This Report not to be quoted without prior reference to the Council
International Council for the
Exploration of the Sea

REPORT OF TRE MACKEREI WORKING GROUP Copenhagen, 6-13 September 1983

This document is a report of a Working Group of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. Therefore, it should not be quoted without consultation with the General Secretary.

[^0]$$
\Rightarrow
$$

TABLE OF CONIENXS

Page
I. INIRODJCTION 1
1.1 Terms of Reference I
1.2 Participation. 1
2. ALLOCATION OF MACKEREL CATCHES TO STOCKS 1
2.1 Allocation of Catches in Divisions IIa, IVa, and VIa to Stocks 1
2.2 Division IXa 3
3. MACKEREL - NORTH SEA AREA 3
3.1 North Sea Area (Sub-area IV, Divisions IIa and IIIa) Fisheries in 1982 3
3.2 Catch in Numbers and Weight at Age 3
3.3 Stock Assessment 4
3.4 Forecasts for the North Sea Stock 6
4. MACKEREL - WESTERN AREA 8
4.I The Fishery in 1982 (Sub-areas VI, VII and VIII) 8
4.2 Catch in Numbers and Weight at Age in the Western Area 8
4.3 Stock Assessment 9
4.4 Forecasts for the Western Stock 11
4.5 Closed Area in the Celtic Sea 11
5. MACKEREL IN SUB-AREA IX 12
5.1 The Fishery in 1982 12
5.2 Biological Information 12
6. HORSSE MACKEREL 12
6.1 Landinga of Horse Mackerel - Sub-areas IV and VI, VII, VIII and IX 12
6.2 Biological Data 13
7. DENSITY DEPENDENGE AND DEFTCIENGIES IN DATA 13
7.1 Density Dependence 13
7.2 Deficiencies in Data 13
References 14
Tables 2.1-6.1.D 15
Figures 3.1-4.2 44
Appendix A: Method used to allocate a Mixed Gatch to Stock Components 52
Appendix B: North Sea Egg Surveys 55
Appendix C: Preliminary Report on the 1983 Plankton Survey to estimate the Western Mackerel spawning stock size 57

1. INIRODUCTION
1.2 Terms of Reference

At the 70th Statutory Meeting in Copenhagen, it was decided (C.Res.1982/2:5:12) that the Mackerel Working Group (Chairman: Dr J Gueguen) should meet at ICES headquarters from 6 to 13 September 1983 to:
" (i) assess catch options for the mackerel stocks in Sub-areas II, III, IV, VI, VII, VIII and IX inside safe biological Iimits,
(ii) continue the examination of the relationship between Sub-area IX mackerel and the Western area stock (Subareas VI-VIII),
(iii) assess the state of the horse mackerel in Sub-areas VII, VIII and IX,
(iv) review which data are available in the Working Group files for evaluating density dependence in the parameters of the models used in fish stock assessment,
(v) specify deficiencies in data required for assessments."

In addition, the Group was asked by ACFM to give further information on the frequency of juvenile mackerel in commeroial fisheries in the Celtic Sea broken down by statistical rectangles and month in order to advise on the delineation of the closed area in that zone.
Following a comment by ACFM, the Working Group decided to modify the presentation of its report and to present the results for each stock separately.
1.2 Participation

The Group met in Copenhagen with the following participants:

F Bakken	Norway
A Eltink	Netherlands
A Fariña	Spain
J C Guéguen (Chairman)	France
S A Iversen	Norway
S J Lockwood	United Kingdom (England/Wales)
J Molloy	Ireland
A Saville	United Kingdom (Scotland)
P Sparre	Denmark
T Westgard	Norway

Mr K Hoydal, ICES Statistician, also attended the meeting.
2. ALLOCATION OF MACKBREL CATCHES TO STOCKS
2.1 Allocation of Catches in Divisions IIa, IVa and VIa to Stocks

The allocation of fish caught in Divisions IIa, IVa and VIa was made by the following pexcentages:

		Divisions		
1981:	North Sea stock	IIa	IVa	VIa
	Western stock	52	100	75
1982:	48	0	25	
North Sea stock	35	100	25	
Western stock	65	0	75	

The reasoning behind these percentages is given below. Division IIa
The percentages are derived from age composition data, and are calculated by the method described in Appendix A. The percentages, by age groups, are given in Table 2.1. It should be noted that most of the estimated mixing factors "x" (the fraction of North Sea atock in the catch) fall within the expected range, $0 \leq x \leq 1$.
These results are not supported by Norwegian tagging experiments, the results of which are given in Table 2.2 for 1981-83, but the 1982 returns can be summarized as follows:

	Number of releases 1970-81	Number of reca Div.IIa during not including in 2982)	Spawning stock in 1982
North Sea area	89336	6	352×10^{6}
Celtic Sea area	124674	39	786×10^{6}

The estimate of the proportion of North Sea stock ($P_{\text {NS }}$) in the catches follows the method described earlier (Anon, , 1981):

$$
P_{\text {NS }}=\frac{\frac{6 \times 352}{89336}}{\frac{6 \times 352}{89336}+\frac{39 \times 7786 \times y}{124674}}
$$

where y is the fraction of the Western stock with which the fish tagged off Ireland mix. The value calculated for $P_{N S}$ varies with the value assumed for y :

y	1	$\frac{1}{2}$	$\frac{1}{4}$	$1 / 8$	$1 / 16$
$P_{\text {NS }}$	0.01	0.02	0.04	0.08	0.15

These results are based on very few recaptures and should, therefore, be treated with reservation. As fish tagged in the North Sea may include Western atock fish, these values of $P_{N S}$ may be overestimates.

Division VIa

It is assumed that all fish taken in the Minches, west of Scotland, and off northwest Ireland are of the Western stock. Fish taken in the winter (Rona) fishexy north of $58^{\circ} 30^{\prime \prime} N$ (Butt of lewis) may be of either stock.

Applying the method described in Appendix A to the age composition data from the Rona fishery, it was calculated that in 1981100% of the catch were of the North Sea stock, whereas in 1982100% were from the Western stock (Table 2.1). As Norwegian tag returns show that some fish from the Western stock remained in the Rona area in 1981, and some fish of the North Sea stock remained there in 1982, the Working Group could not accept these results. Following careful consideration of the problem it was decided to allocate 25% to the Western stock in 1981, and 25% to the North Sea stock in 1982. These figures should, however, be treated with reservation as they are not based on calculations.
The value of 25% chosen as the percentage North Sea stock in the 1982 catches is within the range of possible values calculated from the limited number of Noxwegian tag returns (Table 2.2). Daing this method of analysis (as applied to catches in Division IFa, above) the chosen value of 75% North Sea stock in the 2981 catch appears to be an overestimate.

y	1	$\frac{1}{2}$	$\frac{1}{4}$	$1 / 8$	$1 / 16$
1981	0.12	0.21	0.35	0.52	0.68
1982	0.11	0.20	0.34	0.50	0.67

These results are based on very few tag returns.
2.2 Diyision IXa

Although previous Working Groups (Anon., 1981, 1982) have considered the stock composition of mackerel from Division IXa, it has not been possible, because of lack of adequate data, to decide whether catches from this area should be included in the assessment of the Western stock. No additional data were presented to this meeting which would clarify the situation. Consequently, the Working Group, as in previous assessments, has not included catches from Division IXa with those which have been taken from what is considered as the Western stock.

