International Council for the Exploration of the Sea
C.M.1975/H:3

Pelagic Fish (Northern) Committee Ref. Pelagic Fish (S) Cttee

REPORT OF THE MACKEREL WORKING GROUP

10 - 11 March, 1975 Bergen, Norway

1. Introduction

Following a request made by NEAFC at its mid-term meeting in Hamburg on 4-8 November 1974, to advise on a TAC for Mackerel in the ICES statistical areas IIIa and IV for 1976, the Mackerel Working Group met in Bergen 10 - ll March, 1975.

The following members participated:

Mr. E. Bakken	Norway
Dr. J. Guéguen	France
Mr. J. Hamre (Chairman)	Norway
Dr. S. Lockwood	U.K. (England)
Ir. S. Muncn-Petersen	Denmark
IIr. K. Postuma	Netherlands
Mr. E.S. Prosvirov	U.S.S.R.
Mr. A. Revheim	Norway
Mr. A. Saville	U.K. (Scotland)
Mr. M. Volodarsky	U.S.S.R.

x) General Secretary

ICES
2920 CHARLOTTEINLU:N
Denmark

As pointed out in the previous report of this Working Group (CM 1974/H:2) in the NEAFC area there are two major stocks of mackerel, one spawning in the North Sea and another spawning in the Celtic Sea. In the part of sub-area IV north of $60^{\circ} \mathrm{N}$ there is a major fishery which exploits a population to which both stocks contribute. Therefore in considering the TAC for subarea IV and division IIIa it was necessary for the working group to take into consideration both stocks and the extent of their mixing in the Shetland area.

2. The fisheries

2.1. The North Sea, Skagerak and Kattegat

The development of the mackerel fishery in these waters (ICES statistical sub-area IV and IIIa) during the last decade has been outlined in the previous report by the Mackerel Working Group.

The total landings of mackerel increased greatly from 1972 to 1973 when the landings were about 376000 tons (Table l). This is nearly 20000 tons less than the estimates given in the previous report. Only preliminary catch data are available for 1974, and for some countries no. information could be obtained. Based on the data reported to the working group and assuming national catches equal to those of l'973 when data are lacking, the total catch of mackerel was about 326000 tons in 1974.

The 1974 catch is about 14% less than in 1973. This reduction is mainly due to the restrictions in the Norwegian mackerel fishery, as the national quota was lowered by 40000 tons compared to 1973.

As shown in Table 3c, the bulk of the catch was taken in July September in the Shetland area (ICES division IVa).

The only significant increase in national catch in 1974 was shown by the Faroe Islands.

2.2. The Western area

In this area (ICES sub-areas VI and VII) the total catch increased both in 1972 and 1973 (Table 2) and the catch in 1973 was about 170000 tons. This is twice the quantity of 1971.

The catch by Ireland in 1974 was assumed to be at least as large as that of 1973. The total catch in 1974, therefore, is likely to be slightly higher than that of 1973 at around 178000 tons.

3. Stock Distribution in the NEAFC area

As pointed out in the previous report of the Mackerel Working Group the two major spawning stocks mix in the Shetland area. Recent data from tagging experiments have provided additional information on the extent of this mixing (HAMRE, in press). These tag returns suggest that, after spawning, a major component of both stocks migrate to the area around Shetland where they mix, during July and August, in proportions relative to the size of the two stocks. After August the western component withdraws from this area, and throughout the rest of the year the mackerel population in subarea IV can be regarded as belonging solely to the North Sea stock.

4. Stock Sizes

4.1. North Sea Stock

Estimates of the size of the North Sea stock are almost entirely based on Norwegian tagging experiments, carried out annually in August in each year, over the period 1969 - 1974. During these experiments 40630 fish vers tagged and released of which 5215 had been returned up to 31 December 1974. The methods used to calculate the survival rate, and fishing mortality rate, using these tag return data are described by HAMRE (in press). In the previous report of the working group a provisional estimate of the size of the stock in 1973 derived from such tagging data was given of 1090×10^{3} tons.

Subsequent returns from these experiments have led to a revision of this estimate to 1360×10^{3} tons. This is considered a reliable estimate of the stock size at 31 August 1973, and is the last data for which a reliable stock size estimate can be given (Table 4).

4.2. The Western Stock

The estimate of stock size in the Western area is somewhat less reliable than for the North Sea. This is based on a total of 32864 tags distributed over annual releases in May, in the period 1970-1974. Of these only 607 tags had been returned up to the end of 1974. These results, however, suggest that the stock size in this area was of the order of 3000000 tons in 1973.

