7 | 13.3 |
| 2017 | 2.9 | 5.3 | 6.0 | 7.1 | 8.2 | 9.2 | 10.5 | 10.7 | 12.4 |
| 2018 | 3.3 | 4.7 | 8.2 | 7.0 | 10.6 | 9.5 | 13.9 | 11.5 | 15.5 |
| 2019 | 3.3 | 4.7 | 8.2 | 7.7 | 10.6 | 8.4 | 13.9 | 10.7 | 15.5 |
| 2020 | 3.3 | 7.1 | 8.2 | 9.6 | 10.6 | 12.3 | 13.9 | 13.8 | 15.5 |
| 2021 | 3.3 | 5.9 | 8.2 | 9.7 | 10.6 | 11.4 | 13.9 | 12.8 | 15.5 |
| arith. <br> mean | 3.6 | 5.8 | 6.6 | 9.3 | 10.4 | 12.9 | 14.2 | 14.8 | 16.1 |

Table 9.2.3 Sandeel Area-1r. Proportion mature.

|  | Age 1 | Age 2 | Age 3 | Age 4 |
| :---: | :---: | :---: | :---: | :---: |
| $1983-2016$ | 0.02 | 0.8 | 0.99 | 1 |

Table 9.2.4. Sandeel Area-1r. Dredge survey indices.

| Year | Age 0 | Age 1 |
| :---: | :---: | :---: |
| 2004 | 140061.87 | 7077.655 |
| 2005 | 277241.20 | 3288.987 |
| 2006 | 117233.03 | 12244.596 |
| 2007 | 402355.16 | 5326.731 |
| 2008 | 35633.70 | 13619.791 |
| 2009 | 474590.87 | 9040.642 |
| 2010 | 49722.00 | 125308.581 |
| 2011 | 77113.07 | 27178.527 |
| 2012 | 136586.42 | 3922.222 |
| 2013 | 80356.85 | 13156.382 |
| 2014 | 235943.73 | 3413.488 |
| 2015 | 23030.02 | 13597.662 |
| 2016 | 304655.46 | 7277.881 |
| 2017 | 32663.00 | 38561.000 |
| 2018 | 165064.00 | 11168.000 |
| 2019 | 199148.10 | 18720.400 |
| 2020 | 71890.40 | 7497.200 |
| 2021 | 65614.29 | 8315.977 |
|  |  |  |

Table 9.2.5 Sandeel Area-1r. SMS settings and statistics.
Date: 01/26/22 Start time:09:46:31 run time:1 seconds
objective function (negative log likelihood): 17.8446
Number of parameters: 80
Maximum gradient: 0.000100632
Akaike information criterion (AIC): 195.689
Number of observations used in the likelihood:

| Catch | CPUE | S/R | Stomach | Sum |
| :---: | :---: | :---: | :---: | :---: |
| 351 | 75 | 39 | 0 | 465 |

objective function weight:

$$
\begin{array}{lll}
\text { Catch } & \text { CPUE } & \text { S/R } \\
1.00 & 1.00 & 0.05
\end{array}
$$

unweighted objective function contributions (total):

| Catch | CPUE | S/R | Stom. | Stom N. | Penalty | Sum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25.4 | -8.2 | 13.5 | 0.0 | 0.0 | 0.00 | 31 |

unweighted objective function contributions (per observation):

\[

\]

contribution by fleet:
Dredge survey 2004-2021 total: 0.941 mean: 0.026
RTM 2007-2021

| total: | 0.941 | mean: | 0.026 |
| :--- | ---: | :--- | ---: |
| total: | -9.122 | mean: | -0.234 |

```
F, season effect:
age: 0
    1983-1988: 0.000 1.000
    1989-1998: 0.000 1.000
    1999-2004: 0.000 1.000
    2005-2009: 0.000 1.000
    2010-2021: 0.000 1.000
age: 1 - 4
    1983-1988: 0.457 0.500
    1989-1998: 0.466 0.500
    1999-2004: 0.374 0.500
    2005-2009: 0.254 0.500
    2010-2021: 0.573 0.500
F, age effect:
\begin{tabular}{lrrrrr} 
& & & & \\
1983-1988: & 0.025 & 0.259 & 0.959 & 1.423 & 1.423 \\
1989-1998: & 0.011 & 0.539 & 0.722 & 0.732 & 0.732 \\
1999-2004: & 0.067 & 1.027 & 1.142 & 1.135 & 1.135 \\
2005-2009: & 0.007 & 1.436 & 2.177 & 2.240 & 2.240 \\
\(2010-2021:\) & 0.016 & 0.252 & 0.596 & 1.004 & 1.004
\end{tabular}
```

|  |  | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983-1988 | season 1: | 0 | 0.320 | 1.188 | 1.762 | 1.762 |
|  | season 2: | 0.020 | 0.105 | 0.388 | 0.575 | 0.575 |
| 1989-1998 | season 1: | 0 | 0.821 | 1.100 | 1.116 | 1.116 |
|  | season 2: | 0.001 | 0.033 | 0.045 | 0.045 | 0.045 |
| 1999-2004 | season 1: | 0 | 0.807 | 0.897 | 0.892 | 0.892 |
|  | season 2: | 0.018 | 0.140 | 0.156 | 0.155 | 0.155 |
| 2005-2009 | season 1: | 0 | 0.740 | 1.122 | 1.154 | 1.154 |
|  | season 2: | 0.001 | 0.055 | 0.083 | 0.086 | 0.086 |
| 2010-2021 | season 1: | 0 | 0.570 | 1.347 | 2.269 | 2.269 |
|  | season 2: | 0.003 | 0.025 | 0.058 | 0.097 | 0.097 |

sqrt(catch variance) ~ CV:
season

| age | 1 | 2 |
| :---: | :---: | :---: |
| 0 |  | 1.655 |
| 1 | 0.343 | 0.581 |
| 2 | 0.343 | 0.581 |
| 3 | 0.657 | 1.024 |
| 4 | 0.657 | 1.024 |

Survey catchability:
sqrt(Survey variance) ~ CV:
-------
age 0 age 1 age 2 age 3
Dredge survey 2004-2021
RTM 2007-2021
0.53
0.43
0.49

| Recruit-SSB | alfa | beta | recruit s2 | recruit s |
| :--- | :---: | :---: | :---: | :---: |
| Area-1r | 1017.564 | $1.100 \mathrm{e}+005$ | 0.734 | 0.856 |

Table 9.2.6 Sandeel Area-1r. Annual fishing mortality (F) at age.

|  | Age 0 | Age 1 | Age 2 | Age 3 | Age 4 | Avg. 1-2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0.012 | 0.286 | 1.029 | 1.511 | 1.519 | 0.657 |
| 1984 | 0.013 | 0.324 | 1.163 | 1.706 | 1.715 | 0.743 |
| 1985 | 0.014 | 0.347 | 1.244 | 1.833 | 1.828 | 0.796 |
| 1986 | 0.005 | 0.245 | 0.875 | 1.277 | 1.272 | 0.560 |
| 1987 | 0.008 | 0.182 | 0.661 | 0.970 | 0.969 | 0.421 |
| 1988 | 0.005 | 0.266 | 0.950 | 1.376 | 1.370 | 0.608 |
| 1989 | 0.001 | 0.818 | 1.064 | 1.068 | 1.061 | 0.941 |
| 1990 | 0.002 | 0.815 | 1.059 | 1.062 | 1.058 | 0.937 |
| 1991 | 0.005 | 0.548 | 0.721 | 0.730 | 0.730 | 0.634 |
| 1992 | 0.003 | 0.823 | 1.079 | 1.084 | 1.084 | 0.951 |
| 1993 | 0.001 | 0.363 | 0.474 | 0.481 | 0.480 | 0.418 |
| 1994 | 0.001 | 0.300 | 0.389 | 0.392 | 0.390 | 0.345 |
| 1995 | 0.002 | 0.562 | 0.727 | 0.732 | 0.729 | 0.645 |
| 1996 | 0.003 | 0.527 | 0.680 | 0.683 | 0.682 | 0.603 |
| 1997 | 0.005 | 0.497 | 0.644 | 0.649 | 0.652 | 0.571 |
| 1998 | 0.002 | 0.652 | 0.826 | 0.828 | 0.828 | 0.739 |
| 1999 | 0.017 | 1.024 | 1.083 | 1.064 | 1.066 | 1.053 |
| 2000 | 0.016 | 0.819 | 0.861 | 0.852 | 0.850 | 0.840 |
| 2001 | 0.049 | 1.239 | 1.323 | 1.315 | 1.318 | 1.281 |
| 2002 | 0.004 | 0.949 | 1.013 | 0.975 | 0.968 | 0.981 |
| 2003 | 0.015 | 0.789 | 0.846 | 0.819 | 0.822 | 0.818 |
| 2004 | 0.007 | 0.833 | 0.880 | 0.848 | 0.849 | 0.857 |
| 2005 | 0.000 | 0.895 | 1.281 | 1.308 | 1.305 | 1.088 |
| 2006 | 0.001 | 1.094 | 1.566 | 1.590 | 1.586 | 1.330 |
| 2007 | 0.000 | 0.413 | 0.594 | 0.604 | 0.600 | 0.504 |
| 2008 | 0.000 | 0.771 | 1.104 | 1.114 | 1.111 | 0.938 |
| 2009 | 0.001 | 0.952 | 1.369 | 1.391 | 1.383 | 1.161 |
| 2010 | 0.002 | 0.418 | 0.932 | 1.496 | 1.487 | 0.675 |
| 2011 | 0.001 | 0.476 | 1.037 | 1.674 | 1.658 | 0.756 |
| 2012 | 0.000 | 0.090 | 0.199 | 0.324 | 0.321 | 0.145 |
| 2013 | 0.000 | 0.544 | 1.165 | 1.913 | 1.904 | 0.855 |


|  | Age 0 | Age 1 | Age 2 | Age 3 | Age 4 | Avg. 1-2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2014 | 0.001 | 0.316 | 0.683 | 1.133 | 1.131 | 0.500 |
| 2015 | 0.000 | 0.304 | 0.652 | 1.086 | 1.077 | 0.478 |
| 2016 | 0.000 | 0.022 | 0.047 | 0.078 | 0.077 | 0.034 |
| 2017 | 0.001 | 0.405 | 0.896 | 1.461 | 1.446 | 0.650 |
| 2018 | 0.004 | 0.400 | 0.906 | 1.468 | 1.463 | 0.653 |
| 2019 | 0.004 | 0.391 | 0.885 | 1.437 | 1.433 | 0.638 |
| 2020 | 0.001 | 0.382 | 0.860 | 1.385 | 1.380 | 0.621 |
| 2021 | 0.000 | 0.058 | 0.133 | 0.216 | 0.216 | 0.096 |
| arith. mean | 0.005 | 0.542 | 0.869 | 1.075 | 1.072 | 0.706 |

Table 9.2.7 Sandeel Area-1r. Fishing mortality (F) at age.

|  | Age 0, 2nd half | Age 1, 1st half | Age 1, 2nd half | Age 2, 1st half | Age 2, 2nd half | Age 3, 1st half | Age 3, 2nd half | Age 4+, 1st half | Age 4+, 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0.012 | 0.193 | 0.063 | 0.714 | 0.233 | 1.059 | 0.345 | 1.059 | 0.345 |
| 1984 | 0.013 | 0.220 | 0.069 | 0.815 | 0.254 | 1.209 | 0.377 | 1.209 | 0.377 |
| 1985 | 0.014 | 0.235 | 0.074 | 0.870 | 0.273 | 1.290 | 0.405 | 1.290 | 0.405 |
| 1986 | 0.005 | 0.183 | 0.024 | 0.677 | 0.091 | 1.004 | 0.135 | 1.004 | 0.135 |
| 1987 | 0.008 | 0.119 | 0.042 | 0.442 | 0.157 | 0.655 | 0.233 | 0.655 | 0.233 |
| 1988 | 0.005 | 0.199 | 0.025 | 0.739 | 0.091 | 1.096 | 0.135 | 1.096 | 0.135 |
| 1989 | 0.001 | 0.664 | 0.027 | 0.889 | 0.036 | 0.902 | 0.037 | 0.902 | 0.037 |
| 1990 | 0.002 | 0.645 | 0.045 | 0.864 | 0.060 | 0.876 | 0.061 | 0.876 | 0.061 |
| 1991 | 0.005 | 0.370 | 0.121 | 0.495 | 0.162 | 0.502 | 0.165 | 0.502 | 0.165 |
| 1992 | 0.003 | 0.639 | 0.076 | 0.855 | 0.102 | 0.868 | 0.103 | 0.868 | 0.103 |
| 1993 | 0.001 | 0.282 | 0.034 | 0.377 | 0.046 | 0.383 | 0.047 | 0.383 | 0.047 |
| 1994 | 0.001 | 0.230 | 0.026 | 0.308 | 0.034 | 0.312 | 0.035 | 0.312 | 0.035 |
| 1995 | 0.002 | 0.427 | 0.052 | 0.572 | 0.070 | 0.580 | 0.071 | 0.580 | 0.071 |
| 1996 | 0.003 | 0.387 | 0.060 | 0.519 | 0.080 | 0.526 | 0.081 | 0.526 | 0.081 |
| 1997 | 0.005 | 0.322 | 0.118 | 0.431 | 0.158 | 0.437 | 0.161 | 0.437 | 0.161 |
| 1998 | 0.002 | 0.491 | 0.049 | 0.658 | 0.066 | 0.667 | 0.067 | 0.667 | 0.067 |
| 1999 | 0.017 | 0.740 | 0.129 | 0.823 | 0.143 | 0.818 | 0.142 | 0.818 | 0.142 |
| 2000 | 0.016 | 0.581 | 0.121 | 0.646 | 0.134 | 0.642 | 0.133 | 0.642 | 0.133 |
| 2001 | 0.049 | 0.756 | 0.374 | 0.840 | 0.416 | 0.836 | 0.414 | 0.836 | 0.414 |
| 2002 | 0.004 | 0.747 | 0.028 | 0.830 | 0.031 | 0.826 | 0.031 | 0.826 | 0.031 |
| 2003 | 0.015 | 0.555 | 0.113 | 0.617 | 0.125 | 0.614 | 0.125 | 0.614 | 0.125 |
| 2004 | 0.007 | 0.620 | 0.057 | 0.689 | 0.064 | 0.686 | 0.063 | 0.686 | 0.063 |
| 2005 | 0.000 | 0.693 | 0.052 | 1.051 | 0.078 | 1.081 | 0.080 | 1.081 | 0.080 |
| 2006 | 0.001 | 0.838 | 0.074 | 1.271 | 0.112 | 1.308 | 0.115 | 1.308 | 0.115 |
| 2007 | 0.000 | 0.329 | 0.000 | 0.498 | 0.000 | 0.513 | 0.000 | 0.513 | 0.000 |
| 2008 | 0.000 | 0.588 | 0.035 | 0.892 | 0.054 | 0.918 | 0.055 | 0.918 | 0.055 |
| 2009 | 0.001 | 0.711 | 0.072 | 1.078 | 0.110 | 1.109 | 0.113 | 1.109 | 0.113 |


|  | Age 0, <br> 2nd half | Age 1, <br> 1st half | Age 1, <br> 2nd half | Age 2, <br> 1st half | Age 2, <br> 2nd half | Age 3, <br> 1st half | Age 3, <br> 2nd half | Age 4+, <br> 1st half | Age 4+, <br> 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2010 | 0.002 | 0.310 | 0.013 | 0.733 | 0.031 | 1.234 | 0.053 | 1.234 | 0.053 |
| 2011 | 0.001 | 0.350 | 0.009 | 0.827 | 0.022 | 1.392 | 0.037 | 1.392 | 0.037 |
| 2012 | 0.000 | 0.067 | 0.000 | 0.158 | 0.000 | 0.266 | 0.000 | 0.266 | 0.000 |
| 2013 | 0.000 | 0.421 | 0.000 | 0.995 | 0.000 | 1.675 | 0.000 | 1.675 | 0.000 |
| 2014 | 0.001 | 0.242 | 0.008 | 0.571 | 0.019 | 0.961 | 0.033 | 0.961 | 0.033 |
| 2015 | 0.000 | 0.236 | 0.000 | 0.557 | 0.000 | 0.938 | 0.000 | 0.938 | 0.000 |
| 2016 | 0.000 | 0.017 | 0.000 | 0.039 | 0.000 | 0.066 | 0.000 | 0.066 | 0.000 |
| 2017 | 0.001 | 0.314 | 0.005 | 0.743 | 0.012 | 1.251 | 0.020 | 1.251 | 0.020 |
| 2018 | 0.004 | 0.301 | 0.029 | 0.712 | 0.068 | 1.198 | 0.115 | 1.198 | 0.115 |
| 2019 | 0.004 | 0.290 | 0.034 | 0.686 | 0.079 | 1.156 | 0.134 | 1.156 | 0.134 |
| 2020 | 0.001 | 0.302 | 0.004 | 0.715 | 0.009 | 1.203 | 0.016 | 1.203 | 0.016 |
| 2021 | 0.000 | 0.044 | 0.003 | 0.105 | 0.007 | 0.176 | 0.012 | 0.176 | 0.012 |
| arith. | 0.005 | 0.401 | 0.053 | 0.674 | 0.088 | 0.852 | 0.106 | 0.852 | 0.106 |
| mean |  |  |  |  |  |  |  |  |  |

Table 9.2.8 Sandeel Area-1r. Natural mortality (M) at age.

|  | Age 0, 2nd half | Age 1, 1st half | Age 1, 2nd half | Age 2, 1st half | Age 2, 2nd half | Age 3, 1st half | Age 3, 2nd half | Age 4+, 1st half | Age 4+, 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0.499 | 0.400 | 0.462 | 0.357 | 0.378 | 0.261 | 0.326 | 0.243 | 0.337 |
| 1984 | 0.499 | 0.400 | 0.462 | 0.357 | 0.378 | 0.261 | 0.326 | 0.243 | 0.337 |
| 1985 | 0.519 | 0.385 | 0.468 | 0.345 | 0.382 | 0.281 | 0.358 | 0.253 | 0.337 |
| 1986 | 0.534 | 0.376 | 0.475 | 0.342 | 0.409 | 0.270 | 0.368 | 0.249 | 0.353 |
| 1987 | 0.550 | 0.387 | 0.490 | 0.344 | 0.422 | 0.269 | 0.371 | 0.252 | 0.358 |
| 1988 | 0.553 | 0.396 | 0.484 | 0.357 | 0.418 | 0.282 | 0.358 | 0.270 | 0.344 |
| 1989 | 0.532 | 0.415 | 0.460 | 0.377 | 0.392 | 0.303 | 0.356 | 0.271 | 0.333 |
| 1990 | 0.544 | 0.403 | 0.471 | 0.341 | 0.395 | 0.282 | 0.355 | 0.267 | 0.343 |
| 1991 | 0.560 | 0.394 | 0.457 | 0.326 | 0.384 | 0.230 | 0.344 | 0.227 | 0.344 |
| 1992 | 0.549 | 0.397 | 0.434 | 0.311 | 0.371 | 0.218 | 0.328 | 0.221 | 0.331 |
| 1993 | 0.530 | 0.407 | 0.404 | 0.343 | 0.331 | 0.240 | 0.318 | 0.221 | 0.309 |
| 1994 | 0.530 | 0.386 | 0.447 | 0.327 | 0.362 | 0.243 | 0.329 | 0.217 | 0.315 |
| 1995 | 0.521 | 0.380 | 0.470 | 0.337 | 0.376 | 0.247 | 0.339 | 0.217 | 0.324 |
| 1996 | 0.552 | 0.340 | 0.492 | 0.304 | 0.391 | 0.244 | 0.351 | 0.211 | 0.341 |
| 1997 | 0.567 | 0.372 | 0.508 | 0.323 | 0.389 | 0.271 | 0.349 | 0.224 | 0.341 |
| 1998 | 0.615 | 0.416 | 0.546 | 0.350 | 0.392 | 0.305 | 0.352 | 0.237 | 0.343 |
| 1999 | 0.620 | 0.456 | 0.566 | 0.379 | 0.401 | 0.315 | 0.350 | 0.249 | 0.340 |
| 2000 | 0.608 | 0.469 | 0.551 | 0.391 | 0.369 | 0.322 | 0.334 | 0.243 | 0.309 |
| 2001 | 0.614 | 0.410 | 0.528 | 0.366 | 0.366 | 0.297 | 0.326 | 0.227 | 0.297 |
| 2002 | 0.671 | 0.454 | 0.566 | 0.424 | 0.456 | 0.354 | 0.357 | 0.272 | 0.329 |
| 2003 | 0.690 | 0.475 | 0.585 | 0.442 | 0.472 | 0.388 | 0.377 | 0.320 | 0.368 |
| 2004 | 0.709 | 0.544 | 0.629 | 0.473 | 0.476 | 0.417 | 0.375 | 0.356 | 0.368 |


|  | Age 0, 2nd half | Age 1, 1st half | Age 1, 2nd half | Age 2, 1st half | Age 2, 2nd half | Age 3, 1st half | Age 3, 2nd half | Age 4+, 1st half | Age 4+, 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | 0.695 | 0.542 | 0.554 | 0.426 | 0.396 | 0.395 | 0.371 | 0.318 | 0.354 |
| 2006 | 0.729 | 0.571 | 0.580 | 0.441 | 0.417 | 0.346 | 0.365 | 0.288 | 0.348 |
| 2007 | 0.769 | 0.549 | 0.566 | 0.405 | 0.433 | 0.312 | 0.396 | 0.270 | 0.376 |
| 2008 | 0.725 | 0.541 | 0.610 | 0.414 | 0.456 | 0.300 | 0.385 | 0.268 | 0.375 |
| 2009 | 0.704 | 0.460 | 0.597 | 0.346 | 0.452 | 0.282 | 0.406 | 0.250 | 0.383 |
| 2010 | 0.715 | 0.475 | 0.667 | 0.366 | 0.540 | 0.299 | 0.443 | 0.256 | 0.419 |
| 2011 | 0.787 | 0.528 | 0.731 | 0.367 | 0.544 | 0.321 | 0.472 | 0.273 | 0.437 |
| 2012 | 0.787 | 0.593 | 0.710 | 0.454 | 0.541 | 0.368 | 0.455 | 0.321 | 0.433 |
| 2013 | 0.732 | 0.591 | 0.655 | 0.495 | 0.435 | 0.369 | 0.407 | 0.324 | 0.388 |
| 2014 | 0.723 | 0.522 | 0.605 | 0.481 | 0.390 | 0.324 | 0.364 | 0.302 | 0.357 |
| 2015 | 0.718 | 0.578 | 0.622 | 0.442 | 0.391 | 0.299 | 0.380 | 0.276 | 0.356 |
| 2016 | 0.725 | 0.526 | 0.617 | 0.394 | 0.396 | 0.288 | 0.384 | 0.268 | 0.354 |
| 2017 | 0.673 | 0.534 | 0.600 | 0.425 | 0.454 | 0.307 | 0.394 | 0.286 | 0.363 |
| 2018 | 0.619 | 0.440 | 0.538 | 0.427 | 0.454 | 0.328 | 0.360 | 0.293 | 0.345 |
| 2019 | 0.619 | 0.440 | 0.538 | 0.427 | 0.454 | 0.328 | 0.360 | 0.293 | 0.345 |
| 2020 | 0.619 | 0.440 | 0.538 | 0.427 | 0.454 | 0.328 | 0.360 | 0.293 | 0.345 |
| 2021 | 0.619 | 0.440 | 0.538 | 0.427 | 0.454 | 0.328 | 0.360 | 0.293 | 0.345 |
| arith. <br> mean | 0.629 | 0.457 | 0.544 | 0.387 | 0.420 | 0.303 | 0.367 | 0.266 | 0.352 |

Table 9.2.9 Sandeel Area-1r. Stock numbers (millions). Age 0 at start of 2 nd half-year, age $1+$ at start of the year.

| Age 0 |  | Age 1 <br> 13260 | Age 2 <br> 52130 | Age 32841 | Age 4$242$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 299015 |  |  |  |  |
| 1984 | 75976 | 179350 | 4339 | 9694 | 422 |
| 1985 | 512274 | 45519 | 56771 | 714 | 1152 |
| 1986 | 77581 | 300596 | 14239 | 8751 | 186 |
| 1987 | 47398 | 45284 | 104383 | 3122 | 1514 |
| 1988 | 206586 | 27125 | 16027 | 26651 | 1015 |
| 1989 | 92629 | 118264 | 8995 | 3220 | 4263 |
| 1990 | 131123 | 54377 | 24694 | 1653 | 1563 |
| 1991 | 163993 | 75981 | 11376 | 4692 | 675 |
| 1992 | 37010 | 93162 | 19867 | 2898 | 1553 |
| 1993 | 155890 | 21312 | 19849 | 3854 | 975 |
| 1994 | 223917 | 91585 | 6904 | 6624 | 1810 |
| 1995 | 56134 | 131647 | 30831 | 2461 | 3394 |
| 1996 | 403422 | 33277 | 34864 | 7956 | 1746 |
| 1997 | 63130 | 231744 | 9261 | 9566 | 2939 |
| 1998 | 121133 | 35632 | 61895 | 2518 | 3749 |
| 1999 | 159266 | 65331 | 7933 | 14295 | 1636 |


| Age 0 |  | Age 1 | Age 2 | Age 3 | Age 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2000 | 252679 | 84243 | 9865 | 1385 | 3158 |
| 2001 | 418211 | 135479 | 15068 | 2117 | 1168 |
| 2002 | 26725 | 215558 | 17118 | 2064 | 524 |
| 2003 | 160692 | 13616 | 35820 | 3000 | 552 |
| 2004 | 67979 | 79446 | 2418 | 6836 | 800 |
| 2005 | 163089 | 33196 | 12486 | 441 | 1647 |
| 2006 | 79307 | 81351 | 5268 | 1774 | 327 |
| 2007 | 194907 | 38213 | 10326 | 560 | 252 |
| 2008 | 77150 | 90322 | 9021 | 2714 | 244 |
| 2009 | 560359 | 37363 | 15321 | 1469 | 566 |
| 2010 | 34547 | 277020 | 5933 | 2103 | 306 |
| 2011 | 42280 | 16878 | 63962 | 1116 | 320 |
| 2012 | 103313 | 19221 | 3346 | 11004 | 158 |
| 2013 | 60111 | 47021 | 4888 | 1056 | 3760 |
| 2014 | 214166 | 28923 | 8874 | 713 | 437 |
| 2015 | 36587 | 103861 | 7304 | 2057 | 216 |
| 2016 | 272957 | 17842 | 24718 | 1819 | 453 |
| 2017 | 19491 | 132257 | 5594 | 10792 | 1098 |
| 2018 | 31171 | 9935 | 30909 | 1092 | 1661 |
| 2019 | 95467 | 16729 | 2686 | 5876 | 384 |
| 2020 | 52902 | 51206 | 4550 | 518 | 870 |
| 2021 | 39617 | 28483 | 14177 | 915 | 213 |
| 2022 |  | 21333 | 10218 | 5259 | 475 |

Table 9.2.10 Sandeel Area-1r. Estimated recruitment, total stock biomass (TBS), spawning stock biomass (SSB), catch weight (modelled yield) and average fishing mortality.

|  | Recruits (thousands) | TSB (tonnes) | SSB (tonnes) | Yield (tonnes) | Mean F $_{1-2}$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1983 | 299013715 | 625840 | 460929 | 378795 | 0.601 |
| 1984 | 75981466 | 1165290 | 196025 | 498626 | 0.679 |
| 1985 | 512084393 | 783157 | 453160 | 437114 | 0.725 |
| 1986 | 77593949 | 1862800 | 270493 | 382844 | 0.487 |
| 1987 | 47393706 | 1512290 | 973838 | 373021 | 0.380 |
| 1988 | 206539038 | 775842 | 574928 | 413646 | 0.527 |
| 1989 | 92618550 | 747470 | 154662 | 446028 | 0.808 |
| 1990 | 131169377 | 647380 | 247707 | 306240 | 0.807 |
| 1991 | 163938186 | 944290 | 330050 | 332204 | 0.574 |
| 1992 | 37021153 | 1042320 | 284361 | 558599 | 0.836 |
| 1993 | 155942826 | 459344 | 260407 | 132024 | 0.370 |
| 1994 | 223964922 | 683504 | 177726 | 193241 | 0.299 |
| 1995 | 56119842 | 1449690 | 399113 | 400588 | 0.560 |


|  | Recruits (thousands) | TSB (tonnes) | SSB (tonnes) | Yield (tonnes) | Mean $\mathrm{F}_{1-2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1996 | 403222872 | 605958 | 364762 | 265869 | 0.523 |
| 1997 | 63148522 | 1894180 | 232815 | 426089 | 0.515 |
| 1998 | 121084596 | 854977 | 524919 | 377073 | 0.632 |
| 1999 | 159252253 | 577355 | 222348 | 422718 | 0.917 |
| 2000 | 252772391 | 677968 | 142059 | 299167 | 0.741 |
| 2001 | 418003348 | 787195 | 161297 | 531265 | 1.193 |
| 2002 | 26722060 | 1439260 | 156217 | 606466 | 0.818 |
| 2003 | 160691992 | 343463 | 243045 | 148039 | 0.705 |
| 2004 | 67998758 | 491587 | 93246 | 203646 | 0.715 |
| 2005 | 163120541 | 349493 | 116425 | 123422 | 0.937 |
| 2006 | 79319932 | 554785 | 75508 | 240646 | 1.148 |
| 2007 | 194900553 | 320875 | 93620 | 109624 | 0.413 |
| 2008 | 77129779 | 704471 | 129832 | 234447 | 0.784 |
| 2009 | 560309574 | 399923 | 145365 | 290995 | 0.985 |
| 2010 | 34552829 | 1852980 | 129573 | 300508 | 0.544 |
| 2011 | 42287412 | 666689 | 467895 | 318840 | 0.604 |
| 2012 | 103284720 | 281048 | 152970 | 46117 | 0.112 |
| 2013 | 60128831 | 305106 | 83200 | 214359 | 0.708 |
| 2014 | 214109902 | 211344 | 64861 | 78830 | 0.420 |
| 2015 | 36579554 | 655139 | 85221 | 163381 | 0.396 |
| 2016 | 273004818 | 372064 | 231422 | 14613 | 0.028 |
| 2017 | 19481970 | 849954 | 156530 | 241916 | 0.537 |
| 2018 | 31171039 | 293905 | 204843 | 133659 | 0.555 |
| 2019 | 95439204 | 153229 | 71254 | 66444 | 0.545 |
| 2020 | 52904555 | 426837 | 60901 | 106100 | 0.515 |
| 2021 | 39626157 | 318828 | 126880 | 17064 | 0.079 |
| 2022 |  |  | 128284 |  |  |
| arith. mean | 149491895 | 745842 | 236222 | 277802 | 0.608 |
| geo. mean | 106856781 |  |  |  |  |
| rith. mean for the period 1983-2021 eo. mean for the period 1983-2020 |  |  |  |  |  |

Table 9.2.11 Sandeel Area-1r. Input to forecast.

|  | Age 0 | Age 1 | Age 2 | Age 3 | Age 4 |
| :--- | :--- | :--- | :--- | :--- | ---: | ---: |
| Stock numbers(2022) | 106885.513 | 21333 | 10218.5 | 5258.51 | 474.614 |
| Exploitation pattern 1st half |  | 0.044 | 0.105 | 0.176 | 0.176 |
| Exploitation pattern 2nd half | 0.000 | 0.003 | 0.007 | 0.012 | 0.012 |
| Weight in the stock 1st half |  | 5.544 | 8.217 | 10.190 | 11.888 |
| Weight in the catch 1st half | 3.221 | 7.739 | 10.099 | 13.239 | 14.905 |
| weight in the catch 2nd half | 0.000 | 0.021 | 0.801 | 0.988 | 1.000 |
| Proportion mature(2022) | 0.000 | 0.021 | 0.801 | 0.988 | 1.000 |
| Proportion mature(2023) |  | 0.440 | 0.427 | 0.328 | 0.293 |
| Natural mortality 1st half | 0.619 | 0.538 | 0.454 | 0.360 | 0.345 |
| Natural mortality 2nd half |  |  | 8.217 | 10.190 | 11.888 |

Table 9.2.12 Sandeel Area-1r. Short term forecast (000 tonnes).
Basis: $\mathrm{Fsq}=\mathrm{F}(2021)=0.0794$; Yield(2021)=17.064; Recruitment(2021)=39.626157; Recruitment(2022)=geometric mean (GM 1983-2020)=106.885513 billion; SSB(2022)=128.284

| F multiplier | Basis | F(2022) | Catch(2022) | SSB(2023) | $\begin{gathered} \text { \%SSB } \\ \text { change* } \end{gathered}$ | \%TAC change** |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $\mathrm{F}=0$ | 0.000 | 0.001 | 136.622 | 7 \% | -100 \% |
| 0.99 | Fsq*0.99 | 0.079 | 20.173 | 123.863 | -3 \% | 18 \% |
| 1 | Fsq*1 | 0.079 | 20.290 | 123.790 | -4\% | 19 \% |
| 2 | Fsq*2 | 0.159 | 38.323 | 112.532 | -12 \% | 125 \% |
| 1 | Fsq*1 | 0.079 | 20.290 | 123.790 | -4\% | 19 \% |
| 0.08 | Fsq*0.08 | 0.006 | 1.734 | 135.520 | 6 \% | -90\% |
| 1.8 | Fsq*1.8 | 0.143 | 34.856 | 114.684 | -11\% | 104 \% |
| 2.2 | Fsq*2.2 | 0.175 | 41.642 | 110.477 | -14\% | 144 \% |
| 0.11 | Fsq*0.11 | 0.009 | 2.359 | 135.123 | 5 \% | -86\% |
| No conversion for calculation of MSY catch |  | NA | NA | NA |  |  |
| *SSB in 2023 relative to SSB in 2022 <br> **TAC in 2022 relative to catches in 2021 |  |  |  |  |  |  |

Table 9.3.1 Sandeel Area-2r. Catch at age numbers (million) by half year.

|  | Age 0, <br> 2nd half | Age 1, 1st <br> half | Age 1, <br> 2nd half | Age 2, <br> 1st half | Age 2, <br> 2nd half | Age 3, <br> 1st half | Age 3, <br> 2nd half | Age 4+, <br> 1st half | Age 4+, <br> 2nd half |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1983 | 12882 | 4162 | 476 | 6190 | 877 | 203 | 104 | 67 | 0 |
| 1984 | 0 | 10284 | 3846 | 912 | 186 | 1154 | 193 | 38 | 10 |
| 1985 | 1827 | 1411 | 392 | 5501 | 768 | 473 | 387 | 109 | 50 |
| 1986 | 1443 | 24479 | 3495 | 3144 | 208 | 436 | 95 | 6 | 7 |
| 1987 | 45 | 831 | 512 | 2621 | 591 | 131 | 17 | 20 | 4 |
| 1988 | 5602 | 1030 | 545 | 3379 | 226 | 3163 | 775 | 478 | 31 |


|  | Age 0, 2nd half | Age 1, 1st half | Age 1, 2nd half | Age 2, 1st half | Age 2, 2nd half | Age 3, 1st half | Age 3, 2nd half | Age 4+, <br> 1st half | Age 4+, 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1989 | 2819 | 23364 | 3809 | 1666 | 273 | 938 | 10 | 909 | 34 |
| 1990 | 5046 | 7332 | 854 | 3967 | 196 | 587 | 29 | 177 | 9 |
| 1991 | 10053 | 14203 | 3628 | 2099 | 110 | 451 | 35 | 156 | 1 |
| 1992 | 6830 | 12016 | 886 | 4066 | 85 | 475 | 34 | 298 | 7 |
| 1993 | 14083 | 4814 | 873 | 1294 | 660 | 642 | 226 | 475 | 56 |
| 1994 | 0 | 25596 | 4477 | 3619 | 919 | 341 | 275 | 199 | 118 |
| 1995 | 1798 | 4897 | 1316 | 1598 | 1777 | 209 | 211 | 88 | 159 |
| 1996 | 26463 | 2472 | 7161 | 1573 | 475 | 905 | 278 | 260 | 186 |
| 1997 | 284 | 29071 | 8330 | 1640 | 193 | 628 | 83 | 207 | 47 |
| 1998 | 1070 | 645 | 106 | 4749 | 1424 | 437 | 136 | 348 | 144 |
| 1999 | 4130 | 841 | 1113 | 177 | 102 | 855 | 501 | 186 | 149 |
| 2000 | 519 | 8160 | 1066 | 566 | 164 | 217 | 98 | 518 | 134 |
| 2001 | 5767 | 2625 | 2414 | 1010 | 563 | 129 | 73 | 367 | 228 |
| 2002 | 4 | 15855 | 1379 | 891 | 185 | 393 | 35 | 85 | 28 |
| 2003 | 3711 | 267 | 79 | 1723 | 453 | 136 | 43 | 67 | 17 |
| 2004 | 755 | 10761 | 2034 | 711 | 212 | 537 | 297 | 174 | 55 |
| 2005 | 15 | 2171 | 490 | 513 | 336 | 48 | 32 | 116 | 91 |
| 2006 | 8 | 2441 | 1030 | 276 | 125 | 100 | 64 | 27 | 39 |
| 2007 | 0 | 6431 | 0 | 240 | 0 | 32 | 0 | 5 | 0 |
| 2008 | 1 | 4621 | 187 | 434 | 64 | 90 | 36 | 15 | 5 |
| 2009 | 103 | 2817 | 1867 | 671 | 145 | 42 | 25 | 4 | 1 |
| 2010 | 2 | 6490 | 1308 | 193 | 35 | 374 | 27 | 60 | 4 |
| 2011 | 0 | 404 | 19 | 1474 | 91 | 236 | 17 | 59 | 3 |
| 2012 | 0 | 168 | 6 | 194 | 51 | 293 | 6 | 60 | 10 |
| 2013 | 0 | 4824 | 431 | 1158 | 47 | 296 | 16 | 99 | 5 |
| 2014 | 301 | 2987 | 141 | 2371 | 28 | 340 | 3 | 119 | 5 |
| 2015 | 0 | 2275 | 42 | 772 | 9 | 561 | 2 | 197 | 2 |
| 2016 | 4 | 272 | 1 | 136 | 3 | 108 | 0 | 66 | 0 |
| 2017 | 0 | 23040 | 1325 | 243 | 5 | 51 | 25 | 20 | 2 |
| 2018 | 0 | 50 | 0 | 1949 | 22 | 63 | 2 | 11 | 0 |
| 2019 | 0 | 226 | 0 | 52 | 0 | 172 | 0 | 4 | 0 |
| 2020 | 4 | 8068 | 16 | 433 | 1 | 173 | 1 | 356 | 3 |
| 2021 | 0 | 746 | 0 | 128 | 0 | 2 | 0 | 3 | 0 |
| arith. <br> mean | 2707 | 7004 | 1427 | 1650 | 298 | 421 | 107 | 165 | 42 |

Table 9.3.2 Sandeel Area-2r. Individual mean weight (gram) at age in the catch and in the sea.