3. MACKEREL - NORTH SEA AREA

3.1 North Sea Area (Sub-area IV, Divisions IIa and IIIa) Fisheries in 2982

Total landings for the years $1973-82$ by country are shown in Table 3.1.A (North Sea, Skagerrak and Kattegat) and in Table 3.I.B (Norwegian Sea). ACFM recommended no TAC in 1982, but a TAC was agreed between EEC and Norway for the North Sea, Skagerrak and Kattegat and set at 25000 tonnes. Total landings from the North Sea, Skagerrak and Kattegat amounted to 33800 tonnes, of which 81% were taken by Norway. In Division IIIa 4500 tonnes were taken, and in the North Sea 28200 tonnes. Landings from Division IIa amounted to 37420 tonnes, the highest landings on record, 92% of which were taken by Norway. The landings in 1982 from Division IIa represent a 50% increase compared to 1981 , which may be explained by a reduction in the limits on industrial fishing by Norwegian vessels in 1982.

The total catch of the North Sea stock in 1982 was estimated at 56000 tonnes. The landings by quarters are summarized in Table 3.1.c. As in previous years, the bulk of the catch was taken in the third quarter of the year.

3.2 Catch in Numbers and Weight at Age

3.2.1 Catch in numbexs

In the Norwegian Sea (Division IIa) Norway caught 92% of the total 1982 catch of 37000 tonnes.

Catches taken by Poland and Denmark were allocated to numbers at age according to Norwegian data. The catches of USSR, all taken in the third quarter, were allocated to numbers at age according to data in a paper prepared for the ICES Statutory Meeting in 1983 by Seliverstova (C.M.1983/H:25). Norway took 70% of the 1982 catches in Division IIIa. The Norwegian catches were taken in the Skagerrak, and age compositions in these catches were applied to the Danish and Swedish catches.
In the northern North Sea (Division IVa) 90% of the 1982 catches were taken by the Norwegian drifters and purse seiners (Figure 3.1). Norwegian and Scottish age composition data were applied for allocating catches taken by Denmari, France, England and Sweden into numbers at age.
In the central North Sea (Division IVD) 90% of the 1982 catches were taken by Norway and the Netherlands. Age compositions from these catches were applied when allocating the catches from France, Federal Republic of Germany, England and Belgium to numbers at age.
The Dutch vessels caught about 25% of the total 1982 catch in the southern part of the North Sea (Division IVc). Catches taken by France, England and Belgium were allocated to numbers at age according to Dutch age composition data.
Table 3.2.B shows the catch in numbers in the Norwegian Sea, Skagerrak and Kattegat, and the North Sea. The ll+ group was split in accordance with Norwegian age compositions for all the areas. In Division IVc no data were available for splitting the ll+ group. This was split in accordance with Norwegian data for Division IVb.
No O-group mackerel were caught in 1982.

Revision of 198l data

The landings of mackerel in 1981 are given in Table 3.1.A. Revisions were made in the preliminary 1981 data given in the previous Working Group report (Anon., 1982) for some countries. Most revisions were small, but new information revealed that the landings by the United Kingdom (Scotland) were about 7000 tonnes higher than the previously reported catch.

In the previous assessment when calculating catch in number, the Scottish landings were allocated as 2686 tonnes in Division IVc and 2993 tonnes in Division IVb. According to the new information, the total Scottish catch of 10575 tonnes were taken in Division IVb. Consequently, a revision was made in the catch in numbers at age for 1981 according to age compositions of Scottish catches from Division IVb.
Faroese catches in Division VIa in 1981 were also revised from about 19000 tonnes previously reported to about 9000 tonnes. Galculated catch in numbers by age was adjusted accordingly, and part of the catch allocated to the North Sea stock (Section 2.1).
The revisions outlined above were incorporated in Tables 3.2.A and 3.2.c.

3.2.2 Weight at age

Mean weight at age data applied were the same as last yearis. They are given in Table 3.4.A.

3.3 Stock Assessment

3.3.1 Egg auryeys in the North Sea

During the period 24 May - 31 July 1982 one Dutch and four Norwegian surveys were carried out to estimate the mackerel egg production. Two
limited surveys were carried out by a Scottish vessel in the central part of the spawning area: 9-24 June and 26-27 June. In addition to egg sampling they carried out acoustic investigations on the spawning stock.

An estimate of the total egg production in the North Sea was based on the Dutch and Norwegian surveys. These data were supplemented by daily plankton samples of two Norwegian oil installations, "Ekofisk" ($56^{\circ} 34^{\prime} N, 03^{\circ} 08^{\prime} 8$) and "Cod" ($57^{\circ} 04^{\prime N}, 02^{\circ} 26^{1 E}$), to establish the spawning intensity at these two locations. The methods for sampling and estimating total egg production were the same as those applied earlier (Iversen, 1981), except that the Dutch used a Gulf III sampler. The total egg production was estimated at 110×10^{12} eggs, which is 10% higher than that given by Iversen and Eltink (1983, in press). The explanation for this is given in Appendix B. This is more than twice that estimated for 1981 (Iversen, 1982). The large difference in estimated egg production between 1981 and 1982 might, to some extent, be explained by the lack of data prior to 10 June 1981. Although little is known about confidence limits of such egg production estimates, the fecundity/weight relationship $F=560 \times \mathrm{wl} 14$ is close to linear (W in g) (Iversen and Adoff, 1983, in press) in the range of fish weights investigated. This relationship gives a spawning stock of 165000 tonnes. The sex ratio applied is l:l (Iversen, 1981).

3.3.2 Assessment of the North Sea stock

In 1981, the catches taken in Division VIa during the 1980 winter (Rona) fishery north of $58^{\circ} 30^{\prime} N$ (Butt of Lewis) were apportioned to stocks according to the proportions calculated from Norwegian tagging data (Anon., 1981). In 1982, these catches were re-allocated entirely to the North Sea stock on the basis of age composition and analyses of parasite infestation rates. Norwegian tagging data were not used (Anon., 1982). During the past year it has become clear that the allocation between stocks, using parasite infestation rates, is subject to a large sampling variance. It was, therefore, decided to re-aóopt the stock allocation of the 1980 catches, which was calculated in 2981.

Recent analysis of Norwegian biological samples from June-August 1960-81 revealed that 74% of the 2 year old mackerel, which appeared in the catches, were sexually mature. By comparing fishing mortalities for II-group mackerel with the fishing mortalities for the III-group the year after, when they are fully recruited to the spawning stock, it seems that about 50% of the II-group mackerel are available to the fishery. Assuming that only the spawning component of the stock is available in the fishery, maturity ogive for the North Sea stock was estimated:

$$
\text { Proportion of maturity: } \frac{\text { Age: }}{0} \quad \frac{1}{0.37} \quad \frac{2}{1.0}
$$

This new maturity ogive was incorporated in the cohort analysis and in the stock prognosis.

The North Sea mackexel egg survey in 1982 estimated a spawning stock biomass of about 165000 tonnes (Appendix B). The terminal fishing mortality rates for 1982 were adjusted until the VPA calculated approximately the same biomass. The results of the VPA for the period 197582 are shown in Table 3.3.A-C. Results from earlier years are given in Anon. (1982) and in Figure 3.2.A.

3.3.3 Analysis of recruitment (2969-82) in the North Sea stock

The number of 1 year old recruits as estimated by VPA (Table 3.3.c.) are shown, with the apawning stock biomass which produced them, in Figure 3.3.C. As pointed out in earlier reports (Anon., 1981, 1982), the last strong year class was that spawned in 1969. During the eariy 1970 s there was a period of relatively stable, but low, recruitment, followed by a clear trend of declining recruitment to the end of the decade. Provisional VPA estimates for 1980 and 1981 year classes show a slight improvement over year classes in the late 1970 s , but they are still insufficient to support a fishery, or even to create any significant growth in stock.

