This Report not to be cited without prior reference to the Council ${ }^{x}$)
International Council for the Exploration of the Sea

Pelagic Fish (Northern) Committee Ref. Pelagic Fish (S) Cttee

Digitalization sponsored by Thünen-Institut

PROVISIONAL INFORMATION AND DATA FOR ALLOCATION OF RESOURCES UNDER THE NEW EXTENDED NATIONAL
 FISHERIES JURISDICTION REGIME

prepared by

The ICES Mackerel Working Group

Abstract

This Report has not yet been approved by the International Council for the Exploration of the Sea; it has therfore at present the status of an internal document and does not represent advice given on behalf of the Council. The proviso that it shall not be cited without the consent of the Council should be strictly observed.

[^0]
LIST OF CONTENTS

Page
MACKEREL - NORTH SEA 1

1. General Biology 1
2. Exploitation and Management 1
3. Catch Statistics 2
4. References 3
Figures 1 - 5 4-8
MACKERELL, WESTERN ARFA 9
5. General Biology 9
6. Distribution 9
7. Exploitation 9
8. Stock fluctuations 10
9. Fisneries regulations 10
10. Catch statistics 10
Figures 1-3 11-13
PILCHARD (Sardina pilcnardus) 14
11. General biology 14
12. Stock estimates 14
13. Exploitation 15
Figures 1-4 15-19
Table 1 20
HORSE MACKEREL (Trachurus trachurus (L.)) 21
14. General biology 21
15. Exploitation and management 21
16. Stock size 21
17. Catch statistics 22
Figures l-2 23-24
Table 1 25
Table 2 26

MACKEREL - NORTH SEA

1. General Biology

1.1 Stock Identification

There are generally considered to be two stocks of mackerel, the North Sea stock (Anon., 1974) and the Western Stock, which spawn and overwinter in the North Sea and the Celtic Sea area, respectively. Nortn Sea mackerel are mainly found in ICES Sub-areas III and IV. Tagging has shown that a considerable amount of mackerel from the Western stock migrate into these areas during summer (Hamre, 1575; Anon., 1976 and 1977); there is also some emigration of North Sea mackerel into Sub-area VI.

1.2 Spawning

The main spawning area for North Sea mackerel is in the central North Sea ($54^{\circ}-58^{\circ} \mathrm{N}, 0^{\circ}-7^{\circ} \mathrm{E}$) during June and July (Iversen, 1973 ; Johnson and Dawson, 1575), but there is also some spawning in the Skagerrak (Lindquist and Hannerz, 1974). The main spawning areais indicated in Figure 1.

1.3 Distribution of larvae and juveniles

There is little information about the younger stages of mackerel. Larvae are mainly found in the central North Sea, particularly in July (Bainbridge, Cooper and Hart, 1974). The 0-group occurs in the same area while I- and II-group have a wider and more scattered distribution (Walsh, 1974). The coasts of the northem Nortn Sea and the Skagerrak can be considered to be important nursery areas.

1.4 Distribution and migration of adults

North Sea mackerel overwinter in deep water in the Norwegian Trench, from about $62^{\circ} \mathrm{N}$ soutnwards into the Skagerrak (Hamre and Nakken, 1970; Postuma, 1972). In early summer, the mackerel appear in the upper water layer and after spawning are mainly found in the northern North Sea. The distribution by season of adults is shown in Figure 2.

2... Exploitation and managèment

2.1 The fishery

Until 1964 mackerel in the North Sea were caught mainly by trawl, gillnet and hook and line. The total annual catch was less than 100000 tons. After 1964 landings increased rapidly due to the development of the Norwegian purse-seine fishery, and reached 934000 tons in 1967. In the following years catches were reduced, partly due to regulation of the purseseine fishery. The main fishing season is July-October. In Figure 3 the total catch of mackerel taken in the North Sea, Skagerrak and Kattegat in the last 10 years is shown. As indicated above, part of this catch is derived from the Western stock of mackerel. In 1972, 1973, 1975 and 1976 the contribution of the Western stock is estimated to have been about 25% of the total catch of mackerel from the North Sea shown in Figure 3. In 1974 it is estimated to have been about 40% because of the high proportion of the total Nor,th Sea catch taken during that year from the Shetland summer fisheryo

2.2 Stock fluctuations

The changes in stock size of Nortn Sea mackerel are indicated in Figure 4. The stock size at the beginning of each year has been estimated from tagging data. The decline in stock size up to 1970 is mainly a result of the fisnery; after 1573 the decline has been due to the poor recruitment after the 1969 year class.