|  | Age 0, 2nd half | Age 1, 1st half | Age 1, 2nd half | Age 2, 1st half | Age 2, 2nd half | Age 3, 1st half | Age 3, 2nd half | Age 4+, 1st half | Age 4+, 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 3.3 | 5.2 | 9.9 | 10.8 | 16.5 | 12.8 | 22.9 | 15.0 | 27.3 |
| 1984 | 5.9 | 5.6 | 10.2 | 11.1 | 14.1 | 15.6 | 25.8 | 18.8 | 30.1 |
| 1985 | 4.5 | 6.7 | 10.7 | 9.9 | 16.8 | 17.5 | 23.3 | 24.1 | 27.5 |
| 1986 | 3.2 | 5.9 | 9.8 | 10.3 | 15.8 | 12.7 | 15.0 | 15.0 | 17.0 |
| 1987 | 2.8 | 5.8 | 8.7 | 11.1 | 12.9 | 16.4 | 21.1 | 14.6 | 19.4 |
| 1988 | 3.5 | 5.5 | 7.2 | 11.1 | 15.3 | 16.1 | 21.0 | 23.1 | 30.6 |
| 1989 | 4.8 | 5.7 | 9.4 | 9.1 | 13.4 | 10.1 | 14.4 | 12.1 | 18.0 |
| 1990 | 4.4 | 7.1 | 8.1 | 9.7 | 11.8 | 14.4 | 17.4 | 17.3 | 20.8 |
| 1991 | 3.8 | 7.7 | 5.7 | 12.1 | 11.0 | 35.8 | 32.6 | 21.2 | 20.1 |
| 1992 | 4.7 | 6.9 | 15.0 | 9.9 | 20.6 | 13.5 | 29.3 | 17.9 | 29.2 |
| 1993 | 2.8 | 7.7 | 9.3 | 15.1 | 14.8 | 16.9 | 17.5 | 22.3 | 22.0 |
| 1994 | 3.6 | 5.4 | 7.6 | 10.5 | 18.8 | 15.3 | 23.0 | 19.5 | 20.7 |
| 1995 | 5.2 | 7.6 | 8.9 | 12.4 | 13.2 | 16.0 | 17.6 | 19.2 | 21.1 |
| 1996 | 2.7 | 7.0 | 4.9 | 12.4 | 13.2 | 17.0 | 15.8 | 27.9 | 24.5 |
| 1997 | 3.2 | 5.3 | 7.1 | 8.0 | 11.2 | 13.1 | 13.8 | 15.9 | 14.9 |
| 1998 | 3.4 | 6.2 | 6.7 | 11.4 | 14.0 | 14.7 | 16.5 | 17.4 | 18.3 |
| 1999 | 5.3 | 8.1 | 9.1 | 11.8 | 12.8 | 15.4 | 15.3 | 19.1 | 19.6 |
| 2000 | 3.1 | 6.8 | 10.2 | 10.0 | 13.0 | 15.2 | 17.9 | 18.1 | 19.5 |
| 2001 | 4.0 | 6.0 | 5.0 | 12.9 | 16.1 | 16.6 | 21.7 | 20.4 | 26.2 |
| 2002 | 3.2 | 5.7 | 8.3 | 8.4 | 13.2 | 9.6 | 15.3 | 17.3 | 17.7 |
| 2003 | 5.4 | 6.0 | 8.1 | 11.3 | 16.0 | 15.1 | 21.4 | 18.2 | 27.2 |
| 2004 | 4.8 | 6.5 | 7.4 | 9.4 | 10.9 | 12.4 | 12.2 | 13.1 | 13.7 |
| 2005 | 3.4 | 7.5 | 7.4 | 11.8 | 11.9 | 14.4 | 15.4 | 14.8 | 17.5 |
| 2006 | 4.6 | 7.6 | 9.9 | 11.5 | 15.9 | 13.9 | 20.6 | 14.8 | 23.4 |
| 2007 | 5.8 | 6.2 | 6.2 | 12.4 | 12.4 | 15.4 | 15.4 | 17.8 | 17.8 |
| 2008 | 3.4 | 5.5 | 7.5 | 12.5 | 12.0 | 16.1 | 15.6 | 18.0 | 17.7 |
| 2009 | 6.0 | 6.1 | 5.0 | 8.7 | 10.9 | 16.5 | 18.6 | 12.2 | 11.0 |
| 2010 | 2.5 | 5.7 | 5.3 | 10.3 | 8.4 | 11.5 | 11.0 | 13.2 | 12.5 |
| 2011 | 3.6 | 6.9 | 7.6 | 11.1 | 12.2 | 13.8 | 15.8 | 14.6 | 18.0 |
| 2012 | 4.4 | 8.2 | 9.4 | 12.4 | 15.1 | 14.8 | 19.6 | 21.8 | 22.3 |
| 2013 | 3.9 | 5.9 | 8.8 | 7.9 | 11.5 | 14.2 | 14.4 | 14.1 | 16.5 |
| 2014 | 3.3 | 5.3 | 7.0 | 9.9 | 11.2 | 12.0 | 14.6 | 18.6 | 16.6 |
| 2015 | 5.3 | 6.8 | 11.4 | 12.4 | 18.4 | 15.3 | 23.9 | 17.3 | 27.1 |
| 2016 | 2.6 | 3.3 | 5.5 | 12.2 | 8.9 | 14.6 | 11.5 | 16.0 | 13.1 |
| 2017 | 2.9 | 5.5 | 7.8 | 7.8 | 10.7 | 13.1 | 10.8 | 14.8 | 15.5 |
| 2018 | 3.8 | 4.6 | 8.2 | 9.6 | 13.9 | 12.4 | 18.6 | 14.0 | 20.7 |


|  | Age 0, <br> 2nd half | Age 1, <br> 1st half | Age 1, <br> 2nd half | Age 2, <br> 1st half | Age 2, <br> 2nd half | Age 3, <br> 1st half | Age 3, <br> 2nd half | Age 4+, <br> 1st half | Age 4+, <br> 2nd half |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2019 | 3.8 | 7.7 | 8.2 | 12.4 | 13.9 | 15.4 | 18.6 | 18.7 | 20.7 |
| 2020 | 3.8 | 6.6 | 8.2 | 12.8 | 13.9 | 16.2 | 18.6 | 20.4 | 20.7 |
| 2021 | 3.8 | 5.0 | 8.2 | 9.3 | 13.9 | 13.0 | 18.6 | 16.3 | 20.7 |
| arith. <br> mean | 4.0 | 6.3 | 8.2 | 10.9 | 13.6 | 15.0 | 18.3 | 17.6 | 20.4 |

Table 9.3.3 Sandeel Area-2r. Proportion mature.

|  | Age 1 | Age 2 | Age 3 | Age 4 |
| :---: | :---: | :---: | :---: | :---: |
| $1983-2016$ | 0.02 | 0.83 | 1 | 1 |

Table 9.3.4. Sandeel Area-2r. Dredge survey indices.

| Year | Age 0 | Age 1 |
| :--- | :--- | :--- |
| 2010 | 938.752 | 1482.382 |
| 2011 | 2290.448 | 259.021 |
| 2012 | 11342.580 | 94.156 |
| 2013 | 7546.966 | 2103.482 |
| 2014 | 5760.235 | 810.806 |
| 2015 | 706.350 | 106.920 |
| 2016 | 53839.804 | 113.297 |
| 2017 | 899.000 | 2976.000 |
| 2018 | 2326.000 | 372.000 |
| 2019 | 26129.000 | 522.000 |
| 2020 | 7662.000 | 665.000 |
| 2021 | 45488.020 | 499.877 |

Table 9.3.5 Sandeel Area-2r. SMS settings and statistics.
Date: 01/26/22 Start time:09:45:41 run time:0 seconds
objective function (negative log likelihood): 86.0187
Number of parameters: 75
Maximum gradient: 9.66494e-005
Akaike information criterion (AIC): 322.037
Number of observations used in the likelihood:

| Catch | CPUE | S/R | Stomach | Sum |
| :---: | :---: | :---: | :---: | :---: |
| 351 | 24 | 39 | 0 | 414 |

objective function weight:

$$
\begin{array}{llr}
\text { Catch } & \text { CPUE } & \text { S/R } \\
1.00 & 1.00 & 0.10
\end{array}
$$

unweighted objective function contributions (total):

| Catch | CPUE | S/R | Stom. | Stom N. | Penalty | Sum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 90.2 | -6.2 | 20.2 | 0.0 | 0.0 | 0.00 | 104 |

```
unweighted objective function contributions (per observation):
\begin{tabular}{llll} 
Catch & CPUE & \multicolumn{1}{r}{ S/R } & Stomachs \\
0.26 & -0.26 & 0.52 & 0.00
\end{tabular}
```

contribution by fleet:
Dredge survey 2010-2021 total: -6.243 mean: -0.260

## F, season effect:

age: 0
1983-1988: 0.0001 .000
1989-1998: 0.0001 .000
1999-2004: 0.0001 .000
2005-2009: 0.0001 .000
2010-2021: 0.0001 .000
age: 1-4
1983-1988: 0.4750 .500
1989-1998: 0.6850 .500
1999-2004: 0.4210 .500
2005-2009: 0.1910 .500
2010-2021: 0.5710 .500
$F$, age effect:

|  | 0 | 1 | 2 | 3 | 4 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| 1983-1988: | 0.041 | 0.280 | 0.901 | 1.490 | 1.490 |
| $1989-1998:$ | 0.099 | 0.337 | 0.403 | 0.476 | 0.476 |
| $1999-2004:$ | 0.041 | 0.598 | 0.717 | 0.721 | 0.721 |
| $2005-2009:$ | 0.001 | 1.960 | 1.647 | 1.731 | 1.731 |
| $2010-2021:$ | 0.001 | 0.270 | 0.440 | 0.555 | 0.555 |

Exploitation pattern (scaled to mean $\mathrm{F}=1$ )

|  |  | 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| 1983-1988 season 1: | 0 | 0.299 | 0.962 | 1.592 | 1.592 |  |
|  | season 2: | 0.051 | 0.175 | 0.564 | 0.932 | 0.932 |
|  |  |  |  |  |  |  |
| 1989-1998 season 1: | 0 | 0.725 | 0.868 | 1.025 | 1.025 |  |
|  | season 2: | 0.109 | 0.185 | 0.222 | 0.262 | 0.262 |
|  |  |  |  |  |  |  |
| 1999-2004 season 1: | 0 | 0.310 | 0.371 | 0.373 | 0.373 |  |
|  | season 2: | 0.082 | 0.600 | 0.719 | 0.723 | 0.723 |
|  |  |  |  |  |  |  |
| $2005-2009$ | season 1: | 0 | 0.540 | 0.454 | 0.477 | 0.477 |
|  | season 2: | 0.001 | 0.546 | 0.459 | 0.482 | 0.482 |
|  |  |  |  |  |  |  |
| $2010-2021$ |  | 0 | 0.638 | 1.038 | 1.310 | 1.310 |
|  | season 1: | 0.001 | 0.123 | 0.201 | 0.254 | 0.254 |

sqrt(catch variance) ~ CV:
---------------------------
season

|  | season |  |
| :---: | :---: | :---: |
| age | 1 | 2 |
| 0 |  | 1.641 |
| 1 | 0.404 | 0.825 |
| 2 | 0.404 | 0.825 |


| 3 | 0.880 | 1.082 |
| :--- | :--- | :--- |
| 4 | 0.880 | 1.082 |

Survey catchability:

|  | age $0 \quad$ age 1 |
| :--- | ---: | :--- |
| Dredge survey 2010-2021 | $0.356 \quad 23.650$ |



|  |  |
| :---: | :---: |
| Dredge survey $2010-2021$ | age 0 |
| 0.30 | age 1 |
| 0.76 |  |


| Recruit-SSB | alfa | beta | recruit s2 | recruit s |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Area-2r | 1093.169 | $5.600 \mathrm{e}+004$ | 1.038 | 1.019 |

Table 9.3.6 Sandeel Area-2r. Annual fishing mortality (F) at age.

|  | Age 0 | Age 1 | Age 2 | Age 3 | Age 4 | Avg. 1-2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0.037 | 0.369 | 1.175 | 1.936 | 1.935 | 0.772 |
| 1984 | 0.034 | 0.310 | 0.990 | 1.638 | 1.637 | 0.650 |
| 1985 | 0.022 | 0.290 | 0.916 | 1.500 | 1.497 | 0.603 |
| 1986 | 0.025 | 0.416 | 1.302 | 2.115 | 2.111 | 0.859 |
| 1987 | 0.008 | 0.092 | 0.292 | 0.482 | 0.481 | 0.192 |
| 1988 | 0.027 | 0.309 | 0.980 | 1.610 | 1.608 | 0.645 |
| 1989 | 0.076 | 0.728 | 0.854 | 0.996 | 0.994 | 0.791 |
| 1990 | 0.037 | 0.489 | 0.572 | 0.664 | 0.662 | 0.531 |
| 1991 | 0.070 | 0.552 | 0.650 | 0.760 | 0.759 | 0.601 |
| 1992 | 0.051 | 0.561 | 0.657 | 0.765 | 0.763 | 0.609 |
| 1993 | 0.080 | 0.442 | 0.524 | 0.618 | 0.617 | 0.483 |
| 1994 | 0.050 | 0.470 | 0.551 | 0.643 | 0.642 | 0.510 |
| 1995 | 0.043 | 0.255 | 0.302 | 0.356 | 0.355 | 0.279 |
| 1996 | 0.132 | 0.379 | 0.460 | 0.554 | 0.555 | 0.420 |
| 1997 | 0.083 | 0.555 | 0.656 | 0.770 | 0.768 | 0.606 |
| 1998 | 0.046 | 0.286 | 0.339 | 0.398 | 0.397 | 0.312 |
| 1999 | 0.036 | 0.370 | 0.456 | 0.471 | 0.472 | 0.413 |
| 2000 | 0.017 | 0.550 | 0.649 | 0.648 | 0.647 | 0.599 |
| 2001 | 0.036 | 0.479 | 0.581 | 0.594 | 0.595 | 0.530 |
| 2002 | 0.020 | 0.665 | 0.784 | 0.782 | 0.780 | 0.724 |
| 2003 | 0.037 | 0.441 | 0.538 | 0.552 | 0.552 | 0.489 |
| 2004 | 0.030 | 0.897 | 1.060 | 1.060 | 1.059 | 0.978 |
| 2005 | 0.001 | 1.177 | 0.996 | 1.060 | 1.060 | 1.086 |
| 2006 | 0.001 | 1.229 | 1.046 | 1.119 | 1.119 | 1.138 |


|  | Age 0 | Age 1 | Age 2 | Age 3 | Age 4 | Avg. 1-2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2007 | 0.000 | 0.752 | 0.615 | 0.631 | 0.628 | 0.684 |
| 2008 | 0.000 | 0.808 | 0.671 | 0.700 | 0.699 | 0.740 |
| 2009 | 0.000 | 0.773 | 0.653 | 0.695 | 0.695 | 0.713 |
| 2010 | 0.000 | 0.393 | 0.622 | 0.773 | 0.771 | 0.508 |
| 2011 | 0.000 | 0.254 | 0.400 | 0.495 | 0.493 | 0.327 |
| 2012 | 0.000 | 0.145 | 0.228 | 0.282 | 0.281 | 0.187 |
| 2013 | 0.000 | 0.628 | 0.988 | 1.221 | 1.217 | 0.808 |
| 2015 | 0.000 | 0.476 | 0.747 | 0.920 | 0.917 | 0.612 |
| 2016 | 0.000 | 0.419 | 0.656 | 0.806 | 0.804 | 0.538 |
| 2017 | 0.000 | 0.181 | 0.284 | 0.350 | 0.349 | 0.233 |
| 2018 | 0.000 | 0.245 | 0.383 | 0.471 | 0.469 | 1.047 |
| 2020 | 0.000 | 0.057 | 0.089 | 0.110 | 0.110 | 0.314 |
| 2021 | 0.000 | 0.560 | 0.877 | 1.080 | 1.077 | 0.073 |
| arith. mean | 0.000 | 0.110 | 0.172 | 0.211 | 0.211 | 0.718 |
|  | 0.026 | 0.485 | 0.667 | 0.831 | 0.830 | 0.141 |
|  |  |  |  |  | 0.576 |  |

Table 9.3.7 Sandeel Area-2r. Fishing mortality (F) at age.

|  | Age 0, <br> 2nd half | Age 1, <br> 1st half | Age 1, <br> 2nd half | Age 2, <br> 1st half | Age 2, <br> 2nd half | Age 3, <br> 1st half | Age 3, <br> 2nd half | Age 4+, <br> 1st half | Age 4+, <br> 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 0.037 | 0.216 | 0.127 | 0.696 | 0.408 | 1.151 | 0.674 | 1.151 | 0.674 |
| 1984 | 0.034 | 0.176 | 0.115 | 0.567 | 0.371 | 0.938 | 0.614 | 0.938 | 0.614 |
| 1985 | 0.022 | 0.183 | 0.076 | 0.590 | 0.244 | 0.976 | 0.404 | 0.976 | 0.404 |
| 1986 | 0.025 | 0.277 | 0.087 | 0.891 | 0.279 | 1.474 | 0.461 | 1.474 | 0.461 |
| 1987 | 0.008 | 0.056 | 0.028 | 0.179 | 0.090 | 0.296 | 0.150 | 0.296 | 0.150 |
| 1988 | 0.027 | 0.190 | 0.091 | 0.610 | 0.294 | 1.010 | 0.486 | 1.010 | 0.486 |
| 1989 | 0.076 | 0.501 | 0.128 | 0.600 | 0.153 | 0.709 | 0.181 | 0.709 | 0.181 |
| 1990 | 0.037 | 0.349 | 0.062 | 0.418 | 0.075 | 0.494 | 0.088 | 0.494 | 0.088 |
| 1991 | 0.070 | 0.365 | 0.119 | 0.438 | 0.143 | 0.517 | 0.168 | 0.517 | 0.168 |
| 1992 | 0.051 | 0.392 | 0.087 | 0.469 | 0.104 | 0.554 | 0.123 | 0.554 | 0.123 |
| 1993 | 0.080 | 0.268 | 0.136 | 0.321 | 0.162 | 0.379 | 0.192 | 0.379 | 0.192 |
| 1994 | 0.050 | 0.320 | 0.085 | 0.383 | 0.102 | 0.452 | 0.121 | 0.452 | 0.121 |
| 1995 | 0.043 | 0.158 | 0.073 | 0.189 | 0.088 | 0.223 | 0.103 | 0.223 | 0.103 |
| 1996 | 0.132 | 0.168 | 0.225 | 0.201 | 0.269 | 0.238 | 0.318 | 0.238 | 0.318 |
| 1997 | 0.083 | 0.355 | 0.141 | 0.425 | 0.169 | 0.502 | 0.199 | 0.502 | 0.199 |
| 1998 | 0.046 | 0.179 | 0.078 | 0.214 | 0.093 | 0.253 | 0.110 | 0.253 | 0.110 |
| 1999 | 0.036 | 0.138 | 0.267 | 0.165 | 0.320 | 0.166 | 0.322 | 0.166 | 0.322 |
| 2000 | 0.017 | 0.359 | 0.127 | 0.430 | 0.152 | 0.433 | 0.153 | 0.433 | 0.153 |
| 2001 | 0.036 | 0.222 | 0.267 | 0.266 | 0.321 | 0.268 | 0.322 | 0.268 | 0.322 |
| 2002 | 0.020 | 0.441 | 0.144 | 0.529 | 0.172 | 0.532 | 0.173 | 0.532 | 0.173 |


|  | Age 0, 2nd half | Age 1, 1st half | Age 1, 2nd half | Age 2, 1st half | Age 2, 2nd half | Age 3, 1st half | Age 3, 2nd half | Age 4+, 1st half | Age 4+, 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2003 | 0.037 | 0.192 | 0.269 | 0.230 | 0.322 | 0.231 | 0.324 | 0.231 | 0.324 |
| 2004 | 0.030 | 0.580 | 0.222 | 0.695 | 0.267 | 0.699 | 0.268 | 0.699 | 0.268 |
| 2005 | 0.001 | 0.583 | 0.590 | 0.490 | 0.495 | 0.515 | 0.521 | 0.515 | 0.521 |
| 2006 | 0.001 | 0.558 | 0.704 | 0.469 | 0.592 | 0.493 | 0.622 | 0.493 | 0.622 |
| 2007 | 0.000 | 0.600 | 0.000 | 0.505 | 0.000 | 0.530 | 0.000 | 0.530 | 0.000 |
| 2008 | 0.000 | 0.529 | 0.189 | 0.444 | 0.159 | 0.467 | 0.167 | 0.467 | 0.167 |
| 2009 | 0.000 | 0.390 | 0.375 | 0.328 | 0.315 | 0.344 | 0.331 | 0.344 | 0.331 |
| 2010 | 0.000 | 0.278 | 0.054 | 0.452 | 0.087 | 0.570 | 0.110 | 0.570 | 0.110 |
| 2011 | 0.000 | 0.187 | 0.020 | 0.305 | 0.032 | 0.385 | 0.040 | 0.385 | 0.040 |
| 2012 | 0.000 | 0.109 | 0.007 | 0.178 | 0.012 | 0.224 | 0.015 | 0.224 | 0.015 |
| 2013 | 0.000 | 0.465 | 0.056 | 0.756 | 0.090 | 0.955 | 0.114 | 0.955 | 0.114 |
| 2014 | 0.000 | 0.364 | 0.021 | 0.592 | 0.034 | 0.748 | 0.043 | 0.748 | 0.043 |
| 2015 | 0.000 | 0.327 | 0.006 | 0.533 | 0.009 | 0.673 | 0.011 | 0.673 | 0.011 |
| 2016 | 0.000 | 0.139 | 0.004 | 0.226 | 0.007 | 0.285 | 0.009 | 0.285 | 0.009 |
| 2017 | 0.001 | 0.605 | 0.073 | 0.985 | 0.120 | 1.244 | 0.151 | 1.244 | 0.151 |
| 2018 | 0.000 | 0.191 | 0.002 | 0.310 | 0.003 | 0.392 | 0.003 | 0.392 | 0.003 |
| 2019 | 0.000 | 0.044 | 0.000 | 0.072 | 0.000 | 0.091 | 0.000 | 0.091 | 0.000 |
| 2020 | 0.000 | 0.430 | 0.023 | 0.699 | 0.038 | 0.883 | 0.048 | 0.883 | 0.048 |
| 2021 | 0.000 | 0.085 | 0.000 | 0.139 | 0.000 | 0.176 | 0.000 | 0.176 | 0.000 |
| arith. <br> mean | 0.026 | 0.307 | 0.130 | 0.436 | 0.169 | 0.550 | 0.209 | 0.550 | 0.209 |

Table 9.3.8 Sandeel Area-2r. Natural mortality (M) at age.

|  | Age 0, <br> 2nd half | Age 1, <br> 1st half | Age 1, <br> 2nd half | Age 2, <br> 1st half | Age 2, <br> 2nd half | Age 3, <br> 1st half | Age 3, <br> 2nd half | Age 4+, <br> 1st half | Age 4+, <br> 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: | ---: |
| 1983 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1984 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1985 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1986 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1987 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1988 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1989 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1990 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1991 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1992 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1993 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1994 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1995 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1996 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1997 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |


|  | Age 0, 2nd half | Age 1, 1st half | Age 1, 2nd half | Age 2, 1st half | Age 2, 2nd half | Age 3, 1st half | Age 3, 2nd half | Age 4+, 1st half | Age 4+, 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1998 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 1999 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2000 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2001 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2002 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2003 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2004 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2005 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2006 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2007 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2008 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2009 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2010 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2011 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2012 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2013 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2014 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2015 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2016 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2017 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2018 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2019 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2020 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| 2021 | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |
| arith. <br> mean | 0.92 | 0.57 | 0.59 | 0.44 | 0.49 | 0.32 | 0.42 | 0.31 | 0.41 |

Table 9.3.9 Sandeel Area-2r. Stock numbers (millions). Age 0 at start of 2 nd half-year, age $1+$ at start of the year.

|  | Age 0 | Age 1 | Age 2 | Age 3 | Age 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 158917 | 16431 | 14521 | 729 | 27 |
| 1984 | 47208 | 61033 | 3656 | 1901 | 58 |
| 1985 | 280397 | 18190 | 14296 | 564 | 198 |
| 1986 | 60449 | 109293 | 4400 | 2449 | 92 |
| 1987 | 35468 | 23489 | 23822 | 539 | 175 |
| 1988 | 174767 | 14019 | 6773 | 7181 | 219 |
| 1989 | 87304 | 67817 | 3319 | 1082 | 792 |
| 1990 | 158712 | 32262 | 11328 | 616 | 370 |
| 1991 | 113021 | 60965 | 6701 | 2730 | 265 |
| 1992 | 117418 | 41991 | 11773 | 1480 | 722 |


| Age 0 |  | Age 1 | Age 2 | Age 3 | Age 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1993 | 231610 | 44462 | 8156 | 2619 | 538 |
| 1994 | 108224 | 85213 | 9306 | 1984 | 854 |
| 1995 | 77846 | 41013 | 17812 | 2260 | 768 |
| 1996 | 418473 | 29716 | 10206 | 5331 | 1048 |
| 1997 | 16077 | 146094 | 6290 | 2516 | 1752 |
| 1998 | 26957 | 5897 | 27887 | 1370 | 1018 |
| 1999 | 75193 | 10260 | 1429 | 8087 | 799 |
| 2000 | 43989 | 28897 | 2146 | 347 | 2607 |
| 2001 | 133274 | 17230 | 5572 | 473 | 798 |
| 2002 | 10281 | 51217 | 3312 | 1223 | 340 |
| 2003 | 47588 | 4018 | 8950 | 648 | 370 |
| 2004 | 19118 | 18285 | 795 | 2033 | 281 |
| 2005 | 19287 | 7392 | 2570 | 120 | 421 |
| 2006 | 27034 | 7681 | 717 | 378 | 93 |
| 2007 | 40603 | 10764 | 681 | 98 | 74 |
| 2008 | 25407 | 16181 | 1851 | 162 | 49 |
| 2009 | 78639 | 10123 | 2475 | 400 | 54 |
| 2010 | 8418 | 31324 | 1476 | 513 | 110 |
| 2011 | 11325 | 3353 | 7051 | 340 | 151 |
| 2012 | 45359 | 4513 | 855 | 1986 | 154 |
| 2013 | 25698 | 18075 | 1259 | 279 | 805 |
| 2014 | 17956 | 10236 | 3368 | 213 | 180 |
| 2015 | 4966 | 7154 | 2185 | 711 | 86 |
| 2016 | 122957 | 1979 | 1608 | 501 | 192 |
| 2017 | 3783 | 48999 | 538 | 502 | 248 |
| 2018 | 9563 | 1507 | 7791 | 70 | 89 |
| 2019 | 45903 | 3811 | 390 | 2248 | 52 |
| 2020 | 26409 | 18293 | 1143 | 143 | 1002 |
| 2021 | 100926 | 10522 | 3647 | 216 | 219 |
| 2022 |  | 40221 | 3028 | 1252 | 176 |

Table 9.3.10 Sandeel Area-2r. Estimated recruitment, total stock biomass (TBS), spawning stock biomass (SSB), catch weight (modelled yield) and average fishing mortality.

|  | Recruits (thousands) | TSB (tonnes) | SSB (tonnes) | Yield (tonnes) | Mean $\boldsymbol{F}_{1-2}$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1983 | 158934067 | 251523 | 141775 | 155664 | 0.723 |
| 1984 | 47204510 | 410875 | 71396 | 133343 | 0.615 |
| 1985 | 280476360 | 277668 | 134592 | 110546 | 0.547 |
| 1986 | 60430228 | 718573 | 83200 | 225470 | 0.767 |
| 1987 | 35462984 | 413235 | 233748 | 49070 | 0.176 |
| 1988 | 174773254 | 273465 | 184795 | 149466 | 0.593 |


|  | Recruits (thousands) | TSB (tonnes) | SSB (tonnes) | Yield (tonnes) | Mean $\mathrm{F}_{1-2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1989 | 87312134 | 439951 | 53316 | 223507 | 0.692 |
| 1990 | 158775212 | 353697 | 111190 | 133874 | 0.452 |
| 1991 | 113011484 | 652157 | 180052 | 215508 | 0.532 |
| 1992 | 117388558 | 441433 | 135944 | 184033 | 0.526 |
| 1993 | 231710661 | 521263 | 165215 | 139826 | 0.444 |
| 1994 | 108254988 | 603092 | 137173 | 244939 | 0.445 |
| 1995 | 77827080 | 584986 | 240386 | 113899 | 0.254 |
| 1996 | 418421560 | 454272 | 228891 | 182562 | 0.431 |
| 1997 | 16078604 | 882459 | 117948 | 242094 | 0.545 |
| 1998 | 26963644 | 392074 | 302247 | 99814 | 0.282 |
| 1999 | 75225438 | 240168 | 155749 | 69427 | 0.445 |
| 2000 | 43969202 | 270755 | 74013 | 92908 | 0.534 |
| 2001 | 133284967 | 198800 | 85905 | 90200 | 0.538 |
| 2002 | 10282973 | 335242 | 46444 | 117388 | 0.643 |
| 2003 | 47583661 | 141597 | 100912 | 53710 | 0.506 |
| 2004 | 19115307 | 154485 | 37459 | 110546 | 0.882 |
| 2005 | 19288122 | 93467 | 34269 | 34396 | 1.079 |
| 2006 | 27044656 | 72874 | 14644 | 37860 | 1.162 |
| 2007 | 40588689 | 77448 | 11142 | 43090 | 0.552 |
| 2008 | 25418810 | 116369 | 24441 | 35604 | 0.660 |
| 2009 | 78609255 | 90010 | 26265 | 35687 | 0.704 |
| 2010 | 8418986 | 201457 | 23576 | 51670 | 0.435 |
| 2011 | 11330401 | 108620 | 72475 | 24896 | 0.272 |
| 2012 | 45353595 | 80403 | 42319 | 10594 | 0.153 |
| 2013 | 25699960 | 131764 | 25745 | 47814 | 0.683 |
| 2014 | 17948193 | 93429 | 34787 | 48033 | 0.505 |
| 2015 | 4965378 | 88355 | 35846 | 37902 | 0.437 |
| 2016 | 122914555 | 36435 | 26796 | 5230 | 0.188 |
| 2017 | 3782894 | 286154 | 19141 | 141314 | 0.892 |
| 2018 | 9559060 | 84166 | 64602 | 20307 | 0.253 |
| 2019 | 45901117 | 69640 | 40175 | 5091 | 0.058 |
| 2020 | 26403312 | 157776 | 37235 | 68932 | 0.595 |
| 2021 | 100936282 | 92452 | 35490 | 4979 | 0.112 |
| 2022 |  |  | 51277 |  |  |
| arith. mean | 78372459 | 279297 | 91067 | 97210 | 0.521 |
| geo. mean | 44633712 |  |  |  |  |

arith. mean for the period 1983-2021
geo. mean for the period 1983-2020

Table 9.3.11 Sandeel Area-2r. Input to forecast.

|  | Age 0 | Age 1 | Age 2 | Age 3 | Age 4 |
| :--- | :--- | :--- | :--- | ---: | ---: |
| Stock numbers(2022) | 19066.388 | 40221.1 | 3028.4 | 1251.88 | 175.923 |
| Exploitation pattern 1st half |  | 0.085 | 0.139 | 0.176 | 0.176 |
| Exploitation pattern 2nd half | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| Weight in the stock 1st half |  | 5.873 | 10.367 | 13.999 | 16.826 |
| Weight in the catch 1st half | 3.621 | 8.133 | 13.271 | 17.076 | 19.689 |
| weight in the catch 2nd half | 0.000 | 0.020 | 0.830 | 1.000 | 1.000 |
| Proportion mature(2022) | 0.000 | 0.020 | 0.830 | 1.000 | 1.000 |
| Proportion mature(2023) |  | 0.570 | 0.440 | 0.320 | 0.310 |
| Natural mortality 1st half | 0.920 | 0.590 | 0.490 | 0.420 | 0.410 |
| Natural mortality 2nd half |  |  | 10.367 | 13.999 | 16.826 |

Table 9.3.12 Sandeel Area-2r. Short term forecast (000 tonnes).
Basis: $\mathrm{Fsq}=\mathrm{F}(2021)=0.1123$; Yield(2021)=4.979; Recruitment(2021)=100.936282; Recruitment(2022)=geometric mean (GM 2011-2020)=19.066388 billion; SSB(2022)=51.277

| F multiplier | Basis | F(2022) | Catch(2022) | SSB(2023) | \%SSB change* | \%TAC change** |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.000 | $\mathrm{F}=0$ | 0.000 | 0.001 | 137.618 | 168 \% | -100 \% |
| 3.920 | Fsq*3.92 | 0.440 | 71.859 | 93.977 | 83 \% | 1343 \% |
| 1.000 | Fsq*1 | 0.112 | 20.970 | 124.704 | 143 \% | 321 \% |
| 3.040 | Fsq*3.04 | 0.341 | 57.941 | 102.283 | 99 \% | 1064 \% |
| 0.080 | Fsq*0.08 | 0.009 | 1.700 | 136.567 | 166 \% | -66\% |
| 7.000 | Fsq*7 | 0.786 | 112.558 | 70.216 | 37 \% | 2161 \% |
| 9.000 | Fsq*9 | 1.011 | 133.602 | 58.313 | 14 \% | 2583 \% |
| 11.000 | Fsq*11 | 1.235 | 151.324 | 48.551 | -5 \% | 2939 \% |
| 13.000 | Fsq*13 | 1.460 | 166.321 | 40.520 | -21\% | 3241 \% |
| 5.097 | MSY | 0.572 | 88.771 | 84.000 | 64 \% | 1683 \% |

*SSB in 2023 relative to SSB in 2022
**TAC in 2022 relative to catches in 2021

Table 9.4.1 Sandeel Area-3r. Catch at age numbers (million) by half year.

|  | Age 0, <br> 2nd half | Age 1, 1st <br> half | Age 1, <br> 2nd half | Age 2, 1st <br> half | Age 2, <br> 2nd half | Age 3, <br> 1st half | Age 3, <br> 2nd half | Age 4+, <br> 1st half | Age 4+, <br> 2nd half |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1986 | 7965 | 18939 | 7987 | 2063 | 533 | 161 | 2 | 0 | 0 |
| 1987 | 5 | 33760 | 65 | 14020 | 4 | 453 | 0 | 200 | 0 |
| 1988 | 8769 | 6584 | 853 | 17321 | 233 | 893 | 144 | 19 | 13 |
| 1989 | 159 | 47004 | 190 | 1844 | 13 | 2806 | 0 | 4 | 0 |
| 1990 | 9793 | 9302 | 1377 | 2791 | 286 | 413 | 43 | 125 | 13 |
| 1991 | 14442 | 24009 | 942 | 1391 | 30 | 526 | 9 | 184 | 3 |
| 1992 | 525 | 7100 | 87 | 2862 | 8 | 342 | 3 | 215 | 1 |
| 1993 | 9663 | 15164 | 851 | 558 | 155 | 211 | 71 | 1336 | 12 |


|  | Age 0, 2nd half | Age 1, 1st half | Age 1, 2nd half | $\begin{gathered} \text { Age 2, 1st } \\ \text { half } \end{gathered}$ | Age 2, 2nd half | Age 3, 1st half | Age 3, 2nd half | Age 4+, 1st half | Age 4+, 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1994 | 0 | 23742 | 615 | 4818 | 684 | 938 | 78 | 386 | 10 |
| 1995 | 1020 | 25037 | 484 | 1894 | 78 | 238 | 13 | 156 | 17 |
| 1996 | 6263 | 4319 | 3111 | 3394 | 97 | 465 | 33 | 399 | 248 |
| 1997 | 2975 | 66856 | 10388 | 2912 | 134 | 607 | 13 | 194 | 9 |
| 1998 | 30136 | 3954 | 992 | 28137 | 740 | 2553 | 192 | 290 | 32 |
| 1999 | 6444 | 5182 | 1835 | 1554 | 118 | 1979 | 401 | 421 | 169 |
| 2000 | 0 | 18793 | 344 | 3286 | 4 | 541 | 1 | 533 | 9 |
| 2001 | 18263 | 5327 | 3968 | 992 | 9 | 163 | 2 | 160 | 6 |
| 2002 | 0 | 9075 | 21 | 2680 | 3 | 387 | 1 | 135 | 0 |
| 2003 | 2755 | 939 | 61 | 808 | 53 | 130 | 2 | 78 | 1 |
| 2004 | 1091 | 1976 | 737 | 256 | 16 | 74 | 6 | 92 | 1 |
| 2005 | 0 | 1404 | 1 | 146 | 0 | 21 | 0 | 12 | 0 |
| 2006 | 0 | 769 | 3 | 47 | 1 | 27 | 0 | 4 | 0 |
| 2007 | 0 | 8600 | 0 | 571 | 0 | 86 | 0 | 19 | 0 |
| 2008 | 0 | 4077 | 0 | 2012 | 0 | 460 | 0 | 73 | 0 |
| 2009 | 1 | 827 | 12 | 69 | 2 | 8 | 0 | 0 | 0 |
| 2010 | 0 | 3042 | 51 | 740 | 1 | 1006 | 1 | 173 | 0 |
| 2011 | 0 | 1304 | 0 | 5224 | 0 | 825 | 0 | 24 | 0 |
| 2012 | 0 | 32 | 0 | 186 | 0 | 1157 | 0 | 356 | 0 |
| 2013 | 0 | 648 | 0 | 211 | 0 | 55 | 0 | 42 | 0 |
| 2014 | 0 | 5384 | 0 | 2373 | 0 | 643 | 0 | 319 | 0 |
| 2015 | 0 | 6451 | 0 | 2340 | 0 | 956 | 0 | 99 | 0 |
| 2016 | 0 | 156 | 0 | 2006 | 0 | 415 | 0 | 284 | 0 |
| 2017 | 0 | 11734 | 0 | 671 | 0 | 434 | 0 | 409 | 0 |
| 2018 | 0 | 413 | 6 | 6631 | 48 | 40 | 1 | 305 | 1 |
| 2019 | 0 | 7105 | 0 | 716 | 0 | 4241 | 0 | 131 | 0 |
| 2020 | 0 | 21133 | 0 | 1981 | 0 | 391 | 0 | 1249 | 0 |
| 2021 | 11 | 3211 | 6 | 2768 | 1 | 530 | 0 | 1378 | 0 |
| arith. <br> mean | 3341 | 11204 | 972 | 3396 | 90 | 699 | 28 | 272 | 15 |

Table 9.4.2 Sandeel Area-3r. Individual mean weight (gram) at age in the catch and in the sea.

|  | Age 0, <br> 2nd half | Age 1, <br> 1st half | Age 1, <br> 2nd half | Age 2, <br> 1st half | Age 2, <br> 2nd half | Age 3, <br> 1st half | Age 3, <br> 2nd half | Age 4+, <br> 1st half | Age 4+, <br> 2nd half |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1986 | 4.0 | 6.1 | 12.7 | 9.7 | 21.0 | 12.4 | 18.9 | 15.9 | 20.4 |
| 1987 | 6.9 | 6.4 | 12.8 | 11.7 | 20.4 | 20.5 | 31.6 | 22.5 | 29.6 |
| 1988 | 4.1 | 5.1 | 6.4 | 13.1 | 16.1 | 23.0 | 22.5 | 36.2 | 31.5 |
| 1989 | 4.8 | 6.1 | 9.3 | 10.5 | 12.7 | 14.3 | 14.0 | 18.8 | 17.5 |
| 1990 | 4.4 | 7.5 | 7.7 | 9.8 | 11.2 | 15.2 | 16.5 | 20.2 | 19.8 |
| 1991 | 3.7 | 7.3 | 5.7 | 11.4 | 13.8 | 36.4 | 27.5 | 26.3 | 16.3 |


|  | Age 0, 2nd half | Age 1, 1st half | Age 1, 2nd half | Age 2, 1st half | Age 2, 2nd half | Age 3, 1st half | Age 3, 2nd half | Age 4+, 1st half | Age 4+, 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1992 | 4.6 | 6.1 | 13.4 | 10.3 | 26.7 | 14.7 | 28.7 | 23.0 | 30.9 |
| 1993 | 3.5 | 5.8 | 7.3 | 16.4 | 16.7 | 17.9 | 20.8 | 23.3 | 22.4 |
| 1994 | 3.6 | 6.1 | 13.0 | 14.6 | 20.8 | 20.6 | 35.2 | 21.1 | 27.1 |
| 1995 | 4.7 | 5.6 | 8.2 | 9.7 | 10.2 | 13.8 | 13.7 | 16.5 | 16.1 |
| 1996 | 2.5 | 8.8 | 8.0 | 13.3 | 14.0 | 26.1 | 15.7 | 38.5 | 24.0 |
| 1997 | 2.9 | 5.2 | 6.7 | 10.1 | 10.2 | 13.7 | 14.2 | 18.3 | 14.4 |
| 1998 | 3.2 | 5.0 | 7.0 | 10.1 | 15.2 | 13.7 | 17.3 | 20.3 | 20.7 |
| 1999 | 8.7 | 7.4 | 14.5 | 10.1 | 19.4 | 14.1 | 21.1 | 26.3 | 30.7 |
| 2000 | 5.2 | 6.9 | 10.8 | 10.5 | 17.4 | 15.3 | 23.7 | 20.5 | 25.6 |
| 2001 | 5.6 | 6.8 | 8.9 | 13.7 | 16.0 | 17.8 | 15.9 | 23.2 | 25.5 |
| 2002 | 9.4 | 8.1 | 19.7 | 12.7 | 31.6 | 14.6 | 43.2 | 19.2 | 46.7 |
| 2003 | 4.3 | 5.3 | 5.4 | 14.6 | 15.3 | 20.3 | 24.1 | 26.9 | 26.7 |
| 2004 | 5.8 | 7.3 | 7.3 | 9.5 | 14.1 | 14.5 | 18.4 | 15.1 | 12.7 |
| 2005 | 3.4 | 7.8 | 7.0 | 16.5 | 11.2 | 19.9 | 15.3 | 22.6 | 16.6 |
| 2006 | 11.0 | 7.5 | 23.1 | 13.5 | 36.9 | 17.1 | 50.5 | 26.9 | 54.5 |
| 2007 | 4.1 | 7.5 | 8.6 | 15.1 | 13.9 | 21.7 | 18.9 | 14.6 | 20.5 |
| 2008 | 4.1 | 8.0 | 8.6 | 15.0 | 13.9 | 22.0 | 18.9 | 25.8 | 20.5 |
| 2009 | 4.2 | 6.3 | 8.8 | 10.4 | 14.1 | 19.9 | 19.2 | 12.1 | 20.8 |
| 2010 | 2.5 | 7.5 | 5.2 | 17.7 | 8.3 | 20.7 | 11.4 | 24.3 | 12.3 |
| 2011 | 4.1 | 7.7 | 8.6 | 12.6 | 13.9 | 19.4 | 18.9 | 36.2 | 20.5 |
| 2012 | 4.1 | 9.9 | 8.6 | 15.2 | 13.9 | 22.7 | 18.9 | 30.0 | 20.5 |
| 2013 | 4.1 | 9.1 | 8.6 | 11.6 | 13.9 | 14.3 | 18.9 | 16.2 | 20.5 |
| 2014 | 4.1 | 8.6 | 8.6 | 12.7 | 13.9 | 13.9 | 18.9 | 18.3 | 20.5 |
| 2015 | 3.8 | 8.3 | 8.4 | 12.7 | 15.4 | 19.3 | 20.2 | 30.1 | 21.9 |
| 2016 | 3.8 | 4.0 | 8.4 | 12.4 | 15.4 | 19.8 | 20.2 | 32.1 | 21.9 |
| 2017 | 3.8 | 7.7 | 8.4 | 11.9 | 15.4 | 17.7 | 20.2 | 24.2 | 21.9 |
| 2018 | 3.8 | 5.8 | 8.4 | 9.9 | 15.4 | 13.5 | 20.2 | 20.6 | 21.9 |
| 2019 | 3.8 | 8.5 | 8.4 | 11.6 | 15.4 | 15.2 | 20.2 | 20.2 | 21.9 |
| 2020 | 3.8 | 8.8 | 8.4 | 14.6 | 15.4 | 17.2 | 20.2 | 19.3 | 21.9 |
| 2021 | 3.8 | 12.8 | 8.4 | 19.8 | 15.4 | 27.8 | 20.2 | 34.0 | 21.9 |
| arith. <br> mean | 4.6 | 7.2 | 9.4 | 12.6 | 16.2 | 18.4 | 21.5 | 23.3 | 23.3 |