Some relationships between North Sea mackerel production and recent 1 year old recruitment estimates have been examined by Lockwood (1983). Part of his analysis is reproduced here. From the stock in number estimated by VPA (Table 3.3.c) it is possible to calculate the number of 1 year old recruits (R_{m}), which must join the stock each year to equal the losses due to natural mortality in the previous year:

$$
R_{m}=N\left(1-e^{-M}\right)
$$

When the VPA estimate of 1 year old recruits (R_{1}) is greater than $R_{T H}$, the stock in number increases and vice versa. An index of the estimated recruitment $\left(R_{1}\right)$ relative to R_{m} was calculated by:

$$
I=\frac{R_{I}-R_{m}}{R_{m}}
$$

The annual indices for the period 1969-81 are shown in Figure 3.3.B. The negative values, which predominated throughout the 1970 s , show that there was insufficient production to maintain a stable stock. Even if there had beer no fishery, the stock in number would have declined by more thari 35% over the period 1971-80. While the 1980 and 1981 year classes appear strong in relative terms and show that the stock still has some capacity for growth, it cannot be ignored that absolute recruitment is still very low.

3.4 Forecasts for the North Sea Stock

3.4.1 Recruitment

In the previous report of the Working Group (Anon., 1982), an analysis of annual landings of young mackerel from coastal areas off southern Norway was presented. This indicated that the number of recruits from the 1980 year class as l year olds was somewhat higher than the recruitment of the immediately preceding year classes.

This has been confirmed by sampling of catches from the North Sea in 1982. In the cohort analysis (Section 3.3.2.), the Fon 2 year olds in 1982 was set at 0,10 resulting in an estimate of the 1980 year class in 1981 of 229×10^{6} fish. This is about half the number of the 1974 year class as 1 year olds ($543 \times 10^{6} \mathrm{fish}$). However, the analysis of the landings of young mackerel indicated that the 1974 and the 1980 year classes appear to be of equal strength (Anon., 1982).
At present very little information is available on the 1981 year class. This year class was not present in landings of young mackerel on the Norwegian coast, although some research vessel catches from Division IVa in June contained mackerel of the 1981 year class.

Preliminary results of the International Young Fish Survey in February 1983 showed that young mackerel were present in the western part of Division IVa. The number per haul was higher than in 1982.

Although these observations could indicate that the 1981 year class might provide some recruitment, Walsh (1977) found only a weak correlation between theae survey catch rates and VPA recruitment estimates. Therefore, it was decided to carry out the prognosis by applying a year class atrength of 20×10^{6} fish as 1 year olds for the 1981 year class. This recruitment corresponds to the lowest level previousㄱy estimated by VPA.

The same low recruitment was asaumed for the 1982 year class for which there is no information.

3.4.2 Recruitment

The input parameters for the catch forecasts of the North Sea mackerel stock are given in Table 3.4.A. Stock numbers by age on 1 January 1983 were obtained from the cohort analysis (Table 3.3.c). The reference exploitation pattern was that of 1982.
The weights at age in catch and stock are retained from previous years. As outlined in Section 3.3 .2 the proportion of mature fish at age 2 was changed from 0 to 0.37 .
Table 3.4 .8 shows a series of stock and catch predictions for 1984-85. AlI predictions were made on the assumption that the catch of mackerel from the North Sea stock in 1983 will amount to 65000 tonnes. This was estimated by the Working Group on the basis of national catches in 1982, information for 1983 at the time of the meeting, and information on fisheries management for 1983.
On this basis the spawning stock aize at the time of spawning in 1983 is about 150000 tonnes. This is about 10% less than estimated from the egg surveys for 1982. Preliminary results of Norwegian egg surveys in 1983 indicate an egg production similar to that of 1982.
Recruitment as 1 year old in 1983 and 1984 was set at the low level of 20×10^{6} fish.
As seen from Table 3.4.B four forecasts are given under different management options for 1984.

A continued fishexy in 1984, giving catches of 65000 tonnes as estimated for 1983, would result in a stock biomass of about 60000 tonnes at 1 January 1985. This stock would be too low to sustain a continued fishery unless recruitment is much higher than assumed in these calculations.

The winter fishery of North Sea mackerel north of $58^{\circ} 30^{\prime} N$ in Division VIa is discussed in Section 2.1 and in the previous report of the Working Group (Anon., 1982, Section 6.2.2). A closure of the mackerel fishery in this area during winter (1 November - 1 April) would reduce the F on the North Sea stock. The effect of such a closure in 1984 was assessed by estimating a reduction in F which would have taken place if this fishery had been closed in 1982 and applying a proportional reduction to the $\overline{\mathrm{F}}(3-13)$ for 1984 given in the first option. This F for 1984 is then 0.57 . On the assumption that the rate of stock mixing in 1984 is the same as in 1982, fishing closuxe would result in a stock biomass of 68000 tomnes at the beginning of 1985 , i.e., about 17% higher than maintaining the statua quo.
A fishery at an F of 0.15 would result in a stock biomass of 98000 tonnes at 1 January 1985. No fishery of North Sea mackerel in 1984 would result in a biomass of 112000 tonnes at 1 January 1985.
Figure 3.3 shows predicted catch on spawning stock size at various levels of F in 1984.

The continuing low level of stock and recruitment still support the Working Group's earlier view that "the fishery on the North Sea stock must be closed at the earliest opportunity" (Anon., 1982).
4. MACKEREL - WESTERN AREA
4.1 The Fishery in 1982 (Supb-areas VI, VII and VIII)

The landings by each country for the 10 -year period 1973-82 are shown in Table 4.1.A. The 1981 figures have been revised and decreased by about 6500 tonnes. The total estimated landings for 1982 is 596000 tonnes, which is slightly lower than the 1981 catch of 610000 tonnes.

The 1982 Western stock TAC recommended by ICES was 270000 tonnes. The catch from this stock was estimated to be 609000 tonnes.
As in 1981, considerable landings (19% of the total) could not be allocated to any particular country, and this figure is given in Table 4.l.A as 'unallocated'. The major catches were recorded by the United Kingdom, Netherlands and Ireland, who together took over 80% of the allocated landings. Considerable decreases were recorded in the landings recorded by Faroes, France, and the Federal Republic of Germany. However, as stated in the 1982 report of the Working Group, the catch table should not be taken as a true record of the total catch taken by some countries, because of the problem of misreporting of catches.
The distribution of the catches by Sub-area and by quarter are shown in Tables 4.l.B and 3.1.C. The percentage of the total catch taken in Division VIa was 57% and was approximately the same as that in 1981. This catch was taken mainly in the fourth quarter. About 40% of the total catch was taken in Division VII, and this was mainly taken in the first quarter. AIthough the catches from Division VII were mainly from the winter fishery off Cornwall, increased catches were recorded from Division VIIj (southwest of Ireland) by Dutch and Irish fleets.
4.2 Catch in Numbers and Weight at Age in the Western Area
4.2.1 Catch in numbers

Division VIa
The catches taken in this Division in 1982 by Ireland, Netherlands, Norway and Scotland were sampled for age. The catches by these countries amounted to about 85% of the total international catch. To estimate the total catch in numbers the catches by Denmark and Faroes were raised using Norwegian data, English catches using Scottish data, Northern Irish catches using Irish data and Federal Republic of Germany catches using Dutch data.
A revision had to be made to the catch in numbers at age taken in this Division in 1981, because of a catch of 4153 tonnes taken by Northern Ireland, which was not included in the 1982 report. This was converted to numbers at age using Irish sampling data. A further revision was made because of the ovexestimation of the Faroese catch in the previous report (see Section 3.2.1 above).
A notable feature of the Division VIa catches in 1982 was the much higher representation of younger fish than in previous years. As can be seen in Tablea 4.2 .A and 4.2 .8 catches of 1 year olds were about 10 times higher, and those of 2 year olds about 4 times higher than in 1981. The catches in weight were very similar in these years. The VPA would not suggest that the year classes concerned
are strong (Table 4.3.C). Although this high representation of younger fish was apparent in all fisheries in Division VIa, it was particularly marked in the North Rona fishery in the first and last quarters of the year.