5. Fishing Mortality Rates

From all experiments in the two areas mean estimates of the fishing mortality rates in 1973-1974 of the two stocks are: North Sea stock 0.175 Western stock 0.05 (Table 5). The fishing mortality rate estimated directly from the tagging data for the western stock refers only to that generated in division IVa: for the stock as a whole the total fishing mortality is estimated as about 0.10 . These results suggest that the fishing mortality rate in the Western stock is about half that of the North Sea stock.
6. The Estimation of Total Allowable Catch (TAC)

The estimate of the total allowable catch is dependent on two factors:
a) the fishing mortality rate which should be applied to the stock to obtain the required management objective.
b) an estimate of the stock size in the year in question.

These two factors are discussed below.
a) Fishing mortality

The yield per recruit, at the current age of first capture of 2 years, is given as Figure l. This shows that, on the assumption that recruitment is independent of stock size, the yield from a
stock will not decrease at high levels of fishing mortality. However, high values of fishing mortality will seriously reduce the size of the spawning stock, which may reduce recruitment.

Recruitment to the North Sea mackerel stock has been at a rather low level since the 1969-yearclass recruited in 1971-72. The maintenance of an adequate spawning stock in that area, therefore should be a prime consideration. The estimated sustainable yield at various levels of fishing mortality, in the situation where recruitment is dependent on stock size, is shown in Figure 2 for what is considered the likely value of the coefficient b in the Beverton \& Holt stock-recruitment relationship (HAMRE and ULLTANG, 1972). In this situation the greatest yield is taken at a value of fishing mortality of 0.2 . Referring to Figure 1 it can be seen that the yield per recruit at this value of F is only about 20% less than the maximum. In the current stock situation the working group considers that it would be advisable to apply a TAC calculated at this value of F rather than risk a breakdown of the stock and the fishery, due to the establishment of a relationship between recruitment and stock size. The estimate of F for the North Sea stock, given in paragraph 5, is already very close to the value given above as providing the optimum yield where recruitment is a function of stock size. In the Western stock the estimated F in 1973 was well below that value. Priority therefore should be placed on restricting further increase of fishing effort in the North Sea stock.
b) Size of North Sea stock in 1976

The last reliable estimate of the North Sea stock is that given for 1973 in paragraph 4.l, of 1360000 tons. From the catch statistics for 1973 and 1974 it is estimated that 825000 tons of this stock will remain at 1 January 1975. Assuming maintenance of the 1974 fishing mortality rate in 1975, and a natural mortality rate of 0.2 , this stock will be reduced to 544000 tons by 1 January 1976. To this must be added an estimate of recruitment in the years 1974-1976. This recruitment will chiefly be derived from the 1972 and 1973 yearclasses both of which, on current indications, are of about the same order of size as the 1970 and

1971 yearclasses. It is estimated that these two yearclasses will add about 256000 tons to the residual of the 1973 stock by 1976. On this basis the total stock size for the North Sea stock in 1976 is estimated at 800000 tons.

7. Total Allowable Catches

7.1. The TAC for the North Sea and Skagerak in 1976

From the size of the North Sea stock and the optimum fishing mortality rate, given in paragraph 6, the estimate of the rAC form this stock is 132000 tons. This is an estimate only of the TAC which should be taken from that stock in these areas. In addition in sub-area IV there is a fishery in July and August around Shetland which exploits a population consisting of a mixture of North Sea and Western stocks. The contribution from the Western stock to the Shetland catches in July-August in 1973 and 1974 was approximately 70% of the total catch in these months. The overall TAC which can be taken from region IV and IIIa is therefore largely dependent on the proportion of the TAC for the North Sea stock which is taken in July-August in the Shetland area. The Working Group considers, however, that 50,000 tons of the North Sea stock TAC should be allocated to the Shetland area, and 82000 tons to sub-area IV and division IIIa south of $60^{\circ} \mathrm{N}$. On this basis the overall TAC of sub-area IV and division IIIa would be 249000 tons of which 167000 tons must be taken north of $60^{\circ} \mathrm{N}$, for the whole. of 1976. It must be stressed, however, that the overall TAC for this sub-area and division must be taken, in the proportions given, from the areas north and south of $60^{\circ} \mathrm{N}$. If it was all to be taken from the area south of $60^{\circ} \mathrm{N}$, and thus only from the North Sea stock that stock would be very heavily over-exploited.

7.2. The TAC for Sub-Areas VI and VII

In earlier paragraphs it was stated that the best available estimate of the fishing mortality rate of the Western stock in 1973 was considerably below the rate given above as that for the maximum sustainable yield. However, the exploitation rate of this stock
has been increasing in recent years and it must be expected that with maintenance of these catch levels the size of this stock will slowly decline. Moreover with all other pelagic fish stocks in the NEAFC area being under either actual or projected quota regulation it would seem most unlikely that the fishing effort on this western stock will not increase if it is left unregulated. The Working Group therefore considered that a precautionary upper level of catch should be introduced for this western stock in 1976.