The average long-term annual yield is estimated to be about 300000 tons at an exploited stock size of $1.2-1.5$ million tons.

2.3 Fisneries regulations

The fishery of mackerel in the North Sea has not been subject to effective international management, altnough a NEAFC recommendation pronibits fishing of mackerel smaller than 30 cm for industrial purposes, and also with some excemptions, pronibits a fishery for this purpose in the first half of the year.

The Norwegian catch of mackerel in the North Sea has annually accounted for about 80% of the total catch. National regulation of the Norwegian fishery has, therefore, been of major importance. The regulations have been in force since 1970 and include : minimum legal size, prohibition of fishing for industrial purposes November-July, total catch quota and closed areas. As a result of these restrictions, the stock of mackerel increased from 1970 to 1973. Later it declined due to poor recruitment, although the rate of decline has been reduced by the quota limitations.

3. Catch statistics

3.1 The last lo-year period

Catch statistics of mackerel have not been reported with reference to areas comparable to the new economic zones in the North Sea. Estimates of the catch proportions within each zone must therefore be based to a large extent on general information about the mackerel fishery of each country.

The very large catches of mackerel taken during the period 1966-1969 were a result of the introduction of the purse-seine fishery by the Norwegians. A large part of the catch was taken in autumn along the southern and western slope of the Norwegian Trench. The Swdish catch was taken in the same area. After this period, because of national regulations, which reduced the fishing effort south of $59-60^{\circ} \mathrm{N}$, the Norwegian fishery took place furtner north and west. Consequently, a large part of the total international catch was then taken in the Shetland area, and a considerable proportion of this mackerel originated from the Western stock. In the most recent years, the Norwegian and Faroe catches have accounted for most of the total, and these fisheries have resulted in larger proportions being taken on the eastern side of the northerr North Sea.

In order to relate catches to economic zones, it seems to be necessary to restrict considerations to the Norwegian and the EEC zone within the North Sea.

In tine Skagerrak the position of zones is obscure.

In the following table an attempt is made to estimate the proportion of the total catch taken within the zones of Norway and the EEC in the North Sea.

	Norway	EEC
$1966-1969$	75	25
$1970-1974$	40	60
$1974-1976$	60	40

3.2 Present state:

The catches of mackerel within each of the zones in the North Sea in 1975 are shown in Figure 5. The data are based on estimates made by Working Group members.

4. References

Anon. 1974. Survey of fish resources in the Nortn-East Atlantic. ICES Coop. Res. Rep. 37: 1-11.

Anon. 1976. Report of the Mackerel Working Group. ICES C.M. Doc.1975/H:3, 1-37. (mimeo).

Anon. 1977. Report of the Mackerel Working Group. ICES C.M. Doc.1977/(in prep.)
BAINBRIDGE, V., COOPER, G.A. and HART, P.J.B., 1974. Seasonal fluctuations in the abundance of the larvae of mackerel and herring in the north-eastern Atlantic and North Sea. Pp 159-169 in ed. J.H.S. Blaxter: The early life history of fish. Springer-Verlag, Berl., Heidelb. and N.Y.

HAMRE, J., 1975. The effect of recent changes in the North Sea mackerel fishery on stock and gield. The changes in the North Sea fish stocks and their causes. Int.Coun.Explor.Sea, Symp., Aarhus, 1975 (22):1-38. (mimeo).