Sub-areas_VII_and VIII

Numbers at age data for Divisions $V I I a, b$ and c were provided by Ireland and the Netherlands. French catches were raised to numbers at age by the Dutch age distributions and German catches of the fourth quarter were raised by Dutch data of the fourth quarter.

In Divisions VIId-k all fishing nations provided sampling data except Denmark, whose catches were raised by Fnglish data, and the Federal Republic of Germany, whose catches were raised to numbers at age by Dutch sampling data.

Numbers at age data for Divisions VIIIa and b wexe provided by France, and for Division VIIIc by Spain.

Sampling data were supplied by countries which accounted for more than 95% of the catch in these Sub-areas.

Catch in numbers in 1983°
To use the spawning stock estimate from the 1983 egg surveys in the VPA (see Section 4.3.1), it was necessary to estimate the catch in numbers per age group caught in the Western areas in the first half of 1983. Preliminary estimates of national catches during this period were provided for all countries with appreciable mackerel fisheries in the area amounting to about 194000 tonnes. Age data were available from Irish sampling in Division VIa and Divisions VIIb,j, and from English sampling in Division VIIe. Catches by all countries fishing in these Divisions were raised to these data. No age sampling data were available for catches taken in Sub-area VIII, but these amounted to only 7% of the total. These catches were raised to the combined total of the Divisions, in which sampling data were available. The resulting estimates of catch in numbers at age, given in Table 4.2.C, must be considered as preliminary.

4.2.2 Weight at age (Table 4.4.A)

The mean weights at age in the stock previously used were compared with Dutch mean weights at age in the catches in the second quarter on the spawning grounds in Division VIIj. They wexe in good agreement, therefore no change was made. No change was needed in the mean weights at age in the catch given in last year's report (Anon., 1982).

4.3 Stock Assessment

4.3.1 Egg surveys

A preliminary report of the l'983 egg survey of the Western mackerel stock (Appendix C) was presented to the Working Group. The main results from this survey were that the total daily ege production was 1.44×1015 eggs, and the spawning population was 7200×106 mature fish. This estimate of egg production is about the game as that which was estimated in 1980 (1.46×1015 eges), but presumably due to changes in the stock structure they were produced by more fish (6200×10^{6} mature fish, in 1980). On the basis of earlier prognoses of stock biomass for 1983 (Anon., 1982), the Working Group anticipated a fall in stock size and concomitant fall in the egg production. However, they noted the report's comments (Appendix C) on increased
sampling effort and spawning ground coverage in 1983, compared with 1980 and 1977, and accepted the main findings from the 1983 plankton survey as being the best eatimate of the Western mackerel spawning stock size.

4.3 .2

Vixtual Population Analysis of the Western Stook
In running the VPA, the Working Group had a choice of two options which they could follow. The first of these was not to incorporate any 1983 data, on the grounds that the plankton survey stock size estimate and catch data were provisional. The second option was to incorporate the 1983 data and thereby present the most up-to-date assessment possible. As a first step both procedures were followed.

Using data no more recent than December 1982, a VPA was run along the same lines as has been adopted in recent years (Anon., 1981, 1982), i.e., the terminal values of fishing mortality rate for 1982 were varied until the VPA estimated a spawning stock in 1980
approximately the same as that estimated by the plankton survey in 1980 ($6200 \times 10^{\circ}$). This procedure estimated a fishing mortality rate for 1982 of $F=0.26$ on fully recruited age groups. This was approximately the same as the value forecast ($\mathrm{F}=0.24$) in 1982, assuming the catch in 1982 was about 600000 tonnes (Anon., 1982). The pattern of fishing mortalities by age groups for years preceding 1982 was broadly the same as that found in earlier VPAs (Anon., I981, 1982).

For the second VPA run, incorporating provisional 1983 data, it was necessary to estimate the number of mature fish at 1 January 1983 from the spawning stock estimate. This was done by raising the spawning stock in number (7200×10^{6} fish at spawning time) by that part of natural mortality which occurs before the peak of spawning
($(M=0.15) \times 0.4)$ and adding the estimated number of mature fish caught during the first half of 1983 (615×106) (See Section 4.2). Thus, the mature population on 1 January 1983 was estimated to be 8250×10^{6} fish. This population was estimated by VPA when a fishing mortality value for 1982 of $F=0.18$ was used, but this estimated a spawning stock in 1980, which was 30% higher than previousiy used as the reference point. By increasing the fishing mortality rate for 1982 to $F=0.19$, the estimated mature stock at 1 January 1983 was reduced to. 7859×10^{6}, and the estimated spawning stock for 1980 was reduced to within about 25% of the previous reference value.

After considering the three VPA print-outs it was agreed that, although the 1983 data were provisional, no significant revisions could be foreseen, and, therefore, the most up-to-date assessment should be adopted. However, ever mindful of the need for caution when making significant revisions to assessments, it was decided to adopt the more conservative of the two VPAs using the 1983 data, i.e., that which underestimated the stock in 1983 but was within 25% of the 1980 stock estimate. This VPA is reproduced for the years 1976-82 in Tables $4.3 \mathrm{~A}-\mathrm{C}$. The limited amount of information for the period 1972-75 can be found in earliex reports (Anon., 1981).
As might be expected, a change in the assessment, which results in an increase in stock size in recent years, will also result in a decrease in estimated fishing mortality rate. However, while this assessment, presented in Tables $4.3 \mathrm{~A}-\mathrm{C}$, estimates a spawning stock in 1980 about 25% greater than previously estimated, there is less than 5% change in the fishing moxtality. In yearg earlier than 1978 there are effectively no changes in estimates of either fishing mortality or stock.
As with the VPA assessment made in 1982, the highest mean fishing mortality rates were eatimated for 1979 and 1980. In earliex years it has been difficult to relate values of F with catch in weight as
catch wejght were only presented by area. In Table 4.3.A the SOP catches are given. These catches include the estimated discards, previously only recorded in the catch in number tables. It can now be seen that the high estimates of F were made in those years when the total catches were high.

4.4 Forecasts for the Westem Stock

4.4.: Recruitment

No quantitative estimate of the recruitment of the 1982 year class as 1 year olds in 1983 was available. Nevertheless, some indications from the commercial fisheries suggest that this year class is likely to be a poor one. For that reason, and to be on the cautious side, the Working Group decided to set the 1982 year class strength at 1000×10^{6} fish, which is among the lowest on record.

4.4.2 Prognoses.

At the time the Working Group met, some unofficial information was available about the catches of Western mackerel in the first 6 months of 1983 . On the basis of these catches, and in the absence of any agreed TAC, the Working Group assumed that a largely unregulated fishery would continue throughout 1983, and that the total annual catches would reach 650000 tonnes. Stock forecasts were run on this assumption. All parameters used in making the forecasts are summarized in Table 4.4.A, and the results are presented in Table 4.4.B and in Figure 4.1.
The continued absence of effective international management measures through to 1985 might result in a continued catch of 650×103 tonnes in 1984, which would reduce the 1985 spawning stock biomass to about l 460×10^{3} tonnes, which would be the lowest level on record. If the fishing mortality in 1984 was reduced to the level corresponding to Fo.1 (i.e., a reduction of 13% over the present level of F), a catch of 463×10^{3} tonnes would be taken, resulting in a spawning stock biomass of $1676 \times 103 \mathrm{t}$. This would also be the lowest on record and represents about 45% of the level in the early 1970s.

The concern expressed by this Working Group on previous occasions (Anon., 1982) is as strong now as it was then, and the urgency for effective conservation measures should not be underestimated.