Table 9.4.3 Sandeel Area-3r. Proportion mature.

|  | Age 1 | Age 2 | Age 3 | Age 4 |
| :--- | :--- | :--- | :--- | :--- |
| $1983-2016$ | 0.04 | 0.77 | 1 | 1 |

Table 9.4.4. Sandeel Area-3r. Dredge survey indices.

| Year | Age 0 | Age 1 |
| :---: | :---: | :---: |
| 2005 | 68667.988 |  |
| 2006 | 55709.239 | 1225.934 |
| 2007 | 10611.085 | 3717.149 |
| 2008 | 16658.095 | 1521.160 |
| 2009 | 37088.951 | 16328.039 |
| 2010 | 1844.740 | 5076.749 |
| 2011 | 973.111 | 1961.856 |
| 2012 | 47713.266 | 767.514 |
| 2013 | 174467.733 | 790.887 |
| 2016 | 92703.238 | 5349.152 |
| 2017 | 2667.397 | 11100.794 |
| 2018 | 6359.000 | 322.967 |
| 2019 | 82359.000 | 15640.000 |
| 2020 | 112538.400 | 5980.000 |
| 2021 | 69976.000 | 20816.000 |
|  | 23486.023 | 6259.908 |
|  |  |  |

Table 9.4.5 Sandeel Area-3r. SMS settings and statistics.
Date: 01/26/22 Start time:09:44:46 run time:1 seconds
objective function (negative log likelihood): 124.547
Number of parameters: 61
Maximum gradient: 4.83144e-005
Akaike information criterion (AIC): 371.094
Number of observations used in the likelihood:

| Catch | CPUE | S/R Stomach | Sum |  |
| :---: | :---: | :---: | :---: | :---: |
| 324 | 85 | 36 | 0 | 445 |

objective function weight:

$$
\begin{array}{llr}
\text { Catch } & \text { CPUE } & \text { S/R } \\
1.00 & 1.00 & 0.01
\end{array}
$$

unweighted objective function contributions (total):

| Catch | CPUE | S/R | Stom. | Stom N. | Penalty | Sum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 102.4 | 22.0 | 17.9 | 0.0 | 0.0 | 0.00 | 142 |

unweighted objective function contributions (per observation):

$$
\begin{array}{cccc}
\text { Catch } & \text { CPUE } & \text { S/R } & \text { Stomachs } \\
0.32 & 0.26 & 0.50 & 0.00
\end{array}
$$

contribution by fleet:
相
Dredge survey 2004-2021
Acoustic survey

| total: | 4.217 | mean: | 0.128 |
| :--- | ---: | :--- | :--- |
| total: | 17.760 | mean: | 0.342 |

F, season effect:

```
age: 0
    1986-1998: 0.000 1.000
    1999-2021: 0.000 1.000
age: 1 - 4
    1986-1998: 0.883 0.500
    1999-2021: 1.021 0.500
F, age effect:
```

|  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1986-1998: | 0.103 | 0.372 | 0.413 | 0.333 | 0.333 |
| 1999-2021: | 0.056 | 0.169 | 0.254 | 0.243 | 0.243 |


|  |  | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1986-1998 | season 1: | 0 | 0.640 | 0.710 | 0.574 | 0.574 |
|  | season 2: | 0.170 | 0.308 | 0.342 | 0.276 | 0.276 |
| 1999-2021 | season 1: | 0 | 0.551 | 0.827 | 0.790 | 0.790 |
|  | season 2: | 0.164 | 0.249 | 0.373 | 0.357 | 0.357 |

sqrt(catch variance) ~ CV:
season
$\begin{array}{lcc}-------------------1 & 2\end{array}$
$0 \quad 1.132$
10.6731 .038
$2 \quad 0.673 \quad 1.038$
$31.021 \quad 1.232$
41.0211 .232

Survey catchability:

|  | age $0 \quad$ age 1 | age 2 | age 3 | age 4 |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Dredge survey 2004-2021 | 0.509 | 0.509 |  |  |  |
| Acoustic survey |  | 3.011 | 4.839 | 4.611 | 4.611 |

Stock size dependent catchability (power model)


Table 9.4.6 Sandeel Area-3r. Annual fishing mortality (F) at age.

|  | Age 0 | Age 1 | Age 2 | Age 3 | Age 4 | Avg. 1-2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1986 | 0.076 | 0.453 | 0.495 | 0.399 | 0.401 | 0.474 |
| 1987 | 0.001 | 0.713 | 0.758 | 0.598 | 0.596 | 0.736 |
| 1988 | 0.051 | 0.915 | 0.975 | 0.778 | 0.778 | 0.945 |
| 1989 | 0.003 | 1.033 | 1.097 | 0.885 | 0.882 | 1.065 |
| 1990 | 0.050 | 0.580 | 0.623 | 0.502 | 0.502 | 0.602 |
| 1991 | 0.040 | 0.701 | 0.753 | 0.603 | 0.602 | 0.727 |
| 1992 | 0.003 | 0.326 | 0.346 | 0.270 | 0.270 | 0.336 |
| 1993 | 0.042 | 0.604 | 0.651 | 0.519 | 0.518 | 0.628 |
| 1994 | 0.016 | 0.646 | 0.692 | 0.540 | 0.537 | 0.669 |
| 1995 | 0.007 | 0.514 | 0.553 | 0.434 | 0.433 | 0.534 |
| 1996 | 0.043 | 0.504 | 0.547 | 0.432 | 0.431 | 0.525 |
| 1997 | 0.066 | 0.906 | 0.982 | 0.790 | 0.786 | 0.944 |
| 1998 | 0.140 | 1.149 | 1.255 | 1.014 | 1.007 | 1.202 |
| 1999 | 0.140 | 0.733 | 1.091 | 1.028 | 1.023 | 0.912 |
| 2000 | 0.004 | 0.754 | 1.089 | 0.993 | 0.987 | 0.922 |
| 2001 | 0.145 | 0.473 | 0.714 | 0.682 | 0.685 | 0.594 |
| 2002 | 0.000 | 0.496 | 0.709 | 0.673 | 0.670 | 0.602 |
| 2003 | 0.019 | 0.265 | 0.383 | 0.368 | 0.367 | 0.324 |
| 2004 | 0.019 | 0.184 | 0.268 | 0.259 | 0.258 | 0.226 |
| 2005 | 0.000 | 0.089 | 0.128 | 0.120 | 0.119 | 0.108 |
| 2006 | 0.000 | 0.038 | 0.054 | 0.051 | 0.051 | 0.046 |
| 2007 | 0.000 | 0.224 | 0.323 | 0.302 | 0.301 | 0.274 |
| 2008 | 0.000 | 0.242 | 0.349 | 0.332 | 0.331 | 0.295 |
| 2009 | 0.000 | 0.020 | 0.030 | 0.028 | 0.028 | 0.025 |
| 2010 | 0.000 | 0.262 | 0.382 | 0.359 | 0.356 | 0.322 |
| 2011 | 0.000 | 0.170 | 0.246 | 0.233 | 0.230 | 0.208 |
| 2012 | 0.000 | 0.103 | 0.149 | 0.143 | 0.142 | 0.126 |
| 2013 | 0.000 | 0.050 | 0.073 | 0.070 | 0.069 | 0.061 |
| 2014 | 0.000 | 0.200 | 0.290 | 0.277 | 0.275 | 0.245 |
| 2015 | 0.000 | 0.262 | 0.381 | 0.364 | 0.362 | 0.322 |
| 2016 | 0.000 | 0.103 | 0.149 | 0.143 | 0.142 | 0.126 |
| 2017 | 0.000 | 0.227 | 0.330 | 0.316 | 0.313 | 0.279 |
| 2018 | 0.000 | 0.243 | 0.352 | 0.337 | 0.335 | 0.297 |
| 2019 | 0.000 | 0.364 | 0.528 | 0.506 | 0.502 | 0.446 |
| 2020 | 0.000 | 0.610 | 0.883 | 0.846 | 0.840 | 0.747 |
| 2021 | 0.000 | 0.370 | 0.537 | 0.514 | 0.510 | 0.453 |
| arith. mean | 0.024 | 0.431 | 0.532 | 0.464 | 0.462 | 0.482 |

Table 9.4.7 Sandeel Area-3r. Fishing mortality (F) at age.

|  | Age 0, 2nd half | Age 1, 1st half | Age 1, 2nd half | Age 2, 1st half | Age 2, 2nd half | Age 3, 1st half | Age 3, 2nd half | Age 4+, 1st half | Age 4+, 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1986 | 0.076 | 0.285 | 0.137 | 0.317 | 0.152 | 0.256 | 0.123 | 0.256 | 0.123 |
| 1987 | 0.001 | 0.576 | 0.002 | 0.639 | 0.002 | 0.516 | 0.002 | 0.516 | 0.002 |
| 1988 | 0.051 | 0.686 | 0.093 | 0.761 | 0.103 | 0.615 | 0.083 | 0.615 | 0.083 |
| 1989 | 0.003 | 0.863 | 0.006 | 0.957 | 0.007 | 0.774 | 0.005 | 0.774 | 0.005 |
| 1990 | 0.050 | 0.425 | 0.090 | 0.472 | 0.100 | 0.381 | 0.081 | 0.381 | 0.081 |
| 1991 | 0.040 | 0.540 | 0.072 | 0.600 | 0.080 | 0.484 | 0.064 | 0.484 | 0.064 |
| 1992 | 0.003 | 0.261 | 0.006 | 0.289 | 0.007 | 0.234 | 0.005 | 0.234 | 0.005 |
| 1993 | 0.042 | 0.449 | 0.076 | 0.498 | 0.084 | 0.403 | 0.068 | 0.403 | 0.068 |
| 1994 | 0.016 | 0.502 | 0.029 | 0.557 | 0.032 | 0.450 | 0.026 | 0.450 | 0.026 |
| 1995 | 0.007 | 0.408 | 0.013 | 0.453 | 0.014 | 0.366 | 0.012 | 0.366 | 0.012 |
| 1996 | 0.043 | 0.358 | 0.078 | 0.397 | 0.086 | 0.321 | 0.070 | 0.321 | 0.070 |
| 1997 | 0.066 | 0.670 | 0.119 | 0.744 | 0.133 | 0.601 | 0.107 | 0.601 | 0.107 |
| 1998 | 0.140 | 0.794 | 0.254 | 0.881 | 0.282 | 0.712 | 0.228 | 0.712 | 0.228 |
| 1999 | 0.140 | 0.470 | 0.212 | 0.705 | 0.318 | 0.674 | 0.304 | 0.674 | 0.304 |
| 2000 | 0.004 | 0.592 | 0.006 | 0.889 | 0.008 | 0.850 | 0.008 | 0.850 | 0.008 |
| 2001 | 0.145 | 0.247 | 0.220 | 0.371 | 0.330 | 0.354 | 0.315 | 0.354 | 0.315 |
| 2002 | 0.000 | 0.368 | 0.000 | 0.553 | 0.000 | 0.528 | 0.000 | 0.528 | 0.000 |
| 2003 | 0.019 | 0.183 | 0.029 | 0.274 | 0.044 | 0.262 | 0.042 | 0.262 | 0.042 |
| 2004 | 0.019 | 0.126 | 0.029 | 0.190 | 0.043 | 0.181 | 0.041 | 0.181 | 0.041 |
| 2005 | 0.000 | 0.069 | 0.000 | 0.103 | 0.000 | 0.098 | 0.000 | 0.098 | 0.000 |
| 2006 | 0.000 | 0.029 | 0.000 | 0.044 | 0.001 | 0.042 | 0.001 | 0.042 | 0.001 |
| 2007 | 0.000 | 0.178 | 0.000 | 0.267 | 0.000 | 0.255 | 0.000 | 0.255 | 0.000 |
| 2008 | 0.000 | 0.197 | 0.000 | 0.295 | 0.000 | 0.282 | 0.000 | 0.282 | 0.000 |
| 2009 | 0.000 | 0.017 | 0.000 | 0.025 | 0.000 | 0.024 | 0.000 | 0.024 | 0.000 |
| 2010 | 0.000 | 0.213 | 0.001 | 0.319 | 0.001 | 0.305 | 0.001 | 0.305 | 0.001 |
| 2011 | 0.000 | 0.135 | 0.000 | 0.203 | 0.000 | 0.194 | 0.000 | 0.194 | 0.000 |
| 2012 | 0.000 | 0.082 | 0.000 | 0.123 | 0.000 | 0.118 | 0.000 | 0.118 | 0.000 |
| 2013 | 0.000 | 0.040 | 0.000 | 0.060 | 0.000 | 0.057 | 0.000 | 0.057 | 0.000 |
| 2014 | 0.000 | 0.160 | 0.000 | 0.240 | 0.000 | 0.230 | 0.000 | 0.230 | 0.000 |
| 2015 | 0.000 | 0.211 | 0.000 | 0.316 | 0.000 | 0.303 | 0.000 | 0.303 | 0.000 |
| 2016 | 0.000 | 0.082 | 0.000 | 0.123 | 0.000 | 0.118 | 0.000 | 0.118 | 0.000 |
| 2017 | 0.000 | 0.183 | 0.000 | 0.274 | 0.000 | 0.262 | 0.000 | 0.262 | 0.000 |
| 2018 | 0.000 | 0.195 | 0.000 | 0.292 | 0.000 | 0.280 | 0.000 | 0.280 | 0.000 |
| 2019 | 0.000 | 0.294 | 0.000 | 0.441 | 0.000 | 0.422 | 0.000 | 0.422 | 0.000 |
| 2020 | 0.000 | 0.497 | 0.000 | 0.745 | 0.000 | 0.712 | 0.000 | 0.712 | 0.000 |
| 2021 | 0.000 | 0.299 | 0.000 | 0.448 | 0.000 | 0.428 | 0.000 | 0.428 | 0.000 |
| arith. <br> mean | 0.024 | 0.325 | 0.041 | 0.413 | 0.051 | 0.364 | 0.044 | 0.364 | 0.044 |

Table 9.4.8 Sandeel Area-3r. Natural mortality (M) at age.

|  | Age 0, 2nd half | Age 1, 1st half | Age 1, 2nd half | Age 2, 1st half | Age 2, 2nd half | Age 3, 1st half | Age 3, 2nd half | Age 4+, 1st half | Age 4+, 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1986 | 1.340 | 0.760 | 0.60 | 0.600 | 0.470 | 0.420 | 0.370 | 0.360 | 0.350 |
| 1987 | 1.430 | 0.750 | 0.57 | 0.600 | 0.440 | 0.420 | 0.350 | 0.360 | 0.340 |
| 1988 | 1.540 | 0.710 | 0.58 | 0.570 | 0.430 | 0.390 | 0.350 | 0.350 | 0.340 |
| 1989 | 1.330 | 0.680 | 0.49 | 0.550 | 0.360 | 0.390 | 0.330 | 0.360 | 0.320 |
| 1990 | 1.280 | 0.630 | 0.48 | 0.490 | 0.350 | 0.340 | 0.300 | 0.310 | 0.290 |
| 1991 | 1.220 | 0.630 | 0.47 | 0.490 | 0.350 | 0.330 | 0.290 | 0.300 | 0.280 |
| 1992 | 1.190 | 0.650 | 0.52 | 0.490 | 0.390 | 0.330 | 0.290 | 0.300 | 0.290 |
| 1993 | 1.140 | 0.670 | 0.52 | 0.510 | 0.400 | 0.350 | 0.320 | 0.330 | 0.310 |
| 1994 | 1.110 | 0.690 | 0.58 | 0.530 | 0.460 | 0.360 | 0.340 | 0.340 | 0.320 |
| 1995 | 1.010 | 0.710 | 0.55 | 0.560 | 0.450 | 0.410 | 0.350 | 0.380 | 0.340 |
| 1996 | 0.990 | 0.660 | 0.57 | 0.530 | 0.470 | 0.390 | 0.360 | 0.360 | 0.350 |
| 1997 | 0.900 | 0.640 | 0.53 | 0.520 | 0.430 | 0.400 | 0.380 | 0.380 | 0.360 |
| 1998 | 0.970 | 0.630 | 0.51 | 0.490 | 0.410 | 0.380 | 0.360 | 0.350 | 0.330 |
| 1999 | 1.040 | 0.730 | 0.58 | 0.540 | 0.470 | 0.360 | 0.330 | 0.330 | 0.300 |
| 2000 | 1.120 | 0.800 | 0.65 | 0.610 | 0.550 | 0.420 | 0.390 | 0.390 | 0.370 |
| 2001 | 1.190 | 0.820 | 0.78 | 0.660 | 0.670 | 0.490 | 0.510 | 0.450 | 0.490 |
| 2002 | 1.220 | 0.840 | 0.80 | 0.720 | 0.670 | 0.580 | 0.630 | 0.540 | 0.610 |
| 2003 | 1.220 | 0.830 | 0.77 | 0.720 | 0.640 | 0.580 | 0.620 | 0.540 | 0.600 |
| 2004 | 1.210 | 0.850 | 0.70 | 0.710 | 0.570 | 0.560 | 0.550 | 0.510 | 0.530 |
| 2005 | 1.150 | 0.840 | 0.65 | 0.690 | 0.530 | 0.500 | 0.470 | 0.470 | 0.450 |
| 2006 | 1.120 | 0.820 | 0.61 | 0.660 | 0.490 | 0.480 | 0.420 | 0.440 | 0.410 |
| 2007 | 1.050 | 0.770 | 0.58 | 0.610 | 0.470 | 0.450 | 0.400 | 0.420 | 0.390 |
| 2008 | 0.990 | 0.680 | 0.50 | 0.550 | 0.400 | 0.430 | 0.380 | 0.400 | 0.370 |
| 2009 | 0.990 | 0.590 | 0.47 | 0.480 | 0.390 | 0.370 | 0.340 | 0.340 | 0.330 |
| 2010 | 1.110 | 0.590 | 0.50 | 0.450 | 0.420 | 0.360 | 0.370 | 0.330 | 0.350 |
| 2011 | 1.210 | 0.660 | 0.55 | 0.510 | 0.460 | 0.390 | 0.420 | 0.350 | 0.390 |
| 2012 | 1.190 | 0.700 | 0.54 | 0.550 | 0.450 | 0.420 | 0.440 | 0.390 | 0.420 |
| 2013 | 1.190 | 0.700 | 0.54 | 0.550 | 0.450 | 0.420 | 0.440 | 0.390 | 0.420 |
| 2014 | 1.190 | 0.700 | 0.54 | 0.550 | 0.450 | 0.420 | 0.440 | 0.390 | 0.420 |
| 2015 | 1.190 | 0.700 | 0.54 | 0.550 | 0.450 | 0.420 | 0.440 | 0.390 | 0.420 |
| 2016 | 1.190 | 0.700 | 0.54 | 0.550 | 0.450 | 0.420 | 0.440 | 0.390 | 0.420 |
| 2017 | 1.190 | 0.700 | 0.54 | 0.550 | 0.450 | 0.420 | 0.440 | 0.390 | 0.420 |
| 2018 | 1.190 | 0.700 | 0.54 | 0.550 | 0.450 | 0.420 | 0.440 | 0.390 | 0.420 |
| 2019 | 1.190 | 0.700 | 0.54 | 0.550 | 0.450 | 0.420 | 0.440 | 0.390 | 0.420 |
| 2020 | 1.190 | 0.700 | 0.54 | 0.550 | 0.450 | 0.420 | 0.440 | 0.390 | 0.420 |
| 2021 | 1.190 | 0.700 | 0.54 | 0.550 | 0.450 | 0.420 | 0.440 | 0.390 | 0.420 |
| arith. <br> mean | 1.166 | 0.712 | 0.57 | 0.565 | 0.462 | 0.419 | 0.406 | 0.386 | 0.389 |

Table 9.4.9 Sandeel Area-3r. Stock numbers (millions). Age 0 at start of 2 nd half-year, age $1+$ at start of the year.

| Age 0 |  | Age 1 | Age 2 | Age 3 | Age 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1986 | 510341 | 81391 | 5618 | 276 | 690 |
| 1987 | 116127 | 123867 | 13687 | 1206 | 318 |
| 1988 | 360728 | 27760 | 18563 | 2547 | 426 |
| 1989 | 107678 | 73467 | 3507 | 2877 | 711 |
| 1990 | 198082 | 28385 | 9565 | 538 | 808 |
| 1991 | 124100 | 52392 | 5586 | 2330 | 458 |
| 1992 | 257964 | 35216 | 9456 | 1223 | 872 |
| 1993 | 190940 | 78219 | 8373 | 2918 | 899 |
| 1994 | 180436 | 58569 | 14079 | 1883 | 1229 |
| 1995 | 153307 | 58535 | 9679 | 2905 | 976 |
| 1996 | 742461 | 55439 | 10896 | 2209 | 1257 |
| 1997 | 63923 | 264307 | 10483 | 2472 | 1124 |
| 1998 | 93207 | 24330 | 37233 | 1688 | 822 |
| 1999 | 121485 | 30713 | 2729 | 4733 | 478 |
| 2000 | 133994 | 37321 | 4190 | 357 | 988 |
| 2001 | 127087 | 43558 | 4814 | 536 | 264 |
| 2002 | 31976 | 33433 | 5513 | 632 | 154 |
| 2003 | 72768 | 9440 | 4487 | 790 | 140 |
| 2004 | 47107 | 21074 | 1542 | 838 | 209 |
| 2005 | 80268 | 13782 | 3830 | 340 | 280 |
| 2006 | 114995 | 25416 | 2900 | 1020 | 218 |
| 2007 | 58672 | 37512 | 5905 | 878 | 487 |
| 2008 | 89724 | 20532 | 8141 | 1536 | 459 |
| 2009 | 137164 | 33339 | 5181 | 2343 | 675 |
| 2010 | 15674 | 50962 | 11359 | 2117 | 1462 |
| 2011 | 11102 | 5163 | 13841 | 3455 | 1297 |
| 2012 | 84278 | 3310 | 1345 | 4283 | 1775 |
| 2013 | 207141 | 25639 | 882 | 437 | 2313 |
| 2014 | 223070 | 63017 | 7129 | 306 | 1146 |
| 2015 | 8121 | 67853 | 15536 | 2062 | 508 |
| 2016 | 705102 | 2471 | 15900 | 4165 | 812 |
| 2017 | 32491 | 214507 | 659 | 5171 | 1888 |
| 2018 | 223823 | 9884 | 51718 | 184 | 2331 |
| 2019 | 303286 | 68092 | 2354 | 14201 | 843 |
| 2020 | 160646 | 92266 | 14685 | 557 | 4188 |
| 2021 | 77181 | 48872 | 16249 | 2565 | 1030 |
| 2022 |  | 23480 | 10490 | 3818 | 1005 |

Table 9.4.10 Sandeel Area-3r. Estimated recruitment, total stock biomass (TBS), spawning stock biomass (SSB), catch weight (modelled yield) and average fishing mortality.

|  | Recruits (thousands) | TSB (tonnes) | SSB (tonnes) | Yield (tonnes) | Mean $\mathrm{F}_{1-2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1986 | 510550442 | 567338 | 74236 | 282315 | 0.446 |
| 1987 | 116104360 | 987817 | 182773 | 395296 | 0.610 |
| 1988 | 360859773 | 458951 | 265136 | 330358 | 0.822 |
| 1989 | 107715064 | 541626 | 98913 | 350409 | 0.916 |
| 1990 | 198044042 | 330066 | 104089 | 163224 | 0.544 |
| 1991 | 124149867 | 544535 | 159692 | 274839 | 0.646 |
| 1992 | 257878732 | 350577 | 120451 | 86788 | 0.281 |
| 1993 | 190850317 | 662154 | 194464 | 175786 | 0.554 |
| 1994 | 180456444 | 625916 | 234685 | 267281 | 0.559 |
| 1995 | 153314205 | 476147 | 140225 | 173607 | 0.444 |
| 1996 | 742104035 | 738395 | 234451 | 159024 | 0.459 |
| 1997 | 63910869 | 1541930 | 185350 | 470670 | 0.833 |
| 1998 | 93175931 | 535338 | 331373 | 462081 | 1.105 |
| 1999 | 121448395 | 332708 | 108662 | 191253 | 0.852 |
| 2000 | 133953060 | 326032 | 68665 | 186837 | 0.748 |
| 2001 | 127038405 | 378300 | 76726 | 193684 | 0.584 |
| 2002 | 31960138 | 352699 | 75660 | 116298 | 0.461 |
| 2003 | 72783512 | 135401 | 71754 | 34673 | 0.265 |
| 2004 | 47110195 | 183270 | 32048 | 31285 | 0.194 |
| 2005 | 80277505 | 183214 | 65382 | 13991 | 0.086 |
| 2006 | 114949102 | 252982 | 60114 | 7094 | 0.037 |
| 2007 | 58644245 | 395299 | 104402 | 74972 | 0.222 |
| 2008 | 89701675 | 332573 | 145365 | 74933 | 0.246 |
| 2009 | 137206823 | 319880 | 103570 | 6261 | 0.021 |
| 2010 | 15665948 | 662839 | 247459 | 61241 | 0.267 |
| 2011 | 11106044 | 327267 | 248451 | 92452 | 0.169 |
| 2012 | 84309069 | 203662 | 167376 | 40116 | 0.103 |
| 2013 | 207159586 | 287986 | 59934 | 9844 | 0.050 |
| 2014 | 223070852 | 654582 | 113777 | 90876 | 0.200 |
| 2015 | 8121294 | 815063 | 226160 | 104631 | 0.264 |
| 2016 | 705205636 | 315656 | 260146 | 42845 | 0.103 |
| 2017 | 32475613 | 1791780 | 202400 | 115642 | 0.228 |
| 2018 | 223741069 | 617770 | 442856 | 75388 | 0.244 |
| 2019 | 303229348 | 838505 | 275130 | 135899 | 0.368 |
| 2020 | 160691992 | 1118810 | 284077 | 246139 | 0.621 |


|  | Recruits (thousands) | TSB (tonnes) | SSB (tonnes) | Yield (tonnes) | Mean F $_{1-2}$ |
| :---: | ---: | ---: | ---: | ---: | ---: |
| 2021 | 77206947 | 1051620 | 375120 | 157472 | 0.373 |
| 2022 |  |  | 210029 |  |  |
| arith. mean | 171290233 | 562186 | 171661 | 158208 | 0.415 |
| geo. mean | 112898529 |  |  |  |  |

arith. mean for the period 1986-2021
geo. mean for the period 1986-2020

Table 9.4.11 Sandeel Area-3r. Input to forecast.

|  | Age 0 | Age 1 | Age 2 | Age 3 | Age 4 |  |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: |
| Stock numbers(2022) | 112945.768 | 23480.1 | 10489.9 | 3818.36 | 1005.44 |  |
| Exploitation pattern 1st half |  | 0.299 | 0.448 | 0.428 | 0.428 |  |
| Exploitation pattern 2nd half | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |  |
| Weight in the stock 1st half |  | 8.716 | 13.566 | 18.282 | 23.645 |  |
| Weight in the catch 1st half |  | 8.782 | 8.413 | 15.411 | 20.172 | 21.859 |
| weight in the catch 2nd half | 0.000 | 0.036 | 0.766 | 1.000 | 1.000 |  |
| Proportion mature(2022) | 0.000 | 0.036 | 0.766 | 1.000 | 1.000 |  |
| Proportion mature(2023) |  | 0.700 | 0.550 | 0.420 | 0.390 |  |
| Natural mortality 1st half | 1.190 | 0.540 | 0.450 | 0.440 | 0.420 |  |
| Natural mortality 2nd half |  |  | 13.566 | 18.282 | 23.645 |  |

Table 9.4.12 Sandeel Area-3r. Short term forecast ( 000 tonnes).
Basis: $\mathrm{Fsq}=\mathrm{F}(2021)=0.3735$; Yield(2021)=157.472; Recruitment(2021)=77.206947; Recruitment(2022)=geometric mean (GM 1986-2020)=112.945768 billion; SSB(2022)=210.029

| F multiplier | Basis | F(2022) | Catch(2022) | SSB(2023) | \%SSB change* | \%TAC change** |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.000 | $\mathrm{F}=0$ | 0.000 | 0.001 | 200.747 | -4\% | -100\% |
| 0.780 | Fsq*0.78 | 0.290 | 85.559 | 151.563 | -28\% | -46\% |
| 1.000 | Fsq*1 | 0.373 | 106.151 | 140.019 | -33 \% | -33\% |
| 0.400 | Fsq**.4 | 0.149 | 46.963 | 173.527 | -17\% | -70\% |
| 0.600 | Fsq*0.6 | 0.224 | 68.080 | 161.460 | -23 \% | -57\% |
| 0.800 | Fsq**0.8 | 0.299 | 87.775 | 150.315 | -28\% | -44\% |
| 0.100 | Fsq*0.1 | 0.037 | 12.371 | 193.529 | -8\% | -92 \% |
| 0.120 | Fsq*0.12 | 0.045 | 14.793 | 192.120 | -9 \% | -91\% |
| 0.140 | Fsq*0.14 | 0.052 | 17.198 | 190.722 | -9 \% | -89\% |
| 1.233 | MSY | 0.461 | 126.038 | 129.000 | -39 \% | -20\% |

*SSB in 2023 relative to SSB in 2022
**TAC in 2022 relative to catches in 2021

Table 9.4.13. Sandeel Area-3r. Acoustic survey indices (millions of individuals).

| Year | Age 1 | Age 2 | Age 3 | Age 4 |
| ---: | ---: | ---: | ---: | ---: |
| 2009 | $7709.06(\mathrm{CV}=0.29)$ | $4923.33(\mathrm{CV}=0.34)$ | $945.29(\mathrm{CV}=0.3)$ | $64.03(\mathrm{CV}=0.47)$ |
| 2010 | $16852.06(\mathrm{CV}=0.19)$ | $6133.6(\mathrm{CV}=0.18)$ | $1123.19(\mathrm{CV}=0.38)$ | $608.57(\mathrm{CV}=0.4)$ |
| 2011 | $816.16(\mathrm{CV}=0.73)$ | $8622.2(\mathrm{CV}=0.19)$ | $855.81(\mathrm{CV}=0.33)$ | $192.37(\mathrm{CV}=0.49)$ |
| 2012 | $846.68(\mathrm{CV}=0.81)$ | $211.31(\mathrm{CV}=0.67)$ | $3226.29(\mathrm{CV}=0.25)$ | $368.16(\mathrm{CV}=0.24)$ |
| 2013 | $2154.47(\mathrm{CV}=0.2)$ | $258.25(\mathrm{CV}=0.36)$ | $72.62(\mathrm{CV}=0.41)$ | $554.48(\mathrm{CV}=0.43)$ |
| 2014 | $21889.62(\mathrm{CV}=0.23)$ | $1711.1(\mathrm{CV}=0.36)$ | $170.41(\mathrm{CV}=0.64)$ | $80.34(\mathrm{CV}=0.85)$ |
| 2015 | $9466.6(\mathrm{CV}=0.12)$ | $2254.92(\mathrm{CV}=0.27)$ | $686.55(\mathrm{CV}=0.29)$ | $7.03(\mathrm{CV}=1.18)$ |
| 2016 | $79.55(\mathrm{CV}=1)$ | $6317.38(\mathrm{CV}=0.29)$ | $679.13(\mathrm{CV}=0.25)$ | $259.1(\mathrm{CV}=0.37)$ |
| 2017 | $35267.58(\mathrm{CV}=0.16)$ | $131.65(\mathrm{CV}=0.77)$ | $3465.88(\mathrm{CV}=0.27)$ | $631.09(\mathrm{CV}=0.27)$ |
| 2018 | $1544.39(\mathrm{CV}=0.31)$ | $16989.62(\mathrm{CV}=0.1)$ | $79.82(\mathrm{CV}=0.34)$ | $440.33(\mathrm{CV}=0.31)$ |
| 2019 | $9564.52(\mathrm{CV}=0.16)$ | $464.24(\mathrm{CV}=0.25)$ | $15573.73(\mathrm{CV}=0.12)$ | $214.53(\mathrm{CV}=0.33)$ |
| 2020 | $42141.65(\mathrm{CV}=0.27)$ | $10064.47(\mathrm{CV}=0.27)$ | $535.24(\mathrm{CV}=0.42)$ | $9944.09(\mathrm{CV}=0.2)$ |
| 2021 | $14564.25(\mathrm{CV}=0.19)$ | $12971.11(\mathrm{CV}=0.17)$ | $2770.14(\mathrm{CV}=0.2)$ | $285.07(\mathrm{CV}=0.33)$ |

Table 9.5.1 Sandeel Area-4. Catch at age numbers (million) by half year.

|  | Age 0, 2nd half | Age 1, 1st half | Age 1, 2nd half | Age 2, 1st half | Age 2, 2nd half | Age 3, 1st half | Age 3, 2nd half | Age 4+, 1st half | Age 4+, 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1993 | 674 | 1235 | 149 | 6337 | 381 | 1861 | 122 | 534 | 39 |
| 1994 | 0 | 1070 | 256 | 1522 | 62 | 5144 | 257 | 2092 | 159 |
| 1995 | 4 | 2690 | 4 | 1229 | 1 | 529 | 0 | 30 | 0 |
| 1996 | 2666 | 754 | 2584 | 2536 | 3461 | 476 | 227 | 130 | 1110 |
| 1997 | 0 | 2879 | 1369 | 291 | 35 | 1683 | 43 | 413 | 10 |
| 1998 | 0 | 2159 | 61 | 3766 | 97 | 235 | 6 | 130 | 3 |
| 1999 | 0 | 1472 | 86 | 1137 | 46 | 1543 | 47 | 252 | 11 |
| 2000 | 0 | 6537 | 0 | 376 | 0 | 323 | 0 | 297 | 0 |
| 2001 | 0 | 2048 | 64 | 4961 | 20 | 601 | 1 | 377 | 0 |
| 2002 | 0 | 337 | 0 | 807 | 0 | 511 | 0 | 101 | 0 |
| 2003 | 145 | 4322 | 148 | 1002 | 10 | 2721 | 5 | 1253 | 1 |
| 2004 | 0 | 920 | 4 | 220 | 1 | 45 | 0 | 82 | 0 |
| 2005 | 0 | 49 | 0 | 145 | 0 | 32 | 0 | 17 | 0 |
| 2006 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2007 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2008 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2009 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2010 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2011 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2012 | 0 | 83 | 0 | 40 | 0 | 196 | 0 | 3 | 0 |
| 2013 | 0 | 182 | 0 | 100 | 0 | 71 | 0 | 133 | 0 |
| 2014 | 0 | 346 | 0 | 54 | 0 | 15 | 0 | 47 | 0 |


|  | Age 0, <br> 2nd half | Age 1, <br> 1st half | Age 1, <br> 2nd half | Age 2, <br> 1st half | Age 2, <br> 2nd half | Age 3, <br> 1st half | Age 3, <br> 2nd half | Age 4+, <br> 1st half | Age 4+, <br> 2nd half |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2015 | 0 | 866 | 0 | 29 | 0 | 9 | 0 | 14 | 0 |
| 2016 | 0 | 181 | 0 | 406 | 0 | 20 | 0 | 36 | 0 |
| 2017 | 0 | 719 | 0 | 468 | 0 | 578 | 0 | 30 | 0 |
| 2018 | 0 | 874 | 0 | 1259 | 0 | 355 | 0 | 1133 | 0 |
| 2019 | 0 | 314 | 0 | 159 | 0 | 143 | 0 | 60 | 0 |
| 2020 | 33 | 2363 | 17 | 256 | 0 | 72 | 0 | 82 | 0 |
| 2021 | 2 | 3323 | 16 | 2196 | 83 | 354 | 11 | 383 | 42 |
| arith. <br> mean | 122 | 1232 | 164 | 1010 | 145 | 604 | 25 | 263 | 47 |

Table 9.5.2 Sandeel Area-4. Individual mean weight (gram) at age in the catch and in the sea.

|  | Age 0, 2nd half | Age 1, 1st half | Age 1, 2nd half | Age 2, 1st half | Age 2, 2nd half | Age 3, 1st half | Age 3, 2nd half | Age 4+, 1st half | Age 4+, 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1993 | 3.0 | 7.4 | 6.7 | 11.9 | 12.0 | 14.9 | 14.0 | 20.1 | 18.9 |
| 1994 | 3.8 | 10.9 | 8.6 | 11.1 | 15.5 | 14.7 | 18.0 | 20.5 | 24.4 |
| 1995 | 4.4 | 8.4 | 10.1 | 15.7 | 18.0 | 19.1 | 21.0 | 15.5 | 28.5 |
| 1996 | 6.3 | 5.3 | 7.3 | 12.9 | 13.1 | 18.6 | 18.0 | 23.0 | 22.3 |
| 1997 | 3.1 | 6.7 | 7.0 | 7.5 | 12.4 | 11.2 | 14.5 | 18.1 | 19.6 |
| 1998 | 2.6 | 6.1 | 6.0 | 10.4 | 10.7 | 13.6 | 12.5 | 14.6 | 16.9 |
| 1999 | 3.2 | 6.1 | 7.2 | 10.8 | 12.9 | 16.1 | 15.1 | 20.2 | 20.4 |
| 2000 | 4.0 | 3.9 | 9.0 | 8.0 | 16.2 | 13.2 | 18.8 | 17.3 | 25.5 |
| 2001 | 1.8 | 3.4 | 4.2 | 6.0 | 7.5 | 9.0 | 8.7 | 14.2 | 11.8 |
| 2002 | 4.0 | 3.8 | 9.0 | 5.9 | 16.2 | 9.5 | 18.8 | 17.9 | 25.5 |
| 2003 | 3.6 | 4.6 | 5.6 | 6.6 | 6.2 | 8.1 | 7.8 | 10.9 | 10.1 |
| 2004 | 1.4 | 4.0 | 3.3 | 7.4 | 5.8 | 9.3 | 6.8 | 13.8 | 9.2 |
| 2005 | 4.0 | 4.2 | 9.0 | 6.1 | 16.2 | 8.6 | 18.8 | 11.0 | 25.5 |
| 2006 | 4.0 | 5.5 | 9.0 | 10.0 | 16.2 | 14.3 | 18.8 | 18.1 | 25.5 |
| 2007 | 4.0 | 4.8 | 9.0 | 8.8 | 16.2 | 12.6 | 18.8 | 16.0 | 25.5 |
| 2008 | 4.0 | 4.8 | 9.0 | 8.7 | 16.2 | 12.4 | 18.8 | 15.7 | 25.5 |
| 2009 | 4.0 | 5.8 | 9.0 | 10.7 | 16.2 | 15.2 | 18.8 | 19.3 | 25.5 |
| 2010 | 4.0 | 5.1 | 9.0 | 9.4 | 16.2 | 13.4 | 18.8 | 17.0 | 25.5 |
| 2011 | 4.0 | 4.9 | 9.0 | 8.9 | 16.2 | 12.7 | 18.8 | 16.1 | 25.5 |
| 2012 | 4.0 | 4.0 | 9.0 | 8.2 | 16.2 | 9.6 | 18.8 | 12.2 | 25.5 |
| 2013 | 4.0 | 5.3 | 9.0 | 9.3 | 16.2 | 14.7 | 18.8 | 17.1 | 25.5 |
| 2014 | 4.0 | 7.1 | 9.0 | 12.4 | 16.2 | 17.2 | 18.8 | 20.0 | 25.5 |
| 2015 | 4.4 | 4.4 | 7.7 | 9.5 | 10.7 | 11.4 | 14.6 | 16.2 | 17.6 |
| 2016 | 4.4 | 5.0 | 7.7 | 9.9 | 10.7 | 18.1 | 14.6 | 24.7 | 17.6 |
| 2017 | 4.4 | 7.5 | 7.7 | 10.2 | 10.7 | 13.4 | 14.6 | 18.5 | 17.6 |
| 2018 | 4.4 | 5.7 | 7.7 | 9.4 | 10.7 | 13.1 | 14.6 | 18.3 | 17.6 |
| 2019 | 4.4 | 5.9 | 7.7 | 10.2 | 10.7 | 13.7 | 14.6 | 20.2 | 17.6 |


|  | Age 0, <br> 2nd half | Age 1, <br> 1st half | Age 1, <br> 2nd half | Age 2, <br> 1st half | Age 2, <br> 2nd half | Age 3, <br> 1st half | Age 3, <br> 2nd half | Age 4+, <br> 1st half | Age 4+, <br> 2nd half |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2020 | 4.4 | 6.7 | 7.7 | 8.6 | 10.7 | 11.9 | 14.6 | 12.4 | 17.6 |
| 2021 | 4.4 | 5.6 | 7.7 | 9.2 | 10.7 | 11.9 | 14.6 | 17.8 | 17.6 |
| arith. <br> mean | 3.9 | 5.6 | 7.9 | 9.4 | 13.2 | 13.2 | 16.0 | 17.1 | 21.1 |

Table 9.5.3 Sandeel Area-4. Proportion mature.

|  | Age 1 | Age 2 | Age 3 | Age 4 |
| :---: | :---: | :---: | :---: | :---: |
| $1983-2016$ | 0 | 0.79 | 0.98 | 1 |

Table 9.5.4. Sandeel Area-4. Dredge survey indices.

| Year | Age 0 | Age 1 |
| :---: | :---: | :---: |
| 1999 | 615 | 494 |
| 2000 | 586 | 3170 |
| 2001 | 48 | 2656 |
| 2002 | 243 | 404 |
| 2003 | 580 |  |
| 2004 |  |  |
| $2005$ |  |  |
| 2006 |  |  |
| $2007$ |  |  |
| 2008 | 52 | 24 |
| 2009 | 832 | 87 |
| 2010 | 147 | 1032 |
| 2011 | 89 | 165 |
| 2012 | 95 | 135 |
| 2013 | 62 | 85 |
| 2014 | 445 | 43 |
| 2015 | 136 | 1044 |
| 2016 | 300 | 81 |
| 2017 | 346 | 223 |
| 2018 | 16 | 461 |
| 2019 | 371 | 92 |
| 2020 | 585 | 1010 |
| 2021 | 160 | 194 |