Because the data available for the Western stock is less satisfactory than that for the North Sea stock the appropriate level of such a precautionary TAC can be estimated with rather less precision. Taking the estimate of the western stock in 1973 of 3 million tons, given in paragraph 4.2, with current recruitment levels and exploitation rates it is estimated that by 1976 this stock will have declined to a level of about 2.5 million tons. Applying the same optimum fishing mortality rate of 0.2 , used in deriving the TAC for the North Sea stock, one would get a TAC of 412000 tons from the Western stock. Of this quantity, however, under the fishing strategy advocated above for sub-area IV and division IIIa, 117000 tons would be taken in sub-area 'IV north of $60^{\circ} \mathrm{N}$. This would leave 295000 tons to be taken in sub-area VI and.VII in 1976.

8. Summary

8.1. The revised catch statistics for 1973 and preliminary ones for 1974 show that in the North Sea the total catch was about the same level in both years; with over 60% of the catch in both years being taken, in summer, in the Shetland area. In the western area the preliminary catch statistics for 1974 also suggest a total catch close to the 1973 level.
8.2. The yield per recuit curve for mackerel, at the present age at first capture, does not have a maximum which can be used in estimating the total allowable catch. At the present low level of spawning stock size for North Sea mackerel, and the low levels of recruitment in recent years, the Working Group concluded that the
optimum fishing mortality for mackerel should be estimated making some provision for a relationship between stock size anc recruitment level. This gave a desirable fishing mortality level of 0.2 . The present fishing mortality levels in the North Sea and Western stocks are 0.175 and 0.10 respectively.
8.3. The size of the North Sea stock in 1976 is estimated to be 800000 tons on the assumption that the fishing mortality rate in 1975 is maintained at the 1974 level. This will entail a TAC of 132000 tons in 1976 from this stock. The size of the Western stock in 1976 can be estimated with much less precision. It is likely, however, to be of the order of 2.5 million tons giving a TAC of about 412000 tons.
8.4. In sub-area IV the catch taken north of $60^{\circ} \mathrm{N}$ is composed of a mixture of the North Sea and Western stocks. To specify TAC's for ICES statistical sub-areas it is necessary therefore to specify how much of the total TAC for the North Sea stock should be taken north of $60^{\circ} \mathrm{N}$. This has been rather arbitrarily taken as 50.000 tons. On this basis the TAC for mackerel in sub-area IV and division IIIa in 1976 is estimated as 249000 tons and that for sub-areas VI and VII as 295000 tons.

9. References

ANON. 1974. Report of the Mackerel Working Group. Coun. Meet.int. Coun.Explor.Sea, 1974 (H:2): 1-14, 5 figs.[Mimeo.]

HAMRE, J. (In press). The effect of recent changes in the North
Sea mackerel fishery on stock and yield. Symposium on
The Changes in the North Sea Fish Stocks and their Causes,
Aarhus 1975. No. 22
HAMRE, J. and ULLTANG, \varnothing. 1972. The effects of regulations of the
mackerel fishery in the North Sea. Coun. Meet.int.Coun.Explor.
Sea, 1972 ($\mathrm{H}: 26$): 1-14.[Mimeo.]

Table 1. Total mackerel catch by countries, 1964-1974, in the North Sea (IVa, IVb, IVc), Skagerak and Kattegat (IIIa). (Metric tons).

	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
Belgium	125	138	67	201	77	139	19	85	129	78	128
Denmark	6311	6509	7552	20282	9887	10851	26753	17590	2023	7460	3875
Faroe Islands				-	-	3080	2134	3603	7551	10014	18625
France	9901	7635	5390	7486	4684	11353	4677	8953	6830	622	4317
Germany (DDR)						-	-	-	-	-	233
Germany (FR)	3495	2221	1501	2132	1353	1161	225	408	374	563	409
Iceland		-		105	352	612	1492	649	676	3079	?
Netherlands	17085	16977	12247	10801	5986	4928	2956	4945	4436	2316	2665
Norway	51383	156605	484428	866548	779084	683045	278631	200635	160141	337600	279400
Poland	7617	3695	2294	2261	1629	12	205	130	244	561	4520
Sweden	15006	13364	13754	15246	11783	10820	4407	3157	4748	2960	2824
$\begin{aligned} & \text { J.K. (England } \\ & + \text { Wales) } \end{aligned}$	67	76	99	46	55	35	35	23	32	30	35
U.K. (Scotland)	854	1.019	618	742	583	231	148	616	395	2942	1500
J.S.S.R.	3153	227	1778	4098	6094	12516	718	2600	611	11030	7600
Total	114997	208466	529728	929948	821567	738783	322400	243394	188190	379255	326131

Note: 1974 catches are provisional estimates.