4.5 Closed Area in the Celtic Sea

Further information on the distribution of juvenile mackerel in the Celtic Sea was obtained by sampling landings made in England, Ireland and the Netherlands. The number of fish per sample, which were less than 30 cm total length, were calculated as a percentage of the total number of fish in the sample. These data were combined and are shown by ICES statistical rectangles by months, January 1982 to April 1983, in Figure 4.2. The Working Group estimated that total catch taken from this area was 60000 tonnes in 1982 and 85000 tonnes in the firat half of 1983.

As shown in earlier reports (Anon., 1981, 1982) the catches made around Cornwall were predominantly of juvenile fish. Only during the early winter, 1982-83, did juvenile fish contribute less than 50% of the catch in number from any individual rectangle, but even in this period the majority of fish caught in the area was less than 30 cm .

During the winter 1981-82 there was an appreciable amount of fishing activity west of $5^{\circ} \mathrm{W}$, but during the winter of 1982-83 virtually all mackerel fishing effort was concentrated in the western English Channel, east of $5^{\circ} \mathrm{W}$. Some fishing occurred south of $49^{\circ} 30^{\prime} \mathrm{N}$, but as in previous years most of it was north of this latitude. Samples taken during the
period September 1982 to April 1983 show quite clearly that juvenile mackerel form a major part of catches taken throughout the northern half of ICES Division VIIe. For these reasons, efforts to introduce measures to minimise catches of juvenile fish in the area must continue. Any suggeations that the eastern boundary of the closed area, or "Mackerel box", should be further west than 2° West should be looked at very critically. The Working Group recommends that, on mackerel criteria alone the eastern boundary should be fixed at 2° W.
During 1982 and early 1983 mackerel fishing west of $7^{\circ} \mathrm{W}$ was concentrated on the main spawning grounds between the Great Sole Bank and southwest of Ireland, Division VIIj. Dutch samples taken from this area during the spawning season contained considerably less then 50% juvenile fish. Only during the summer months, when the total quantities being caught in the area are small, do the numbers of juvenile fish exceed 50% of the total Irish samples.
No further information was available by statistical rectangle for the area W of $7^{\circ} \mathrm{W}$ than was given in last year's report (Anon., 1982).

5. MACKEREI IN SUB-AREA IX

5.1 The Fishery in 1982

The total catches of mackerel taken from Sub-area IX are shown in Table 5.I.1. The 1982 figuxe is provisional, but the catch taken by Spain appears to have declined considerably.

5.2 Biological Information

The only data presented to the Working Group were a length frequency distribution of Portuguese catches in 1982. This shows that the catches were composed of 68% immature fish (Jorge and Gordo, 1982).

6. HORSE MACKEREL

6.1 Landings of Eorse Mackerel - Sub-areas IV and VI, VII, VIII and IX

Sub-areas IV and VI
The total landings in Sub-area IV, given in Table 6.1.A for the period 1974-82, have not risen above 10000 tonnes since 1974 , and the 1982 landings are at about the same level as in 1981. There is no directed fishery in this area.
The catches in Sub-area VI for the period 1974-82 are given in Table 6.1.B. There is no directed fishery in this area. Some revisions have been made to the table with a lower catch in 1981.

Subaarea_VII
Total landings in Sub-area VII are given in Table 6.1.C for the period 1974-82. Some revisions have been made, which have reaulted in a decrease for 1981. The preliminary estimate of the catches in 1982 indicate that they are about the same level as in 1981. About 15000 tonnes were caught as mature fish in Division VIIj.

Sub-area VIII

Total Iandings in Sub-area VIII are given in Table 6.1.D for the period 1974-82. There has been a continuous decrease since 1977 from 125000 tomnes to about 23000 tonnes in 1982.

Sub-area IX
Total landings are given in Table 6.1.D for 1974-82. Total landings in 1982 remained the same as in 1981.

6.2 Biological Data

Very few biological data were available to the Working Group. Very limited catch in number at age data were presented by England and the Netherlands for Sub-areas IV, VII and VIII. More data were supplied by Portugal and Spain for Division VIIIc and Sub-area IX. These data did not add significantly to those presented last year and, therefore, the Working Group could make no further advance with an assessment (see Section 7.2 of the 1982 Report).
The limited English and Dutch data available for fitting growth curves were compared with that described by Farina (in press) for Division VIIIc.

One explanation of difference in growth curves could be differences in ageing techniques. It was therefore agreed that before publishing comparative growth data, those involved should exchange otoliths and compare their ageing results.
No horse mackerel egg data from the 1983 mackerel plankton survey were available at this meeting, but jit is hoped that they will be ready for the meeting to be held in Lowestoft in February 1984 (Appendix C).
7. DENSITY DEPENDENCE AND DEPICIENCIES IN DATA
7.1 Density Dependence

The Working Group was asked to review the existing data on parameters, which may be dependent on stock density. No data were presented during the meeting which would enable this to be done. Ideally, the data required would be a long series of stock size estimates, together with a similar series of data on e.g. mean lengths, weights, age at lst maturity, etc. Although the required data were not available at the meeting and stock size estimates may not be available for a sufficient number of years, particularly for the Western stock, relevant data may exist at various national laboratories which would enable this subject to be examined more carefully.

It was therefore agreed that members of the Working Group would attempt to extract the relevant data from their data files at home and present them as working documents at the 1984 meeting of the Working Group.

7.2 Deficiencies in Data

7.2.1. Mackexe1

The Working Group again considered the deficiencies in the data necessary to make accurate assessments, Considerable doubt still surrounds the official landing catch statistics provided by some countries - both in regrard to species composition and quantity. These points, together with the laxge amounts of unallocated catches, have been commented upon in detail in Anon., 1982. The Working Group would again emphasize the absolute necessity of obtaining accurate information about quantity, composition and origin of catches - including discards.
There has been no improvement in the basic data required, as outlined in Anon., 1982. For both the North Sea and the Western gtock assessments, information is particularly lacking about:

1) Stock separation in Divisions IIa, IVa and parts of VIa
2) Estimates of F in the most recent year
3) Recruitment indices.

Age distribution of the catches is also lacking for certain countries, e.g., the Federal Republic of Germany, the Faroes, and Denmark which take substantial quantities of the total landings.

7.2.2 Horse mackerel

Due to the lack of biological information on spawning areas and spawning seasons as well. as on fecundity it is not possible to determine the stock relationship between Sub-areas VI, VII, VIII and IX. There is also considerable difficulty in obtaining accurate age compositions both because of the lack of adequate samples and difficulties in interpreting otoliths.

REFERENGES

Anon., 1981. Report of the Mackerel Working Group. ICAS Doc., C.M.1981/H:7,p.I-13 (mimeo.).

Anon., 1982. Report of the Mackerel Working Group. ICES Doc. C.M.I982/Assess:Il, p.I-77 (mimeo.).

Danielssen, D and Iversen, S A. 1977. The development and mortality of mackerel eggs (Scomber gcombrus L.) in different temperatures. ICES doc. C.M.1977/L:19 (mimeo.).
Farina, A. 1983. Age and growth of the Gaician shelf horse mackerel (Trachumas trachurus L.). ICES doc. C.M.1983/G:26 (mimeo.).
Iversen, S A. 1981. Spawning and trends in spawning stock size of the North Sea mackerel during the period 1973-80. ICES doc., C.M. 1981/H:16, p.1-9 (mimeo.).
Iversen, S A. 1982. Spawning and stock size of North Sea mackerel in 1981. ICES doc. C.M.1982/H:7 (mimeo.).
Iversen, S A and Adoff, G R. 1983. Fecundity observations from the Norwegian coast. ICES doc. C.M. $1983 / \mathrm{H}: 45$.
Iversen, S A and Eltink, A. 1983. Spawning, egg production and stock size of North Sea mackerel in 1982. ICES doc. C.M.1983/H:46.
Jorge, I M and Gordo, L S. 1982. On the sexual maturation and the condition factor of Scomber scombrus L. from the occidental coast of Portugal during 1981. ICES doc. C.M.1982/H:58 (mimeo.).
Lockwood, S J. 1983. North Sea mackerel yield, stock and recruitment. IGES doc., C.M.1983/H:7 (mimeo.).
Lockwood S J et al. I981. The western mackerel spawning stock eatimate for 1980. ICES doc., C.M.1981/H:I3 (mimeo.).