## Table 9.5.5 Sandeel Area-4. SMS settings and statistics.

```
Date: 01/26/22 Start time:09:43:34 run time:1 seconds
objective function (negative log likelihood): 14.7669
Number of parameters: 48
Maximum gradient: 2.44224e-005
Akaike information criterion (AIC): 125.534
Number of observations used in the likelihood:
\begin{tabular}{ccccc} 
Catch & CPUE & S/R & Stomach & Sum \\
261 & 37 & 29 & 0 & 327
\end{tabular}
objective function weight
Catch CPUE S/R
unweighted objective function contributions (total):
\begin{tabular}{ccccccl} 
Catch & CPUE & S/R & Stom. & Stom N. Penalty & Sum \\
36.9 & -23.1 & 20.4 & 0.0 & 0.0 & 0.00 & 34
\end{tabular}
```

unweighted objective function contributions (per observation):

| Catch | CPUE | S/R | Stomachs |
| :--- | :--- | :--- | :--- |
| 0.14 | -0.63 | 0.70 | 0.00 |

contribution by fleet:
New Dredge survey 2008-2021 total: -13.592 mean: -0.485
Old Dredge survey 1999-2003 total: -9.555 mean: -1.062
F, season effect:
----
1993-2021: 0.0001 .000
age: 1 - 4
1993-2021: 0.7240 .500
$F$, age effect:

|  | 0 | 1 | 2 | 3 | 4 |
| ---: | ---: | ---: | ---: | ---: | ---: |

Exploitation pattern (scaled to mean $\mathrm{F}=1$ )

|  |  | 0 | 1 | 2 | 3 | 4 |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: |
| 1993-2021 | season 1: | 0 | 0.601 | 1.205 | 1.704 | 1.704 |
|  | season 2: | 0.003 | 0.065 | 0.129 | 0.183 | 0.183 |

sqrt(catch variance) ~ CV:
season

| age | 1 | 2 |
| :---: | :---: | :---: |
|  |  |  |
| 0 |  | 2.102 |
| 1 | 0.736 | 0.587 |
| 2 | 0.736 | 0.587 |
| 3 | 0.679 | 1.240 |
| 4 | 0.679 | 1.240 |

## Survey catchability:

|  | age 0 | age 1 |  |
| :--- | :--- | :--- | ---: |
| New Dredge survey | $2008-2021$ | 0.790 | 4.221 |
| Old Dredge survey | $1999-2003$ | 0.784 | 18.050 |

sqrt(Survey variance) ~ CV:

|  | age 0 | age 1 |  |  |
| :--- | ---: | :---: | :---: | :---: |
| New Dredge survey | $2008-2021$ | 0.55 | 0.30 |  |
| Old Dredge survey | $1999-2003$ | 0.30 | 0.30 |  |
|  |  |  |  |  |
| Recruit-SSB | alfa | beta | recruit s2 | recruit s |
| Area-4 | 1250.432 | $4.800 e+004$ | 1.500 | 1.225 |

Table 9.5.6 Sandeel Area-4. Annual fishing mortality (F) at age.

|  | Age 0 | Age 1 | Age 2 | Age 3 | Age 4 | Avg. 1-2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1993 | 0.001 | 0.346 | 0.671 | 0.923 | 0.921 | 0.509 |
| 1994 | 0.001 | 0.402 | 0.778 | 1.067 | 1.064 | 0.590 |
| 1995 | 0.000 | 0.120 | 0.232 | 0.316 | 0.315 | 0.176 |
| 1996 | 0.006 | 0.234 | 0.479 | 0.696 | 0.700 | 0.357 |
| 1997 | 0.001 | 0.148 | 0.289 | 0.400 | 0.399 | 0.218 |
| 1998 | 0.000 | 0.161 | 0.312 | 0.427 | 0.426 | 0.237 |
| 1999 | 0.000 | 0.234 | 0.450 | 0.613 | 0.610 | 0.342 |
| 2000 | 0.000 | 0.116 | 0.224 | 0.306 | 0.304 | 0.170 |
| 2001 | 0.000 | 0.182 | 0.351 | 0.479 | 0.477 | 0.266 |
| 2002 | 0.000 | 0.039 | 0.075 | 0.102 | 0.102 | 0.057 |
| 2003 | 0.000 | 0.289 | 0.558 | 0.763 | 0.760 | 0.423 |
| 2004 | 0.000 | 0.056 | 0.108 | 0.147 | 0.147 | 0.082 |
| 2005 | 0.000 | 0.024 | 0.047 | 0.065 | 0.064 | 0.036 |
| 2006 | 0.000 | 0.000 | 0.001 | 0.001 | 0.001 | 0.001 |
| 2007 | 0.000 | 0.000 | 0.001 | 0.001 | 0.001 | 0.000 |
| 2008 | 0.000 | 0.002 | 0.004 | 0.005 | 0.005 | 0.003 |
| 2009 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2010 | 0.000 | 0.001 | 0.002 | 0.003 | 0.003 | 0.002 |
| 2011 | 0.000 | 0.002 | 0.004 | 0.005 | 0.005 | 0.003 |
| 2012 | 0.000 | 0.019 | 0.036 | 0.049 | 0.049 | 0.027 |
| 2013 | 0.000 | 0.010 | 0.020 | 0.027 | 0.027 | 0.015 |
| 2014 | 0.000 | 0.014 | 0.027 | 0.036 | 0.036 | 0.020 |
| 2015 | 0.000 | 0.011 | 0.021 | 0.029 | 0.029 | 0.016 |
| 2016 | 0.000 | 0.022 | 0.042 | 0.057 | 0.057 | 0.032 |
| 2017 | 0.000 | 0.047 | 0.092 | 0.125 | 0.125 | 0.070 |
| 2018 | 0.000 | 0.135 | 0.261 | 0.356 | 0.354 | 0.198 |
| 2019 | 0.000 | 0.058 | 0.111 | 0.152 | 0.151 | 0.084 |


|  | Age 0 | Age 1 | Age 2 | Age 3 | Age 4 | Avg. 1-2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2020 | 0.000 | 0.046 | 0.088 | 0.120 | 0.120 | 0.067 |
| 2021 | 0.001 | 0.357 | 0.689 | 0.943 | 0.940 | 0.523 |
| arith. mean | 0.000 | 0.106 | 0.206 | 0.283 | 0.282 | 0.156 |

Table 9.5.7 Sandeel Area-4. Fishing mortality (F) at age.

|  | Age 0, 2nd half | Age 1, 1st half | Age 1, 2nd half | Age 2, 1st half | Age 2, 2nd half | Age 3, 1st half | Age 3, 2nd half | Age 4+, 1st half | Age 4+, 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1993 | 0.001 | 0.260 | 0.028 | 0.521 | 0.056 | 0.736 | 0.079 | 0.736 | 0.079 |
| 1994 | 0.001 | 0.305 | 0.027 | 0.612 | 0.053 | 0.865 | 0.075 | 0.865 | 0.075 |
| 1995 | 0.000 | 0.094 | 0.000 | 0.189 | 0.000 | 0.267 | 0.001 | 0.267 | 0.001 |
| 1996 | 0.006 | 0.112 | 0.141 | 0.225 | 0.283 | 0.318 | 0.401 | 0.318 | 0.401 |
| 1997 | 0.001 | 0.106 | 0.020 | 0.212 | 0.039 | 0.300 | 0.056 | 0.300 | 0.056 |
| 1998 | 0.000 | 0.124 | 0.005 | 0.249 | 0.010 | 0.352 | 0.015 | 0.352 | 0.015 |
| 1999 | 0.000 | 0.185 | 0.000 | 0.370 | 0.000 | 0.523 | 0.000 | 0.523 | 0.000 |
| 2000 | 0.000 | 0.091 | 0.000 | 0.183 | 0.000 | 0.259 | 0.000 | 0.259 | 0.000 |
| 2001 | 0.000 | 0.142 | 0.002 | 0.285 | 0.004 | 0.403 | 0.006 | 0.403 | 0.006 |
| 2002 | 0.000 | 0.030 | 0.000 | 0.061 | 0.000 | 0.086 | 0.000 | 0.086 | 0.000 |
| 2003 | 0.000 | 0.223 | 0.011 | 0.447 | 0.021 | 0.632 | 0.030 | 0.632 | 0.030 |
| 2004 | 0.000 | 0.044 | 0.000 | 0.087 | 0.001 | 0.124 | 0.001 | 0.124 | 0.001 |
| 2005 | 0.000 | 0.019 | 0.000 | 0.038 | 0.000 | 0.054 | 0.000 | 0.054 | 0.000 |
| 2006 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 |
| 2007 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 |
| 2008 | 0.000 | 0.002 | 0.000 | 0.003 | 0.000 | 0.004 | 0.000 | 0.004 | 0.000 |
| 2009 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2010 | 0.000 | 0.001 | 0.000 | 0.002 | 0.000 | 0.002 | 0.000 | 0.002 | 0.000 |
| 2011 | 0.000 | 0.001 | 0.000 | 0.003 | 0.000 | 0.004 | 0.000 | 0.004 | 0.000 |
| 2012 | 0.000 | 0.015 | 0.000 | 0.029 | 0.000 | 0.041 | 0.000 | 0.041 | 0.000 |
| 2013 | 0.000 | 0.008 | 0.000 | 0.016 | 0.000 | 0.023 | 0.000 | 0.023 | 0.000 |
| 2014 | 0.000 | 0.011 | 0.000 | 0.022 | 0.000 | 0.030 | 0.000 | 0.030 | 0.000 |
| 2015 | 0.000 | 0.009 | 0.000 | 0.017 | 0.000 | 0.025 | 0.000 | 0.025 | 0.000 |
| 2016 | 0.000 | 0.017 | 0.000 | 0.034 | 0.000 | 0.048 | 0.000 | 0.048 | 0.000 |
| 2017 | 0.000 | 0.037 | 0.000 | 0.075 | 0.000 | 0.105 | 0.000 | 0.105 | 0.000 |
| 2018 | 0.000 | 0.106 | 0.000 | 0.213 | 0.000 | 0.302 | 0.000 | 0.302 | 0.000 |
| 2019 | 0.000 | 0.045 | 0.000 | 0.090 | 0.000 | 0.128 | 0.000 | 0.128 | 0.000 |
| 2020 | 0.000 | 0.036 | 0.000 | 0.072 | 0.000 | 0.101 | 0.000 | 0.101 | 0.000 |
| 2021 | 0.001 | 0.274 | 0.017 | 0.549 | 0.034 | 0.777 | 0.047 | 0.777 | 0.047 |
| arith. <br> mean | 0.000 | 0.079 | 0.009 | 0.159 | 0.017 | 0.225 | 0.024 | 0.225 | 0.024 |

Table 9.5.8 Sandeel Area-4. Natural mortality (M) at age.

|  | Age 0, 2nd half | Age 1, 1st half | Age 1, 2nd half | Age 2, 1st half | Age 2, 2nd half | Age 3, 1st half | Age 3, 2nd half | Age 4+, 1st half | Age 4+, 2nd half |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1993 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 1994 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 1995 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 1996 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 1997 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 1998 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 1999 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2000 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2001 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2002 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2003 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2004 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2005 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2006 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2007 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2008 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2009 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2010 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2011 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2012 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2013 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2014 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2015 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2016 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2017 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2018 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2019 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2020 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| 2021 | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |
| arith. <br> mean | 1.14 | 0.767 | 0.592 | 0.602 | 0.488 | 0.431 | 0.392 | 0.398 | 0.378 |

Table 9.5.9 Sandeel Area-4. Stock numbers (millions). Age $\mathbf{0}$ at start of 2 nd half-year, age $\mathbf{1 +}$ at start of the year.

| Age 0 |  | Age 1 |  | Age 2 | Age 3 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1993 | 118989 | 25765 | 23897 | 7791 | Age 4 |
| 1994 | 233754 | 38010 | 4965 | 4515 | 1483 |
| 1995 | 62359 | 74674 | 7008 | 858 | 1100 |
| 1996 | 329020 | 19943 | 17455 | 1950 | 676 |


| Age 0 |  | Age 1 | Age 2 | Age 3 | Age 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1997 | 93616 | 104596 | 3976 | 3531 | 569 |
| 1998 | 42109 | 29915 | 23698 | 1039 | 1269 |
| 1999 | 225520 | 13464 | 6752 | 6146 | 721 |
| 2000 | 182791 | 72126 | 2876 | 1568 | 1796 |
| 2001 | 23268 | 58460 | 16913 | 805 | 1170 |
| 2002 | 79947 | 7441 | 13001 | 4259 | 593 |
| 2003 | 154617 | 25568 | 1854 | 4113 | 1966 |
| 2004 | 11572 | 49427 | 5200 | 390 | 1398 |
| 2005 | 6949 | 3701 | 12154 | 1601 | 720 |
| 2006 | 4248 | 2222 | 933 | 3932 | 980 |
| 2007 | 6307 | 1359 | 571 | 313 | 2176 |
| 2008 | 19031 | 2017 | 349 | 192 | 1138 |
| 2009 | 276709 | 6086 | 517 | 117 | 605 |
| 2010 | 47595 | 88497 | 1564 | 174 | 330 |
| 2011 | 35026 | 15222 | 22718 | 525 | 228 |
| 2012 | 27988 | 11202 | 3905 | 7616 | 334 |
| 2013 | 18201 | 8951 | 2836 | 1275 | 3357 |
| 2014 | 254612 | 5821 | 2281 | 938 | 2057 |
| 2015 | 34055 | 81430 | 1479 | 751 | 1318 |
| 2016 | 73102 | 10892 | 20740 | 489 | 913 |
| 2017 | 90992 | 23379 | 2751 | 6741 | 605 |
| 2018 | 23107 | 29101 | 5787 | 859 | 2915 |
| 2019 | 200668 | 7390 | 6722 | 1572 | 1271 |
| 2020 | 62418 | 64177 | 1815 | 2064 | 1122 |
| 2021 | 46546 | 19962 | 15909 | 568 | 1286 |
| 2022 |  | 14876 | 3834 | 2987 | 369 |

Table 9.5.10 Sandeel Area-4. Estimated recruitment, total stock biomass (TBS), spawning stock biomass (SSB), catch weight (modelled yield) and average fishing mortality.

|  | Recruits (thousands) | TSB (tonnes) | SSB (tonnes) | Yield (tonnes) | Mean $\mathrm{F}_{1-2}$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1993 | 119043556 | 618393 | 366957 | 132599 | 0.432 |
| 1994 | 233805469 | 571687 | 145801 | 158690 | 0.498 |
| 1995 | 62332904 | 772094 | 120090 | 52591 | 0.142 |
| 1996 | 329142057 | 382202 | 228662 | 158490 | 0.381 |
| 1997 | 93642978 | 779492 | 72330 | 58446 | 0.189 |
| 1998 | 42118600 | 459550 | 226387 | 58746 | 0.195 |
| 1999 | 225538177 | 268367 | 169397 | 53334 | 0.277 |
| 2000 | 182817693 | 354099 | 69564 | 37714 | 0.137 |
| 2001 | 23277552 | 323825 | 103881 | 47902 | 0.217 |
| 2002 | 79957036 | 156276 | 111302 | 12736 | 0.046 |


|  | Recruits (thousands) | TSB (tonnes) | SSB (tonnes) | Yield (tonnes) | Mean $\mathrm{F}_{1-2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2003 | 154545638 | 184694 | 63831 | 63731 | 0.351 |
| 2004 | 11570855 | 259656 | 53210 | 6882 | 0.066 |
| 2005 | 6948247 | 111495 | 79937 | 1557 | 0.029 |
| 2006 | 4248175 | 95431 | 80178 | 0 | 0.000 |
| 2007 | 6305924 | 50393 | 42702 | 0 | 0.000 |
| 2008 | 19038999 | 32923 | 22652 | 0 | 0.002 |
| 2009 | 276577049 | 54412 | 17771 | 0 | 0.000 |
| 2010 | 47583661 | 475943 | 19456 | 0 | 0.001 |
| 2011 | 35039971 | 286284 | 169736 | 0 | 0.002 |
| 2012 | 27979985 | 154307 | 101114 | 2585 | 0.022 |
| 2013 | 18201235 | 149987 | 96761 | 5225 | 0.012 |
| 2014 | 254548005 | 126895 | 79301 | 4314 | 0.016 |
| 2015 | 34038405 | 399110 | 40905 | 4392 | 0.013 |
| 2016 | 73075229 | 291562 | 193881 | 6188 | 0.025 |
| 2017 | 90966330 | 305129 | 121905 | 18474 | 0.056 |
| 2018 | 23115178 | 285935 | 107474 | 42296 | 0.160 |
| 2019 | 200635422 | 159464 | 100811 | 6651 | 0.068 |
| 2020 | 62395268 | 481854 | 50312 | 20101 | 0.054 |
| 2021 | 46548252 | 288685 | 145656 | 51882 | 0.437 |
| 2022 |  |  | 72766 |  |  |
| arith. mean | 96038438 | 306212 | 109151 | 34673 | 0.132 |
| geo. mean | 54570282 |  |  |  |  |

arith. mean for the period 1993-2021
geo. mean for the period 1993-2020

Table 9.5.11 Sandeel Area-4. Input to forecast.

|  | Age 0 | Age 1 | Age 2 | Age 3 | Age 4 |  |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: |
| Stock numbers(2022) | 55898.143 | 14875.6 | 3834.27 | 2986.51 | 368.905 |  |
| Exploitation pattern 1st half |  | 0.274 | 0.549 | 0.777 | 0.777 |  |
| Exploitation pattern 2nd half | 0.001 | 0.017 | 0.034 | 0.047 | 0.047 |  |
| Weight in the stock 1st half |  | 6.292 | 9.522 | 12.802 | 17.445 |  |
| Weight in the catch 1st half |  | 6.408 | 7.693 | 10.738 | 14.556 | 17.601 |
| weight in the catch 2nd half | 0.000 | 0.000 | 0.790 | 0.980 | 1.000 |  |
| Proportion mature(2022) | 0.000 | 0.000 | 0.790 | 0.980 | 1.000 |  |
| Proportion mature(2023) |  | 0.767 | 0.602 | 0.431 | 0.398 |  |
| Natural mortality 1st half | 1.140 | 0.592 | 0.488 | 0.392 | 0.378 |  |
| Natural mortality 2nd half |  |  | 12.802 | 17.445 |  |  |

Table 9.5.12 Sandeel Area-4. Short term forecast ( 000 tonnes).
Basis: $\mathrm{Fsq}=\mathrm{F}(2021)=0.4368$; Yield(2021)=51.883; Recruitment(2021)=46.548252; Recruitment(2022)=geometric mean (GM 2011-2020)=55.898143 billion; SSB(2022)=72.766

| F multiplier | Basis | F(2022) | Catch(2022) | SSB(2023) | $\begin{aligned} & \text { \%SSB } \\ & \text { change* } \end{aligned}$ | \%TAC change** |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $\mathrm{F}=0$ | 0.000 | 0.001 | 70.783 | -3\% | -100\% |
| 3.25 | Fsq*3.25 | 1.418 | 103.545 | 15.406 | -79\% | $100 \%$ |
| 1 | Fsq*1 | 0.437 | 49.577 | 41.872 | -42\% | -4\% |
| 2 | Fsq*2 | 0.874 | 79.937 | 26.093 | -64\% | 54 \% |
| 3 | Fsq*3 | 1.310 | 99.723 | 17.017 | -77\% | 92 \% |
| 4 | Fsq*4 | 1.747 | 113.364 | 11.516 | -84\% | 119 \% |
| 5 | Fsq*5 | 2.184 | 123.223 | 8.016 | -89\% | 138 \% |
| 6 | Fsq*6 | 2.621 | 130.628 | 5.697 | -92\% | 152 \% |
| 7 | Fsq*7 | 3.058 | 136.362 | 4.110 | -94\% | 163 \% |
| No conversion for calculation of MSY catch |  | NA | NA | NA |  |  |

*SSB in 2023 relative to SSB in 2022
**TAC in 2022 relative to catches in 2021


Figure 9.1.1 Sandeel in ICES Subarea 4 and Div. 3.a. Sandeel management areas.



Figure 9.1.2 Sandeel in ICES Subarea 4 and Div. 3.a. Catch by ICES rectangles 2006-2021 (upper, red circles). Number of samples per ICES square in commercial catches (lower, blue circles). Area of the circles is proportional to catch by rectangle.


Figure 9.1.3 Sandeel in ICES Subarea 4 and Div. 3.a. Total catches by year and area.


Figure 9.1.4 Sandeel in ICES Subarea 4 and Div. 3.a. Danish survey catches by haul for 0 -group. Area of the circles is proportional to catch number.


Figure 9.1.5 Sandeel in ICES Subarea 4 and Div. 3.a. Danish survey catches by haul for 1-group. Area of the circles is proportional to catch number.


Figure 9.1.6 Sandeel in ICES Subarea 4 and Div. 3.a. Norwegian sandeel management areas. There are 6 main areas consisting of subareas $a$ and $b$. Sub Area3 consist of three subareas $a, b$, and $c$.


Figure 9.2.1 Sandeel Area-1r. Catch numbers, proportion at age.


Figure 9.2.2 Sandeel Area-1r. Mean weight at age in the first half year (age 1-4+) and second half year (age 0-4+).


Figure 9.2.3 Sandeel Area-1r. CPUE and effort.


Figure 9.2.4 Sandeel Area-1r. Internal consistency by age of the dredge survey. Red dot indicates the most recent data point.


Figure 9.2.5 Sandeel Area-1r. Dredge survey index timeline.


Figure 9.2.6 Sandeel Area-1r. Survey CPUE at age residuals (log(observed CPUE)- log(expected CPUE). "Red" dots show a positive residual.


Area-1r S:2


Figure 9.2.7 Sandeel Area-1r. Catch at age residuals (log(observed CPUE)- $\log ($ expected CPUE). "Red" dots show a positive residual.

Area-1r: Hockey stick, 1983:2021


Figure 9.2.8 Sandeel Area-1r. Estimated stock recruitment relation. Red line = median of the expected recruitment, Dark blue lines $=$ one standard deviation, Light blue lines $\mathbf{=} \mathbf{2}$ standard deviations. The area within the light blue lines can be seen as the $95 \%$ confidence interval of recruitment. Years shown in red are not used in the fit.


Figure 9.2.9 Sandeel Area-1r. Retrospective analysis.


Figure 9.2.10 Sandeel Area-1r. Uncertainties of model output estimated from parameter uncertainties derived from the Hessian matrix and the delta method.


Figure 9.2.11 Sandeel Area-1r. Model output (mean F, SSB and Recruitment) with mean values and plus/minus 2 * standard deviation.


Figure 9.2.12 Sandeel Area-1r. Total effort (days fishing for a standard 200 GT vessel) and estimated average Fishing mortality.





RTM 2007-2021


Figure 9.2.14 Sandeel Area-1r. RTM survey. Survey CPUE at age residuals ( $\log$ (observed CPUE)- $\log (e x p e c t e d ~ C P U E))$. "Red" dots show a positive residual.


Figure 9.3.1 Sandeel Area-2r. Catch numbers, proportion at age.


Figure 9.3.2 Sandeel Area-2r. Mean weight at age in the first half year (age 1-4+) and second half year (age 0-4+).


Figure 9.3.3 Sandeel Area-2r. CPUE and effort.


Figure 9.3.4 Sandeel Area-2r. Internal consistency by age of the dredge survey. Red dot indicates the most recent data point.


Figure 9.3.5 Sandeel Area-2r. Dredge survey index timeline.

Dredge survey 2010-2021


Figure 9.3.6 Sandeel Area-2r. Survey CPUE at age residuals (log(observed CPUE)- log(expected CPUE)). "Red" dots show a positive residual.


Area-2r S:2


Figure 9.3.7 Sandeel Area-2r. Catch at age residuals (log(observed CPUE)- $\log ($ expected CPUE)). "Red" dots show a positive residual.

Area-2r: Hockey stick, 1983:2021


Figure 9.3.8 Sandeel Area-2r. Estimated stock recruitment relation. Red line = median of the expected recruitment, Dark blue lines = one standard deviation, Light blue lines $\mathbf{=} \mathbf{2}$ standard deviations. The area within the light blue lines can be seen as the $95 \%$ confidence interval of recruitment. Years shown in red are not used in the fit.


Figure 9.3.9 Sandeel Area-2r. Retrospective analysis.


Figure 9.3.10 Sandeel Area-2r. Uncertainties of model output estimated from parameter uncertainties derived from the Hessian matrix and the delta method.


Figure 9.3.11 Sandeel Area-2r. Model output (mean F, SSB and Recruitment) with mean values and plus/minus 2 * standard deviation.


Figure 9.3.12 Sandeel Area-2r. Total effort (days fishing for a standard 200 GT vessel) and estimated average Fishing mortality.



Figure 9.4.1 Sandeel Area-3r. Catch numbers, proportion at age.


Figure 9.4.2 Sandeel Area-3r. Mean weight at age in the first half year (age 1-4+) and second half year (age 0-4+).


Figure 9.4.3 Sandeel Area-3r. CPUE and effort.


Figure 9.4.4 Sandeel Area-3r. Internal consistency by age of the dredge survey. Red dot indicates the most recent data point.


Figure 9.4.5 Sandeel Area-3r. Dredge survey index timeline.


Figure 9.4.6 Sandeel Area-3r. Survey CPUE at age residuals (log(observed CPUE)- log(expected CPUE)). "Red" dots show a positive residual.


Area-3r S:2


Figure 9.4.7 Sandeel Area-3r. Catch at age residuals (log(observed CPUE)- $\log (e x p e c t e d ~ C P U E)) . ~ " R e d " ~ d o t s ~ s h o w ~ a ~ p o s i-~$ tive residual.

Area-3r: Hockey stick, 1986:2021


Figure 9.4.8 Sandeel Area-3r. Estimated stock recruitment relation. Red line = median of the expected recruitment, Dark blue lines $=$ one standard deviation, Light blue lines $\mathbf{=} \mathbf{2}$ standard deviations. The area within the light blue lines can be seen as the $95 \%$ confidence interval of recruitment. Years shown in red are not used in the fit.


Figure 9.4.9 Sandeel Area-3r. Retrospective analysis.


Figure 9.4.10 Sandeel Area-3r. Uncertainties of model output estimated from parameter uncertainties derived from the Hessian matrix and the delta method.


Figure 9.4.11 Sandeel Area-3r. Model output (mean F, SSB and Recruitment) with mean values and plus/minus 2 * standard deviation.


Figure 9.4.12 Sandeel Area-3r. Total effort (days fishing for a standard 200 GT vessel) and estimated average Fishing mortality.


Figure 9.4.13 Sandeel Area-3r. Stock summary.


Figure 9.4.14 Sandeel Area-3r. Acoustic survey index timeline.


Figure 9.4.15 Sandeel Area-3r. Norwegian acoustic survey. Survey CPUE at age residuals (log(observed CPUE)- log(expected CPUE)). "Red" dots show a positive residual.


Figure 9.4.16 Sandeel Area-3r. Internal consistency by age of the acoustic survey. Red dot indicates the most recent data point.


Figure 9.5.1 Sandeel Area-4. Catch numbers, proportion at age.


Figure 9.5.2 Sandeel Area-4. Mean weight at age in the first half year (age 1-4+) and second half year (age 0-4+).


Figure 9.5.3 Sandeel Area-4. CPUE and effort.


Figure 9.5.4 Sandeel Area-4. Internal consistency by age of the dredge survey. Red dot indicates the most recent data point.


Figure 9.5.5 Sandeel Area-4. Dredge survey index timeline.


Figure 9.5.6 Sandeel Area-4. Survey CPUE at age residuals (log(observed CPUE)- log(expected CPUE)). "Red" dots show a positive residual.


Figure 9.5.7 Sandeel Area-4. Catch at age residuals (log(observed CPUE)- $\log ($ expected CPUE)). "Red" dots show a positive residual.

Area-4: Hockey stick, 1993:2021


Figure 9.5.8 Sandeel Area-4. Estimated stock recruitment relation. Red line = median of the expected recruitment, Dark blue lines = one standard deviation, Light blue lines $\mathbf{=} \mathbf{2}$ standard deviations. The area within the light blue lines can be seen as the $95 \%$ confidence interval of recruitment. Years shown in red are not used in the fit.


Figure 9.5.9 Sandeel Area-4. Retrospective analysis.


Figure 9.5.10 Sandeel Area-4. Uncertainties of model output estimated from parameter uncertainties derived from the Hessian matrix and the delta method.


Figure 9.5.11 Sandeel Area-4. Model output (mean F, SSB and Recruitment) with mean values and plus/minus 2 * standard deviation.


Figure 9.5.12 Sandeel Area-4. Total effort (days fishing for a standard 200 GT vessel) and estimated average Fishing mortality.


Figure 9.5.13 Sandeel Area-4. Stock summary.

Old Dredge survey 1999-2003

9.5.1 Sandeel Area-4. Old dredge survey. Survey CPUE at age residuals (log(observed CPUE)- log(expected CPUE)). "Red" dots show a positive residual.

## 10 Sprat in Division 3.a and Subarea 4 (Skagerrak, Kattegat and North Sea)

### 10.1 The Fishery

### 10.1.1 ACOM advice applicable to 2020 and 2021

There have never been any explicit management objectives for this stock. Last year, the advised TAC (July 2021 to June 2022) was set to 106715 t for sprat in Subarea 4 and Division 3.a. The 2021 herring bycatch quotas were 7750 t for the North Sea and 6659 t for Division 3.a. During the WKSPRAT benchmark meeting in 2018, sprat in Subarea 4 and Division 3.a were merged into one stock assessment model. Also, several other modifications were made to the configurations of the assessment model (see (WKSPRAT: ICES, 2018) for further details).

### 10.1.2 Catches in 2021

Catch statistics for 1997-2021 for sprat in the North Sea by area and country are presented in Table 10.1.1. Catch data prior to 1996 are considered less reliable due to uncertainty of potential bycatches of North Sea herring (see Stock Annex). The small catches of sprat from the fjords of Norway are not included in the catch tables (Table 10.1.1-10.1.2). The WG estimate of total catches for the North Sea and Division 3. a in 2021 were 80 761t (total official catches amounted to 81807 t ). This is a $56 \%$ decrease compared to 2020 . The Danish catches represent $86 \%$ of the total catches.

The spatial distribution of landings was similar to 2020, although smaller catches were seen (Figure 10.1.1). A very low percentage $(\sim 1 \%$ in 2021) of the catches were landed in the first and second quarter of 2021 (Table 10.1.2).

### 10.1.3 Regulations and their effects

Most sprat catches are taken in an industrial fishery where catches are limited by herring bycatch quantities. Bycatches of herring are practically unavoidable except in years with high sprat abundance or low herring recruitment. Bycatch is especially considered to be a problem in area 4.c. This led to the introduction of a closed area (sprat box) to ensure that sprat catches were not taken close to the Danish west coast where large bycatches were expected.

ICES evaluated the effectiveness of the sprat box in 2017 (ICES, 2017). The evaluation showed that fishing inside the sprat box would be expected to reduce unwanted catches of herring by weight but not in number and concluded that other management measures are sufficient to control herring bycatch. The sprat box was removed in 2017.

The Norwegian vessels have a maximum vessel quota of $550 t$ when fishing in the North Sea. A herring bycatch of up to $10 \%$ in biomass is allowed in Norwegian sprat catches.

### 10.1.4 Changes in fishing technology and fishing patterns

No major changes in fishing technology and fishing patterns for the sprat fisheries in the North Sea have been reported. From about 2000, Norwegian pelagic trawlers were licensed to take part in the sprat fishery in the North Sea. In the first years, the Norwegian catches were mainly taken by purse-seine, and the catches taken by trawl were low. In recent years, the share of the total Norwegian catches taken by trawl has increased (2020: 92\% taken by trawl).

### 10.2 Biological composition of the catch

Only data on bycatch from the Danish fishery were available to the Working Group (Table 10.2.1). The Danish sprat fishery was conducted with a $7.2 \%$ and $10.7 \%$ bycatch of herring in 2021 in the North Sea and Division 3.a, respectively. The total amount of herring caught as bycatch in the sprat fishery has mostly been less than $10 \%$. From 1 ${ }^{\text {st }}$ of April 2020 the Danish methodology behind the by-catch estimation in the fisheries for reduction changed. Before, the Danish fishery control regularly sampled the landings for reduction, and afterwards a species composition was estimated per month, square and fishery. Now, each and every landing for reduction into Denmark is subsampled by the buyer and the estimated species composition is reported directly in the sale slips. Many of the buyers use independent companies, $3^{\text {rd }}$ party, for sampling.

The estimated quarterly landings at age in numbers for the period 1974-2021 are presented in Table 10.2.2. In the model year 2021 (1 July 2021-30 June 2022), one-year old sprat contributed $68 \%$ of the total landings, which is close to the 1990-2020 average ( $66 \%$ ). 2-year-olds contributed $20 \%$ in 2021 (model year), which is above the 1990-2020 average ( $15 \%$ ). 0-year-olds contributed $8 \%$ of the total landings, which is lower than the $1990-2020$ average ( $16 \%$ ).

Denmark and Sweden provided age data of commercial landings in 2021 (Table 10.2.4). Quarter 1,3 and 4 were covered. Quarter 1 in 2021 had very low catches and low number of samples. The sample data were used to raise the landings data from the North Sea, Skagerrak, and Kattegat. The landings by Germany ( 3572 t ), the Netherlands (139 t), UK-Scotland (105 t), UK-England and Wales ( 33 t ) and Belgium ( $<1 \mathrm{t}$ ) were unsampled and Norway didn't catch the stock in 2021. The sampling level has been greatly improved since 2014 because of the implementation of a sampling programme for collecting haul-based samples from the Danish sprat fishery. However, the sampling level in 2020 (model year) was substantially reduced with only 0.6 samples taken per 2000 t . The low level of sampling in 2020 was caused by a not fully implemented change in the Danish sampling program. Since the introduction of the new by-catch estimation method in 2020, mentioned above, the Danish institute has been able to get samples from most of the buyers / $3^{\text {rd }}$ party companies. Therefore, the Danish institute introduced a new sampling strategy in 2020, where vessels above 24 meters are sampled with a higher frequency than smaller vessels. Vessels above 24 meters are still being encouraged to deliver self-samples, but if not, a $3^{\text {rd }}$ party sample is used as a substitute. All samples from vessels below 24 meters comes from the $3^{\text {rd }}$ party companies. The new sampling strategy has secured a high level of sampling in 2021.

The number of samples used for the assessment, both length and age-length samples, is shown in Table 10.2.4-5 and Figure 10.2.1.

### 10.3 Fishery Independent Information

### 10.3.1 IBTS Q1 and Q3

Table 10.3.1 and Figure 10.3.1 and 10.3.2 give the time-series of IBTS indices by age (calculated using a delta-GAM model formulation; see WKSPRAT report (2018) for further details). The data
source is the IBTS Q1 data from 1983-2022. The index for IBTS Q1 1-year old in 2021 (age-0 in the model and the table, serving as a recruitment index) was $35 \%$ below average and $45 \%$ lower than last year's index. There has been a tendency for an increase in the IBTS age 0 in the time-series since 1990. Furthermore, older age-groups (i.e. age-1 and age-2) decreased by $>45 \%$ compared to the year before. Note that due to both rough weather and outbreaks of Covid-19, IBTS Q1 survey was limited, which affected the sampling coverage. Thus, the coverage was reduced drastically for some parts of the North Sea. Although, it is not expected to have any significant effect for the sprat assessment, a $15 \%$ increase in CV for the index is reported compared to last year. Spatial pattern in residuals was checked and did not raise any concerns. Furthermore, the model is designed to handle such issues to some extent. IBTS Q3 survey indices were also used in the assessment for older age-groups, and the 2021 values for all age-groups (i.e. age-1, age-2 and age-3+) were more than $50 \%$ lower compared to 2020.

### 10.3.2 Acoustic Survey (HERAS)

Abundance indices were provided by WGIPS (ICES, 2022) (see Section 1.4.2). The abundance indices for Subarea 4 and Division 3.a were summed (Table 10.3.2 and Figure 10.3.2b). The 2021 values were $22 \%$ higher, $61 \%$ lower, and $27 \%$ lower (age- 1 , age- 2 , and age- 3 , respectively) compared to the 2020-values.

### 10.4 Mean weights-at-age and maturity-at-age

Mean weights-at-age in catches are given in Table 10.2.3 and Figure 10.4.1. Mean weights in model season 1 and 2 (S1 and S2; quarter 3 and 4), where most of the catches are taken, show a declining trend over the past decade. In 2019, the mean weights of age-1 and age-3 fish in S1 were the lowest observed for nearly two decades but since 2020 this decline was arrested. Weights were almost identical for all age-groups S1 compared to 2020. In contrast weights for all age-groups declined in S2 (Figure 10.4.1).

Proportion of mature fish was derived from IBTSQ1, following the benchmark procedure. Longterm average maturity ogives were used in the assessment model ( $0.0,0.41,0.87$, and 0.95 for age-0 to age-3+). More details about the maturity staging are given in Section 4.5.3.2 in the WKSPRAT 2013 report (ICES, 2013).

### 10.5 Recruitment

The IBTS Q1 age-1 index (age-0 in the model) (Table 10.3.1) is used as a recruitment index for this stock. The 2022 value, indicative of the 2021 recruitment, was $35 \%$ below average, corresponding to a $45 \%$ decrease of the recruitment index in the previous year. The recruitment estimated by the model for 2021 is $19 \%$ lower than the recruitment in 2020 and $43 \%$ below the 20112020 geometric mean (Table 10.6.4). At the most recent benchmark, it was decided to implement a power model (directly within the assessment model) to the age-0 IBTS Q1 index to dampen the effect of very high index values. This was done to reduce the retrospective bias on recruitment (see WKSPRAT 2018 for further details).

### 10.6 Stock Assessment

one stock assessment model. Also, several other modifications were made to the configuration of the assessment model (see WKSPRAT report (ICES, 2018) for further details).

In-year advice is the only possible type of advice for this short-lived species with catches dominated by 1- and 2-year-old fish. This, however, requires information about incoming 1-year old fish. To meet this requirement and to come up with a model that logically matches the natural life cycle of sprat, the annual time-step in the model was shifted, relative to the calendar year, to a time-step going from July to June (see text table below). SSB and recruitment was estimated at 1 July. In figures and tables with assessment output and input, the years refer to the shifted model year (July to June) and in each figure and table it is noted whether model year or calendar year apply (when the model year is given the year refers to the year at the beginning of the model year; for example: 2000 refers to the model year 1 July 2000 to 30 June 2001). The following schematic illustrates the shifted model year relative to the calendar year and provides an overview of the timing of surveys etc.

| Model year | Calendar year |  |  |
| :---: | :---: | :---: | :---: |
| 2000 | Season 1 | 2000 | Quarter 3 |
| 2000 | Season 2 | Season 3 | Quarter 4 |
| 2000 | Season 4 | 2000 | Quarter 1 |
| 2000 | 2001 | Quarter 2 |  |



### 10.6.1 Input data

### 10.6.1.1 Catch data

Information on catch data are provided in Tables 10.1.1-2 and in Figures 10.1.1 and 10.6.1. Sampling effort is presented in Table 10.2.5 and Figure 10.2.1.

Since catches in quarter 2 (season 4 in the model) are often less than 5000 tonnes, these are poorly estimated by the model and the number of samples from these catches are low (sometimes no samples). Furthermore, at the time of the assessment working group, S 4 catches are unknown. Therefore, during the latest benchmark it was decided to move S 4 catches into S 1 in the following model year. In 2022, only 478 t were taken in quarter 1 and no age samples taken. To avoid the resulting high uncertainty in the age distribution of these catches, they were transferred to 2021 quarter 4, leading to a total catch of 15617 t in this quarter.

### 10.6.1.2 Weight-at-age

The mean weights at age observed in the catch are given in Table 10.2.3 and Figure 10.4.1 by season. It is assumed that the mean weights in the stock are the same as in the catch. The mean weight at age of S1 that is used to calculated SSB.

### 10.6.1.3 Surveys

Three surveys were included (Tables 10.3.1-3), IBTS Q1 (1975-present), IBTS Q3 (1991-present) and HERAS (Q3) (2003-present). 0-group (young-of-the-year) sprat is unlikely to be fully recruited by the time of IBTS Q3 and HERAS, and for this reason these age indices were excluded from the model.

### 10.6.1.4 Natural mortality

New natural mortalities were available from the 2020 North Sea key run from WGSAM (ICES, 2017). The major changes were changes to mean weight of whiting leading to lower mortalities particularly in the early part of the time series. HAWG reviewed stock assessments based on the old and new M's. The new mortalities reduced AIC of the model from 865 to 859 , indicating a substantially improved fit. CVs for the catches decreased by up to $3 \%$ while survey CVs changed by -4 to $+5 \%$ (average $+0.2 \%$ ). The CV on the terminal SSB increased by $9 \%$. For comparison, the change from the 2019 to the 2020 assessment, both using old mortalities, was an increase in CVs for the catches of up to $4 \%$ while survey CVs changed by -5 to $+20 \%$ (average $+6 \%$ ). The CV on the terminal SSB decreased by $20 \%$ ). In summary, the AIC of the assessment using new mortalities was substantially improved and changes to estimated parameters were within the range observed in annual updates. The change in average recruitment, SSB and F over the past 20 years were $2 \%,-4 \%$ and $+1 \%$ (new compared to old). The change to selection pattern was between -2 and $5 \%$ for age groups 1 and 2 (the F-bar ages). The group inspected the stock-recruitment plot and found no substantial changes. According to benchmark guidelines, no substantial changes in stock parameters or stock-recruitment plot would lead to the adoption of new mortalities in the assessment. However, the recent guidance from ACOM LS requires that reference points are re-estimated and an inter-benchmark process conducted when new M's are introduced. Given the strict time schedule for advice on this stock and the fact that the reference points according to the benchmark are estimated in a full (time consuming) MSE model, the group did not consider it feasible to conduct an inter-benchmark in time for the 2021 advice. Further, the group felt that they could not guarantee that using new mortalities would not lead to changes in reference points if these were re-estimated. Therefore, the old mortalities were used in the assessments from 2021 and onwards. Variable mortality is applied as three-year averages up till 2015, and after this the average mortality for 2013-2015 is used. Natural mortalities used in the model are given in Table 10.6.1.