HAMRE,: \because J. and NAKKEN, 0., 1971. Undersøkelser av fiskeforkomster i Nordsjoen og Skagerak i september 1970. Fiskets Gang 4: 64-68.

IVERSEN, S.A., 1973. Utbredelse og mengde av makrellegg (Scomber scombrus) og zooplankton i Skagerak og nordlige del av Nordsjoen for \&rene 1968-1972. Thesis, Univ. of Bergen, Norway. Unpubl.

JOHNSON, P.O. and DAWSON, W.A., 1975. The distribution of eggs and larvae of some pelagic fish species in the central and southern North Sea during June 1972. ICES C.M. Doc. 1975/H:13, l-25, 2 tabs:, 12 figs. (mimeo).

LINDQUIST, A. and HANNERZ, L., 1974. Migrations of the mackerel in the nortinerm: North Sea and in the Skagerak. J. Cons. int. Explor. Mer, 35(3):276-280.

POSTUMA, K.H., 1972. On the abundance of mackerel (Scomber scombrus L.) in the northern and north-eastern North Sea in the period 1959-1969. J.Cons. int. Explor. Mer, 34(3), 455-465.

WALSH, M., 1974. The distribution and abundance of adolescent mackerel in the North Sea. ICES C.M. Doc. 1974/H:32: 1 - 7, 3 tabs., 12 figs. (mimeo).

Figure 1 North Sea mackerel. Main spawning area (<100 eggs per m${ }^{2}$) and general total range of spawning.

Figure 2 North Sea mackerel. Areas of main concentrations in summer-autumn and the overwintering area (cross-hatched). Range of distribution indicated.

- 6 -

Figure 3 Mackerel. Total catch in tine North Sea, Skagerrak and Kattegat 1966-1976.

Figure 4 North Sea mackerel. Estimates of stock size (adults, $\geqslant 2$ gears) at the beginning of the year; from Norwegian tagging experiments.

Figure 5 Mackerel. Estimated catch by economic zones in 1975.

MACKEREL, WESTERN AREA

1. General Biology

1.1 Spawning (see Figure 1)

Two spawning areas have been identified for the western stock :

1. In Biscay, spawing starts along the continental shelf at the end of February with a maximum in March; closer to the French coast spawning takes place in May and June.
2. On the Celtic Shelf the spawning season continues from March to July.

2. Distribution

2.1 Juveniles

Not much is known about the distribution of young stages. 0-group fish ($\sim 18 \mathrm{~cm}$) appear to the south of Cormwall (Div. VIIe) in OctoberDecember and overwinter in this zone. They do not seem to shoal with older fish.

2.2 Adults

The range of distribution of Westerm stock mackerel and its overwintering areas are shown in Figure 2. Fish spawning in Biscay migrate nortinards to the Celtic Sea, the Shetland area and the northern North Sea. Some of them, however, remain in Biscay along the shore in summer.

As shown by English and Norwegian tagging experiments, after spawning in the Celtic Sea, adult mackerel tend to migrate northwards. Migration routes are known : one along the western coast of Ireland to Shetland, another through the Irisĭ Sea and the third through the Eriglish Cainnnel into the North Sea. In autumn a reverse movement occurs.

3. Exploitation

3.1 The fishery

Between 1966 änd 1969 the total catch from Sub-areas VI, VII and VIII remained at a rather constant level of around 70000 tons. Then an increase took place which brought the total reported catch to 103.000 tons in 1970 and around 500000 tons in 1975. Although provisional, the figure for 1976 does not seem to be appreciably different from that of 1975. (see Figure 3).

At the end of the 1960 's, both Sub-area VII and Sub-area VIII contributed about 40% of the catch, but in the 1970 s , the bulk of the catch has come from the Celtic Sea, where a directed fishery has been operating on overwintering and spawning concentrations. The most recent assessment of this stock suggests that the exploitation rate in 1976 was appreciably above the optimum.

4. Stock fluctuations

Up to recent years, no stock estimate was available. In 1977, the ICES Mackerel Working Group estimated tine stock size at 2000000 tons at the beginning of 1975 and noted a decline since 1973. Some echo surveys and egg and larval sampling are now being undertaken to provide estimates of stock size which are independent of commercial fisheries data.