Lockwood, S J, Nichols, J H and Dawson, W A. 1981. The eatimation of a mackerel (Scomber scombrus $L_{\text {. }}$) spawning stock size by plankton survey. J. Plankton Res., 3(2):217-233.
Seliverstova, E I. 1983. Soviet mackerel investigations in the Norwegian Sea in summer 1980-82. TCES doc. C.M.1983/H:25 (mimeo.).
Walsh, M. 1977. Adolescent mackexel in the North Sea International Young Herring Surveys of 1975 and 1976. ICES doc. C.M.1977/H:29 (mimeo.).

Schle e. Stock mixing factore (x) for cetches in Divibiona Ina and VIIa For explanation on the method see Appendix A.

AGE	$\begin{aligned} & x=(r-\varepsilon) \\ & \bar{x}=\text { weighted } \\ & \text { NORTH SEA }{ }^{\text {a }} \\ & \text { SPAWNERS } \end{aligned}$	(-g) mean WESTERN ${ }^{\text {a }}$ SPAWNERS	$\mathrm{r}=$ weighting factor			
1981	$\underset{\%}{\mathrm{p}}$	\%	$\underset{\%}{\text { \% }}$	x	\%	x
3	2	1.8	1.1	1.06	1.6	1.03
4	1	1	0.7	-	1.0	-
5	5	17	3.6	1.12	2.6	1.20
6	8	19	12.5	0.59	6.2	1.16
7	17	8	14.0	0.67	6.5	-0.17
8	6	12	16.8	-0.86	8.8	0.53
9	4	2	6.6	2.30	4.9	1.45
10	57	25	44.7	0.62	68.6	1.36
				$=0.52$		$=\frac{1.00^{\mathrm{h}}}{\left.(1.22)^{\mathrm{h}}\right)}$
1982	a)	e)	f)		g)	
3	3.0	22.2	13.7	0.44	24.3	-0.005
4	6.5	12.8	13.6	-0.22	18.8	-1.12
5	1.5	0.6	3.0	2.67	2.2	1.78
6	7.5	11.3	9.0	0.61	13.9	-0.56
7	7.0	13.6	9.1	0.68	12.8	0.12
8	13.5	6.6	10.5	0.57	8.3	0.25
9	2.5	8.2	9.2	-0.18	6.2	0.36
10	58.5	23.2	31.8	0.24	13.5	
			$\overrightarrow{\mathrm{x}}=0.35$		$\overline{\mathbf{x}}=\frac{\left.0.000^{\mathrm{h}}\right)}{\left.(-0.22)^{\mathrm{h}}\right)}$	

a) Anon. (1982), Table 4.2
b) Derived from Norwegian samples, July-Sept. 1981
c) " " " lst and 4th quarter 1981
d) " " " Division IVb May 1982
e) " " Dratch samples Division ViJj April-June 1982
f). ". " Norwegian and Soviet (Seliyerstova, 1983) samples, July-August 1982
g) " " Norwegian samples, lst and 4th quarter 1982
h) Rounded value, true mean in brackets

Table 2.2 Results of the Norwegian tagsing experiments (Tag returns from Norwegian landings to selected factories 1981-83)

Table 3.1.A Nominal catch (tonnes) of MACKFREH in the North Sea, Skagerrak and Kattegat (IV and IIIa) 1973-1982 (Data for 2973-1976 an offiojally reported to ICES. Data from 1977 onwards were submitted by Working Group members).

Year	1973.	1974	1975	1976	1977	1978	1979	1980	1981	1982^{*}
Belgium	78	- 145	134	292	49	10	10	5	55	102
- Denmark	7459	3890	9836	27988	21833	18068	19171	13234	9982	2027
Faroe Islands	11202	18625	23.424	63478	42836	33911	28118	14770	-	-
France	636	2254	2749	2607	2529	3452	3620	2238	3755	2420
Germany, Dem.Rep.	214	234	141	259	41	233	-	- -	\cdots	-
Germany, Fed.Rep.	563	- 270	276	284	-	284	211	56	59	73
Iceland	3079	4689	198	302	- .	-	-	-	-	-
Ireland							-	738	733	-
Netherlands	2339	3259	2390	2163	2673	1065	1009	853	1706	390
Norway	277304	248314	206871	197351	180800	82959	90720	44781	28342	27612
Poland	561	4520	2313	2020	298	-	-	-	-	-
Sweden	2960	3579	4789	6448	4012	4501	3935	1666	2446	654
UK (England \& Wales)	31	61	33	89	105	142	95	76	6520	16
UK (Scotland)	2943	390	578	1199	1590	3704	5272	9514	10575	44
USSR	17150	8161	9330	1231	2765	488	162	-	-	
Unallocated							500	\because	3216	450
Total	326516	298391	263062	305709	259531	148817	152823	87931	67388	33788

3) Preliminary

Note: In contrast to the corresponding tables in Working Group reports for years prior to 1982, the catches do not include catches taken in Sub-area IIa.

Table 3.1.B. Nominal catches (tonnes) of MACKEREL in the Norwegian Sea (Division IIa), 1973-1982.

$\begin{aligned} & \text { Year } \\ & \text { Country } \end{aligned}$	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982:3)
Denmark ${ }^{2}$								-	801	1008
Faroe Tsl. ${ }^{\text {l }}$	\cdots	-	-	-	-	283	6	270	-	-
France ${ }^{2}$)	-	-	7	8	-	2	-	-	6	-
$\begin{aligned} & \text { German, Dem. } \\ & \text { Rep, } 2 \text {. } \end{aligned}$	-	11	-	-	-	-	-	-	51	-
$\begin{aligned} & \text { Germany, } \\ & \text { F.R. } \end{aligned}$	-	-	-	-	-	53	174	2	-	-
Ne therland ${ }^{2}$)	-	-	-	2	\checkmark	-	-	-	-	-
Norway ${ }^{1}$)	21573	6818	34662	10516	1400	3867	6887	6618	12941	34540
Poland	-	-	-	-	-	-	-	-	-	231
$\begin{aligned} & \text { UK(EngI; } \\ & \text { Wales) } \end{aligned}$	-	+	+	+	+	1	-	-	255	-
UK(Scotland ${ }^{\text {a }}$)				-	-	-	-	296	968	-
USSR3)	-	-	-	-	-	-	5	1450	3640	1641
Total	21573	6829	34669	10526	1400	4206	7.072	8340	18662	37420

1) Data provided by WG members.
2) Data reported to ICES.
3) Preliminary.

Zable 3.1.c. Quarterly catches of mackerel in 1982

	I	II	III	IV	Not known	TotaI
IIa	-	100	37300	+	-	37400
IIIa	+	1100	2600	200	600	4500
IVa	200	3500	21800	2100	600	28200
VI	35900	7100	53500	244400	-	340900
VII	749500	41200	15500	31600	-	237800
VIII	6700	8500	900	1000	-	17100
IX	-	-	-		4400	4400

Table 3.2.A. MACKEREL, 1981 catches in numbers ($x 10^{-6}$) by age group and by area (Norwegian Sea (Division IIa), North Sea (Divisions IVa, b, c) and Skagerrak and Kattegat (Division IIIa)). North Sea stock.