### 10.6.1.5 Proportion mature

Proportion of mature fish was derived from IBTSQ1, following the benchmark procedure. Longterm average maturity ogives were used in the assessment model ( $0.0,0.41,0.87$, and 0.95 for age-0 to age-3+). More details about the maturity staging are given in Section 4.5.3.2 in the WKSPRAT 2013 report (ICES, 2013).

### 10.6.2 Stock assessment model

The assessment was made using SMS (Lewy and Vinther, 2004) with quarterly time-steps (referred to as season S1-S4). Three surveys were included, IBTS Q1 ages $1-4+$, IBTS Q3 ages $1-3$ and HERAS (Q3) ages 1-3.0-group sprat is unlikely to be fully recruited to the IBTSQ3 or HERAS in Q3 and these age indices were excluded from runs. External consistency between IBTS Q1, IBTS Q3 and HERAS can be found in the benchmark report (WKSPRAT2018: ICES, 2018).

The model converged and fitted the catches of the main ages caught in the main seasons reasonably (ages 1-2, seasons 1 and 2, Table 10.6.2). All surveys had low CVs (Table 10.6.2). There were no patterns in the residuals raising concern. Although, there appears to be a periodic cycling (on a decadal time-scale) between positive and negative residuals in the IBTS Q3 survey and the catches (Figures 10.6.2-3). Common CVs were estimated for the groups: 1 to 3-year olds in IBTS Q1 and 2 and 3-year olds in IBTS Q3 and HERAS.

The retrospective analyses showed a tendency to overestimate recruitment ( 5 years Mohn's rho $=0.27$ ) (Figure 10.6.5). As $41 \%$ (see 10.6.1.5) of the recruiting year class mature in their first year and thus contributes to the SSB at the end of the year, there is a similar large retrospective pattern in SSB (5-year Mohn's rho $=0.25$ ). The assessment model was improved with this respect during the last benchmark and Mohn's rho was reduced by roughly a factor of 3 due to the improvement.

The final outputs detailing trends in mean F, SSB and recruitment are given in Figures 10.6.4-7 and Tables 10.6.3-4.

### 10.7 Reference points

A Blim of 94000 t (Figure 10.7.1) and $\mathrm{B}_{\mathrm{pa}}$ of 125000 t were agreed at the most recent benchmark. $B_{p a}$ is defined as the upper $90 \%$ confidence interval of $B_{\lim }$ and calculated based on a terminal SSB CV of 0.173.

### 10.8 State of the stock

The sprat stock has a decreasing trend during the last couple of years judging by all the surveys and by the assessment output. The stock has been well above $B_{p a}$ since 2013 and above Blim since 1991 but is now estimated to be below $\mathrm{B}_{\mathrm{pa}}$ for the first time in nine years. The current SSB is $20 \%$ below $B_{\text {pa }}$. Fishing mortality has fluctuated without a trend, but the F of 2.169 in 2021 was the third highest in the time-series. The advised TAC was based on the predicted catch at F equal to $\mathrm{F}_{\text {cap }}$ (0.69). A large overshoot of $\mathrm{F}_{\text {cap }}$ is seen in simulations applying the escapement strategy on very large incoming year classes, and this is the rationale for implementing an $\mathrm{F}_{\text {cap }}$ as otherwise, the escapement strategy is not precautionary at large stock sizes.

A stock summary from the assessment output can be found in Table 10.6.4 and Figure 10.6.7.

### 10.9 Short-term projections

Management strategy evaluations for this stock were made in December 2018 (WKSPRATMSE: ICES, 2018). These evaluations clearly show that the current management strategy (Bescapement) is not precautionary unless an additional constraint is imposed on the fishing mortality (referred to as $\mathrm{F}_{\text {capp }}$ ). During the WKSPRATMSE (ICES, 2018) 0.69 was found to be the optimal $\mathrm{F}_{\text {cap }}$ value (from both a full MSE and a shortcut MSE, see the WKSPRATMSE report (WKSPRATMSE: ICES, 2018) for further details), which is a revision of the previous value of 0.7. This means, that the fishing mortality ( $\mathrm{F}_{\mathrm{bar}}(1-2)$ ) derived from the Bescapement strategy, should not exceed 0.69.

SSB in 2023 is expected to be higher than in 2022 and above the long-term average, and well above $\mathrm{B}_{\mathrm{pa}}(+45 \%)$. Using the input and assumptions detailed above, the projection for an $\mathrm{F}=0$ is an SSB in July 2023 of 222210 t (Table 10.9.2). The FmSy approach prescribes the use of an F value of 0.69 (Fcap, see explanation above) and results in a TAC advice of 69690 t (July 2022-June 2023), which is expected to result in an SSB of 181215 t in July 2023, well above Bpa.

### 10.10 Quality of the assessment

The data used within the assessment, the assessment methods and settings were carefully scrutinized during the 2018 benchmark (ICES, 2018). A complete overview of the choices made during the benchmark can be found in the WKSPRAT report (ICES, 2018) and these are also described in the Stock Annex for sprat in Division 3.a and Subarea 4.

The assessment shows medium to high CVs for the catches but low CVs for surveys. The CVs of F, SSB and recruitment are generally low (see Table 10.6.2 and Figure 10.6.4). The model converged and fitted the catches of the main ages caught in the main seasons (the periods with most samples) reasonably well (ages $1-2$, season 2, Table 10.6.2). The retrospective pattern in SSB and recruitment (5-years Mohn's rho of 0.25 and 0.27 , respectively) is below the advised limit of 0.3 discussed in WKFORBIAS (2019).

There appears to be a systematic pattern in the catch residuals of model season 1 (quarter 3), which remains unexplained.

### 10.11 Management Considerations

A management plan needs to be developed for this stock. Sprat is an important forage fish; thus, also multispecies considerations should be made.

The sprat stock in the North Sea is dominated by young fish. The stock size is mostly driven by the recruiting year class. Thus, the fishery in a given year will be dependent on that year's incoming year class.

Industrial fisheries are allocated a bycatch of 8174 t and 6659 t of juvenile herring in 2022 in the North Sea and Division 3.a, respectively. It is important to continue monitoring bycatch of juvenile herring to ensure compliance with this allocation.

### 10.11.1 Stock units

After the latest benchmark, sprat in the Subarea 4 and Division 3. a is considered to be one cohesive stock. This is documented in the WKSPRAT report (ICES, 2018). In addition, there are several peripheral areas of the North Sea and Division 3.a where there may be populations of sprat that behave as separate stocks from the main stock. Local depletion of sprat in such areas can be an issue of ecological concern.

### 10.12 Ecosystem Considerations

Sprat is an important prey species in the North Sea ecosystem. The influence of the sprat fishery on other fish species and seabirds are at present not documented to be substantial.

In the North Sea, the key predators consuming sprats are included in the stock assessment, using SMS estimates of sprat consumption for each predatory fish stock, and estimates for seabirds though this information is as described under natural mortality not up to date. Impacts of changes in zooplankton communities and consequent changes in food densities for sprats are not included in the assessment, but it may be useful to explore the possibility of including this, or a similar proxy bottom-up driver, in future assessments. However, the effect of changes in productivity is included in the observed quarterly weight-at-age and in the estimated recruitment, as a decline in e.g. available food can lead to lower observed weights and lower estimated recruitment even in the absence of a causal link in the model.

### 10.13 Changes in the environment

Temperatures in this area have been increasing over the last few decades. This may have implications for sprat, although the correlation between temperature and recruitment from the model has been found to be low (see WKSPRAT2018: ICES, 2018).

Table 10.1.1. North Sea \& 3.a sprat. Landings (' 000 t ) 1998-2021. See ICES CM 2006/ACFM: 20 for earlier data. Catch in coastal areas of Norway excluded. Data provided by Working Group members. These figures do not in all cases correspond to the official statistics and cannot be used for management purposes.

| Country | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Division 27.4.a |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Denmark |  | 0.7 |  | 0.1 | 1.1 |  | * |  | * | 0.8 | * | * |  |  |  |  | * | * | 0.1 | 0.1 |  | * | 0.5 | * |
| Norway |  |  |  |  |  |  |  |  |  |  |  | * |  | * |  |  |  |  |  |  |  | 0.1 | * |  |
| Sweden |  |  |  | 0.1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| UK (Scotland) |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.5 |  |  |  |  |  | * | * |  |  |  |
| Germany |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | * | * |  |  |  |  |  |
| Netherlands |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | * |  |  |  |  |  |  |
| Total |  | 0.7 |  | 0.2 | 1.1 |  | * |  | * | 0.8 | * | * |  | 0.5 |  |  | * | * | 0.1 | 0.1 | * | 0.1 | 0.5 | * |
| Division 27.4.b |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Denmark | 119.3 | 160.3 | 162.9 | 143.9 | 126.1 | 152.9 | 175.9 | 204.0 | 79.5 | 55.5 | 51.4 | 115.6 | 80.8 | 90.9 | 65.7 | 44.7 | 121.3 | 234.4 | 177.6 | 100.6 | 156.5 | 110.3 | 138.4 | 66.0 |
| Norway | 15.3 | 13.1 | 0.9 | 5.9 | * |  | 0.1 |  | 0.8 | 3.7 | 1.3 | 4.0 | 8.0 | 0.1 | 6.2 | * | 8.9 | 0.3 | 19.6 | 9.7 | 9.3 | 10.0 | 9.3 |  |
| Sweden | 1.7 | 2.1 |  | 1.4 |  |  |  | * |  |  |  | 0.3 | 0.6 | 1.1 | 1.8 | 0.1 | 3.9 | 5.5 | 11.7 | 8.1 | 7.6 | 7.5 | 3.5 | 5.9 |
| UK (Scotland) |  | 1.4 |  |  |  |  |  |  |  | 0.1 |  | 2.5 | 1.1 | 1.9 | 0.7 |  |  |  |  |  | * | 1.3 | 1.7 | * |
| UK (Engl. \& Wales) |  |  |  |  |  |  |  |  |  |  |  | * |  |  |  |  |  |  |  | * | * |  | 0.1 |  |
| Germany |  |  |  |  |  |  |  |  |  |  |  |  |  | 3.3 | 0.5 | 0.6 | 1.5 | 3.1 | 5.4 | 6.0 | 3.7 | 3.4 | 10 | 3.6 |
| Netherlands |  |  |  |  |  |  |  |  |  |  |  |  |  | 1.1 | 2.7 | 0.4 | 2.4 | 1.2 | 1.0 | 1.6 | 1.6 |  | 0.5 |  |
| Faroe Islands |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 4.7 | 1.0 | 1.0 |  | 1 |  |
| Total | 136.3 | 176.9 | 163.8 | 151.2 | 126.1 | 152.9 | 176.0 | 204.1 | 80.3 | 59.3 | 52.7 | 122.4 | 90.4 | 98.4 | 77.5 | 45.8 | 138.0 | 244.6 | 220.0 | 127.0 | 179.7 | 132.6 | 164.7 | 75.5 |
| Division 27.4.c |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Denmark | 11.8 | 3.3 | 28.2 | 13.1 | 14.8 | 22.3 | 16.8 | 2.0 | 23.8 | 20.6 | 8.1 | 8.2 | 48.5 | 20.0 | 3.2 | 15.4 | 2.2 | 34.0 | 18.7 | 1.5 | 6.2 | 8.9 | 2.4 | 2.7 |
| Norway | 16.0 | 5.7 | 1.8 | 3.6 |  |  |  |  | 9.0 | 2.9 |  | 1.8 | 3.2 | 9.9 | 3.0 | 1.7 | 0.1 | 8.8 | 0.6 |  | 0.5 | 0.6 | 0.7 |  |


| Country | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sweden |  |  |  |  |  |  |  |  |  |  |  | 0.6 | 0.6 | 0.2 | 0.4 | 1.3 |  | 1.2 | 0.4 |  |  |  |  | 1.1 |
| UK (Scotland) |  |  |  |  |  |  |  |  |  |  | 0.2 |  |  | 0.4 |  |  |  |  | * |  |  |  | 0.7 | 0.1 |
| UK (Engl. \& Wales) | 0.2 | 1.6 | 2.0 | 2.0 | 1.6 | 1.3 | 1.5 | 1.6 | 0.5 | 0.3 | * | * | 0.8 | 0.6 | 0.5 | * | * | * | * | * | 0.1 | 0.2 | 0.1 | * |
| Germany |  |  |  |  |  |  |  |  |  |  |  |  |  | * | * | 1.0 |  | 0.6 | 0.2 |  |  |  | 0.1 |  |
| Netherlands |  | 0.2 |  |  |  |  |  |  |  |  |  |  |  | 4.2 | 1.0 | 0.7 | * | 1.2 | 0.8 | * | 0.7 |  | 1.6 | 0.1 |
| Belgium |  |  |  |  |  |  |  |  |  |  |  |  |  | * |  | * | * | * | * | * |  | * | * | * |
| France |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | * |  | * |  |  |  |  |
| Total | 28.0 | 10.8 | 32.0 | 18.7 | 16.4 | 23.6 | 18.3 | 3.6 | 33.4 | 23.8 | 8.4 | 10.6 | 53.0 | 35.2 | 8.0 | 20.1 | 2.3 | 45.8 | 20.6 | 1.6 | 7.5 | 9.6 | 5.6 | 4.0 |
| Division 27.3.a |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Denmark | 11.2 | 17.2 | 12.8 | 20.2 | 13.4 | 10.2 | 14.4 | 31.9 | 7.8 | 9.9 | 5.8 | 6.9 | 8.4 | 8.0 | 8.4 | 1.9 | 16.7 | 11.7 | 6.7 | 1.0 | 2.9 | 3.9 | 9.5 | 0.6 |
| Sweden | 6.2 | 9.3 | 6.4 | 7.6 | 4.3 | 5.5 | 6.5 | 7.7 | 4.4 | 4.2 | 2.4 | 1.6 | 1.4 | 2.0 | 1.5 | 1.1 | 1.5 | 1.3 | 1.1 | 0.2 | 1.1 | 1.7 | 2.4 | 0.7 |
| Germany |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | * |  |  |  | * |  |  |  |
| Faroe Islands |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | * |  |  |  |  |  |
| Total | 17.4 | 26.5 | 19.2 | 27.7 | 17.7 | 15.7 | 20.9 | 39.6 | 12.2 | 14.1 | 8.2 | 8.5 | 9.8 | 10.0 | 9.9 | 3.0 | 18.3 | 13.0 | 7.9 | 1.2 | 4.0 | 5.6 | 11.9 | 1.3 |
| Total North Sea and Skagerrak-Kattegat |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Denmark | 142.3 | 181.5 | 203.9 | 177.3 | 155.4 | 185.4 | 207.1 | 237.9 | 111.2 | 86.7 | 65.4 | 130.7 | 137.7 | 119.0 | 77.4 | 62.1 | 140.2 | 280.1 | 203.1 | 103.3 | 165.6 | 123.1 | 150.9 | 69.3 |
| Norway | 31.3 | 18.8 | 2.7 | 9.5 | * |  | 0.1 |  | 9.8 | 6.7 | 1.3 | 5.8 | 11.1 | 10.0 | 9.1 | 1.7 | 9.0 | 9.1 | 20.2 | 9.7 | 9.8 | 10.6 | 10 |  |
| Sweden | 7.9 | 11.4 | 6.4 | 9.1 | 4.3 | 5.5 | 6.5 | 7.8 | 4.4 | 4.2 | 2.4 | 2.5 | 2.6 | 3.3 | 3.7 | 2.5 | 5.4 | 8.1 | 13.2 | 8.3 | 8.7 | 9.2 | 5.9 | 7.6 |
| UK (Scotland) |  | 1.4 |  |  |  |  |  |  |  | 0.1 | 0.2 | 2.5 | 1.1 | 2.8 | 0.7 |  |  |  | * | * | * | 1.3 | 2.5 | 0.1 |
| UK (Engl. \& Wales) | 0.2 | 1.6 | 2.0 | 2.0 | 1.6 | 1.3 | 1.5 | 1.6 | 0.5 | 0.3 | * | * | 0.8 | 0.6 | 0.5 | * | * | * | * | * | * | 0.2 | 0.2 | * |
| Germany |  |  |  |  |  |  |  |  |  |  |  |  |  | 3.3 | 0.5 | 1.6 | 1.6 | 3.7 | 5.6 | 6.0 | 3.7 | 3.4 | 10.1 | 3.6 |
| Netherlands |  | 0.2 |  |  |  |  |  |  |  |  |  |  |  | 5.3 | 3.7 | 1.1 | 2.4 | 2.4 | 1.8 | 1.6 | 2.3 |  | 2.1 | 0.1 |


| Country | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Faroe lslands |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 4.7 | 1.0 | 1.0 |  | 1 |  |
| Belgium |  |  |  |  |  |  |  |  |  |  |  |  |  | * |  | * | * | * | * | * |  | * | * | * |
| France |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | * |  | * |  |  |  |  |
| Total | 181.7 | 214.9 | 215.1 | 197.9 | 161.3 | 192.2 | 215.2 | 247.3 | 125.9 | 97.9 | 69.3 | 141.6 | 153.3 | 144.1 | 95.5 | 68.9 | 158.7 | 303.3 | 248.5 | 129.9 | 191.2 | 147.8 | 182.7 | 80.8 |

Table 10.1.2. North Sea \& 3.a sprat. Catches (tonnes) by quarter. Catches in coastal areas of Norway excluded. Data for 1996-1999 in ICES CM 2007/ACFM:11.

| Year | Quarter | Division 27.4.a | 27.4.b | 27.4.c | 27.3.a | Total |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: |
| 2000 | 1 |  | 18126 | 28063 | 46189 |  |
|  | 2 | 1722 | 45 | 1767 |  |  |
|  | 3 | 4 | 131306 | 1216 | 132522 |  |
|  | Total | 12680 | 2718 | 15398 |  |  |
| 2001 | 1 | 115 | 40903 | 9716 | 195876 |  |
|  | 2 |  | 1071 |  | 50734 |  |
|  | 3 | 79 | 65102 | 8538 | 1071 |  |
|  | 4 | 194 | 151249 | 18735 | 44655 |  |
| 2002 | 1 | 1136 | 2182 | 2790 | 73719 |  |
|  | 2 |  | 435 | 93 | 170177 |  |
|  | 3 |  | 70504 | 647 | 6108 |  |
|  | 4 | 52942 | 12911 | 528 |  |  |
|  | Total | 1136 | 126063 | 16441 | 71151 |  |
| 2003 | 1 | 11458 | 7727 | 5217 | 24402 |  |
|  | 2 | 625 | 26 | 1397 | 2049 |  |


| Year | Quarter | Division 27.4.a | 27.4.b | 27.4.c | 27.3.a | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2012 | 1 |  | 81 | 1649 | 4668 | 6399 |
|  | 2 |  | 2924 | 0 | 909 | 3832 |
|  | 3 |  | 26779 | 307 | 1631 | 28717 |
|  | 4 |  | 47765 | 6060 | 2728 | 56553 |
|  | Total |  | 77549 | 8016 | 9936 | 95501 |
| 2013 | 1 |  | 1281 | 3158 | 1296 | 5734 |
|  | 2 |  | 32 | 0 | 443 | 474 |
|  | 3 |  | 25577 | 720 | 211 | 26509 |
|  | 4 |  | 18892 | 16276 | 943 | 36110 |
|  | Total |  | 45781 | 20154 | 2893 | 68827 |
| 2014 | 1 |  | 59 | 125 | 384 | 568 |
|  | 2 |  | 11631 | 3 | 1415 | 13050 |
|  | 3 | 1 | 88457 | 1428 | 9622 | 99507 |
|  | 4 | 7 | 37851 | 822 | 6905 | 45586 |
|  | Total | 8 | 137999 | 2378 | 18327 | 158711 |
| 2015 | 1 | * | 14816 | 16972 | 1442 | 33230 |
|  | 2 |  | 16843 | 107 | 619 | 17568 |


| Year | Quarter | Division 27.4.a | 27.4.b | 27.4.c | 27.3.a | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 |  | 56207 | 165 | 1720 | 58092 |
|  | 4 |  | 84629 | 15651 | 7349 | 107629 |
|  | Total |  | 152919 | 23570 | 15683 | 192172 |
| 2004 | 1 |  | 827 | 1831 | 4456 | 7113 |
|  | 2 | 7 | 260 | 16 | 1510 | 1793 |
|  | 3 |  | 54161 | 496 | 4138 | 58794 |
|  | 4 |  | 120685 | 15937 | 10775 | 147397 |
|  | Total | 7 | 175932 | 18280 | 20879 | 215097 |
| 2005 | 1 |  | 11538 | 2457 | 8148 | 22143 |
|  | 2 |  | 2515 | 123 | 4722 | 7360 |
|  | 3 |  | 107530 |  | 19418 | 126948 |
|  | 4 |  | 82474 | 1033 | 7296 | 90803 |
|  | Total |  | 204057 | 3613 | 39584 | 247254 |
| 2006 | 1 | 47 | 13713 | 33534 | 8105 | 55399 |
|  | 2 |  | 190 | 8 | 324 | 522 |
|  | 3 |  | 40051 | 8 | 1440 | 41499 |
|  | 4 | 2 | 26579 | 77 | 2335 | 28993 |
|  | Total | 49 | 80533 | 33627 | 12204 | 126413 |
| 2007 | 1 |  | 582 | 247 | 2646 | 3475 |
|  | 2 |  | 241 | 3 | 1291 | 1535 |
|  | 3 |  | 16603 |  | 5357 | 21960 |
|  | 4 | 769 | 41850 | 23531 | 4761 | 70911 |
|  | Total | 769 | 59276 | 23781 | 14055 | 97881 |
| 2008 | 1 |  | 2872 | 43 | 2890 | 5805 |
|  | 2 |  | 52 | * | 1017 | 1069 |
|  | 3 |  | 21787 |  | 636 | 22423 |


| Year | Quarter | Division 27.4.a | 27.4.b | 27.4.c | 27.3.a | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 |  | 124512 | 335 | 6528 | 131375 |
|  | 4 | 25 | 88395 | 28375 | 4389 | 121184 |
|  | Total | 25 | 244566 | 45789 | 12978 | 303358 |
| 2016 | 1 | 68 | 18487 | 5969 | 746 | 25250 |
|  | 2 |  | 8927 | 51 | 669 | 9647 |
|  | 3 | * | 158522 | 111 | 4664 | 163297 |
|  | 4 | 2 | 34070 | 14466 | 1764 | 50301 |
|  | Total | 70 | 220007 | 20596 | 7843 | 248516 |
| 2017 | 1 | 1 | 3432 | 1220 | 92 | 4745 |
|  | 2 |  | 1327 | 0 | 33 | 1360 |
|  | 3 | * | 92885 | 217 | 227 | 93329 |
|  | 4 | 94 | 29310 | 174 | 849 | 30426 |
|  | Total | 95 | 126954 | 1611 | 1200 | 129860 |
| 2018 | 1 | * | 8994 | 1628 | 168 | 10790 |
|  | 2 |  | 11898 | 0 | 224 | 12122 |
|  | 3 |  | 112361 | 1 | 1328 | 113690 |
|  | 4 |  | 46411 | 5922 | 2249 | 54582 |
|  | Total | * | 179664 | 7551 | 3969 | 191184 |
| 2019 | 1 |  | 389 | 9592 | 627 | 10609 |
|  | 2 | 2 | 3606 | 11 | 379 | 3999 |
|  | 3 | 2 | 95829 | 7 | 2249 | 98087 |
|  | 4 | 49 | 32750 | 3 | 2296 | 35098 |
|  | Total | 53 | 132574 | 9614 | 5551 | 147793 |
| 2020 | 1 | 3 | 298 | 1076 | 378 | 1746 |
|  | 2 |  | 19430 | * | 173 | 19603 |
|  | 3 | 2 | 120890 | * | 4268 | 125160 |


| Year | Quarter | Division 27.4.a | 27.4.b | 27.4.c | 27.3.a | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4 |  | 27994 | 8334 | 3672 | 40001 |
|  | Total |  | 52706 | 8377 | 8215 | 69298 |
| 2009 | 1 |  | 36 | 1268 | 2600 | 3904 |
|  | 2 |  | 2526 | 1 | 300 | 2827 |
|  | 3 | 22 | 41513 |  | 3300 | 44835 |
|  | 4 |  | 78373 | 9336 | 2400 | 90109 |
|  | Total | 22 | 122448 | 10604 | 8600 | 141675 |
| 2010 | 1 |  | 10976 | 17072 | 1462 | 29510 |
|  | 2 |  | 3235 | 3 | 648 | 3886 |
|  | 3 |  | 14220 |  | 3405 | 17625 |
|  | 4 |  | 62006 | 35973 | 4278 | 102257 |
|  | Total |  | 90437 | 53048 | 9793 | 153278 |
| 2011 | 1 |  | 3747 | 21039 | 3216 | 28002 |
|  | 2 |  | 2067 | 3 | 617 | 2687 |
|  | 3 |  | 22309 | 451 | 2311 | 25072 |
|  | 4 | 8 | 70256 | 13759 | 3887 | 87910 |
|  | Total | 8 | 98380 | 35252 | 10031 | 143671 |



* $<0.5$ t
${ }^{* *}$ Until the ${ }^{\text {sts }}$ of March

Table 10.2.1. North Sea \& 3.a sprat. Species composition in Danish sprat fishery in tonnes and percentage of the total catch. Left: North Sea, right: Division 3.a.

|  | Year | Sprat | Herring | Horse <br> mack | Whiting | Haddock | Mackerel | Cod | Sandeel | Other | Total |  | Year | Sprat | Herring | Horse mack | Whiting | Haddock | Mackerel | Cod | Sandeel | Other | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| t | 1998 | 129315 | 11817 | 573 | 673 | 6 | 220 | 11 | 2174 | 1187 | 145978 | t | 1998 | 9143 | 3385 | 230 | 467 | 54 | 0 | 49 | 7 | 2866 | 16202 |
| t | 1999 | 157003 | 7256 | 413 | 1088 | 62 | 321 | 7 | 4972 | 635 | 171757 | t | 1999 | 16603 | 8470 | 138 | 1026 | 210 | 5 | 75 | 3337 | 2896 | 32760 |
| t | 2000 | 188463 | 11662 | 3239 | 2107 | 66 | 766 | 4 | 423 | 1911 | 208641 | t | 2000 | 12578 | 8034 | 5 | 1062 | 308 | 8 | 52 | 13 | 3556 | 25617 |
| t | 2001 | 136443 | 13953 | 67 | 1700 | 223 | 312 | 4 | 17020 | 1141 | 170862 | t | 2001 | 18236 | 8196 | 75 | 1266 | 50 | 13 | 35 | 4281 | 1271 | 33423 |
| t | 2002 | 140568 | 16644 | 2078 | 2537 | 27 | 715 | 0 | 4102 | 801 | 167471 | t | 2002 | 11451 | 12982 | 21 | 1164 | 3 | 6 | 30 | 606 | 2280 | 28541 |
| t | 2003 | 172456 | 10244 | 718 | 1106 | 15 | 799 | 11 | 5357 | 3504 | 194210 | t | 2003 | 8182 | 4928 | 340 | 252 | 4 | 4 | 4 | 1 | 56714 | 14282 |
| t | 2004 | 179944 | 10144 | 474 | 334 | 0 | 4351 | 3 | 3836 | 1821 | 200906 | t | 2004 | 13374 | 4620 | 97 | 976 | 18 | 24 | 27 | 116 | 2155 | 21408 |
| t | 2005 | 201331 | 21035 | 2477 | 545 | 4 | 1009 | 16 | 6859 | 974 | 234251 | t | 2005 | 30157 | 6171 | 244 | 871 | 63 | 18 | 20 | 746 | 1758 | 40047 |
| t | 2006 | 103236 | 8983 | 577 | 343 | 25 | 905 | 4 | 5384 | 576 | 120033 | t | 2006 | 6814 | 2852 | 215 | 276 | 13 | 3 | 45 | 1 | 23210 | 10451 |
| t | 2007 | 74734 | 6596 | 168 | 900 | 6 | 126 | 18 | 6 | 253 | 82807 | t | 2007 | 7116 | 2043 | 34 | 190 | 31 | 8 | 4 | 1 | 4699 | 9896 |
| t | 2008 | 61093 | 7928 | 26 | 380 | 10 | 367 | 0 | 23 | 1735 | 71563 | t | 2008 | 4805 | 1948 | 14 | 285 | 0 | 0 | 11 | 462 | 397 | 7563 |
| t | 2009 | 112721 | 7222 | 44 | 307 | 3 | 116 | 1 | 1526 | 407 | 122345 | t | 2009 | 4839 | 3016 | 37 | 169 | 15 | 0 | 1 | 53 | 478 | 8177 |
| t | 2010 | 112395 | 4410 | 11 | 119 | 2 | 18 | 0 | 1236 | 577 | 118769 | t | 2010 | 2851 | 2134 | 25 | 142 | 6 | 1 | 2 | 135 | 1715 | 5466 |
| t | 2011 | 109376 | 8073 | 35 | 191 | 0 | 127 | 0 | 1881 | 345 | 120026 | t | 2011 | 4754 | 2461 | 0 | 43 | 0 | 7 | 1 | 141 | 407 | 7447 |
| t | 2012 | 67263 | 8573 | 2 | 354 | 0 | 246 | 0 | 93 | 411 | 76943 | t | 2012 | 5707 | 5495 | 9 | 149 | 7 | 10 | 5 | 0 | 22811 | 11610 |
| t | 2013 | 55792 | 5176 | 47 | 445 | 0 | 277 | 2 | 1 | 369 | 62109 | t | 2013 | 1143 | 1751 | 2 | 46 | 0 | 0 | 1 | 1 | 272 | 2971 |
| t | 2014 | 123180 | 11402 | 0 | 897 | 0 | 70 | 16 | 16 | 1700 | 137280 | t | 2014 | 16751 | 3777 | 5 | 343 | 1 | 20 | 5 | 12 | 88821 | 21801 |
| t | 2015 | 265356 | 4568 | 5 | 1809 | 0 | 527 | 0 | 147 | 3311 | 275723 | t | 2015 | 11448 | 5831 | 0 | 565 | 0 | 29 | 8 | 1 | 15418 | 18036 |
| t | 2016 | 192718 | 11107 | 18 | 4223 | 0 | 439 | 0 | 46 | 2093 | 210643 | t | 2016 | 7001 | 2140 | 0 | 335 | 1 | 19 | 3 | 0 | 789 | 9579 |
| t | 2017 | 100833 | 5130 | 1 | 1344 | 0 | 197 | 0 | 503 | 12386 | 120394 | t | 2017 | 963 | 328 | 0 | 172 | 0 | 19 | 1 | 0 | 321 | 1515 |
| t | 2018 | 161536 | 7528 | 174 | 716 | 0 | 366 | 0 | 24 | 344 | 170687 | t | 2018 | 2872 | 257 | 2 | 150 | 1 | 11 | 0 | 0 | 123 | 3304 |
| t | 2019 | 118302 | 2757 | 1 | 897 | 1 | 176 | 0 | 3 | 503 | 122639 | t | 2019 | 3429 | 351 | 0 | 59 | 0 | 2 | 0 | 0 | 83 | 3850 |
| t | 2020 | 140954 | 6227 | 19 | 898 | 93 | 1188 | 0 | 11 | 724 | 150114 | t | 2020 | 9494 | 551 | 4 | 249 | 5 | 41 | 1 | 0 | 2710 | 10372 |
| t | 2021 | 68492 | 5518 | 39 | 1064 | 345 | 747 | 0 | 3 | 602 | 76809 | t | 2021 | 638 | 82 | 0 | 13 | 1 | 1 | 0 | 0 | 32 | 767 |
| \% | 1998 | 88.6 | 8.1 | 0.4 | 0.5 | 0 | 0.2 | 0 | 1.5 | 0.8 | 100 | \% | 1998 | 56.4 | 20.9 | 1.4 | 2.9 | 0.3 | 0 | 0.3 | 0 | 17.7 | 100 |
| \% | 1999 | 91.4 | 4.2 | 0.2 | 0.6 | 0 | 0.2 | 0 | 2.9 | 0.4 | 100 | \% | 1999 | 50.7 | 25.9 | 0.4 | 3.1 | 0.6 | 0 | 0.2 | 10.2 | 8.8 | 100 |
| \% | 2000 | 90.3 | 5.6 | 1.6 | 1 | 0 | 0.4 | 0 | 0.2 | 0.9 | 100 | \% | 2000 | 49.1 | 31.4 | 0 | 4.1 | 1.2 | 0 | 0.2 | 0.1 | 13.9 | 100 |
| \% | 2001 | 79.9 | 8.2 | 0 | 1 | 0.1 | 0.2 | 0 | 10 | 0.7 | 100 | \% | 2001 | 54.6 | 24.5 | 0.2 | 3.8 | 0.2 | 0 | 0.1 | 12.8 | 3.8 | 100 |


|  | Year | Sprat | Herring | Horse mack | Whiting | Haddock | Mackerel | Cod | Sandeel | Other | Total |  | Year | Sprat | Herring | Horse mack | Whiting | Haddock | Mackerel | Cod | Sandeel | Other | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \% | 2002 | 83.9 | 9.9 | 1.2 | 1.5 | 0 | 0.4 | 0 | 2.4 | 0.5 | 100 | \% | 2002 | 40.1 | 45.5 | 0.1 | 4.1 | 0 | 0 | 0.1 | 2.1 | 8 | 100 |
| \% | 2003 | 88.8 | 5.3 | 0.4 | 0.6 | 0 | 0.4 | 0 | 2.8 | 1.8 | 100 | \% | 2003 | 57.3 | 34.5 | 2.4 | 1.8 | 0 | 0 | 0 | 0 | 4 | 100 |
| \% | 2004 | 89.6 | 5 | 0.2 | 0.2 | 0 | 2.2 | 0 | 1.9 | 0.9 | 100 | \% | 2004 | 62.5 | 21.6 | 0.5 | 4.6 | 0.1 | 0.1 | 0.1 | 0.5 | 10.1 | 100 |
| \% | 2005 | 85.9 | 9 | 1.1 | 0.2 | 0 | 0.4 | 0 | 2.9 | 0.4 | 100 | \% | 2005 | 75.3 | 15.4 | 0.6 | 2.2 | 0.2 | 0 | 0 | 1.9 | 4.4 | 100 |
| \% | 2006 | 86 | 7.5 | 0.5 | 0.3 | 0 | 0.8 | 0 | 4.5 | 0.5 | 100 | \% | 2006 | 65.2 | 27.3 | 2.1 | 2.6 | 0.1 | 0 | 0.4 | 0 | 2.2 | 100 |
| \% | 2007 | 90.3 | 8 | 0.2 | 1.1 | 0 | 0.2 | 0 | 0 | 0.3 | 100 | \% | 2007 | 71.9 | 20.6 | 0.3 | 1.9 | 0.3 | 0.1 | 0 | 0 | 4.7 | 100 |
| \% | 2008 | 85.4 | 11.1 | 0 | 0.5 | 0 | 0.5 | 0 | 0 | 2.4 | 100 | \% | 2008 | 63.5 | 25.8 | 0.2 | 3.8 | 0 | 0 | 0.1 | 6.1 | 0.5 | 100 |
| \% | 2009 | 92.1 | 5.9 | 0 | 0.3 | 0 | 0.1 | 0 | 1.2 | 0.3 | 100 | \% | 2009 | 59.2 | 36.9 | 0.5 | 2.1 | 0.2 | 0 | 0 | 0.6 | 0.6 | 100 |
| \% | 2010 | 94.6 | 3.7 | 0 | 0.1 | 0 | 0 | 0 | 1 | 0.5 | 100 | \% | 2010 | 52.2 | 39 | 0.5 | 2.6 | 0.1 | 0 | 0 | 2.5 | 3.1 | 100 |
| \% | 2011 | 91.1 | 6.7 | 0 | 0.2 | 0 | 0.1 | 0 | 1.6 | 0.3 | 100 | \% | 2011 | 63.8 | 33 | 0 | 0.6 | 0 | 0.1 | 0 | 1.9 | 0.5 | 100 |
| \% | 2012 | 87.4 | 11.1 | 0 | 0.5 | 0 | 0.3 | 0 | 0.1 | 0.5 | 100 | \% | 2012 | 49.2 | 47.3 | 0.1 | 1.3 | 0.1 | 0.1 | 0 | 0 | 2 | 100 |
| \% | 2013 | 89.8 | 8.3 | 0.1 | 0.7 | 0 | 0.4 | 0 | 0 | 0.6 | 100 | \% | 2013 | 38.5 | 58.9 | 0.1 | 1.6 | 0 | 0 | 0 | 0 | 0.9 | 100 |
| \% | 2014 | 89.7 | 8.3 | 0 | 0.7 | 0 | 0.1 | 0 | 0 | 1.2 | 100 | \% | 2014 | 76.8 | 17.3 | 0 | 1.6 | 0 | 0.1 | 0 | 0.1 | 4.1 | 100 |
| \% | 2015 | 96.2 | 1.7 | 0 | 0.7 | 0 | 0.2 | 0 | 0.1 | 1.2 | 100 | \% | 2015 | 63.5 | 32.3 | 0 | 3.1 | 0 | 0.2 | 0 | 0 | 0.9 | 100 |
| \% | 2016 | 91.5 | 5.3 | 0 | 2 | 0 | 0.2 | 0 | 0 | 1 | 100 | \% | 2016 | 73.1 | 22.3 | 0 | 3.5 | 0 | 0.2 | 0 | 0 | 0.8 | 100 |
| \% | 2017 | 83.8 | 4.3 | 0 | 1.1 | 0 | 0.2 | 0 | 0.4 | 10.3 | 100 | \% | 2017 | 63.6 | 21.6 | 0 | 11.4 | 0 | 1.2 | 0.1 | 0 | 2.1 | 100 |
| \% | 2018 | 94.6 | 4.4 | 0.1 | 0.4 | 0 | 0.2 | 0 | 0 | 0.2 | 100 | \% | 2018 | 86.9 | 7.8 | 0.1 | 4.5 | 0 | 0.3 | 0 | 0 | 0.4 | 100 |
| \% | 2019 | 96.5 | 2.2 | 0 | 0.7 | 0 | 0.1 | 0 | 0 | 0.4 | 100 | \% | 2019 | 89.1 | 9.1 | 0 | 1.5 | 0 | 0.1 | 0 | 0 | 0.2 | 100 |
| \% | 2020 | 93.9 | 4.1 | 0 | 0.6 | 0.1 | 0.8 | 0 | 0 | 0.5 | 100 | \% | 2020 | 91.5 | 5.3 | 0 | 2.4 | 0 | 0.4 | 0 | 0 | 0.3 | 100 |
| \% | 2021 | 89.2 | 7.2 | 0.1 | 1.4 | 0.4 | 1.0 | 0.0 | 0.0 | 0.8 | 100.0 | \% | 2021 | 83.1 | 10.7 | 0.0 | 1.6 | 0.2 | 0.1 | 0.0 | 0.0 | 4.2 | 100.0 |

Table 10.2.2. North Sea \& 3.a sprat. Catch in numbers by age (1000's) by season and year. (Model year, e.g., 2021 = July 2021-June 2022)

Catch-at-age used as input for the assessment model (years refer to the model years)
Note that all catches in S4 have been moved to S1 in the following year

| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1974 | 1 | 0 | 16101061 | 2155723 | 475613 |
| 1974 | 2 | 1884146 | 11544114 | 866399 | 48228 |
| 1974 | 3 | 2842702 | 11091303 | 1336036 | 34534 |
| 1974 | 4 | 1302331 | 2511315 | 359117 | 14822 |
| 1975 | 1 | 250931 | 27723510 | 10052550 | 260182 |
| 1975 | 2 | 1179567 | 14541887 | 4378415 | 166807 |
| 1975 | 3 | 5240024 | 4755878 | 2206781 | 66186 |
| 1975 | 4 | 0 | 0 | 0 | 0 |
| 1976 | 1 | 2143211 | 42209830 | 2888653 | 180913 |
| 1976 | 2 | 7439656 | 18762732 | 1613139 | 88604 |
| 1976 | 3 | 7703416 | 6925346 | 267638 | 8289 |
| 1976 | 4 | 0 | 0 | 0 | 0 |
| 1977 | 1 | 2690194 | 12786056 | 5181867 | 109712 |
| 1977 | 2 | 2520082 | 4904593 | 3679153 | 67688 |
| 1977 | 3 | 15857197 | 1843468 | 2200876 | 37836 |
| 1977 | 4 | 0 | 0 | 0 | 0 |
| 1978 | 1 | 454090 | 32184524 | 427473 | 96435 |
| 1978 | 2 | 5517665 | 10344970 | 1209584 | 116695 |
| 1978 | 3 | 6154606 | 4973568 | 1119045 | 29941 |
| 1978 | 4 | 0 | 0 | 0 | 0 |
| 1979 | 1 | 3579389 | 36866800 | 644042 | 117139 |
| 1979 | 2 | 1052920 | 11355949 | 2152261 | 63386 |
| 1979 | 3 | 3882781 | 6399259 | 332781 | 25964 |
| 1979 | 4 | 0 | 0 | 0 | 0 |
| 1980 | 1 | 0 | 14237558 | 17421360 | 1481066 |
| 1980 | 2 | 0 | 9415158 | 11520576 | 979415 |
| 1980 | 3 | 2536060 | 3866612 | 389674 | 8724 |
| 1980 | 4 | 0 | 0 | 0 | 0 |
| 1981 | 1 | 428776 | 12322431 | 1483241 | 130805 |
| 1981 | 2 | 40632 | 3540737 | 3025289 | 202048 |
| 1981 | 3 | 374254 | 3854059 | 319763 | 9835 |
| 1981 | 4 | 0 | 0 | 0 | 0 |
| 1982 | 1 | 545769 | 6350511 | 601581 | 64879 |
| 1982 | 2 | 818525 | 5021082 | 1070960 | 55333 |
| 1982 | 3 | 2530673 | 401839 | 46913 | 3525 |
| 1982 | 4 | 0 | 0 | 0 | 0 |