As in the Nortin Sea, large fluctuations in the abundance of year classes occur, Both in 1968 and 1971 year classes were abundant and have made major contributions to the fisnery.
5. Fisneries regulations

To date, no international regulation has been applied to the Western stock. Limited national, commercial restrictions have been introduced on occasions in recent years by France.

6. Catch statistics

During the last 5 years about 50% of the catch in Sub-areas VI, VII and VIII have been taken inside the EFE 200 -mile fisneries jurisdiction, the remaining 10% being caugnt in Sub-area VIII adjacent to the Spanisi coast.

In 1972, the USSR catch accounted for 42% of the total. In 1975, this proportion increased to 63%. At the same time, the share of EEC member countries declined from 32 to 21%.

Figure 1 Mackerel, Western stock. Spawning areas (from egg distribution).

Figure 2 Mackerel, Western stock. Total range of distribution and overwintering areas (hatched).

Figure 3 Mackerel, Western area. Catches in Sub-areas VI, VII and IX 1966 - 1975.

PILCHARD (Sardina pilchardus)

1. General biology

1.1 Stock identification

In the ICES region the pilchard is widely distributed all over the area between the North Sea and Azores (Figure 1). The main fisheries take place in Divisions VIId-e, Sub-area VIII and coastal parts of Sub-area IX.

From meristic and morphometric characters, two races have been described :

- the Iberian race or southemeuropean Atlantic race, with a distribution from Gibraltar to the Cantabrian coast.
- tine nortinern european Atlantic, distributed between northern Spain and the North Sea.
1.2 Spaming areas and periods

The pilcinard is a serial spawner. Regular plankton surveys undertaken by British, French and Spanish laboratories have given the information on the spawning areas and periods shown in Figure 2.
1.3 Distribution and migrations of goung stages

The youngest individuals have very seldom been caugit and on these occasions onls in shallow water along beaches or in ports.
The "0-group" appears in commercial catcines in the second half of July between 46° and $47^{\circ} \mathrm{N}$ at a length of about 8 cm . In August, this age group is fisned at the mouth of the Loire and in September and October off south Finistère.

In winter the majority of these young fish migrate southwards to the Landes coast where they are fished in February and Marcin; the length is then 15 to 16 cm and they have a winter ring on the scales. In no otner areas have 0 -group fisn been detected in commercial quantities despite research vessel fisning. In the spring and summer fisheries occur along the coast of Brittany on fish with a modal size of $18-19 \mathrm{~cm}$. These fish are believed to migrate to the spawning areas in the Celtic Sea, the English Channel and along the edge of the Frencin continental shelf.

Figure 3 shows the distribution of the juveniles, 0 - and 1-group in the southern area.

1.4 Distribution and migration of adults

After spawning, one component of the adults (Figure 4) migrates towards the area north of the Loire. For the nortnern component of the population, little is known about the migration pattern. However, it is known that the fish withdraw westwards from the North Sea at the onset of winter.
2. Stock estimates

The size of the spawning stock in the English Channel was estimated by Cushing (1957), using Andreu's (1950) fecundity rate to be 10^{10} fish in 1550 (i.e., 800000 tons). More recent data (Macer, 1975), give a fecundity rate twice as higi as that used by Cusiing and this would reduce his figure by one half. In Sub-area VIII relevant data conceming stock size are not available.

Borrmann and Holzlönner estimated the size of the Western Channel stock from a cohort analysis. They obtained estimates of 100-200 thousand tons depending on the parameters used. It must be pointed out that the figures they used for the 1975 catch is 31% lower than the actual catcin reported.

3. Exploitation

3.1 Catches

Table 1 shows catches from 1965 to 1975. In Sub-area IX following a period of hign catches in 1965-67 of about 170000 tons, the catch declined to about 100000 tons in 1973-75. No detailed breakdown of the distribution of Spanish and Portuguese catches within the Sub-area was available.