Year class	Divisions			
	IIa ${ }^{\text {I }}$	IVa^{2})	IVb, c^{3})	$11 I_{a}{ }^{2}$)
1980 1	-	0.6	1.6	1.7
19792	-	0.8	4.8	0.4
19783	0.3	3.0	7.9	0.4
19774.	0.2	0.3	0.7	0.2
19765	0.8	3.2	8.6	0.5
19756	2.9	$4 \cdot 3$	11.3	0.8
1974 7	3.3	5.5	9.0	2.3
1973 8	3.9	2.9	5.9	0.6
1972 9	1.5	1.5	2.9	0.4
197110	2.7	2.3	3.9	0.4
1970 I1	0.8	0.6	0.9	0.3
196912	4.4	5.7	9.7	2.6
196813	1.1	0.9	0.3	0.2
196714	1.0	1.3	0.5	0.2
$\geq 1966 \geq 15$	0.4	0.9	0.3	0.1
Total	23.2	33.8	68.3	11.1

1) From 1982 meeting work sheets.
2) From Table $4 . I$ and Table 4.3 of 1982 WG Report (IVa+IIIa - IIIa)
3) From Table 4.3 of 1982 WG Report.

Table 3.2.B MACKRREL. 1982 catch in numbers (x 10-3) by age group and by area (Norwegian Sea (Division IIa), the North Sea (Divisions IVa,b,c) and Skagerrak and Kattegat (Division IIIa.)). North Sea stock.

Year class	Age	Divisions			
		ITa IVa	IVo	IVe	IIIa
1982	0	- -	-	-	
1981	1	400.0	2.2	432.8	2068.4
1980	2	2056.95 .285 .2	59.7	522.0	5921.0
1979	3	7667.15444 .0	431.0	565.0	856.0
1978	4	$7651.0 \quad 3785.0$	413.7	637.5	262.7
1977	5	1693.71023 .0	196.8	137.0	48.9
1976	6	$5072.8 \quad 2583.0$	670.1	938.1	381.2
1975	7	5128.6 3 231.0	885.9	456.3	441.7
1974	8	$5922.0 \quad 4660.0$	864.3	236.2	466.6
1973	9	5142.92153 .0	853.9	324.7	189.7
1972	10	2077.51574 .0	424.9	172.7	132.8
1971	11	4696.2 1 625.0	427.5	173.8	161.2
1970	12	2040.3 957.0	342.5	139.2	327.1
1969	13	$5824.3 \quad 4933.0$	864.0	351.2	536.3
1968	14	2310.1750 .0	359.3	246.1	25.0
1967	15	549.0519 .0	148.1	60.2	10.0
1966	16	180.0 167.0	48.9	19.9	25.0
1965	17	$34.5 \quad 21.0$	16.7	6.8	0
≥ 1964	≥ 18	160.20	26.7	6.8	0
Σ		$58 \quad 207.2 \quad 39110.2$	7026.2	5326.1	11853.6

Table 3.2.C. Catch in mumbers $\left(x 10^{-6}\right)$ of the North Sea stock in 1981, by age group.

Year class	Age	DIVISIONS				Sưn
		IIa	$I I I a+I V a$	IVb, c	VIa	
1980	1	-	2.3	1.6	$+$	3.9
1979	2	-	1.2	4.8	0.1	6.1
1978	3	0.2	3.4	7.9	0.5	12.0
1977	4	0.1	0.5	0.7	0.1	1.4
1976	5	0.6	3.7	8.6	0.6	23.5
1975	6	1.0	5.1	11.3	1.3	18.7
1974	7	2.	7.8	9.0	1.7	20.6
1973	8	0.7	3.5	5.9	1.9	12.0
1972	9	0.5	1.9	2.9	1.3	6.6
1971	10	0.7	2.7	3.9	1.4	8.7
1970	11	0.6	0.9	0.9	0.8	3.2
1969	12	4.4	8.3	9.7	4.8	27.2
1968	13	0.4	1.7	0.3	0.8	2.6
1967	14	0.5	1.5	0.5	0.7	3.2
≥ 1966	≥ 15	0.4	1.0	0.3	0.5	2.2
TOTAL		12.2	44.9	68.3	16.5	141.9

Table 3.2.D MACKBREL. Catch in numbers $\left(x 10^{-3}\right)$ of the North Sea stock in 1982 by age groups.

Yes Class	Age Years	DIVISIONS						
		IVa	IIa	IVb	IVc	IIIa	VIa	TOTAL
1982	0	-		-	-	-	-	
1981	1	400.0		2.2	432.8	2068.4	372	3275.4
1980	2	5285.2	2056.9	59.7	522.0	5921.0	3263	17107.8
1979	3	5444.0	589.6	431.0	565.0	865.0	5561	13446.6
1978	4	3785.0	1277.4	413.7	637.5	262.5	4295	20671.3
1977	5	1023.0	294.8	196.8	137.0	48.9	496	2196.5
1976	6	2583.0	1473.9	670.1	938.1	381.2	3169	9215.3
1975	7	3231.0	1375.7	885.9	456.3	441.7	2930	9320.6
1974	8	4660.0	2653.1	864.3	236.2	466.6	1907	10787.2
1973	9	2153.0	491.3	853.9	324.7	189.7	1405	5417.6
1972	10	1574.0	589.6	424.9	172.7	132.8	509	3403.0
1971	11	1625.0	1. 768.7	427.5	173.8	151.2	789	4945.2
1970	12	957.0	1277.4	342.5	139.2	327.1	187	3230.2
1.969	13	4933.0	6878.4	864.0	351.2	536.3	1384	14946.9
1968	14	750.0	393.1	359.3	146.1	25.0	109	1782.5
2967	15	519.0		148.1	60.2	10.0		
1966	16	167.0	589.6	48.9	19.9	25.0		1779.7
1965	17	21.0		16.7	6.8	0	124	
≥ 1964	≥ 18	0		16.7	6.8	0		
Σ		39110.2	21709.4	7026.2	5326.3	11853.6	26500	11.1525 .7

Table $3,3 . A$ VIRTUAL POHULATION ANALYSIS
MACKEREL IN THE NORTH SEA (FISHING AREAS IV, VIA ANO IIA)
CATCH IN NUMBEKS UNIT: MILLIONS

	1975	1976	1977	1978	1979	1980	1981	1982
1	11.9	2.7	1.1	0.0	2.3	2.7	3.9	3.3
2	10.1	73.6	19.3	8.2	0.5	5.6	6.1	17.1
3	16.2	69.7	5 ¢.9	34.7	11.3	2.4	12.0	13.4
4	42.4	13.9	54.3	40.8	21.2	14.3	1.4	10.7
5	27.8	33.8	9.8	27.9	35.3	23.5	13.3	2.2
6	193.?	19.5	26.6	6.0	14.3	25.9	18.7	9.2
7	25.6	118.0	31.0	14.2	4.2	15.3	20.0	4.3
8	27.4	31.3	125.9	16.7	4.2	12.3	12.0	10.8
9	15.8	¢. 0	31.2	43.7	2.0	14.0	0.0	5.4
17	5.7	9.15	8.3	14.6	27.01	3.5	8.7	3.4
11	ก. 5	4.0	¢. 6	5. 5	3.2	19.3	3.2	4.4
12	0.2	0.5	4.5	5.5	2.0	3.8	27.2	3.2
13	22.?	9. 1	0.8	2.4	2.0	1.3	2.6	14.9
14	0.7	3.4	0.1	0.6	1.?	1.6	3.2	1.8
$15+$	0.7	0.0	2. 5	3.2	2.3	2. 2	2.2	1.8
rotal	391.3	388.1	383.7	225.9	138.0	147.7	141.9	111.4
SUM OF	PRODUCTS	UNIT:	THOUSAIND	TONHES				
Sup	182	175	189	110	6%	73	74	55