Catch-at-age used as input for the assessment model (years refer to the model years)
Note that all catches in S4 have been moved to S1 in the following year

| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 1 | 5613728 | 2819244 | 969599 | 155653 |
| 1983 | 2 | 2375763 | 1334333 | 588678 | 91112 |
| 1983 | 3 | 1697718 | 596857 | 7271 | 0 |
| 1983 | 4 | 0 | 0 | 0 | 0 |
| 1984 | 1 | 954757 | 6475021 | 417235 | 2532 |
| 1984 | 2 | 521866 | 2535354 | 247654 | 4803 |
| 1984 | 3 | 405095 | 612407 | 10648 | 1053 |
| 1984 | 4 | 0 | 0 | 0 | 0 |
| 1985 | 1 | 0 | 1304457 | 1972027 | 37680 |
| 1985 | 2 | 0 | 576004 | 870780 | 16638 |
| 1985 | 3 | 84760 | 215856 | 150819 | 14916 |
| 1985 | 4 | 0 | 0 | 0 | 0 |
| 1986 | 1 | 0 | 177780 | 452745 | 347620 |
| 1986 | 2 | 0 | 156913 | 399604 | 306818 |
| 1986 | 3 | 580936 | 58710 | 740 | 0 |
| 1986 | 4 | 0 | 0 | 0 | 0 |
| 1987 | 1 | 2236 | 2250587 | 128512 | 2525 |
| 1987 | 2 | 49451 | 1790264 | 267597 | 978 |
| 1987 | 3 | 209788 | 826994 | 34626 | 32980 |
| 1987 | 4 | 0 | 0 | 0 | 0 |
| 1988 | 1 | 4082942 | 2096911 | 2830054 | 42364 |
| 1988 | 2 | 1163964 | 314106 | 527986 | 11526 |
| 1988 | 3 | 1817700 | 637489 | 129384 | 5491 |
| 1988 | 4 | 0 | 0 | 0 | 0 |
| 1989 | 1 | 12451 | 1706824 | 3613841 | 5716 |
| 1989 | 2 | 783 | 76415 | 88925 | 342 |
| 1989 | 3 | 469458 | 416920 | 34789 | 12751 |
| 1989 | 4 | 0 | 0 | 0 | 0 |
| 1990 | 1 | 1568 | 2633068 | 2234213 | 342514 |
| 1990 | 2 | 1225 | 2058041 | 1746290 | 267714 |
| 1990 | 3 | 291837 | 62050 | 1941 | 429 |
| 1990 | 4 | 0 | 0 | 0 | 0 |
| 1991 | 1 | 40504 | 1684266 | 2416750 | 8159 |
| 1991 | 2 | 1552315 | 2936717 | 614233 | 9587 |
| 1991 | 3 | 208352 | 64565 | 1036 | 99 |
| 1991 | 4 | 0 | 0 | 0 | 0 |
| 1992 | 1 | 18948 | 9695465 | 1315325 | 177584 |
| 1992 | 2 | 222991 | 1185132 | 132166 | 16491 |

Catch-at-age used as input for the assessment model (years refer to the model years)
Note that all catches in S4 have been moved to S1 in the following year

| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1992 | 3 | 1279875 | 1583952 | 259251 | 5821 |
| 1992 | 4 | 0 | 0 | 0 | 0 |
| 1993 | 1 | 264173 | 3026867 | 5339043 | 247839 |
| 1993 | 2 | 1441317 | 4911453 | 1324444 | 31435 |
| 1993 | 3 | 1867838 | 1819506 | 338969 | 43965 |
| 1993 | 4 | 0 | 0 | 0 | 0 |
| 1994 | 1 | 445326 | 40720484 | 516854 | 100737 |
| 1994 | 2 | 1856101 | 7146622 | 1455656 | 142774 |
| 1994 | 3 | 818875 | 2936362 | 559871 | 22813 |
| 1994 | 4 | 0 | 0 | 0 | 0 |
| 1995 | 1 | 170693 | 24466578 | 3192395 | 371759 |
| 1995 | 2 | 612010 | 8620522 | 2863267 | 505875 |
| 1995 | 3 | 1797666 | 4488224 | 533786 | 128194 |
| 1995 | 4 | 0 | 0 | 0 | 0 |
| 1996 | 1 | 299367 | 233497 | 816511 | 286503 |
| 1996 | 2 | 1083655 | 776795 | 2208631 | 911256 |
| 1996 | 3 | 1670742 | 289815 | 113580 | 49534 |
| 1996 | 4 | 0 | 0 | 0 | 0 |
| 1997 | 1 | 6447 | 2286585 | 130593 | 202822 |
| 1997 | 2 | 148657 | 4395265 | 1078225 | 277615 |
| 1997 | 3 | 596223 | 728240 | 181187 | 46667 |
| 1997 | 4 | 0 | 0 | 0 | 0 |
| 1998 | 1 | 86124 | 3567341 | 1498339 | 258993 |
| 1998 | 2 | 5465889 | 2665032 | 1451844 | 326463 |
| 1998 | 3 | 1615982 | 1096547 | 489541 | 241493 |
| 1998 | 4 | 0 | 0 | 0 | 0 |
| 1999 | 1 | 830 | 15939248 | 477815 | 69219 |
| 1999 | 2 | 90557 | 2456063 | 254931 | 44836 |
| 1999 | 3 | 1967130 | 3351942 | 641059 | 183015 |
| 1999 | 4 | 0 | 0 | 0 | 0 |
| 2000 | 1 | 6101 | 9822669 | 1767256 | 70160 |
| 2000 | 2 | 81906 | 801375 | 384854 | 49827 |
| 2000 | 3 | 1093613 | 2807143 | 1310052 | 176418 |
| 2000 | 4 | 0 | 0 | 0 | 0 |
| 2001 | 1 | 13056 | 5767627 | 315550 | 7694 |
| 2001 | 2 | 550512 | 3967343 | 1528712 | 498496 |
| 2001 | 3 | 143017 | 531588 | 59709 | 13418 |
| 2001 | 4 | 0 | 0 | 0 | 0 |

Catch-at-age used as input for the assessment model (years refer to the model years)
Note that all catches in S4 have been moved to S1 in the following year

| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2002 | 1 | 63416 | 6586442 | 594557 | 108679 |
| 2002 | 2 | 927294 | 4326530 | 661656 | 59022 |
| 2002 | 3 | 1182692 | 1199165 | 296900 | 65718 |
| 2002 | 4 | 0 | 0 | 0 | 0 |
| 2003 | 1 | 197639 | 4003316 | 594498 | 68144 |
| 2003 | 2 | 2785630 | 6826281 | 1115905 | 218400 |
| 2003 | 3 | 713229 | 39824 | 29774 | 26427 |
| 2003 | 4 | 0 | 0 | 0 | 0 |
| 2004 | 1 | 229309 | 4217281 | 731500 | 78913 |
| 2004 | 2 | 24806798 | 4735686 | 264373 | 53425 |
| 2004 | 3 | 5233945 | 309955 | 44145 | 15707 |
| 2004 | 4 | 0 | 0 | 0 | 0 |
| 2005 | 1 | 97602 | 13409729 | 479222 | 88858 |
| 2005 | 2 | 839944 | 7903545 | 228337 | 22051 |
| 2005 | 3 | 1089274 | 5408581 | 230703 | 38557 |
| 2005 | 4 | 0 | 0 | 0 | 0 |
| 2006 | 1 | 0 | 1987696 | 1401797 | 295158 |
| 2006 | 2 | 319709 | 493221 | 1003837 | 235542 |
| 2006 | 3 | 176742 | 129541 | 176585 | 10933 |
| 2006 | 4 | 0 | 0 | 0 | 0 |
| 2007 | 1 | 0 | 1693273 | 189551 | 67672 |
| 2007 | 2 | 609939 | 4186796 | 1681648 | 254768 |
| 2007 | 3 | 404452 | 329724 | 19675 | 20964 |
| 2007 | 4 | 0 | 0 | 0 | 0 |
| 2008 | 1 | 11590 | 422430 | 1447939 | 329770 |
| 2008 | 2 | 2087187 | 1901763 | 1006626 | 260966 |
| 2008 | 3 | 893785 | 131774 | 41692 | 21858 |
| 2008 | 4 | 0 | 0 | 0 | 0 |
| 2009 | 1 | 0 | 4776947 | 219922 | 39037 |
| 2009 | 2 | 231412 | 8163927 | 554425 | 137328 |
| 2009 | 3 | 168362 | 3385107 | 519516 | 88967 |
| 2009 | 4 | 0 | 0 | 0 | 0 |
| 2010 | 1 | 12414 | 1732171 | 689166 | 90040 |
| 2010 | 2 | 349703 | 3105417 | 3011291 | 2157387 |
| 2010 | 3 | 298472 | 2412405 | 683264 | 90603 |
| 2010 | 4 | 0 | 0 | 0 | 0 |
| 2011 | 1 | 2469 | 1847215 | 1105017 | 281708 |
| 2011 | 2 | 420004 | 4234059 | 2917969 | 999295 |

Catch-at-age used as input for the assessment model (years refer to the model years)
Note that all catches in S4 have been moved to S1 in the following year

| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2011 | 3 | 57320 | 250247 | 95834 | 42266 |
| 2011 | 4 | 0 | 0 | 0 | 0 |
| 2012 | 1 | 147896 | 2527701 | 729427 | 121665 |
| 2012 | 2 | 187098 | 3756225 | 1690250 | 281071 |
| 2012 | 3 | 78240 | 463743 | 86910 | 30157 |
| 2012 | 4 | 0 | 0 | 0 | 0 |
| 2013 | 1 | 10002 | 1973364 | 411558 | 72705 |
| 2013 | 2 | 462029 | 2176971 | 745578 | 144434 |
| 2013 | 3 | 193678 | 1554 | 2447 | 4794 |
| 2013 | 4 | 0 | 0 | 0 | 0 |
| 2014 | 1 | 2640874 | 9499013 | 627237 | 105519 |
| 2014 | 2 | 1215080 | 4046244 | 323320 | 92685 |
| 2014 | 3 | 1755944 | 2496884 | 177328 | 21685 |
| 2014 | 4 | 0 | 0 | 0 | 0 |
| 2015 | 1 | 1682642 | 12947813 | 2926867 | 161595 |
| 2015 | 2 | 615375 | 10862082 | 1632428 | 226924 |
| 2015 | 3 | 374504 | 1926029 | 733105 | 90223 |
| 2015 | 4 | 0 | 0 | 0 | 0 |
| 2016 | 1 | 4450616 | 12775033 | 4537366 | 439570 |
| 2016 | 2 | 3593237 | 1451842 | 1251213 | 301252 |
| 2016 | 3 | 533954 | 47715 | 7358 | 2718 |
| 2016 | 4 | 0 | 0 | 0 | 0 |
| 2017 | 1 | 1767809 | 9076648 | 738627 | 88295 |
| 2017 | 2 | 1302514 | 2796713 | 182538 | 82806 |
| 2017 | 3 | 658881 | 807010 | 184005 | 68052 |
| 2017 | 4 | 0 | 0 | 0 | 0 |
| 2018 | 1 | 4548741 | 11562002 | 2878462 | 310552 |
| 2018 | 2 | 2090509 | 2888456 | 1516387 | 534059 |
| 2018 | 3 | 157673 | 1090798 | 254223 | 15776 |
| 2018 | 4 | 0 | 0 | 0 | 0 |
| 2019 | 1 | 2420231 | 9775216 | 3342785 | 163696 |
| 2019 | 2 | 799272 | 2399200 | 1041391 | 139590 |
| 2019 | 3 | 211007 | 34475 | 3918 | 413 |
| 2019 | 4 | 0 | 0 | 0 | 0 |
| 2020 | 1 | 207574 | 10153348 | 3429492 | 429318 |
| 2020 | 2 | 69142 | 2695178 | 385767 | 137741 |
| 2020 | 3 | 28346 | 78759 | 8459 | 1779 |
| 2020 | 4 | 0 | 0 | 0 | 0 |

Catch-at-age used as input for the assessment model (years refer to the model years)
Note that all catches in S4 have been moved to S1 in the following year

| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | ---: | ---: | ---: | ---: |
| 2021 | 1 | 539434 | 5840604 | 1505982 | 255540 |
| 2021 | 2 | 254055 | 814057 | 395606 | 139605 |
| 2021 | 3 | 0 | 0 | 0 | 0 |
| 2021 | 4 | 0 | 0 | 0 | 0 |

Table 10.2.3. North Sea \& 3.a sprat. Mean weight at age (kg) in catches by season and year. (Model year, e.g., 2021 = July 2021-June 2022)

Weight-at-age used as input for the assessment model (years refer to the model years)
Note that weights in S4 are not used since there are no catches in S4

| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1974 | 1 | 0.0063 | 0.0083 | 0.0135 | 0.0184 |
| 1974 | 2 | 0.0058 | 0.0089 | 0.0150 | 0.0197 |
| 1974 | 3 | 0.0050 | 0.0077 | 0.0150 | 0.0197 |
| 1974 | 4 | 0.0066 | 0.0107 | 0.0183 | 0.0163 |
| 1975 | 1 | 0.0048 | 0.0086 | 0.0129 | 0.0172 |
| 1975 | 2 | 0.0075 | 0.0111 | 0.0168 | 0.0216 |
| 1975 | 3 | 0.0048 | 0.0106 | 0.0154 | 0.0192 |
| 1975 | 4 | 0.0062 | 0.0116 | 0.0170 | 0.0171 |
| 1976 | 1 | 0.0049 | 0.0070 | 0.0113 | 0.0134 |
| 1976 | 2 | 0.0043 | 0.0090 | 0.0153 | 0.0190 |
| 1976 | 3 | 0.0022 | 0.0059 | 0.0104 | 0.0126 |
| 1976 | 4 | 0.0034 | 0.0057 | 0.0085 | 0.0106 |
| 1977 | 1 | 0.0054 | 0.0082 | 0.0126 | 0.0180 |
| 1977 | 2 | 0.0059 | 0.0110 | 0.0146 | 0.0196 |
| 1977 | 3 | 0.0023 | 0.0080 | 0.0106 | 0.0138 |
| 1977 | 4 | 0.0025 | 0.0063 | 0.0083 | 0.0122 |
| 1978 | 1 | 0.0038 | 0.0069 | 0.0122 | 0.0146 |
| 1978 | 2 | 0.0044 | 0.0103 | 0.0155 | 0.0196 |
| 1978 | 3 | 0.0031 | 0.0089 | 0.0123 | 0.0166 |
| 1978 | 4 | 0.0020 | 0.0052 | 0.0087 | 0.0094 |
| 1979 | 1 | 0.0050 | 0.0058 | 0.0087 | 0.0113 |
| 1979 | 2 | 0.0057 | 0.0105 | 0.0150 | 0.0173 |
| 1979 | 3 | 0.0032 | 0.0077 | 0.0129 | 0.0165 |
| 1979 | 4 | 0.0029 | 0.0106 | 0.0121 | 0.0153 |
| 1980 | 1 | 0.0063 | 0.0052 | 0.0068 | 0.0083 |
| 1980 | 2 | 0.0051 | 0.0052 | 0.0069 | 0.0083 |
| 1980 | 3 | 0.0032 | 0.0086 | 0.0131 | 0.0168 |
| 1980 | 4 | 0.0046 | 0.0073 | 0.0105 | 0.0101 |
| 1981 | 1 | 0.0038 | 0.0099 | 0.0129 | 0.0156 |

Weight-at-age used as input for the assessment model (years refer to the model years)
Note that weights in S4 are not used since there are no catches in S4

| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1981 | 2 | 0.0082 | 0.0126 | 0.0153 | 0.0194 |
| 1981 | 3 | 0.0049 | 0.0089 | 0.0157 | 0.0194 |
| 1981 | 4 | 0.0060 | 0.0139 | 0.0191 | 0.0192 |
| 1982 | 1 | 0.0085 | 0.0089 | 0.0171 | 0.0155 |
| 1982 | 2 | 0.0071 | 0.0110 | 0.0160 | 0.0219 |
| 1982 | 3 | 0.0029 | 0.0075 | 0.0115 | 0.0174 |
| 1982 | 4 | 0.0044 | 0.0078 | 0.0114 | 0.0160 |
| 1983 | 1 | 0.0044 | 0.0092 | 0.0128 | 0.0152 |
| 1983 | 2 | 0.0042 | 0.0124 | 0.0169 | 0.0211 |
| 1983 | 3 | 0.0034 | 0.0094 | 0.0174 | 0.0163 |
| 1983 | 4 | 0.0038 | 0.0093 | 0.0127 | 0.0156 |
| 1984 | 1 | 0.0060 | 0.0081 | 0.0121 | 0.0166 |
| 1984 | 2 | 0.0053 | 0.0122 | 0.0168 | 0.0164 |
| 1984 | 3 | 0.0093 | 0.0135 | 0.0197 | 0.0197 |
| 1984 | 4 | 0.0093 | 0.0135 | 0.0197 | 0.0197 |
| 1985 | 1 | 0.0063 | 0.0093 | 0.0135 | 0.0197 |
| 1985 | 2 | 0.0051 | 0.0093 | 0.0135 | 0.0197 |
| 1985 | 3 | 0.0073 | 0.0099 | 0.0166 | 0.0166 |
| 1985 | 4 | 0.0073 | 0.0099 | 0.0166 | 0.0166 |
| 1986 | 1 | 0.0063 | 0.0073 | 0.0099 | 0.0166 |
| 1986 | 2 | 0.0051 | 0.0073 | 0.0099 | 0.0166 |
| 1986 | 3 | 0.0083 | 0.0164 | 0.0228 | 0.0163 |
| 1986 | 4 | 0.0084 | 0.0156 | 0.0208 | 0.0156 |
| 1987 | 1 | 0.0066 | 0.0086 | 0.0117 | 0.0153 |
| 1987 | 2 | 0.0060 | 0.0093 | 0.0112 | 0.0165 |
| 1987 | 3 | 0.0064 | 0.0125 | 0.0175 | 0.0206 |
| 1987 | 4 | 0.0068 | 0.0125 | 0.0167 | 0.0189 |
| 1988 | 1 | 0.0042 | 0.0088 | 0.0115 | 0.0138 |
| 1988 | 2 | 0.0046 | 0.0085 | 0.0113 | 0.0137 |
| 1988 | 3 | 0.0052 | 0.0132 | 0.0208 | 0.0158 |
| 1988 | 4 | 0.0063 | 0.0117 | 0.0155 | 0.0175 |
| 1989 | 1 | 0.0054 | 0.0086 | 0.0099 | 0.0170 |
| 1989 | 2 | 0.0044 | 0.0082 | 0.0109 | 0.0130 |
| 1989 | 3 | 0.0048 | 0.0077 | 0.0125 | 0.0155 |
| 1989 | 4 | 0.0046 | 0.0086 | 0.0115 | 0.0129 |
| 1990 | 1 | 0.0046 | 0.0070 | 0.0092 | 0.0115 |
| 1990 | 2 | 0.0038 | 0.0069 | 0.0092 | 0.0113 |
| 1990 | 3 | 0.0044 | 0.0099 | 0.0133 | 0.0156 |

Weight-at-age used as input for the assessment model (years refer to the model years)
Note that weights in S4 are not used since there are no catches in S4

| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1990 | 4 | 0.0048 | 0.0089 | 0.0119 | 0.0135 |
| 1991 | 1 | 0.0128 | 0.0143 | 0.0154 | 0.0168 |
| 1991 | 2 | 0.0048 | 0.0146 | 0.0189 | 0.0168 |
| 1991 | 3 | 0.0052 | 0.0101 | 0.0147 | 0.0172 |
| 1991 | 4 | 0.0062 | 0.0118 | 0.0152 | 0.0186 |
| 1992 | 1 | 0.0081 | 0.0099 | 0.0124 | 0.0148 |
| 1992 | 2 | 0.0058 | 0.0121 | 0.0153 | 0.0178 |
| 1992 | 3 | 0.0035 | 0.0096 | 0.0141 | 0.0179 |
| 1992 | 4 | 0.0042 | 0.0078 | 0.0104 | 0.0118 |
| 1993 | 1 | 0.0065 | 0.0109 | 0.0123 | 0.0138 |
| 1993 | 2 | 0.0075 | 0.0107 | 0.0135 | 0.0164 |
| 1993 | 3 | 0.0022 | 0.0080 | 0.0116 | 0.0152 |
| 1993 | 4 | 0.0023 | 0.0128 | 0.0154 | 0.0134 |
| 1994 | 1 | 0.0068 | 0.0067 | 0.0095 | 0.0129 |
| 1994 | 2 | 0.0087 | 0.0104 | 0.0125 | 0.0151 |
| 1994 | 3 | 0.0030 | 0.0082 | 0.0097 | 0.0140 |
| 1994 | 4 | 0.0038 | 0.0068 | 0.0090 | 0.0131 |
| 1995 | 1 | 0.0032 | 0.0082 | 0.0117 | 0.0121 |
| 1995 | 2 | 0.0051 | 0.0101 | 0.0133 | 0.0155 |
| 1995 | 3 | 0.0084 | 0.0096 | 0.0129 | 0.0158 |
| 1995 | 4 | 0.0058 | 0.0107 | 0.0142 | 0.0161 |
| 1996 | 1 | 0.0071 | 0.0108 | 0.0142 | 0.0175 |
| 1996 | 2 | 0.0079 | 0.0115 | 0.0150 | 0.0169 |
| 1996 | 3 | 0.0029 | 0.0062 | 0.0087 | 0.0103 |
| 1996 | 4 | 0.0031 | 0.0057 | 0.0077 | 0.0086 |
| 1997 | 1 | 0.0071 | 0.0128 | 0.0148 | 0.0163 |
| 1997 | 2 | 0.0058 | 0.0120 | 0.0161 | 0.0199 |
| 1997 | 3 | 0.0071 | 0.0097 | 0.0122 | 0.0147 |
| 1997 | 4 | 0.0052 | 0.0095 | 0.0127 | 0.0144 |
| 1998 | 1 | 0.0056 | 0.0139 | 0.0166 | 0.0186 |
| 1998 | 2 | 0.0050 | 0.0124 | 0.0153 | 0.0177 |
| 1998 | 3 | 0.0043 | 0.0061 | 0.0095 | 0.0094 |
| 1998 | 4 | 0.0039 | 0.0073 | 0.0097 | 0.0110 |
| 1999 | 1 | 0.0053 | 0.0097 | 0.0115 | 0.0121 |
| 1999 | 2 | 0.0046 | 0.0116 | 0.0135 | 0.0164 |
| 1999 | 3 | 0.0036 | 0.0094 | 0.0118 | 0.0138 |
| 1999 | 4 | 0.0052 | 0.0097 | 0.0129 | 0.0146 |
| 2000 | 1 | 0.0067 | 0.0122 | 0.0148 | 0.0185 |

Weight-at-age used as input for the assessment model (years refer to the model years)
Note that weights in S4 are not used since there are no catches in S4

| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2000 | 2 | 0.0062 | 0.0149 | 0.0174 | 0.0183 |
| 2000 | 3 | 0.0051 | 0.0105 | 0.0131 | 0.0150 |
| 2000 | 4 | 0.0036 | 0.0046 | 0.0080 | 0.0135 |
| 2001 | 1 | 0.0078 | 0.0109 | 0.0118 | 0.0159 |
| 2001 | 2 | 0.0048 | 0.0116 | 0.0136 | 0.0166 |
| 2001 | 3 | 0.0062 | 0.0127 | 0.0150 | 0.0162 |
| 2001 | 4 | 0.0065 | 0.0120 | 0.0161 | 0.0181 |
| 2002 | 1 | 0.0073 | 0.0109 | 0.0141 | 0.0154 |
| 2002 | 2 | 0.0077 | 0.0122 | 0.0142 | 0.0158 |
| 2002 | 3 | 0.0047 | 0.0101 | 0.0133 | 0.0145 |
| 2002 | 4 | 0.0060 | 0.0116 | 0.0129 | 0.0155 |
| 2003 | 1 | 0.0042 | 0.0125 | 0.0146 | 0.0228 |
| 2003 | 2 | 0.0058 | 0.0108 | 0.0145 | 0.0167 |
| 2003 | 3 | 0.0049 | 0.0115 | 0.0135 | 0.0141 |
| 2003 | 4 | 0.0050 | 0.0092 | 0.0123 | 0.0139 |
| 2004 | 1 | 0.0088 | 0.0116 | 0.0139 | 0.0154 |
| 2004 | 2 | 0.0041 | 0.0094 | 0.0126 | 0.0153 |
| 2004 | 3 | 0.0030 | 0.0097 | 0.0112 | 0.0130 |
| 2004 | 4 | 0.0044 | 0.0093 | 0.0115 | 0.0129 |
| 2005 | 1 | 0.0076 | 0.0097 | 0.0130 | 0.0154 |
| 2005 | 2 | 0.0066 | 0.0103 | 0.0115 | 0.0141 |
| 2005 | 3 | 0.0055 | 0.0080 | 0.0114 | 0.0138 |
| 2005 | 4 | 0.0047 | 0.0087 | 0.0115 | 0.0130 |
| 2006 | 1 | 0.0063 | 0.0108 | 0.0133 | 0.0152 |
| 2006 | 2 | 0.0055 | 0.0143 | 0.0158 | 0.0180 |
| 2006 | 3 | 0.0041 | 0.0095 | 0.0129 | 0.0134 |
| 2006 | 4 | 0.0050 | 0.0093 | 0.0124 | 0.0139 |
| 2007 | 1 | 0.0063 | 0.0119 | 0.0131 | 0.0149 |
| 2007 | 2 | 0.0065 | 0.0101 | 0.0127 | 0.0151 |
| 2007 | 3 | 0.0045 | 0.0075 | 0.0106 | 0.0126 |
| 2007 | 4 | 0.0048 | 0.0089 | 0.0118 | 0.0133 |
| 2008 | 1 | 0.0088 | 0.0103 | 0.0114 | 0.0131 |
| 2008 | 2 | 0.0044 | 0.0076 | 0.0126 | 0.0142 |
| 2008 | 3 | 0.0034 | 0.0076 | 0.0082 | 0.0085 |
| 2008 | 4 | 0.0044 | 0.0068 | 0.0090 | 0.0081 |
| 2009 | 1 | 0.0063 | 0.0096 | 0.0123 | 0.0142 |
| 2009 | 2 | 0.0046 | 0.0095 | 0.0130 | 0.0160 |
| 2009 | 3 | 0.0043 | 0.0077 | 0.0103 | 0.0135 |

Weight-at-age used as input for the assessment model (years refer to the model years)
Note that weights in S4 are not used since there are no catches in S4

| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2009 | 4 | 0.0087 | 0.0096 | 0.0105 | 0.0141 |
| 2010 | 1 | 0.0066 | 0.0080 | 0.0097 | 0.0137 |
| 2010 | 2 | 0.0047 | 0.0094 | 0.0114 | 0.0148 |
| 2010 | 3 | 0.0050 | 0.0072 | 0.0094 | 0.0130 |
| 2010 | 4 | 0.0038 | 0.0071 | 0.0095 | 0.0107 |
| 2011 | 1 | 0.0052 | 0.0085 | 0.0101 | 0.0134 |
| 2011 | 2 | 0.0044 | 0.0089 | 0.0114 | 0.0145 |
| 2011 | 3 | 0.0042 | 0.0102 | 0.0128 | 0.0171 |
| 2011 | 4 | 0.0050 | 0.0092 | 0.0123 | 0.0139 |
| 2012 | 1 | 0.0085 | 0.0087 | 0.0106 | 0.0150 |
| 2012 | 2 | 0.0072 | 0.0087 | 0.0119 | 0.0152 |
| 2012 | 3 | 0.0040 | 0.0069 | 0.0113 | 0.0146 |
| 2012 | 4 | 0.0047 | 0.0087 | 0.0117 | 0.0132 |
| 2013 | 1 | 0.0061 | 0.0096 | 0.0120 | 0.0150 |
| 2013 | 2 | 0.0043 | 0.0097 | 0.0124 | 0.0156 |
| 2013 | 3 | 0.0026 | 0.0051 | 0.0071 | 0.0084 |
| 2013 | 4 | 0.0022 | 0.0094 | 0.0128 | 0.0153 |
| 2014 | 1 | 0.0086 | 0.0086 | 0.0104 | 0.0168 |
| 2014 | 2 | 0.0070 | 0.0079 | 0.0116 | 0.0139 |
| 2014 | 3 | 0.0053 | 0.0083 | 0.0116 | 0.0119 |
| 2014 | 4 | 0.0065 | 0.0099 | 0.0101 | 0.0115 |
| 2015 | 1 | 0.0076 | 0.0082 | 0.0104 | 0.0150 |
| 2015 | 2 | 0.0072 | 0.0088 | 0.0109 | 0.0155 |
| 2015 | 3 | 0.0038 | 0.0078 | 0.0107 | 0.0153 |
| 2015 | 4 | 0.0044 | 0.0082 | 0.0109 | 0.0123 |
| 2016 | 1 | 0.0041 | 0.0077 | 0.0112 | 0.0145 |
| 2016 | 2 | 0.0051 | 0.0074 | 0.0118 | 0.0145 |
| 2016 | 3 | 0.0073 | 0.0143 | 0.0199 | 0.0235 |
| 2016 | 4 | 0.0076 | 0.0141 | 0.0188 | 0.0212 |
| 2017 | 1 | 0.0064 | 0.0083 | 0.0103 | 0.0139 |
| 2017 | 2 | 0.0038 | 0.0078 | 0.0099 | 0.0162 |
| 2017 | 3 | 0.0042 | 0.0064 | 0.0098 | 0.0130 |
| 2017 | 4 | 0.0076 | 0.0141 | 0.0188 | 0.0212 |
| 2018 | 1 | 0.0046 | 0.00664 | 0.0086 | 0.0126 |
| 2018 | 2 | 0.0053 | 0.0074 | 0.0097 | 0.0134 |
| 2018 | 3 | 0.0041 | 0.0067 | 0.0095 | 0.0136 |
| 2018 | 4 | 0.0057 | 0.0065 | 0.00762 | 0.0129 |
| 2019 | 1 | 0.0034 | 0.0063 | 0.0088 | 0.0116 |


| Weight-at-age used as input for the assessment model (years refer to the model years) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Note that weights in S4 are not used since there are no catches in S4 |  | age 2 |  |  |  |
| Year | Season | age 0 | age 1 | 0.0098 | 0.0141 |
| 2019 | 2 | 0.0041 | 0.0076 | 0.0130 | 0.0165 |
| 2019 | 3 | 0.0058 | 0.0010 | 0.0105 | 0.0157 |
| 2019 | 4 | 0.0064 | 0.0078 | 0.0122 | 0.0162 |
| 2020 | 1 | 0.0049 | 0.0093 | 0.0144 | 0.0172 |
| 2020 | 3 | 0.0071 | 0.0108 | 0.0143 | 0.0165 |
| 2020 | 4 | 0.0065 | 0.0100 | 0.0103 | 0.0134 |
| 2020 | 1 | 0.0061 | 0.0071 | 0.0161 |  |
| 2021 | 2 | 0.0061 | 0.0087 | 0.0110 | 0.0131 |
| 2021 | 3 | 0.0101 | 0.0132 | 0.0117 | 0.0158 |
| 2021 | 4 | 0.0102 | 0.0170 | 0.0197 |  |
| 2021 |  |  |  | 0.0160 |  |

Table 10.2.4. North Sea and Division 3.a sprat. Sampling for biological parameters in 2021. This table only shows agelength samples, and therefore the number of samples may differ from Table 10.2.5.

| Country | Quarter | Landings ('000 tonnes) | No. samples | No. measured | No. aged |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Denmark | 1 | 0.4 | 2 | 202 | 99 |
|  | 2 | 0.2 | 0 | 0 | 0 |
|  | 3 | 59.1 | 84 | 9086 | 3979 |
|  | 4 | 9.6 | 14 | 1350 | 594 |
|  |  | 69.3 | 100 | 10638 | 4672 |
| Norway | 1 | 0.0 | 0 | 0 | 0 |
|  | 2 | 0.0 | 0 | 0 | 0 |
|  | 3 | 0.0 | 0 | 0 | 0 |
|  | 4 | 0.0 | 0 | 0 | 0 |
|  |  | 0.0 | 0 | 0 | 0 |
| Sweden | 1 | 0.4 | 9 | 237 | 236 |
|  | 2 | 0.0 | 0 | 0 | 0 |
|  | 3 | 3.6 | 0 | 0 | 0 |
|  | 4 | 3.6 | 8 | 489 | 489 |
|  |  | 7.6 | 17 | 726 | 725 |
| All countries | 1 | 0.8 | 11 | 439 | 335 |
|  | 2 | 0.2 | 0 | 0 | 0 |
|  | 3 | 62.7 | 84 | 9086 | 3979 |
|  | 4 | 13.2 | 22 | 1839 | 1083 |
| Total |  | 76.9 | 117 | 11364 | 5397 |

Table 10.2.5. North Sea and Division 3.a sprat. Number of biological samples taken from 1974 and onward. The number of samples may differ from Table 10.2.4, since this table shows both length and age-length samples. These are the samples used to generate the catch-at-age matrix for the assessment model (Model year, e.g., 2021 = July 2021-June 2022).

| Year | S1 | S2 | S3 | S4 |
| :---: | :---: | :---: | :---: | :---: |
| 1974 | 15 | 31 | 102 | 25 |
| 1975 | 67 | 46 | 40 | 11 |
| 1976 | 54 | 70 | 53 | 16 |
| 1977 | 37 | 51 | 32 | 18 |
| 1978 | 52 | 78 | 47 | 22 |
| 1979 | 86 | 55 | 90 | 9 |
| 1980 | 0 | 0 | 49 | 28 |
| 1981 | 61 | 32 | 29 | 14 |
| 1982 | 27 | 48 | 13 | 16 |
| 1983 | 11 | 44 | 27 | 8 |
| 1984 | 9 | 23 | 29 | 7 |
| 1985 | 4 | 4 | 0 | 4 |
| 1986 | 4 | 1 | 0 | 1 |
| 1987 | 16 | 15 | 4 | 3 |
| 1988 | 8 | 4 | 9 | 1 |
| 1989 | 13 | 0 | 7 | 2 |
| 1990 | 4 | 0 | 13 | 1 |
| 1991 | 6 | 56 | 15 | 8 |
| 1992 | 42 | 35 | 24 | 4 |
| 1993 | 21 | 30 | 24 | 7 |
| 1994 | 42 | 50 | 32 | 5 |
| 1995 | 40 | 47 | 41 | 4 |
| 1996 | 2 | 12 | 8 | 3 |
| 1997 | 9 | 34 | 12 | 1 |
| 1998 | 25 | 38 | 16 | 3 |
| 1999 | 41 | 25 | 25 | 1 |
| 2000 | 29 | 23 | 22 | 14 |
| 2001 | 23 | 9 | 17 | 4 |
| 2002 | 26 | 37 | 28 | 7 |
| 2003 | 12 | 60 | 17 | 2 |
| 2004 | 26 | 43 | 24 | 15 |
| 2005 | 77 | 56 | 56 | 2 |
| 2006 | 23 | 7 | 13 | 0 |
| 2007 | 34 | 40 | 13 | 4 |
| 2008 | 10 | 9 | 14 | 5 |
| 2009 | 33 | 36 | 18 | 5 |
| 2010 | 35 | 28 | 15 | 3 |
| 2011 | 28 | 57 | 20 | 3 |


| Year | S1 | S2 | S3 | S4 |
| :---: | :---: | :---: | :---: | :---: |
| 2012 | 37 | 88 | 15 | 3 |
| 2013 | 31 | 23 | 2 | 10 |
| 2014 | 116 | 19 | 19 | 13 |
| 2015 | 165 | 47 | 21 | 2 |
| 2016 | 90 | 30 | 20 | 0 |
| 2017 | 69 | 65 | 45 | 2 |
| 2018 | 65 | 30 | 6 | 5 |
| 2020 | 27 | 22 | 0 | 12 |

Table 10.3.1. North Sea sprat. Abundance indices by age from IBTS Q1
IBTS Q1 survey index (area 4 and 3a combined; years apply to the calendar year and ages the model year)
Index is calculated using a delta GAM model formulation (see Stock Annex)

| Year | Age 0 | Age 1 | Age 2 | Age 3 |
| :---: | :---: | :---: | :---: | :---: |
| 1983 | 252619 | 551262 | 574173 | 47111 |
| 1984 | 619180 | 553686 | 100186 | 25687 |
| 1985 | 374594 | 292408 | 75083 | 19254 |
| 1986 | 116338 | 137304 | 39250 | 9993 |
| 1987 | 503284 | 86061 | 25143 | 9769 |
| 1988 | 248663 | 789924 | 77117 | 15148 |
| 1989 | 744970 | 154929 | 114877 | 11326 |
| 1990 | 360108 | 185946 | 47580 | 21180 |
| 1991 | 1412224 | 176334 | 33438 | 7582 |
| 1992 | 1882139 | 281520 | 36961 | 9645 |
| 1993 | 1863182 | 1224852 | 103248 | 10709 |
| 1994 | 1195289 | 887347 | 132008 | 8288 |
| 1995 | 2258852 | 2257140 | 263386 | 10391 |
| 1996 | 604673 | 967027 | 199658 | 28253 |
| 1997 | 599335 | 270098 | 168138 | 27513 |
| 1998 | 1072937 | 1104108 | 180777 | 16056 |
| 1999 | 5183400 | 583736 | 73757 | 5308 |
| 2000 | 2017439 | 1164352 | 150449 | 25036 |
| 2001 | 1997862 | 1309083 | 239142 | 13995 |
| 2002 | 1191954 | 968965 | 87712 | 10393 |
| 2003 | 2493114 | 589410 | 66441 | 5540 |
| 2004 | 4084377 | 685280 | 106637 | 9076 |
| 2005 | 8918279 | 675529 | 29062 | 2718 |
| 2006 | 1230441 | 1416990 | 58676 | 7654 |
| 2007 | 1917763 | 1035569 | 162880 | 12506 |


| IBTS Q1 survey index (area 4 and 3a combined; years apply to the calendar year and ages the model year) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Index is calculated using a delta GAM model formulation (see Stock Annex) |  |  |  |  |
| Year | Age 0 | Age 1 | Age 2 | Age 3 |
| 2008 | 1526985 | 803061 | 47400 | 8526 |
| 2009 | 4133598 | 312030 | 34043 | 3833 |
| 2010 | 3288300 | 2489705 | 118665 | 17586 |
| 2011 | 1078333 | 926246 | 206207 | 47562 |
| 2012 | 3356603 | 3143308 | 245116 | 36666 |
| 2013 | 1137772 | 1116849 | 203191 | 29306 |
| 2014 | 3886605 | 443621 | 50655 | 9871 |
| 2015 | 7727188 | 3460669 | 317090 | 26651 |
| 2016 | 2112309 | 3409890 | 675849 | 37763 |
| 2017 | 10317128 | 1707447 | 128002 | 15146 |
| 2018 | 10440866 | 1547476 | 94598 | 11384 |
| 2019 | 6097175 | 2511994 | 226057 | 9585 |
| 2020 | 7316245 | 2219294 | 421523 | 40023 |
| 2021 | 3308192 | 1977916 | 196830 | 16693 |
| 2022 | 1810546 | 769303 | 57700 | 6537 |

Table 10.3.1. North Sea sprat. Abundance indices by age from IBTS Q3
IBTS Q3 survey index (area 4 and 3a combined; years and ages apply to both the model year and calendar year)
Index is calculated using a delta GAM model formulation (see Stock Annex)

| Year | Age 1 | Age 2 | Age 3 |
| :---: | :---: | :---: | :---: |
| 1992 | 14555861 | 2633020 | 104865 |
| 1993 | 5767651 | 3015219 | 217792 |
| 1994 | 16468664 | 1326478 | 95089 |
| 1995 | 30622687 | 7433288 | 454582 |
| 1996 | 2317117 | 2219591 | 215543 |
| 1997 | 13080865 | 1171944 | 200385 |
| 1998 | 2676263 | 1107920 | 117795 |
| 1999 | 13792780 | 1719505 | 82599 |
| 2000 | 8212868 | 3228536 | 133847 |
| 2001 | 8998081 | 2277278 | 187452 |
| 2002 | 10011480 | 1319291 | 102476 |
| 2003 | 11610320 | 1272970 | 66231 |
| 2004 | 14371331 | 1945227 | 122791 |
| 2005 | 52835449 | 2266372 | 102272 |
| 2006 | 9340785 | 5459057 | 155440 |
| 2007 | 10549586 | 1552282 | 184767 |
| 2008 | 7894186 | 2085499 | 130785 |
| 2009 | 35252950 | 3032568 | 337850 |
| 2010 | 35355908 | 9422666 | 428224 |
| 2011 | 16742275 | 8341042 | 1191533 |
| 2012 | 11469646 | 5231406 | 575643 |
| 2013 | 9052264 | 3060010 | 414534 |
| 2014 | 63182232 | 3573736 | 215965 |
| 2015 | 59775893 | 18619852 | 653613 |
| 2016 | 27891385 | 4266699 | 482295 |
| 2017 | 27754797 | 2886164 | 173266 |
| 2018 | 18709889 | 3123833 | 200733 |
| 2019 | 40210818 | 8468920 | 521293 |
| 2020 | 53930015 | 16906066 | 1479519 |
| 2021 | 21858420 | 5602150 | 519985 |