Catches in Sub-area VIII have fluctuated around 38000 tons annually. Spain took 90% of the total catch from this Sub-area in this period, probably mostly from its own waters.

3.2 Fishing_gear

In Sub-areas VIII and IX the only gear used up to the early 1970's was the purse-seine. In later years in France, pelagic trawling has been developed using small boats (below 21 m). The number of French fishing vessels has decreased from 338 in 1962 to 80 in 1975.

In Sub-area VII, after the decline of the British drift netters, pelagic trawling by single or pair trawlers was the main gear used. No detailed data are available on fishing effort.

Figure 1 Pilchard. Distribution of adults

Figure 3 Pilchard. Southern population component. Distribution of 0- and l-group.

Figure 4 Pilchard. Southern population component. Migration pattern of adults and spawning areas.

Table 1. Total catch of Pilchard per statistical area (ICES Bulletin Statistique)

Year	1965	1966	1967	1968	1969.	1970	1971	1972	1973	1974	1975
IVa	5	11						7			2
IVb			1	6	1			4	12		
IVc	120	33	55	6	5	50	169	152	128	3064	1554
VIa		4	29	1	1	1	3	287	15	36	11
VIIa	139		35	521	387	27	61			287	149
VIIf								281	595	22	307
VIIb, c		18	1		3						102
VIId, e	3802	1. 197	1345	965	1020	1853	2111	7839	5852	4636	7231
VII g, k	280	601	228	227	168	83	873	604	286	657	2311
VIII	39543	37566	38536	32205	45709	34546	50493	39603	50708	38002	55211
IX	184798	168985	160.291	131354	104835	101464	133045	132803	119348	88916	108402
X	189	(8 851 ${ }^{\text {x }}$)	() 121	119	30	56	115	128	346	189	-
TOTAL	228876	217266	200642	165.404	152159	138080	186870	181708	177290	135809	175280

x) of which 8732 tonnes have been declared by France but actually originate from Sub-area VIII.

HORSE MACKFREL (Trachurus trachurus (L.))

1. General biology

1.1 Distribution

The horse mackerel (Trachurus trachurus (L.)) has an extensive distribution. In the ICES area, the range extends from off Portugal and Spain as far west as ICES Sub-area X, north around the British Isles and into the North Sea extending eastwards into the Kattegat and western Baltic (Figure l).

1.2 Spawning

Only two major spawning areas are known. In the 'southern area' (SpainPortugal), sdawning occurs from Feburary to May, while in the 'northern area' (English Channel-North Sea) spawning occurs from May to August. During these periods temperatures in the surface waters range from $11^{\circ} \mathrm{C}$ to $16^{\circ} \mathrm{C}$. Horse mackerel spawn for the first time at age 3 or 4 . The eggs are pelagic.

1.3 Distribution of larvae and juveniles

The distribution of larvae and juveniles are not well documented. Juveniles . have been found off Portugal and Spain, in Biscay, English Channel, the : southern North Sea and in fjords of western Norway.
1.4 Growtin

The growth pattern of horse mackerel is similar to that of mackerel with a rapid rate during the first 3 years of life, then dropping off sharply after maturity is reached.
1.5 Distribution and migration of adults

No data are available to show the migration patterns or permit a degree of stock discrimination. Some general ideas regarding distribution can be proposed based on catch distribution, limited sampling and general observation. The known horse mackerel overwintering areasare in the western English Channell, and to the south and west. During the spring and summer there is some movement northwards along the west coast of the British Isles into the North Sea. It is not known if the population in Sub-areas VIII and IX take part in this migration.

2. Exploitation and management

Horse mackerel fisheries occur throughout the year within the ICES area, but vary seasonally from Sub-area to Sub-area. A wide variety of gears is used. These include trawls, purse seines, gillnets and hook and line. The horse mackerel is used for human consumption, fish meal and oil. No regulation has been applied to these fisneries.

3. Stock size

No information is available as to the stock size.