Table 2. Total Mackerel Catch by Countries, 1964-1974, in the Western Area (ICES Sub-areas VI and VII). (Metric tons).

	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
Belgium	3	3	5	7	2	11	8	2	, -	3	9
Faroe Islands		-	-	-	-	-	-	-	-	2063	8659
France	21591	14651	38309	28655	29751	27290	35593	24538	29904	36501	$30 \quad 384$
Germany (DDR)			-	-	-	-	-	-	-	-	2883
Germany (FR)	187	1959	302	333	613	428	783	258	98	559	1700
Iceland	-		-	-	-	-	90	86	74	52	$?$
Ireland	1334	1860	1507	2245	2164	1615	1055	3107	4592	8314	$?$
Netherlands	1218	1411	2831	3859	2597	4441	3828	3837	6166	7807	4409
Norway	-	-	-	-	-	-	-	1611	-	-	-
Poland	330	212	3	520	1518	2149	6054	10832	13129	10536	22405
U.K. (England	1794	1583	1884	2634	2585	2692	3374.	4791	6923	13124	20000
and Wales)											
U.K. (N.Ireland)	103	111	97	158	151	279	243	315	57	93	$?$
U.K. (Scotland)	567	426	670	490	537	402	803	805	1412	5168	8130
U.S.S.R.	61	54	-	-	-	6147	13555	36390	71247	86000	71120
Total	27188	22270	45608	38901	39918	45454	65386	86572	133602	170220	169699

Note: 1974 catches are provisional estimates.

Table 3a. Mackerel Catch in 1972 by ICES Statistical Divisions and Periods (metric tons).

Table 3b. Mackerel Catch in 1973 by ICES Statistical Divisions and Periods (metric tons).

Area	Jan - Ma		Apr - Jun		Jul - Sept		Oct - Dec		Not specified		Total	
IVa		377	4	263	256	542	68	440	9	591	342	313
IVb		110	3	066	14	219		305	8	468	27	168
IVc		1		394		361		193		839		788
IIIa		26	1	358	5	503	1	074		23	7	983
North Sea, Baltic etc.	. 3	3614	9	081	276	625		012	18	921	379	252
VIa		11	1	061	5	865	1		9	085	17	850
VIb		-		-		-		-		150		150
VIIa+f		217	4	656		143	1	198	33	188	39	402
VIIb+c		-		-		-		-	1	823		823
VIId, e		-		-		-		59	61	006	61	065
VIIg-k		-		27		-		-	49	891		891
Western area		228	5	744	6	008	3	058	155	143	170	181
Total		842		825	282	633		070	174	064	549	433

Table 3c. Mackerel Catch in 1974 by ICES Statistical Divisions and Periods (metric tons). Preliminary Data.

Area	Jan - Mar	Apr - Jun	Jul - Sept	Oct - Dec	Not specified	Total
IVa	1566	6.717	200873	74059	8910	292.125
IVb	139	1778	7919	8077	8583	26496
IVC	1	1171	231	-	2929	4332
III ${ }^{\text {a }}$	13	1494	2253	61	-	3821.
North Sea, Baltic etc.	1719	11160	211276	82197	20422	326774
VIa	261	2638	2735	8266	12627	26527
VIb	-	3	2	-	-	5
VIIa+f	385	1882	6	430	33513	36216
VIIb+c	13	409	135	8	23	- 588
VIId, e	1060	1200	8320	6950	16858	34388
VIIg-k	22150	20640	2800	-	26375	71965
Western area	23869	$26 \cdot 772$	13998	15654	89396	169689.
Total	25588	37932	225274	97851	109818	496.463

Table 4. Total mortality rates (Z) and stock size (P in 1000 tons) of North Sea mackerel for 1969-1973. The estimates of p refer to September of each year, the Z estimates to the following one year period.

Year	Z	P
1969	1.05	920
1970	0.76	720
1971	0.36	920
1972	0.36	1290
1973	0.38	1360

Table 5. Estimates of fishing mortality (F) by area for the North Sea stock and the Western stocks of mackerel in September 1973 to 1974.

Area	NORTH SEA STOCK			WESTERN STOCKS		
	$\begin{aligned} & \text { IIIa }+I \\ & \text { S of } 60^{\circ} \end{aligned}$	IVa N of	Total	IVa N of 60°	$\begin{aligned} & \text { VI + } \\ & \text { VII } \end{aligned}$	Total
F	0.125	0.05	0.175	0.05	0.05	0.10

Figure 1. Yield per recruit (Y / R in kg) by fishing mortality (F) and age at first capture (t_{c}).

Figure 2. Estimated sustained yield (Y in million tons) by fishing mortality (F) and age at first capture (t_{c}) for density-dependent recruitment.