Table 10.3.2. North Sea and Division 3.a sprat. HERAS survey index.
HERAS abundance index (area 4 and 3.a summed), data are from WGIPS (2019)
Years and ages apply to both the model year and calendar year

| Year | Age 1 | Age 2 | Age 3 |
| :---: | :---: | :---: | :---: |
| 2006 | 21923 | 21368 | 1413 |
| 2007 | 42862 | 5837 | 2252 |
| 2008 | 17188 | 7868 | 840 |
| 2009 | 47690 | 16920 | 2815 |
| 2010 | 20328 | 14087 | 1174 |
| 2011 | 26581 | 14207 | 3412 |
| 2012 | 22036 | 12831 | 4693 |
| 2013 | 9347 | 6342 | 2049 |
| 2014 | 59020 | 27082 | 33989 |
| 2015 | 58604 | 3664 | 3982 |
| 2016 | 38135 | 10113 | 10142 |
| 2019 | 109180 | 28020 | 8160 |
| 2021 | 93775 | 17993 | 1465 |
|  | 38415 | 7051 | 779 |
|  | 46918 | 5275 |  |
|  |  | 2055 |  |
|  |  | 1509 |  |

Table 10.6.1. North Sea and Division 3.a sprat. Natural mortality input (Model year, e.g. 2021 = July 2021-June 2022). From multispecies SMS (WKSAM: ICES, 2017) 2017 key run.

| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1974 | 1 | 0.483 | 0.456 | 0.402 | 0.280 |
| 1974 | 2 | 0.327 | 0.235 | 0.217 | 0.188 |
| 1974 | 3 | 0.297 | 0.275 | 0.175 | 0.175 |
| 1974 | 4 | 0.445 | 0.409 | 0.318 | 0.318 |
| 1975 | 1 | 0.518 | 0.492 | 0.422 | 0.237 |
| 1975 | 2 | 0.289 | 0.220 | 0.200 | 0.169 |
| 1975 | 3 | 0.329 | 0.299 | 0.218 | 0.218 |
| 1975 | 4 | 0.474 | 0.442 | 0.423 | 0.423 |
| 1976 | 1 | 0.490 | 0.466 | 0.415 | 0.290 |
| 1976 | 2 | 0.318 | 0.242 | 0.225 | 0.195 |
| 1976 | 3 | 0.364 | 0.332 | 0.240 | 0.240 |
| 1976 | 4 | 0.485 | 0.443 | 0.421 | 0.421 |
| 1977 | 1 | 0.441 | 0.411 | 0.368 | 0.312 |
| 1977 | 2 | 0.373 | 0.245 | 0.227 | 0.199 |
| 1977 | 3 | 0.380 | 0.351 | 0.248 | 0.248 |
| 1977 | 4 | 0.490 | 0.440 | 0.432 | 0.432 |
| 1978 | 1 | 0.411 | 0.398 | 0.385 | 0.330 |
| 1978 | 2 | 0.347 | 0.230 | 0.218 | 0.192 |
| 1978 | 3 | 0.382 | 0.356 | 0.208 | 0.208 |
| 1978 | 4 | 0.445 | 0.396 | 0.374 | 0.374 |
| 1979 | 1 | 0.436 | 0.424 | 0.419 | 0.405 |
| 1979 | 2 | 0.416 | 0.252 | 0.245 | 0.227 |
| 1979 | 3 | 0.393 | 0.366 | 0.232 | 0.232 |
| 1979 | 4 | 0.444 | 0.389 | 0.377 | 0.377 |
| 1980 | 1 | 0.470 | 0.464 | 0.444 | 0.415 |
| 1980 | 2 | 0.447 | 0.261 | 0.257 | 0.230 |
| 1980 | 3 | 0.388 | 0.355 | 0.232 | 0.232 |
| 1980 | 4 | 0.419 | 0.372 | 0.336 | 0.336 |
| 1981 | 1 | 0.501 | 0.486 | 0.448 | 0.360 |
| 1981 | 2 | 0.409 | 0.271 | 0.267 | 0.232 |
| 1981 | 3 | 0.361 | 0.314 | 0.222 | 0.222 |
| 1981 | 4 | 0.376 | 0.330 | 0.267 | 0.267 |
| 1982 | 1 | 0.511 | 0.431 | 0.377 | 0.245 |
| 1982 | 2 | 0.331 | 0.231 | 0.217 | 0.177 |
| 1982 | 3 | 0.305 | 0.231 | 0.182 | 0.182 |
| 1982 | 4 | 0.318 | 0.277 | 0.205 | 0.205 |
| 1983 | 1 | 0.532 | 0.429 | 0.349 | 0.224 |
| 1983 | 2 | 0.336 | 0.235 | 0.217 | 0.194 |
| 1983 | 3 | 0.296 | 0.207 | 0.173 | 0.173 |


| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 4 | 0.312 | 0.259 | 0.168 | 0.168 |
| 1984 | 1 | 0.539 | 0.425 | 0.287 | 0.182 |
| 1984 | 2 | 0.397 | 0.236 | 0.209 | 0.189 |
| 1984 | 3 | 0.309 | 0.239 | 0.177 | 0.177 |
| 1984 | 4 | 0.321 | 0.274 | 0.197 | 0.197 |
| 1985 | 1 | 0.549 | 0.502 | 0.373 | 0.198 |
| 1985 | 2 | 0.482 | 0.277 | 0.251 | 0.210 |
| 1985 | 3 | 0.323 | 0.249 | 0.178 | 0.178 |
| 1985 | 4 | 0.318 | 0.269 | 0.165 | 0.165 |
| 1986 | 1 | 0.590 | 0.534 | 0.422 | 0.254 |
| 1986 | 2 | 0.452 | 0.313 | 0.288 | 0.227 |
| 1986 | 3 | 0.346 | 0.258 | 0.188 | 0.188 |
| 1986 | 4 | 0.335 | 0.284 | 0.169 | 0.169 |
| 1987 | 1 | 0.596 | 0.484 | 0.443 | 0.256 |
| 1987 | 2 | 0.470 | 0.315 | 0.299 | 0.232 |
| 1987 | 3 | 0.356 | 0.217 | 0.190 | 0.190 |
| 1987 | 4 | 0.338 | 0.281 | 0.185 | 0.185 |
| 1988 | 1 | 0.622 | 0.502 | 0.455 | 0.258 |
| 1988 | 2 | 0.493 | 0.342 | 0.316 | 0.270 |
| 1988 | 3 | 0.371 | 0.238 | 0.220 | 0.220 |
| 1988 | 4 | 0.361 | 0.301 | 0.233 | 0.233 |
| 1989 | 1 | 0.603 | 0.509 | 0.433 | 0.214 |
| 1989 | 2 | 0.525 | 0.332 | 0.294 | 0.261 |
| 1989 | 3 | 0.356 | 0.228 | 0.221 | 0.221 |
| 1989 | 4 | 0.374 | 0.312 | 0.281 | 0.281 |
| 1990 | 1 | 0.518 | 0.489 | 0.402 | 0.244 |
| 1990 | 2 | 0.496 | 0.331 | 0.283 | 0.261 |
| 1990 | 3 | 0.337 | 0.260 | 0.249 | 0.249 |
| 1990 | 4 | 0.387 | 0.319 | 0.287 | 0.287 |
| 1991 | 1 | 0.462 | 0.423 | 0.320 | 0.263 |
| 1991 | 2 | 0.396 | 0.269 | 0.232 | 0.211 |
| 1991 | 3 | 0.310 | 0.264 | 0.223 | 0.223 |
| 1991 | 4 | 0.389 | 0.320 | 0.287 | 0.287 |
| 1992 | 1 | 0.410 | 0.360 | 0.281 | 0.255 |
| 1992 | 2 | 0.312 | 0.227 | 0.204 | 0.180 |
| 1992 | 3 | 0.294 | 0.275 | 0.212 | 0.212 |
| 1992 | 4 | 0.371 | 0.299 | 0.270 | 0.270 |
| 1993 | 1 | 0.456 | 0.414 | 0.340 | 0.303 |
| 1993 | 2 | 0.238 | 0.209 | 0.190 | 0.173 |
| 1993 | 3 | 0.272 | 0.253 | 0.192 | 0.192 |


| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1993 | 4 | 0.347 | 0.274 | 0.244 | 0.244 |
| 1994 | 1 | 0.502 | 0.446 | 0.348 | 0.337 |
| 1994 | 2 | 0.292 | 0.223 | 0.197 | 0.182 |
| 1994 | 3 | 0.258 | 0.219 | 0.190 | 0.190 |
| 1994 | 4 | 0.318 | 0.248 | 0.223 | 0.223 |
| 1995 | 1 | 0.512 | 0.460 | 0.338 | 0.308 |
| 1995 | 2 | 0.290 | 0.223 | 0.195 | 0.182 |
| 1995 | 3 | 0.222 | 0.191 | 0.178 | 0.178 |
| 1995 | 4 | 0.265 | 0.211 | 0.190 | 0.190 |
| 1996 | 1 | 0.504 | 0.395 | 0.263 | 0.214 |
| 1996 | 2 | 0.363 | 0.227 | 0.202 | 0.177 |
| 1996 | 3 | 0.215 | 0.171 | 0.151 | 0.151 |
| 1996 | 4 | 0.238 | 0.195 | 0.156 | 0.156 |
| 1997 | 1 | 0.451 | 0.293 | 0.210 | 0.155 |
| 1997 | 2 | 0.298 | 0.204 | 0.187 | 0.154 |
| 1997 | 3 | 0.227 | 0.193 | 0.171 | 0.171 |
| 1997 | 4 | 0.269 | 0.214 | 0.171 | 0.171 |
| 1998 | 1 | 0.430 | 0.283 | 0.226 | 0.190 |
| 1998 | 2 | 0.362 | 0.197 | 0.176 | 0.145 |
| 1998 | 3 | 0.252 | 0.209 | 0.173 | 0.173 |
| 1998 | 4 | 0.318 | 0.245 | 0.197 | 0.197 |
| 1999 | 1 | 0.421 | 0.287 | 0.232 | 0.214 |
| 1999 | 2 | 0.291 | 0.191 | 0.169 | 0.152 |
| 1999 | 3 | 0.275 | 0.241 | 0.191 | 0.191 |
| 1999 | 4 | 0.335 | 0.267 | 0.242 | 0.242 |
| 2000 | 1 | 0.406 | 0.342 | 0.253 | 0.219 |
| 2000 | 2 | 0.355 | 0.199 | 0.180 | 0.170 |
| 2000 | 3 | 0.254 | 0.213 | 0.157 | 0.157 |
| 2000 | 4 | 0.279 | 0.236 | 0.192 | 0.192 |
| 2001 | 1 | 0.409 | 0.328 | 0.233 | 0.190 |
| 2001 | 2 | 0.299 | 0.213 | 0.202 | 0.195 |
| 2001 | 3 | 0.266 | 0.225 | 0.191 | 0.191 |
| 2001 | 4 | 0.306 | 0.258 | 0.213 | 0.213 |
| 2002 | 1 | 0.434 | 0.321 | 0.240 | 0.171 |
| 2002 | 2 | 0.315 | 0.223 | 0.214 | 0.206 |
| 2002 | 3 | 0.252 | 0.206 | 0.194 | 0.194 |
| 2002 | 4 | 0.323 | 0.262 | 0.218 | 0.218 |
| 2003 | 1 | 0.419 | 0.269 | 0.215 | 0.168 |
| 2003 | 2 | 0.295 | 0.229 | 0.208 | 0.204 |
| 2003 | 3 | 0.259 | 0.229 | 0.226 | 0.226 |


| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2003 | 4 | 0.383 | 0.308 | 0.286 | 0.286 |
| 2004 | 1 | 0.436 | 0.276 | 0.231 | 0.192 |
| 2004 | 2 | 0.278 | 0.216 | 0.193 | 0.185 |
| 2004 | 3 | 0.231 | 0.212 | 0.208 | 0.208 |
| 2004 | 4 | 0.376 | 0.302 | 0.278 | 0.278 |
| 2005 | 1 | 0.442 | 0.321 | 0.227 | 0.216 |
| 2005 | 2 | 0.309 | 0.219 | 0.181 | 0.174 |
| 2005 | 3 | 0.220 | 0.201 | 0.179 | 0.179 |
| 2005 | 4 | 0.367 | 0.291 | 0.225 | 0.225 |
| 2006 | 1 | 0.504 | 0.315 | 0.226 | 0.215 |
| 2006 | 2 | 0.265 | 0.212 | 0.172 | 0.166 |
| 2006 | 3 | 0.217 | 0.197 | 0.172 | 0.172 |
| 2006 | 4 | 0.364 | 0.277 | 0.202 | 0.202 |
| 2007 | 1 | 0.480 | 0.312 | 0.204 | 0.184 |
| 2007 | 2 | 0.287 | 0.222 | 0.170 | 0.166 |
| 2007 | 3 | 0.210 | 0.175 | 0.152 | 0.152 |
| 2007 | 4 | 0.312 | 0.237 | 0.175 | 0.175 |
| 2008 | 1 | 0.478 | 0.307 | 0.187 | 0.166 |
| 2008 | 2 | 0.269 | 0.203 | 0.157 | 0.151 |
| 2008 | 3 | 0.200 | 0.173 | 0.167 | 0.167 |
| 2008 | 4 | 0.304 | 0.225 | 0.197 | 0.197 |
| 2009 | 1 | 0.444 | 0.362 | 0.233 | 0.162 |
| 2009 | 2 | 0.327 | 0.200 | 0.158 | 0.150 |
| 2009 | 3 | 0.190 | 0.170 | 0.163 | 0.163 |
| 2009 | 4 | 0.293 | 0.215 | 0.190 | 0.190 |
| 2010 | 1 | 0.527 | 0.412 | 0.312 | 0.170 |
| 2010 | 2 | 0.395 | 0.217 | 0.179 | 0.164 |
| 2010 | 3 | 0.207 | 0.182 | 0.159 | 0.159 |
| 2010 | 4 | 0.309 | 0.226 | 0.197 | 0.197 |
| 2011 | 1 | 0.511 | 0.437 | 0.386 | 0.182 |
| 2011 | 2 | 0.381 | 0.239 | 0.193 | 0.179 |
| 2011 | 3 | 0.229 | 0.202 | 0.179 | 0.179 |
| 2011 | 4 | 0.338 | 0.254 | 0.224 | 0.224 |
| 2012 | 1 | 0.509 | 0.432 | 0.344 | 0.176 |
| 2012 | 2 | 0.368 | 0.238 | 0.191 | 0.178 |
| 2012 | 3 | 0.219 | 0.176 | 0.145 | 0.145 |
| 2012 | 4 | 0.292 | 0.225 | 0.180 | 0.180 |
| 2013 | 1 | 0.399 | 0.367 | 0.285 | 0.150 |
| 2013 | 2 | 0.271 | 0.209 | 0.164 | 0.158 |
| 2013 | 3 | 0.206 | 0.175 | 0.148 | 0.148 |


| Year | Season | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2013 | 4 | 0.270 | 0.221 | 0.178 | 0.178 |
| 2014 | 1 | 0.367 | 0.335 | 0.245 | 0.140 |
| 2014 | 2 | 0.257 | 0.198 | 0.167 | 0.154 |
| 2014 | 3 | 0.211 | 0.181 | 0.153 | 0.153 |
| 2014 | 4 | 0.272 | 0.227 | 0.184 | 0.184 |
| 2015 | 1 | 0.365 | 0.339 | 0.249 | 0.139 |
| 2015 | 2 | 0.237 | 0.194 | 0.164 | 0.149 |
| 2015 | 3 | 0.212 | 0.177 | 0.149 | 0.149 |
| 2015 | 4 | 0.278 | 0.224 | 0.181 | 0.181 |
| 2016 | 1 | 0.377 | 0.347 | 0.260 | 0.143 |
| 2016 | 2 | 0.255 | 0.200 | 0.165 | 0.153 |
| 2016 | 3 | 0.212 | 0.177 | 0.149 | 0.149 |
| 2016 | 4 | 0.278 | 0.224 | 0.181 | 0.181 |
| 2017 | 1 | 0.377 | 0.347 | 0.260 | 0.143 |
| 2017 | 2 | 0.255 | 0.200 | 0.165 | 0.153 |
| 2017 | 3 | 0.212 | 0.177 | 0.149 | 0.149 |
| 2017 | 4 | 0.278 | 0.224 | 0.181 | 0.181 |
| 2018 | 1 | 0.377 | 0.347 | 0.260 | 0.143 |
| 2018 | 2 | 0.255 | 0.200 | 0.165 | 0.153 |
| 2018 | 3 | 0.212 | 0.177 | 0.149 | 0.149 |
| 2018 | 4 | 0.278 | 0.224 | 0.181 | 0.181 |
| 2019 | 1 | 0.377 | 0.347 | 0.260 | 0.143 |
| 2019 | 2 | 0.255 | 0.200 | 0.165 | 0.153 |
| 2019 | 3 | 0.212 | 0.177 | 0.149 | 0.149 |
| 2019 | 4 | 0.278 | 0.224 | 0.181 | 0.181 |
| 2020 | 1 | 0.377 | 0.347 | 0.260 | 0.143 |
| 2020 | 2 | 0.255 | 0.200 | 0.165 | 0.153 |
| 2020 | 3 | 0.212 | 0.177 | 0.149 | 0.149 |
| 2020 | 4 | 0.278 | 0.224 | 0.181 | 0.181 |
| 2021 | 1 | 0.377 | 0.347 | 0.260 | 0.143 |
| 2021 | 2 | 0.255 | 0.200 | 0.165 | 0.153 |
| 2021 | 3 | 0.212 | 0.177 | 0.149 | 0.149 |
| 2021 | 4 | 0.278 | 0.224 | 0.181 | 0.181 |

## Table 10.6.2. North Sea sprat. Assessment diagnostics.

ate: 03/23/22 Start time:17:06:28 run time:1 seconds
objective function (negative log likelihood): 299.074
Number of parameters: 143
Maximum gradient: 0.239804
Akaike information criterion (AIC): 884.147
Number of observations used in the likelihood:
Catch CPUE S/R Stomach Sum
$\begin{array}{lllll}768 & 298 & 48 & 0 & 1114\end{array}$
objective function weight:
Catch CPUE S/R
1.001 .000 .10
unweighted objective function contributions (total):
Catch CPUE S/R Stom. Stom N. Penalty Sum
$\begin{array}{llllll}412.8 & -114.9 & 11.8 & 0.0 & 0.0 & 0.00 \\ 310\end{array}$
unweighted objective function contributions (per observation):
Catch CPUE S/R Stomachs
$\begin{array}{llll}0.54 & -0.39 & 0.25 & 0.00\end{array}$
contribution by fleet:

| IBTS Q1 | total: -74.980 mean: -0.469 |
| :--- | :--- |
| IBTS Q3 | total: -31.619 mean: -0.351 |
| Acoustic | total: -8.283 mean: -0.173 |

F, Year effect:

1974: 1.000
1975: 1.802
1976: 1.884
1977: 1.624
1978: 1.073
1979: 0.684
1980: 2.495
1981: 1.247
1982: 1.080
1983: 1.772
1984: 1.057
1985: 1.458
1986: 1.248
1987: 0.397
1988: 1.388
1989: 0.448
1990: 1.602
1991: 0.876
1992: 0.941
1993: 1.726
1994: 0.871
1995: 1.495

```
1996: 1.539
1997: 1.112
1998: }1.88
1999: 0.964
2000: 1.605
2001: 1.740
2002: 1.776
2003: }1.38
2004: 2.176
2005: 1.423
2006: 1.766
2007: 1.853
2008: 1.678
2009: }0.94
2010: 1.178
2011: 1.067
2012: 1.500
2013: 1.569
2014: 0.680
2015: 1.428
2016: 2.494
2017: 1.595
2018: 1.583
2019: 1.325
2020: 2.010
2021: 2.730
```

F, season effect:
age: 0
1974-2021: 0.0370 .2010 .3620 .250
age: 1
1974-2021: 0.5410 .5270 .1960 .250
age: 2
1974-2021: 0.2400 .4740 .1140 .250
age: 3
1974-2021: 0.2190 .5490 .3510 .250
$F$, age effect:
$\begin{array}{llll}0 & 1 & 2 & 3\end{array}$
1974-2021: 0.0370 .3991 .5201 .520

Exploitation pattern (scaled to mean $\mathrm{F}=1$ )
$\begin{array}{llll}0 & 1 & 2 & 3\end{array}$
1974-2021 season 1: 0.0010 .1920 .3260 .297
season 2: 0.0070 .1880 .6420 .744
season 3: 0.0120 .0700 .1540 .476
season 4: $0.008 \quad 0.0890 .339 \quad 0.339$
sqrt(catch variance) $\sim$ CV:

```
age 1 1 2 3 4
0
1
2
3
```

Survey catchability:

|  | age 0 | age 1 | age 2 | age 3 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| IBTS Q1 | 0.000 | 1.590 | 3.153 | 6.540 |
| IBTS Q3 |  | 0.870 | 1.126 | 1.140 |
| Acoustic |  | 1.172 | 2.362 | 6.561 |

Stock size dependent catchability (power model)

| --------------------------------------- | age 0 | age 1 | age 2 | age 3 |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| IBTS Q1 | 1.65 | 1.00 | 1.00 | 1.00 |  |  |
| IBTS Q3 |  | 1.00 | 1.00 | 1.00 |  |  |
| Acoustic |  | 1.00 | 1.00 | 1.00 |  |  |

sqrt(Survey variance) ~ CV:

|  | age 0 | age 1 | age 2 | age 3 |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| IBTS Q1 |  | 0.43 | 0.37 | 0.37 | 0.37 |
| IBTS Q3 |  |  | 0.48 | 0.40 | 0.40 |
| Acoustic |  | 0.44 | 0.55 | 0.55 |  |

Average F:
sp. 1
1974: 1.109
1975: 1.705
1976: 1.802
1977: 1.602
1978: 1.049
1979: 0.676
1980: 2.299
1981: 1.152
1982: 0.986
1983: 1.589
1984: 0.987
1985: 1.308
1986: 1.117
1987: 0.361
1988: 1.259
1989: 0.423
1990: 1.494
1991: 0.848
1992: 0.916
1993: 1.587
1994: 0.804
1995: 1.342
1996: 1.395
1997: 1.049
1998: 1.765

```
1999: 0.936
2000: 1.485
2001: 1.644
2002: 1.676
2003: 1.372
2004: 2.085
2005: 1.356
2006: 1.659
2007: 1.722
2008: 1.578
2009: 0.886
2010: 1.072
2011: 0.969
2012: 1.336
2013: 1.422
2014: 0.638
2015: 1.314
2016: 2.253
2017: 1.459
2018: 1.448
2019: 1.217
2020: 1.827
2021: 2.169
```

Recruit-SSB alfa beta recruit s2 recruit s
Sprat Hockey stick -break.: $1316.549 \quad 9.000 \mathrm{e}+04 \quad 0.601 \quad 0.776$

Table 10.6.3. North Sea and Division 3.a Sprat. Assessment output: Stock numbers (thousands) (years, seasons (S1-S4), and age (A0-A3+) refer to the model year, e.g., 2021 = July 2021-
June 2022)

| Year/Age Quarter | A0_S1 | AO_S2 | A0_S3 | AO_S4 | A1_S1 | A1_S2 | A1_S3 | A1_S4 | A2_S1 | A2_S2 | A2_S3 | A2_S4 | A3+_S1 | A3+_S2 | A3+_S3 | A3+_S4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1974 | 543036000 | 334604000 | 239556000 | 175705000 | 139916000 | 71456700 | 45757200 | 32147400 | 10206300 | 4740150 | 1856610 | 1311090 | 564485 | 306102 | 110129 | 54212 |
| 1975 | 709595000 | 421523000 | 311385000 | 218722000 | 111574000 | 46246900 | 25400300 | 16362000 | 19327000 | 6562280 | 1467900 | 864143 | 679416 | 294583 | 55264 | 16978 |
| 1976 | 327714000 | 200305000 | 143739000 | 97395300 | 136215000 | 56933800 | 30088300 | 18618100 | 10520700 | 3492490 | 718691 | 408031 | 577268 | 230920 | 39462 | 11353 |
| 1977 | 630579000 | 405010000 | 275610000 | 184507000 | 59943200 | 28014100 | 15589700 | 9660700 | 11954300 | 4571630 | 1131060 | 666272 | 275344 | 117455 | 24819 | 8136 |
| 1978 | 1071680000 | 709383000 | 497293000 | 334648000 | 113084000 | 60277900 | 38202800 | 24590400 | 6223900 | 2862460 | 1062380 | 717015 | 437888 | 220394 | 74254 | 34022 |
| 1979 | 539449000 | 348437000 | 228676000 | 152913000 | 214500000 | 121129000 | 81524400 | 53582800 | 16543100 | 8477520 | 4053540 | 2856720 | 516645 | 274597 | 123664 | 68080 |
| 1980 | 334838000 | 208560000 | 130888000 | 85906800 | 98051400 | 36021800 | 16412600 | 9464200 | 36302200 | 9368020 | 1201790 | 618695 | 2006250 | 577864 | 57232 | 11974 |
| 1981 | 87282900 | 52813800 | 34749200 | 23829500 | 56502300 | 26570100 | 15585600 | 10329200 | 6522900 | 2644320 | 824742 | 532257 | 450514 | 207577 | 58145 | 23924 |
| 1982 | 45555800 | 27300800 | 19447700 | 14127300 | 16355000 | 8419360 | 5327480 | 3884760 | 7423910 | 3432010 | 1269890 | 878234 | 425886 | 232756 | 79136 | 37065 |
| 1983 | 58821600 | 34454900 | 24295000 | 17645200 | 10279300 | 4569930 | 2488660 | 1761840 | 2945250 | 1088410 | 244596 | 151429 | 745375 | 330588 | 62084 | 20282 |
| 1984 | 31588200 | 18407300 | 12284500 | 8893450 | 12912600 | 6719240 | 4250850 | 3082660 | 1359230 | 693448 | 262874 | 183354 | 145108 | 85103 | 29152 | 13886 |
| 1985 | 23019800 | 13264800 | 8102330 | 5754980 | 6448840 | 2852700 | 1591720 | 1107200 | 2343350 | 947696 | 258165 | 168002 | 161927 | 81829 | 19657 | 7560 |
| 1986 | 70963900 | 39277900 | 24758600 | 17228700 | 4186070 | 1876160 | 1055200 | 739060 | 845766 | 351832 | 107452 | 71770 | 148853 | 76240 | 21440 | 9129 |
| 1987 | 38488000 | 21196500 | 13203800 | 9196920 | 12322200 | 6971920 | 4678720 | 3652010 | 556102 | 308891 | 172070 | 132845 | 68300 | 46320 | 26377 | 17645 |
| 1988 | 55817100 | 29924200 | 18094000 | 12251500 | 6559980 | 2945170 | 1562910 | 1104490 | 2757330 | 1053900 | 283000 | 178650 | 125118 | 60921 | 14603 | 5587 |
| 1989 | 48771900 | 26657400 | 15711900 | 10939400 | 8536000 | 4657730 | 3040950 | 2336520 | 817077 | 449786 | 242811 | 180096 | 146005 | 101554 | 53824 | 33961 |
| 1990 | 67307700 | 40016200 | 24089900 | 16834900 | 7524810 | 3267040 | 1675650 | 1139490 | 1710590 | 637302 | 151469 | 89498 | 161558 | 74287 | 15031 | 4981 |
| 1991 | 103265000 | 64967900 | 43460400 | 31493600 | 11432900 | 6200460 | 3939730 | 2825750 | 828606 | 436979 | 184461 | 126784 | 70924 | 40750 | 15885 | 7960 |
| 1992 | 98542600 | 65307900 | 47469400 | 34938400 | 21346600 | 12158200 | 7950910 | 5609240 | 2051690 | 1098170 | 454928 | 312678 | 101110 | 57313 | 21822 | 10679 |
| 1993 | 129113000 | 81680600 | 63540700 | 47296400 | 24116200 | 10990800 | 6205100 | 4208490 | 4159450 | 1576050 | 376218 | 230322 | 246785 | 102653 | 20436 | 6710 |
| 1994 | 113155000 | 68384200 | 50722500 | 38749000 | 33413800 | 17722600 | 11803700 | 8852710 | 3198710 | 1643500 | 721318 | 513028 | 185724 | 99320 | 40055 | 20808 |
| 1995 | 35487900 | 21223000 | 15701900 | 12328100 | 28200700 | 12905300 | 7538890 | 5541070 | 6909940 | 2854090 | 800120 | 517089 | 427172 | 191081 | 45770 | 17247 |
| 1996 | 59588600 | 35915800 | 24695800 | 19517200 | 9461590 | 4574380 | 2637400 | 1969810 | 4487250 | 1966670 | 530904 | 349843 | 442030 | 213995 | 49667 | 18785 |
| 1997 | 46909200 | 29830500 | 21972400 | 17247600 | 15384400 | 9032030 | 5829660 | 4405610 | 1621100 | 875433 | 326079 | 226809 | 315342 | 186651 | 63298 | 29481 |


| Year/Age Quarter | A0_S1 | AO_S2 | A0_S3 | A0_S4 | A1_S1 | A1_S2 | A1_S3 | A1_S4 | A2_S1 | A2_S2 | A2_S3 | A2_S4 | A3+_S1 | A3+_S2 | A3+_S3 | A3+_S4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1998 | 105848000 | 68705600 | 47185300 | 35779000 | 13178700 | 6617570 | 3655170 | 2559150 | 3555840 | 1424570 | 307293 | 186608 | 216003 | 95415 | 17109 | 5262 |
| 1999 | 75667400 | 49581800 | 36815200 | 27619900 | 26037400 | 15871400 | 10710000 | 7806430 | 2002530 | 1116250 | 470693 | 329117 | 157605 | 92331 | 35463 | 17511 |
| 2000 | 72250500 | 48034400 | 33277400 | 25274800 | 19765200 | 9939310 | 5813380 | 4142640 | 5976400 | 2582580 | 679193 | 439846 | 272028 | 128241 | 28364 | 10294 |
| 2001 | 58320100 | 38658700 | 28297200 | 21180500 | 19128800 | 9471370 | 5307730 | 3696480 | 3272880 | 1373460 | 320622 | 195989 | 371477 | 172239 | 33179 | 10824 |
| 2002 | 77193400 | 49869200 | 35902200 | 27255600 | 15592300 | 7710180 | 4248190 | 3007840 | 2854650 | 1173930 | 263910 | 159833 | 167104 | 78070 | 14439 | 4607 |
| 2003 | 98936600 | 64923600 | 47852100 | 36257500 | 19739000 | 11186500 | 6648750 | 4742960 | 2315440 | 1125270 | 336658 | 211375 | 132257 | 70488 | 18072 | 6880 |
| 2004 | 166990000 | 107622000 | 80201400 | 61834900 | 24730700 | 11740100 | 5984970 | 4083420 | 3485160 | 1250330 | 215256 | 120043 | 163976 | 65654 | 8877 | 2257 |
| 2005 | 63546300 | 40780100 | 29619800 | 23312100 | 42466000 | 22680000 | 13511500 | 9887520 | 3017980 | 1430700 | 428579 | 280082 | 92584 | 46486 | 11917 | 4660 |
| 2006 | 80677800 | 48624200 | 36830800 | 28953900 | 16154400 | 8061150 | 4500040 | 3218460 | 7388710 | 3094690 | 730428 | 452924 | 227374 | 102001 | 19789 | 6488 |
| 2007 | 56916600 | 35127100 | 25990800 | 20548200 | 20114100 | 9873790 | 5357310 | 3890690 | 2439230 | 1011160 | 224692 | 140075 | 375259 | 168619 | 30422 | 9719 |
| 2008 | 124143000 | 76807100 | 57979500 | 46400900 | 15035700 | 7707420 | 4419340 | 3259170 | 3068290 | 1378780 | 352157 | 223023 | 125743 | 60963 | 12924 | 4468 |
| 2009 | 104609000 | 67004900 | 47975700 | 39157400 | 34238000 | 19432600 | 13031200 | 10210100 | 2601340 | 1457570 | 629108 | 453453 | 186832 | 115897 | 45212 | 23146 |
| 2010 | 109958000 | 64799600 | 43261800 | 34634500 | 29225800 | 15010200 | 9430000 | 7166920 | 8232240 | 3919490 | 1402810 | 975767 | 394248 | 224740 | 71364 | 32451 |
| 2011 | 89088900 | 53381500 | 36186600 | 28382500 | 25428900 | 13053500 | 8216910 | 6175170 | 5714940 | 2632520 | 1006520 | 699597 | 828122 | 484339 | 166193 | 78607 |
| 2012 | 67893400 | 40718700 | 27860800 | 21938900 | 20241300 | 9515820 | 5469660 | 4079530 | 4791890 | 1964890 | 551427 | 367917 | 621832 | 316709 | 75810 | 29442 |
| 2013 | 151849000 | 101659000 | 76624500 | 61038400 | 16386900 | 8094030 | 4723490 | 3506530 | 3257200 | 1380800 | 378710 | 248903 | 332029 | 169702 | 39123 | 14596 |
| 2014 | 171345000 | 118599000 | 91223000 | 73167400 | 46597100 | 28788900 | 20463600 | 16192200 | 2811660 | 1716910 | 890556 | 679152 | 220470 | 152916 | 74360 | 44370 |
| 2015 | 95014500 | 65823400 | 51382800 | 40770100 | 55746600 | 29190300 | 17814700 | 13342900 | 12902800 | 5972630 | 1814030 | 1220960 | 602108 | 325834 | 85265 | 34283 |
| 2016 | 136982000 | 93631400 | 71213800 | 55706300 | 30878400 | 12747800 | 6175880 | 4254930 | 10661400 | 3307910 | 465689 | 260642 | 1047910 | 396437 | 42419 | 9652 |
| 2017 | 168157000 | 115082000 | 88114100 | 69758900 | 42190700 | 21142500 | 12375000 | 9147960 | 3399830 | 1464670 | 393931 | 257575 | 225649 | 115102 | 26081 | 9591 |
| 2018 | 163028000 | 111574000 | 85435800 | 67649600 | 52833800 | 26546400 | 15578300 | 11527100 | 7309530 | 3163210 | 858347 | 562436 | 223037 | 114237 | 26153 | 9680 |
| 2019 | 139860000 | 95751900 | 73460700 | 58368200 | 51236300 | 27215200 | 16861000 | 12730800 | 9210530 | 4379360 | 1430820 | 980317 | 477617 | 266526 | 75670 | 32143 |
| 2020 | 85515000 | 58490800 | 44646600 | 35150700 | 44206700 | 20256400 | 10864900 | 7774630 | 10172300 | 3765950 | 751141 | 457106 | 845227 | 375561 | 60179 | 17729 |
| 2021 | 69413200 | 47430600 | 36011600 | 29123700 | 26622400 | 10446200 | 4816020 | 4033920 | 6212200 | 1768500 | 210101 | 181019 | 396405 | 138661 | 12187 | 10500 |
| 2022 | 0 |  |  |  | 22057600 |  |  |  | 3223240 |  |  |  | 159885 |  |  |  |

Table 10.6.4. North Sea \& 3.a Sprat. Assessment output: Estimated recruitment, spawning-stock biomass (SSB), average fishing mortality (F), and landings weight (Yield). All estimates refer to the model year, e.g., 2021 = July 2021-June 2022.

| Year | Recruitment | High | Low | SSB | High | Low | Catches | F ages 1-2 | High | Low |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (thousands) |  |  | (tonnes) |  |  | (tonnes) | (per year) |  |  |
| 1974 | 543036000 | 974148742 | 302713625 | 607031 | 989431 | 372423 | 463344 | 1.109 | 1.745 | 0.705 |
| 1975 | 709595000 | 1246579022 | 403925507 | 622040 | 1003062 | 385752 | 732312 | 1.705 | 2.538 | 1.145 |
| 1976 | 327714000 | 568380217 | 188951801 | 501939 | 813172 | 309827 | 628598 | 1.802 | 2.602 | 1.247 |
| 1977 | 630579000 | 1072938408 | 370598976 | 338439 | 521324 | 219712 | 385257 | 1.602 | 2.337 | 1.098 |
| 1978 | 1071680000 | 2020964214 | 568292112 | 389956 | 614573 | 247433 | 458804 | 1.049 | 1.768 | 0.623 |
| 1979 | 539449000 | 951361745 | 305882831 | 641332 | 1100917 | 373604 | 463638 | 0.676 | 1.302 | 0.351 |
| 1980 | 334838000 | 523306464 | 214246324 | 440425 | 747259 | 259581 | 387434 | 2.299 | 3.174 | 1.666 |
| 1981 | 87282900 | 128749607 | 59171479 | 307740 | 455678 | 207831 | 280582 | 1.152 | 1.754 | 0.757 |
| 1982 | 45555800 | 66143585 | 31376148 | 176147 | 263737 | 117646 | 162357 | 0.986 | 1.419 | 0.685 |
| 1983 | 58821600 | 79197337 | 43688093 | 82240 | 111675 | 60563 | 115440 | 1.589 | 1.941 | 1.300 |
| 1984 | 31588200 | 46065568 | 21660742 | 59357 | 76799 | 45877 | 113444 | 0.987 | 1.369 | 0.712 |
| 1985 | 23019800 | 31533307 | 16804808 | 55195 | 72629 | 41947 | 62514 | 1.308 | 1.657 | 1.033 |
| 1986 | 70963900 | 98483537 | 51134182 | 22058 | 29283 | 16616 | 27520 | 1.117 | 1.486 | 0.839 |
| 1987 | 38488000 | 52243884 | 28354059 | 50112 | 67314 | 37307 | 53942 | 0.361 | 0.549 | 0.238 |
| 1988 | 55817100 | 81761291 | 38105424 | 52957 | 67389 | 41616 | 103652 | 1.259 | 1.572 | 1.008 |
| 1989 | 48771900 | 67851635 | 35057346 | 39506 | 53836 | 28990 | 58420 | 0.423 | 0.804 | 0.222 |
| 1990 | 67307700 | 92743440 | 48847946 | 36902 | 50947 | 26728 | 78180 | 1.494 | 1.890 | 1.181 |
| 1991 | 103265000 | 134841771 | 79082766 | 79217 | 105401 | 59537 | 125815 | 0.848 | 1.175 | 0.613 |
| 1992 | 98542600 | 132518416 | 73277694 | 110149 | 138739 | 87450 | 156471 | 0.916 | 1.229 | 0.682 |
| 1993 | 129113000 | 203275378 | 82007801 | 155391 | 200600 | 120370 | 208848 | 1.587 | 1.894 | 1.330 |
| 1994 | 113155000 | 150994478 | 84798161 | 120194 | 177863 | 81223 | 424206 | 0.804 | 1.085 | 0.596 |
| 1995 | 35487900 | 47272692 | 26640984 | 169861 | 229949 | 125474 | 446555 | 1.342 | 1.679 | 1.072 |
| 1996 | 59588600 | 78950898 | 44974805 | 104983 | 130860 | 84223 | 95496 | 1.395 | 1.705 | 1.141 |
| 1997 | 46909200 | 62490879 | 35212707 | 106236 | 134353 | 84003 | 125174 | 1.049 | 1.354 | 0.813 |
| 1998 | 105848000 | 142504252 | 78620805 | 130525 | 162642 | 104750 | 188907 | 1.765 | 2.072 | 1.504 |
| 1999 | 75667400 | 98896332 | 57894517 | 125568 | 164272 | 95983 | 243158 | 0.936 | 1.248 | 0.702 |
| 2000 | 72250500 | 94446022 | 55271092 | 180665 | 227382 | 143546 | 222027 | 1.485 | 1.826 | 1.208 |
| 2001 | 58320100 | 75670180 | 44948143 | 124318 | 156010 | 99064 | 153321 | 1.644 | 1.981 | 1.364 |
| 2002 | 77193400 | 102094534 | 58365720 | 106899 | 133428 | 85644 | 174713 | 1.676 | 1.992 | 1.411 |
| 2003 | 98936600 | 131377949 | 74506041 | 132982 | 168882 | 104713 | 174988 | 1.372 | 1.700 | 1.108 |
| 2004 | 166990000 | 218038501 | 127893285 | 161765 | 206207 | 126901 | 231352 | 2.085 | 2.414 | 1.801 |
| 2005 | 63546300 | 81669576 | 49444756 | 203907 | 260209 | 159787 | 280275 | 1.356 | 1.666 | 1.104 |
| 2006 | 80677800 | 103508005 | 62883131 | 160733 | 200768 | 128681 | 78028 | 1.659 | 1.987 | 1.384 |
| 2007 | 56916600 | 74132739 | 43698633 | 130934 | 162701 | 105369 | 99902 | 1.722 | 2.046 | 1.449 |
| 2008 | 124143000 | 158849105 | 97019649 | 95608 | 119311 | 76613 | 69892 | 1.578 | 1.913 | 1.301 |
| 2009 | 104609000 | 134930708 | 81101204 | 164733 | 205575 | 132005 | 170934 | 0.886 | 1.182 | 0.664 |
| 2010 | 109958000 | 153382153 | 78827696 | 170207 | 211284 | 137116 | 145415 | 1.072 | 1.377 | 0.835 |


| Year | Recruitment | High | Low | SSB | High | Low | Catches | F ages 1-2 | High | Low |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | (thousands) |  |  | (tonnes) |  |  | (tonnes) | (per year) |  |  |
| $\mathbf{2 0 1 1}$ | 89088900 | 115680121 | 68610164 | 149422 | 192407 | 116040 | 122472 | 0.969 | 1.296 | 0.724 |
| $\mathbf{2 0 1 2}$ | 67893400 | 86480522 | 53301179 | 124904 | 153810 | 101430 | 96030 | 1.336 | 1.634 | 1.093 |
| $\mathbf{2 0 1 3}$ | 151849000 | 206375367 | 111729027 | 103116 | 127342 | 83499 | 60207 | 1.422 | 1.808 | 1.119 |
| $\mathbf{2 0 1 4}$ | 171345000 | 23225288 | 126410419 | 192302 | 251584 | 146989 | 190268 | 0.638 | 0.883 | 0.461 |
| $\mathbf{2 0 1 5}$ | 95014500 | 126602235 | 71308024 | 311969 | 410654 | 236999 | 298227 | 1.314 | 1.629 | 1.059 |
| $\mathbf{2 0 1 6}$ | 136982000 | 176588472 | 106258739 | 216052 | 278800 | 167426 | 227169 | 2.253 | 2.561 | 1.982 |
| $\mathbf{2 0 1 7}$ | 168157000 | 216616887 | 130538192 | 176752 | 221935 | 140768 | 135824 | 1.459 | 1.774 | 1.199 |
| $\mathbf{2 0 1 8}$ | 163028000 | 217041203 | 122456605 | 200339 | 249556 | 160828 | 190779 | 1.448 | 1.749 | 1.199 |
| $\mathbf{2 0 1 9}$ | 139860000 | 183850729 | 106395116 | 209892 | 267130 | 164919 | 137489 | 1.217 | 1.558 | 0.951 |
| $\mathbf{2 0 2 0}$ | 85515000 | 115933635 | 63077598 | 288838 | 368367 | 226479 | 181990 | 1.827 | 2.159 | 1.546 |
| $\mathbf{2 0 2 1}$ | 69413200 | 106348965 | 45305493 | 141574 | 178714 | 112152 | 80032 | 2.169 | 2.567 | 1.832 |
| $\mathbf{2 0 2 2}$ | 120979028 |  |  | 100495 | 138634 | 72848 |  |  |  |  |

* Geometric mean recruitment (2011-2020)

Table 10.9.1. North Sea and Division 3.a Sprat. Input to forecast (years and age refer to the model year, e.g., 2021 = July 2021-June 2022).

| Age | Age 0 | Age 1 | Age 2 | Age 3 |
| :--- | :---: | :--- | :---: | :---: |
| Stock numbers(2022) (millions) | 120979 | 22058 | 3223 | 160 |
| Exploitation pattern S1 | 0.003 | 0.433 | 0.734 | 0.668 |
| Exploitation pattern S2 | 0.015 | 0.423 | 1.447 | 1.678 |
| Exploitation pattern S3 | 0.027 | 0.157 | 0.348 | 1.073 |
| Exploitation pattern S4 | 0.000 | 0.000 | 0.000 | 0.000 |
| Weight in the stock S1 (gram) | 4.800 | 7.593 | 10.633 | 13.621 |
| Weight in the catch S1 (gram) | 4.80 | 7.59 | 10.63 | 13.62 |
| Weight in the catch S2 (gram) | 5.78 | 9.00 | 11.84 | 15.58 |
| Weight in the catch S3 (gram) | 5.81 | 9.34 | 12.21 | 15.19 |
| Weight in the catch S4 (gram) | 6.44 | 9.42 | 12.36 | 15.93 |
| Proportion mature(2020) | 0.00 | 0.41 | 0.87 | 0.95 |
| Proportion mature(2021) | 0.00 | 0.41 | 0.87 | 0.95 |
| Natural mortality S1 | 0.38 | 0.35 | 0.26 | 0.14 |
| Natural mortality S2 | 0.26 | 0.20 | 0.16 | 0.15 |
| Natural mortality S3 | 0.21 | 0.18 | 0.15 | 0.15 |
| Natural mortality S4 | 0.28 | 0.22 | 0.18 |  |
|  |  |  |  |  |

Table 10.9.2. Sprat North Sea Division 3.a. Short-term predictions options table. Years refer to the model year, e.g., 2021 = July 2021-June 2022.