4. Catci statistics

Catch statistics are given for the ICES areas for 1966-1975 in Tables 1 and 2. In this period, catches have increased from 100000 tons in 1966 to a peak of 350000 tons in 1973, declining to 265000 tons in 1975. Figure 2 shows the distribution of catches in 1973-75 on the smallest statistical areas available. In the absence of any detailed information on catch distribution from those countries with a major share in the fisheries, the Working Group was unable to allocate the catches between economic zones.

Fig. 1 Horse mackerel. Total range and main distribution area in the ICES region.

Fig. 2. Horse mackerel. Percentage of total annual catch within ICES statistical Sub-areas and Divisions (3 year average, 1973-1975).

Table 1. Catch of horse mackerel by countries 1966-1978 (tons). ICES Sub-areas and Divisions IIa, IIIa, IV, VI, VII, VIII, IX and X. (Data as officially reported to ICES).

Country	1966	1967	1968	1969	1970	1971	1972	1973	1974	1974	1976 ${ }^{1)}$
Belgium	4	10	36	37	33	41	75	72	37	27	
Denmark	-	-	4	-	-	-	-	-	-	- .	
Faroe Islands	-	-	-	-	-	-	-	5370	1114	158	
France	-	-	1830	2479	2768	3039	3603	6549	5525	4969	8000
German Dem.Rep.	-	-	-	-	-	-	-	-	49	107	
Germany Fed.Rep.	1532	96	1238	1096	966	395	175	2891	1720	1480	
Iceland	-	-	-	-	-	-	-	379	203	-	
Netherlands	7	7	37	24	190	186	175	149	576	320	
Norway	-	-	-	-	7404	23173	6381	20760	21393	3194	5300
Poland	164	73	2330	420	1192	627	2081	3921	5772	2348	3026
Portugal	53453	62998	74894	48677	62767	57414	63054	$45 \cdot 192$	50634	45972	
Spain	47000	53352	62326	85781	98418	26167	82247	113361	70733	83849	
Sweden	-	-	-	-	-	-	-	2	2	1	
U. K.	214	107	104	111	121	146	221	265	1957	636	
U.S.S.R.	279	-	-	13320	74952	57049	107753	154254	120264	122014	
Total	102653	116643	142799	151945	248811	168237	265 765	353165	279979	265075	

[^1]Table 2. Catch of horse mackerel by Sub-areas and Divisions 1966-1976 (tons). (Data as officially reported to ICES).

Year	IIa	IIIa	IVa	IVb	IVc	VIa	VIb	VIIa	VIIb, c	VIId, e	VII f	VIIg-k	VIII	IX	X
1966	-	-	430	1620	45	69	-	7	7	17	-	4	43035	53475	3943
1967	-	-	16	117	10	38	-	7	1	39	-	64	48439	63 851	4060
1968	-	7	33	1367	131	88	-	64	-	570	-	2209	56393	78502	3434
1969	-	-	18	1063	137	111	-	136	34	1399	-	13290	80565	51685	3504
1970	76	\cdots	$10 \quad 705$	1079	202	100	1	310	1478	554	-	$70 \quad 712$	95169	$64 \quad 714$	2710
1971	-	-	31395	414	241	2532	1	18	765	610	-	46901	26390	$55 \quad 203$	3767
1972	1	-	7590	22	543	1680	196	4012	2104	33844	4000	56276	80507	63811	$\begin{array}{lll}11 & 187\end{array}$
1973	86	40	39839	1720	426	6497	-	6	205	62159	6129	46108	$116 \quad 519$	43712	29708
1974	-	4	25411	1790	3550	$\begin{array}{lll}3 & 351\end{array}$	170	16555	3875	32842	3	$62 \quad 101$	59985	50771	19538
1975	141	11	2408	4018	3505	3332	47	348	635	35002	$22 \quad 674$	58687	85046	45734	$3 \div 55$

[^0]: x) General Secretary, ICES, Charlottenlund Slot, DK-2920 Charlottenlund, Denmark

[^1]: 1) Provisional