Catch options. Catches and SSB are in thousands of tonnes.
3-year average weight-at-age was used to calculate SSB. Recruitment(2021) = geometric average 2011-2020.

| Basis | Catches(2022) | F(2022) | SSB(2023) | \%SSB change* | \%TAC change** |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Fcap | 68.690 | 0.69 | 181215 | 80\% | -36\% |
| $\mathrm{F}=0$ | 0 | 0 | 222210 | 121\% | -100\% |
| $\mathrm{F}=0.1$ | 12.231 | 0.1 | 214704 | 114\% | -89\% |
| $\mathrm{F}=0.2$ | 23.557 | 0.2 | 207825 | 107\% | -78\% |
| $\mathrm{F}=0.3$ | 34.071 | 0.3 | 201505 | 101\% | -68\% |
| $\mathrm{F}=0.4$ | 43.852 | 0.4 | 195688 | 95\% | -59\% |
| $\mathrm{F}=0.5$ | 52.971 | 0.5 | 190322 | 89\% | -50\% |
| $\mathrm{F}=0.6$ | 61.490 | 0.6 | 185363 | 84\% | -42\% |
| $\mathrm{F}=0.7$ | 69.465 | 0.7 | 180772 | 80\% | -35\% |
| $\mathrm{F}=0.8$ | 76.944 | 0.8 | 176512 | 76\% | -28\% |
| $\mathrm{F}=0.9$ | 83.971 | 0.9 | 172554 | 72\% | -21\% |
| $\mathrm{F}=1.0$ | 90.586 | 1 | 168869 | 68\% | -15\% |
| Bescapement without Fcap | 178.672 | 3.28 | 125000 | 24\% | -67\% |

* SSB in July 2023 relative to SSB in July 2022
** catch (July 2022-June 2023) relative to the sum of the TACs (106715 tonnes) for July 2021-June 2022 in Subarea 4 and Division 3.a.


Figure 10.1.1. North Sea and Division 3.a sprat. Sprat catches in the North Sea and Division 3.a (in tonnes) for each calendar year by statistical rectangle.


Figure 10.2.1. North Sea and Division 3.a sprat. Number of samples taken in the North Sea and Division 3.a for each calendar year by statistical rectangle.

## IBTS-Q1



Figure 10.3.1. North Sea and Division 3.a sprat. IBTS Q1 survey index for Subarea 4 and Division 3.a combined. The index is calculated using a delta-GAM model formulation (see WKSPRAT report (ICES, 2018) for details). Years refer to the calendar year.

## IBTS-Q3



Figure 10.3.2a. North Sea and Division 3.a sprat. IBTS Q3 survey index for Subarea 4 and Division 3.a combined. The index is calculated using a delta-GAM model formulation (see WKSPRAT report (ICES, 2018) for details). Years refer to the calendar year.

## HERAS



Figure 10.3.2b. North Sea and Division 3.a sprat. HERAS survey index for Subarea 4 and Division 3.a combined (sum of abundance indices published by WGIPS). Years refer to the calendar year.


S2



## S4



Figure 10.4.1. North Sea \& 3.a sprat. Mean weight at age in season 1-4 (S1-S4) (years refer to the model year, e.g., 2021 = July 2021-June 2022). Age 1 (grey), age 2 (black), age 3 (white). Red dot is the status quo weight and the red dashed line refer to the 3-year average used in the forecast last year.

## Total landings by year (model year) and season (S1-S4)



Figure 10.6.1a. North Sea \& 3.a sprat. Seasonal distribution of catches. Year and season 1-4 refer to the time-steps of the model (e.g., 2021 = July 2021-June 2022). Note that since the model year of 2021 is not yet finished, the 2021 column will be updated next year. Also note that there are no catches shown for S4, since these are moved to S1 in the following year (see WKSPRAT 2018 report (ICES, 2018) for details).

Proportion at age in catches (years refer to model year)


Figure 10.6.1b. North Sea \& 3.a sprat. Proportion of each age group in the catches. Year and age refer to the model year (e.g., 2021 = July 2021-June 2022).

Sprat S:1


Sprat S:2


Sprat S:3


Sprat S:4


Figure 10.6.2. North Sea \& 3.a sprat. Catch residuals by age. (Model year, e.g., 2021 = July 2021-June 2022)

IBTS Q1


IBTS Q3


Acoustic


Figure 10.6.3. North Sea \& 3.a sprat. Survey residuals by age. (Model year, e.g., 2021 = July 2021-June 2022)


Figure 10.6.4. North Sea \& 3.a sprat. Coefficients of variance (Model year, e.g., 2021 = July 2021-June 2022).


Figure 10.6.5. North Sea \& 3.a sprat. Retrospective analysis (Model year, e.g., 2021 = July 2021-June 2022)


Figure 10.6.6. North Sea \& 3.a sprat. Temporal development in Mean F, SSB and recruitment. Hatched lines are 95\% confidence intervals (Model year, e.g., 2021 = July 2021-June 2022).


Figure 10.6.7. North Sea \& 3.a sprat. Assessment summary (Model year, e.g., 2021 = July 2021-June 2022).

Sprat: Hockey stick, 1974:2021


Figure 10.7.1. North Sea \& 3.a sprat. Stock-recruitment relationship (Model year, e.g., 2021 = July 2021-June 2022).

### 10.14 References

WKSPRAT 2013. Report of the Benchmark Workshop on Sprat Stocks. ICES CM 2013/ACOM:48
WGSAM 2017. Interim Report of the Working Group on Multispecies Assessment Methods (WGSAM). ICES CM 2017/SSGEPI:20

WKSPRAT 2018. Report of the Benchmark Workshop on Sprat. ICES CM 2018/ACOM:35. 60 pp
ICES. 2022. ICES Working Group of International Pelagic Surveys (WGIPS). ICES Scientific Reports. In prep.
ICES. 2020. Workshop on Catch Forecast from Biased Assessments (WKFORBIAS; outputs from 2019 meeting). ICES Scientific Reports. 2:28. 38 pp. http://doi.org/10.17895/ices.pub. 5997

## 11 Sprat in the North Sea

The information formerly kept in this section is now found in Section 10: "Sprat in the North Sea and 3.a"

## 12 Sprat in the English Channel (divisions 7. de)

The stock structure of sprat populations in this region is not clear, despite evidence from acoustic surveys suggesting the stock is mainly confined to the UK side of 7.e. Further investigations and work are required to resolve this uncertainty.

### 12.1 The Fishery

### 12.1.1 ICES advice applicable for 2022

The advised catch for the English Channel (7.d and e) was set equal to 9200 tonnes.

### 12.1.2 Landings

The total sprat landings by country from 1986-2021 are provided in Table 12.1.1. Total landings from the international sprat fishery are available since 1950 (Figure 12.1.1.). Sprat landings prior to 1985 in 7.de were extracted from official catch statistics dataset (STATLANT27, Historical Nominal Catches 1950-2010, Official Nominal Catches 2006-2013), from 1985 onwards they come from WG estimates. Since 1985 sprat catch has been taken mainly by the UK (England, Wales and Northern Ireland). According to official catch statistics large catches were taken by Danish trawlers in the English Channel between the late 1970s and 1980s. The identity of these catches was not confirmed by the Danish data managers, raising the question of whether those reported catches were the result of species misreporting (i.e. herring misreported as sprat). Therefore, ICES cannot verify the quality of catch data prior to 1988.

The fishery starts in August and runs into February and sometimes March the following year. Most of the catch is taken in 7.e, in the Lyme Bay area. In the last decade catch from the UK covered about $93 \%$ of landed sprat, however in 2015 and 2016 this percentage diminished, with Netherlands, Denmark appearing, and taking a portion of the catch. Denmark and the Netherlands represent the two principle "transient fishing fleets" that appear occasionally in the time series and have been allocated a portion of the TAC under the common fisheries policy in previous years. In 2021 99.5\% of the catches were taken by UK vessels. Landings were very low in 2021, 49 tonnes in total (Figure 12.1.1), which has been attributed to a large number of small sprat in the catch, leading to a short season for the UK fleet and a switch to beaming and scalloping.
Sprat is found by sonar search and sometimes the shoals are found too far offshore for sensible economic exploitation. This offshore/near shore shift may be related to environmental variability such as spatial and temporal changes in temperature and/or salinity.

### 12.1.3 Fleets

In the English Channel the primary gear used for the capture of sprat is midwater trawl. Within that gear type three vessels under 15 m have actively targeted sprat and have been responsible for the majority of landings (since 2003 they took on average $96 \%$ of the total landings). Sprat is also caught by driftnet, fixed nets, lines and pots and most of the landings are sold for human consumption.

### 12.1.4 Regulations and their effects

There is a TAC for sprat in ICES divisions 7.de, English Channel. Figure 12.1.2. shows the agreed TAC and the ICES catch from 2000-2022 and shows the catch is always below the agreed TAC.

### 12.1.5 Changes in fishing technology and fishing patterns

There is insufficient information available.

### 12.2 Biological Composition of the Catch

### 12.2.1 Catches in number and weight-at-age

In 2017/2018 fishing season a pilot self-sampling program started in the Southwest of UK, involving sprat fishers from Lyme bay. This program has continued in 2021 however due to low uptake in the fishery only 1 vessel submitted data. The graphs have therefore not been updated this year as the previous year's data better represents the stock, when taken by the fishery. The 2019-2020 data shown are raw numbers-at-length in the samples, and not raised to the total catches (Figure 12.2.1 and Figure 12.2.2).

The skippers have collected length measurements from the catches and recorded information on fishing trips since 2018. In 2019, the sprat lengths in the fishers' samples ranged from 7.5 to 15 cm (Figure 12.2.1). The main processors for the fishery were engaged in 2019 and have provided length and weight data from landings subsamples. The length distributions recorded by the processors was reasonably consistent in 2020 (Figure 12.2.2). Due to low uptake in the fishery during 2021, the fishery operated for only two months of the season (August and September) and the FSP program provided very little data.

Biomass estimates for 2021 showed a huge increase in Sprat biomass, The PELTIC survey reports that there was a very strong recruitment (0-group) (Figure 12.3.3). These small fish were very widespread throughout the survey area. Anecdotal evidence from the Fisheries (self) sampling program (FSP) program and fishers also support the survey findings, with the Pelagic fisheries noting difficulties in being able to fish because of too much "whitebait" everywhere, below marketable size. The demand in the fishery tied more to size and marketability than stock biomass, with the processors reluctant to take catches with small fish. Figure 12.3.3 supports this and shows the large increase in 0 age fish in 2022 compared to 2021.

### 12.3 Fishery-independentinformation

## PELTIC Acoustic Survey (A6259)

Cefas carried out the annual PELTIC survey (Pelagic Ecosystem Survey of the Celtic Sea and Western Channel) in autumn in the English Channel and the Celtic Sea to acoustically assess the biomass of the small pelagic fish community within this area (divisions 7.e-f), and sprat is one of the target species. This survey, conducted from the RV Cefas Endeavour, started in 2013, when it first focused only on UK waters but, from 2017, it expanded to also cover the southern area of division 7 .e (French waters). In 2018 a one-off extension of the survey was conducted into division 7.d to investigate the presence of the stocks in the eastern channel, the survey found almost no sprat present.

As detailed in the ICES survey manual (Doray et al., 2021), calibrated acoustic data were collected during daylight hours only at three frequencies $(38,120,200 \mathrm{kHz})$ from transducers mounted
on a lowered drop keel at 8.2 m below the surface. All non-fish acoustic targets were removed by creating a multi-frequency filter and only backscatter from swimbladder fish was retained for further analyses. The resulting echotraces were further partitioned by species based on the trawl catches and were converted into abundance and biomass estimates (plus Coefficient of Variation) in StoX software.

To convert acoustic biomass to abundance, a Target Strength (TS) equation is used. As no dedicated sprat specific TS equation is available for the area, the generic clupeid value of $b 20=-71.2$ dB is used. This was found to be an acceptable conversion and it was noted that more negatively values (leading to a higher biomass) have been used for sprat stocks in adjacent waters.

As part of the 2021 sprat inter benchmark process (IBP), the ability of the survey to capture the sprat stock (catchability) was evaluated, as this feeds heavily into assumptions of the, management strategy evaluation (MSE). It was noted that the assessment is based on a biomass estimate from only a small area of the total management unit and is therefore likely to be a conservative estimate.

The survey also provides age and length structure for sprat aged $0-6$ (Figure 12.3.2 and Figure 12.3.3). While there is high variability in the age distributions, this does not affect the overall estimate of biomass. However, it does preclude cohort tracking in the survey. The IBP found that the survey provided a robust estimate of biomass for application of a constant harvest rate (CHR) and is evaluated at two ICES working groups, WGIPS and WGACEGG each year."

## Biological data

Biological information from trawl catches carried out during the 2021 PELTIC acoustic survey, identified 5 age classes from 0 to 4 contributing on average to $91.61 \%, 2.1 \%, 5.9 \%, 0.32 \%$, and $0.02 \%$ respectively in the samples collected. The age structure observed in 2021 is shown in Figure 12.3.2 and 12.3.3. This supports anecdotal information from the fishery and is linked to the reduced catch in 2021, citing a high volume of small fish.

### 12.4 Mean weight-at-age and maturity-at-age

No data on mean weight-at-age or maturity-at-age in the catch are available.

### 12.5 Recruitment

The acoustic surveys may provide an index of sprat recruitment in divisions 7.d-e.

### 12.6 Stock Assessment

This stock is considered a category 3 stock with the assessment and advice based on survey trends (ICES Advice 2018).

The stock went through an interbenchmark in February 2021 to update the assessment method based on the new guidance issued by WKLIFEX and developed by WKDLSSSLS2. The IBP tested the available data against the updated guidelines and assessed the suitability of three data limited methods for the stock.

1. 1 over 2 ratio-based advice with a $20 \%$ and an $80 \%$ uncertainty cap
2. Constant Harvest Rate
3. Surplus Production model (SPiCT)

Three exploratory SPiCT assessments were performed:

- an annual model using calendar year (January-December)
- an annual model using fishing year (July-June);
- a model using quarterly data.

The IBP concluded that SPICT analysis of the stock was not viable at this point in time due to the limited time series available for the PELTIC survey (2014-2020). There is also a strong transient component to the fishery from Denmark and the Netherlands which has not been present in recent years. The IBP determined that SPICT should be re-examined in the future.

A constant harvest rate (CHR) was determined by management strategy evaluation (MSE). The CHR was tested alongside the 102 with $80 \%$ and $20 \%$ uncertainty caps. The MSE tested three survey catchability options, with an assumption of $0 \%, 50 \%$ and $100 \%$ over estimation of the underlying biomass from the PELTIC survey. Assuming that some overestimation may take place on the survey, the IBP determined that the $50 \%$ overestimation should be adopted. Three scenarios of fishing pressure, prior to implementation of the catch advice options, were simulated for 25 years to establish starting points for the stock.
This MSE was carried out on a seasonal time step due to limitations in the framework. The IBP notes that the current advice is given annually, however it is recommended to move to an an-nual- seasonal calendar. This will reduce the time lag between survey and advice, while keeping the stock within the HAWG. WKDLSSLS determined that the reduced lag between survey and advice was the key component of providing precautionary advice for short lived species. A CHR determined on a seasonal timestep will still be applicable to the stock and is more precautionary than the 1 o 2 rule.

The CHR was found to be more precautionary for the stock than the current 102 rule (with both UC values), supporting the findings of WKDLSSL1 \& 2. The CHR of $12 \%$ was the maximum value estimated under the $50 \%$ survey catchability overestimation level that kept the risk $<5 \%$ in the long term under all fishing histories while giving the highest yield. A correction factor to the CHR was applied to account for a mismatch between survey weight at age in the PELTIC biomass and the weight at age in survey biomass simulated in the MSE. This was done to account for in year growth and results in a correction factor of 0.714 equal to the ratio of the MSEindex/"PelticIndex", where PelticIndex equates to the weight-at-age structure present at the time of the survey. This time-step accounts for a seven-month growth period, comprising the months between spawning in March and the survey in October. The IBP concluded that an adjusted CHR to $8.57 \%$ was the most appropriate assessment method for the stock (ICES, 2021b).
Further investigation of the CHR , specifically using sprat in 7.de, was conducted at WKDLSSLS3 in 2021. The group examined the effect of applying an $80 \%$ uncertainty cap (UC) to the CHRs. The conclusion from this was an UC resulted in minimal risk reduction for CHR's below the 5\% risk threshold. It did reduce risk for CHR's that are too high but could not bring them below the ICES risk threshold. The only significant difference between CHR and CHR+UC was a decrease in interannual variability in the stock. This contrasts with work by other members of the WKDLSSLS group, who note that UC's may introduce unnecessary risks to the stock when requiring rapid reduction of catches. Alternatively following a drop of catch advice, may prevent recovery of yield (Fischer et al. 2020, 2021 and Sánchez-Maroño et al. 2021). The group found that unconstrained CHRs appear robust to past fishing history, initial stock status and advice schedule but are sensitive to survey catchability. No recommendations from the WKDLSSLS were made in regard to applying a UC to CHR's. Application of uncertainty cap is a current research topic and future guidelines may clarify how they are applied as part of a CHR.

### 12.6.1 Data exploration

## Biomass Index

A 9-year time-series of biomass estimates from the PELTIC survey is shown in Table 12.6.1. The extension of the survey into ICES division 7.d and the southern part of 7.e suggests that the stock is mainly located in the more northerly part of division 7.e during October. The survey conducted in 2021 showed a very large concentration of age 0 sprat in Lyme bay, Figure 12.6.1 and 12.3.2. The survey also covered the area around the Channel Islands (Figure 12.6.1) and found a large quantity of sprat present off the coast of France. This biomass does not feed into the assessment, which looks only at the "core area" of Lyme Bay.

Sprat was in general the dominant small pelagic species in the trawl samples, with highest densities in the eastern parts of the western Channel and the Bristol Channel, with the bulk of the biomass centred in Lyme bay. As in previous years, large schools in the Bristol Channel appeared to consist mainly of juvenile sprat, whereas those in the English Channel also included larger size classes. In 2018, the PELTIC survey was extended into the eastern channel and found no discernible Sprat biomass, indicating a separation between 27.7.de and Sprat in the Eastern channel.

For more details on the survey design see Figure 12.3.1 and ICES 2021b.
A 2015 analysis of the age distribution of sprat in the survey area shows a marked distinction between the young fish (0 and 1) found in the Bristol Channel and the older age classes that occupy the Western English Channel (ICES 2015). Whether the two clusters belong to the same stock has yet to be proved: the circulation pattern of the area would allow sprat eggs/larvae to travel northward, from division 7.e to 7.g; however, the formation of a front in late spring/early summer seems to suggest these may be two different stocks.

The stock was examined using RAD-seq-derived SNPs (Restriction-site-associated DNA sequencing and single nucleotide polymorphisms) in 2020 (McKeown et al., 2020). This was part of a larger study of North Sea and Baltic sprat. The study found that amongst the North Sea population there was a lack of genetic differentiation between sampled stocks, indicating a high gene flow in the North Sea population. This would indicate that all sprat in the North Sea form one genetic unit, however the study suggests further work is needed. Specifically, for fisheries management, it should be noted that genetically connected stocks may still be isolated on the time scale of fisheries management.

### 12.7 State of the Stock

The acoustic estimates for 2017 ( 32751 t ) show a three fold increase compared to the all-time low value in 2016 ( 9826 t ), although the biomass is still half of the high levels recorded in the period 2013-2015 (70680 t, 85184 t and 65219 t respectively), Table 12.6.1. The PELTIC biomass has increased substantially from 36798 tonnes in 2020 to 107355 tonnes in 2021. The harvest rate has dropped from $3 \%$ to $0.05 \%$. This is due low catches in 2021 which has been attributed to a large number small sprat mixed in with the catch. The fleet is thought to have switched to beam trawling and scalloping because of this but should be expected to return when these small sprats mature.

### 12.8 Catch Advice

Applying the constant harvest rate of $8.57 \%$ to the current estimate of PELTIC biomass gives an advised catch of 9200 tonnes.

### 12.9 Short-term projections

No projections are presented for this stock.

### 12.10 Reference Points

The IBP suggested the use of the Istat value developed as part of WKDSLLS2 (ICES, 2021) could be used as a proxy $\mathrm{B}_{\mathrm{lim}}$ for the stock. The Istat is defined as

Geomean(Ihist)*exp(-1.645*sd(log(Ihist))
Where Ihist refers to the biomass index, this gives a value of 11527.9 tonnes biomass for the stock. Note this should not be referred to as SSB or total biomass as SSB cannot be derived for the stock and the PELTIC does not capture the total biomass of the stock. Length based F (MSY) proxies were suggested by the ADG as being possibly applicable to the stock and providing useful information. They have not been explored to date but could be looked at in the future. The inclusion of the FSP sampling data (which includes length frequencies) could also be incorporated into these methods and provide interesting comparison between survey and fisheries derived data.

### 12.11 Quality of the Assessment

The coverage of the PELTIC acoustic survey was extended in 2017 towards the southern part of Division 7.e: this extension confirmed that the bulk of the sprat distribution in 7.e is located in Lyme Bay and surrounding areas, and very little extend outside. In fact, the transects carried out off the French coast found very little sprat, mostly of ages 0 and 1 . This pattern may have changed somewhat in recent years as sprat have been recorded off the coast of France and around the channel island in 2018 and 2019. 2021 also saw sprat present off the coast of France, in line with a general increase in biomass across the area and consisted primarily of small age 0 fish. They do not feed into the advice, as they lie outside of the core Lyme bay area.

The extent to which the population migrates into Division 7.d was investigated during the 2018 survey. The survey showed that very little sprat was found on the eastern border of division 7.e suggesting no movements of sprat between the two areas and very little found in 7.d.

Concerns have been raised about the connection between the Western English Channel stock and the Bristol Channel, where large numbers of juveniles are found, it is currently believed the Bristol channel may represent a separate stock. See the data exploration section for details.

### 12.12 Management Considerations

Sprat is a short-lived species with large interannual fluctuations in stock biomass. The natural interannual variability of stock abundance, mainly driven by recruitment variability, is high and does not appear to be strongly influenced by the observed levels of fishing effort.

Sprat annual landings from 7.d-e over the past 20 years have been 2532 tonnes on average. The average harvest rate for the 9 -year time-series is $8 \%$, however if the 2016 value of $34 \%$ is removed, this drops to $5 \%$. The average harvest rate is $2 \%$ over the last 3 years. In general, however, it seems that Lyme Bay, where most of the fishery occurs, consistently hosts quite a substantial part of the sprat stock: this is confirmed by the fact that even in 2016, when the estimated biomass was overall very low, Lyme Bay still contributed $50 \%$ of the total sprat population in the Western English Channel.

The strong biomass fluctuations observed in the acoustic index and the relatively strong increase in biomass observed in 2017, suggests that the low level of catch is not impairing the stock. 2021 has seen another large increase in biomass. Due to the low fishing pressure and reports of average oceanographic condition from the survey, it is likely the increase is driven by environmental conditions or interactions with other stocks.

The timing of the advice relative to the PELTIC survey has been considered, previously the advice has been issued on an annual basis. This led to a lag between survey, advice and uptake, which was identified as problematic in a short-lived species. An agreement has been reached between the ICES members to move the advice to a seasonal calendar in line with the fishery for 2022/2023. The advice will now run across the fishing season (1 July- 30 June) instead of on an annual basis.
The PELTIC survey takes place in October of the advice year minus 1, with the advice issued in March of the advice year for the fishing season. The fishing season runs from 1 July advice year, to 30 June advice year plus 1 . Therefore, there is an 8-month delay between survey and advice. This is a weakness in the advice as Sprat can undergo rapid changes in biomass. The TAC issued separately to the ICES advice has been issue on a seasonal basis for 2022. A small delay is still present but has been greatly reduced. A further improvement to better respond to changing stock conditions would be a review mechanism at the time of the PELTIC in October to update the advice, if needed. However, this would present problems for issuing of the advice and there is currently little appetite to reopen advice mid-year for stocks in ICES or member states.

### 12.13 Ecosystem Considerations

Multispecies investigations have demonstrated that sprat is one of the important prey species in the North Sea ecosystem, for both fish and seabirds. At present, there are no analysis available on the total amount of sprat, and in general of other pelagic species, taken by seabirds, marine mammals, and large predators in the Celtic Seas Ecoregion. However, a wide spectrum of data that covers the whole trophic chain have been collected during the PELTIC acoustic survey: these data will in the future provide a substantial contribution to the knowledge base for the area.

Table 12.1.1 Sprat in 7.d-e. Landings of sprat, 1986-2021.

| Country | Denmark | France | Netherlands | UK Eng+Wales+N.Irl. | UK Scotland | Other | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1986 | 15 | 0 | 0 | 1163 | 0 | 0 | 1178 |
| 1987 | 250 | 23 | 0 | 2441 | 0 | 0 | 2714 |
| 1988 | 2529 | 2 | 1 | 2944 | 0 | 0 | 5476 |
| 1989 | 2092 | 10 | 0 | 1520 | 0 | 0 | 3622 |
| 1990 | 608 | 79 | 0 | 1562 | 0 | 0 | 2249 |
| 1991 | 0 | 0 | 0 | 2567 | 0 | 0 | 2567 |
| 1992 | 5389 | 35 | 0 | 1791 | 0 | 0 | 7215 |
| 1993 | 0 | 3 | 0 | 1798 | 0 | 0 | 1801 |
| 1994 | 3572 | 1 | 0 | 3176 | 40 | 0 | 6789 |
| 1995 | 2084 | 0 | 0 | 1516 | 0 | 0 | 3600 |
| 1996 | 0 | 2 | 0 | 1789 | 0 | 0 | 1791 |
| 1997 | 1245 | 1 | 0 | 1621 | 0 | 0 | 2867 |
| 1998 | 3741 | 0 | 0 | 1973 | 0 | 0 | 5714 |
| 1999 | 3064 | 0 | 1 | 3558 | 0 | 0 | 6623 |
| 2000 | 0 | 1 | 1 | 1693 | 0 | 0 | 1695 |
| 2001 | 0 | 0 | 0 | 1349 | 0 | 0 | 1349 |
| 2002 | 0 | 0 | 0 | 1196 | 0 | 0 | 1196 |
| 2003 | 0 | 2 | 72 | 1368 | 0 | 0 | 1442 |
| 2004 | 0 | 6 | 0 | 836 | 0 | 0 | 842 |
| 2005 | 0 | 0 | 0 | 1635 | 0 | 0 | 1635 |
| 2006 | 0 | 7 | 0 | 1969 | 0 | 0 | 1976 |
| 2007 | 0 | 0 | 0 | 2706 | 0 | 0 | 2706 |
| 2008 | 0 | 0 | 0 | 3367 | 0 | 0 | 3367 |
| 2009 | 0 | 2 | 0 | 2773 | 0 | 0 | 2775 |
| 2010 | 0 | 2 | 0 | 4408 | 0 | 0 | 4410 |
| 2011 | 0 | 1 | 37 | 3138 | 0 | 0 | 3176 |
| 2012 | 6 | 2 | 8 | 4458 | 0 | 0 | 4474 |


| Country | Denmark | France | Netherlands | UK Eng+Wales+N.Irl. | UK Scotland | Other | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2013 | 0 | 0 | 0 | 3793 | 0 | 0 | 3793 |
| 2014 | 45 | 0 | 275 | 3338 | 0 | 0 | 3658 |
| 2015 | 0 | 1 | 352 | 2659 | 0 | 0 | 3012 |
| 2016 | 185 | 7 | 231 | 2867 | 0 | 49 | 3339 |
| 2017 | 0 | 0 | 235 | 2498 | 0 | 0 | 2733 |
| 2018 | 474 | 1 | 0 | 1776 | 0 | 0 | 2252 |
| 2019 | 0 | 0.67 | 0 | 1544 | 0 | 28 | 1573 |
| 2020 | 0 | 0 | 0 | 873 | 0 | 0 | 873 |
| 2021 | 0 | 0.25 | 0 | 48.75 | 0 | 0 | 49 |

Table 12.6.1. Sprat in 7.d-e. Annual sprat biomass in ICES Subdivision 7.e (Source: Cefas annual pelagic acoustic survey)

| Survey | Area | Season | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PELTIC | W Eng Ch | Oct | 70680 | 85184 | 65219 | 9826 | 32751 | 21772 | 36789 | 33 | 798 | 107355 |

* ICES rectangles 29E6, 30E6


Figure 12.1.1. Sprat in 7.d-e. Landings of sprat 1950-2021.


Figure 12.1.2. Sprat in 7.d-e. ICES catch (blue line) and agreed TAC (red line) from 2000 to 2022.


Figure 12.2.1. Length distribution collected by the fishers by month. Red line indicates weighted mean length at each month 2019, For the two boats supplying the FSP program.


Figure 12.2.2. Monthly sprat total length distribution collected by the three processors in the $\mathbf{2 0 2 0}$ season. Red line indicates weighted mean length at each month.


Figure 12.3.2. Sprat in 7.d-e. Proportion of numbers-at-age in the biological sample collected during the 2021 PELTIC acoustic survey.


Figure 12.3.3. Sprat in 7.d-e. Proportion of numbers-at-age in the biological samples collected during the 2013-2021 PELTIC acoustic surveys.


Figure 12.3.1. Sprat in 7.d-e. Survey design (2021) with acoustic transects (blue lines), zooplankton stations (red squares) and oceanographic stations (yellow circles).


Figure 12.6.1. Sprat in 7.d-e. Acoustic backscatter attributed to sprat per 1 nmi equidistant sampling unit (EDSU) during October from the 2013-2021 PELTIC surveys.


Figure 12.6.2. Sprat in 7.d-e. Biomass of sprat estimated from the PELTIC acoustic survey from 2013 to 2021 for Division 7.e (red line) and the Lyme Bay area (blue line). The Partial survey has not been run since 2019.


Figure 12.7.1. Sprat in 7.d-e. Constant Harvest rate index (ratio between landings and PELTIC acoustic survey biomass estimate).

### 12.14 References

Doray, M., Boyra, G., and van der Kooij, J. (Eds.). 2021. ICES Survey Protocols - Manual for acoustic surveys coordinated under the ICES Working Group on Acoustic and Egg Surveys for Small Pelagic Fish (WGACEGG). 1st Edition. ICES Techniques in Marine Environmental Sciences Vol. 64. 100 pp. https://doi. org/10.17895/ices.pub. 7462
Fischer, S. H., De Oliveira, J. A. A., and Kell, L. T. 2020. Linking the performance of a data-limited empirical catch rule to life-history traits. ICES Journal of Marine Science, 77: 1914-1926.

Fischer, S. H., De Oliveira, J. A. A., Mumford, J. D., and Kell, L. T. 2021. Using a genetic algorithm to optimize a data-limited catch rule. ICES Journal of Marine Science, 0 .

ICES. 2015. Report of the Working Group of International Pelagic Surveys (WGIPS), 19-23 January 2015, ICES HQ, Copenhagen, Denmark. ICES CM 2015/SSGIEOM:05. 279 pp.
ICES. 2021a. Inter-benchmark to revise the advice framework for the Sprat stock in 7.de based on the most recent changes to data-limited short-lived species assessments (IBPSprat). ICES Scientific Reports. 3:23. 42 pp. https://doi.org/10.17895/ices.pub. 7918

ICES. 2021b. Working Group of International Pelagic Surveys (WGIPS). ICES Scientific Reports. 3:40. 481pp. https://doi.org/10.17895/ices.pub. 8055
McKeown, N. J, Carpi, P., Silva, J. F, Healey, A. J E, Shaw, P. W, and van der Kooij, J. Genetic population structure and tools for the management of European sprat (Sprattus sprattus). - ICES Journal of Marine Science, doi:10.1093/icesjms/fsaa113.
ICES. 2021. Workshop on Data-Limited Stocks of Short-Lived Species (WKDLSSLS3). ICES Scientific Reports. 3:86. 60 pp . https://doi.org/10.17895/ices.pub. 8145
Sánchez-Maroño, S., Uriarte, A., Ibaibarriaga, L., and Citores, L. 2021. Adapting Simple Index-Based Catch Rules for Data-Limited Stocks to Short-Lived Fish Stocks' Characteristics. Frontiers in Marine Science, 8: 1-20.

Please note: This report will be published in parts. Estimated publication dates for the various sections and the full report are outlined below.

31 May 2022

- Section 3 Herring in Division 3a and subdivisions 22-24

25 February 2022

- Section 9 Sandeel in Division 3.a and Subarea 4 and Division 6.a

9 May 2022

- Section 10 Sprat in the North Sea and 3
- Section 12 Sprat in the English Channel (division 7.de)

30 June 2022

- Full report


## Annex 1: List of participants

HAWG Sandeel
25-27 January 2022 - online meeting

| Name | Institute | Country | Email |
| :---: | :---: | :---: | :---: |
| Afra Egan (Co- Chair) | Marine Institute | Ireland | afra.egan@marine.ie |
| Anna Rindorf | DTU Aqua -National Institute of Aquatic Resources | Denmark | ar@aqua.dtu.dk |
| Cecilie Kvamme (Co-Chair) | Institute of Marine Research | Norway | cecilie.kvamme@hi.no |
| Chris Griffiths | SLU Aqua | Sweden | christopher.griffiths@slu.se |
| Claus Reedtz Sparrevohn | Danish Pelagic Producers' Organisation | Denmark | crs@pelagisk.dk |
| Espen Johnsen | Institute of Marine Research | Norway | espen.johnsen@hi.no |
| Johnathan Ball | CEFAS - Lowestoft Laboratory Centre for Environment, Fisheries and Aqua- culture Science | United Kingdom | johnathan.ball@cefas.co.uk |
| Kirsten Birch Håkansson | DTU Aqua -National Institute of Aquatic Resources | Denmark | kih@aqua.dtu.dk |
| Mikael van Deurs | DTU Aqua -National Institute of Aquatic Resources | Denmark | mvd@aqua.dtu.dk |
| Ole Henriksen | DTU Aqua -National Institute of Aquatic Resources | Denmark | ohen@aqua.dtu.dk |
| Sarah Millar | ICES Secretariat |  | sarah-louise.millar@ices.dk |
| Thomas Regnier | Marine Laboratory Marine Science Scotland | United Kingdom | t.regnier@marlab.ac.uk |
| Valerio Bartolino | Swedish University of Agricultural Sciences Institute of Marine Re-search | Sweden | valerio.bartolino@slu.se |

## HAWG Sprat

March - May 2022 - by correspondence

| Name | Institute | Country | Email |
| :---: | :---: | :---: | :---: |
| Afra Egan (Co- Chair) | Marine Institute | Ireland | afra.egan@marine.ie |
| Anna Rindorf | DTU Aqua -National Institute of Aquatic Resources | Denmark | ar@aqua.dtu.dk |
| Cecilie Kvamme (Co-Chair) | Institute of Marine Research | Norway | cecilie.kvamme@hi.no |
| Chris Griffiths | SLU Aqua | Sweden | christopher.griffiths@slu.se |
| Claus Reedtz Sparrevohn | Danish Pelagic Producers' Organisation | Denmark | crs@pelagisk.dk |
| Johnathan Ball | CEFAS - Lowestoft Laboratory Centre for Environment, Fisheries and Aqua- culture Science | United Kingdom | johnathan.ball@cefas.co.uk |
| Kirsten Birch Håkansson | DTU Aqua -National Institute of Aquatic Resources | Denmark | kih@aqua.dtu.dk |
| Mikael van Deurs | DTU Aqua -National Institute of Aquatic Resources | Denmark | mvd@aqua.dtu.dk |
| Ole Henriksen | DTU Aqua -National Institute of Aquatic Resources | Denmark | ohen@aqua.dtu.dk |
| Paul Marchal | Ifremer - Centre de Manche Mer du Nord | France | paul.marchal@ifremer.fr |
| Richard Nash | CEFAS - Lowestoft Laboratory Centre for Environment, Fisheries and Aqua- culture Science | United Kingdom | richard.nash@ cefas.co.uk |
| Valerio Bartolino | Swedish University of Agricultural Sciences Institute of Marine Re-search | Sweden | valerio.bartolino@slu.se |

## Annex 2: Resolutions

HAWG - Herring Assessment Working Group for the Area South of $62^{\mathbf{\circ}} \mathbf{N}$
2021/2/FRSG03 The Herring Assessment Working Group for the Area South of $\mathbf{6 2}{ }^{\mathbf{o}} \mathbf{N}$ (HAWG), chaired by Afra Egan, Ireland, and Cecilie Kvamme, Norway will meet:

Online/hybrid meeting 25-27 January 2022 to:
a ) Compile the catch data of sandeel in assessment areas $1 \mathrm{r}, 2 \mathrm{r}, 3 \mathrm{r}, 4,5 \mathrm{r}, 6$, and 7 r and address generic ToRs for Regional and Species Working Groups that are specific to sandeel stocks in the North Sea ecoregion;
and in Copenhagen, Denmark 15-23 March 2022 to:
b ) compile the catch data of North Sea and Western Baltic herring on 15-16 March;
c ) address generic ToRs for Regional and Species Working Groups 17-23 March for all other stocks assessed by HAWG.

The assessments will be carried out based on the Stock Annex. The assessments must be available for audit on the first day of the meeting.
Material and data relevant for the meeting must be available to the group on the dates specified in the 2022 ICES data call.

HAWG will report by 11 February (sandeel), 28 March (sprat) and 6 April (herring) 2022 for the attention of ACOM.

Only experts appointed by national Delegates or appointed in consultation with the national Delegates of the expert's country can attend this Expert Group


[^0]:    ICES INTERNATIONAL COUNCIL FOR THE EXPLORATION OF THE SEA CIEM CONSEIL INTERNATIONAL POUR L'EXPLORATION DE LA MER