Table3.3.B VIRTUAL POPULATION ANALYSIS

MACKEREL IN THE NORTH SEA (FISHING AREAS IV, VIA AND IIA)
FISHING MORTALITY COEFFICIENT UNIT: Year-1 NATLRAL MORTALITY COEFFICIENT $=0.15$

	1975	1976	1977	1978	1979	1.980	1981	1982
1	0.02	0.01	0.01	0.70	0.03	0.04	0.72	0.02
?	0.03	0.19	ก. 09	0.07	0.13	0.109	0.11	0.10
3	0.13	ก. 28	0.22	0.22	0.13	0.19	0.26	0.37
4	0.18	0.14	ก. 34	0.22	0.19	0.23	0.10	0.37
5	0.18	0.21	ก. 14	0.28	0.26	0.32	0.33	0.37
6	0.25	0.18	0.24	0.11	0.21	0.31	0.43	0.37
7	0.17	0.23	0.46	0.18	0.17	0.34	0.47	0.37
8	0.27	0.30	D. 36	0.42	0.16	0.44	0.40	0.37
9	0.28	0.16	0.51	0.22	0.08	0.37	0.42	0.37
10	0.16	0.24	0.24	ก.45	0.78	ก.18	0.34	0.37
11	0.198	0.18	0.37	0.24	0.27	ก.1\%	0.24	0.37
12	0.28	0.10	0.30	0.40	0.12	0.30	0.40	0.37
13	0.76	0.21	0. 22	0.37	1.23	0.10	0.33	0.37
14	0.00	0.23	0.32	0.24	0.19	0.28	0.36	0.37
$15+$	0.00	0.23	ก. 32	0.24	0.19	0.28	0.36	0.37
(3-13)w	0.23	0.23	0.32	0.2 .4	0.19	n.2ヶ	0.3%	0.37

Tahle 3.3.C
 VIRTUAL POPULATION ANALYSIS

mackerel in the north sea (fishing akeas iv, via and ita)
STOCK SIZE IN NUMBERS UNIT: BILLIONS
BIOAASS TOTALS UNIT: ThOUSAND TOANES
all Values, except those referkinc to the shawning stock are given for t januaky; the spanining STOCK DATA REFLECY THE STOCK SLTUATION AT SHAWNIIG TIAE, WHEREGY THE FOLLOWING VALUES ARE
USED: HROPORTION OF ANNUAL F GEFORE SHAWNING: T. 10 ח
PROPORTION UF ANNUAL TA EEFFRE SHAWNING: 0.400

	1975	1976	1477	1978	1774	1980	1981	1982	1463
1	544.0	280.7	145.8	20.4	¢ 3	73.2	228.1	179.4********	
2	371.1	457.2	239.1	124.7	$1 / .5$	71.1	6). ${ }^{\circ}$	193.3	151.4
3	146.3	317.1	325.5	187.4	44.5	14.6	36.0	46.4	150.5
4	271.5	110.5	207. 5	22ל.7	124.7	75.2	10.4	37.1	27.6
5	179.7	194.4	82.0	124.2	120.5	92.0)	51.5	7.6	22.7
6	930.5	128.3	136.1	02.0	81.1	104.0	27.5	31.9	4.5
7	174.6	622.4	92. 4	92.0	47.8	56.6	65.0	32.2	19.0)
8	৬૪.?	130.9	420.1	20.4	60.5	37.3	34.6	37.4	14.?
9	69.7	56.9	83.8	250.6	28.6	48.8	20.8	18.7	22.3
10	35.3	44. 3	41.5	43.4	173.4	22.7	29.1	11.8	11.1
11	7.1	25.8	31.2	28.1	23.9	124.3	10.3	17.0	7.7
$1 ?$	0.9	5.6	18.5	17.4	19.1	15.7	69.1	11.1	11). 1
13	44.3	7.6	4.4	11.8	11.3	14.0	10.0	51.6	0.6
14	0.0	17.8	0.4	3.0	7.5	7.0	11.3	6.2	311.7
$15+$	0.0	0.0	9.8	16.1	14.3	9.7	7.8	6.2	7.4

TOTAL. NO $2866.5 \quad 2386.3 \quad 1836.6 \quad 1258.4 \quad 900.8 \quad 766.8 \quad 749.2 \quad 688.1$
StS NO 1924.8 $1673.8 \quad 1409.0 \quad 1067.2 \quad 749.4 \quad 594.7 \quad 436.3 \quad 352.9$
TOT.BIOM 1139.8 966.1 $783.3 \quad 573.7$ 440.6 $367.0 \quad 300.3 \quad 249.4$
$\begin{array}{lllllllll}S P S \\ S I U H & 899.7 & 770.2 & 052.7 & 504.4 & 346.1 & 3 n 6.0 & 225.7 & 167.1\end{array}$

Table 3.4.A. Input for catch forecasts, North Sea MACKEREL ($M=0.15$)

Age	Stock Number in 1983 $\left(x 10^{-6}\right)$	Reference Fishing Pattern $\left(\sim F_{82}\right)$	Weight at Age in Catch	Weight at Age in Stock at Jan.	Weight at age at Spawning	Maturity Ogive
1	20.0	0.05	.245	.123	.180	0
2	151.4	0.27	.329	.234	.275	0.37
3	150.5	1.0	.363	.325	.330	1
4	27.6	1.0	.392	.335	.415	1
5	22.0	1.0	.438	.350	.460	1
6	4.5	1.0	.455	.346	.495	1
7	19.0	1.0	.520	.468	.525	1
8	19.2	1.0	.580	.472	.550	1
9	22.3	1.0	.585	.505	.565	1
10	11.1	1.0	.610	.535	.590	1
17	7.0	1.0	.635	.560	.610	1
12	10.1	1.0	.655	.585	.630	1
13	6.6	1.0	.670	.605	.645	1
14	30.7	1.0	.675	.615	.650	1
$15+$	7.4	1.0	.685	.650	.675	1

Table 3.4.B Forecasts of stock biomasses and catches of the North Sea MACKEREL stock.
Basic parameters axe siven in Table 3.4.A. Stock biomasses at l January and catch in tonnes $\times 10^{-3}$. Spawning stock biomass at the time of spawning axe given in parenthesis.

1982		1983				Management option for 1984	1984				1985	
Total land- ings	${ }^{\text {F }}(3-13)$	Stock biomass	Spawn. stock biom.	${ }^{F}(3-13)$	Total land- ings		Stock biom.	Spawn. atock biom.	$\bar{F}_{(3-13)}$	Total landings	Stock biomass	Spawn. atock biom.
55	0.37	178	153(152)	0.50	65	Maintain catch level	219	114(112)	0.75 0.57	65	58	53
						Close VIa North, winter				53	68	63
						$F_{84} \sim F_{0.1}$			0.15	17	98	93
						No fishing			0	0	112	107

Weights in 1000 tonnes

Table 4.I.A. Nominal catch (tomes) of MACKEREH in the western area (VI, VII and VIII) (Data for 1973-1977 as officially reported to ICES)

Year Country	1973	1974	1975	1976	1977	1976**	1979**	1980**	$\begin{aligned} & 1981 \\ & \text { *\#) } \end{aligned}$	$\begin{gathered} 1982^{\text {K }} \\ \text { अe\# } \end{gathered}$
Belgíum	3	7	27	10	1	1	3	-	-	+
Denmark	-	-	-	3	698	8677	8535	14932	13464	15100
Faroe Islands	635	8659	1760	5539	3978	15076	10609	15234.	9070	11100
Erance	41664	37824	25818	33556	35702	34860	31510	23907	14829	9500
Germany, Dem.Rep.	1733	2885	9693	4509	431	-	-	- ${ }^{-1}$	$\bar{\square}$	-
Germany, Fed.Rep.	559	-993	1941	391	446	28873	21493	21088	29221	11500
Iceland	52	-	21	10	-	"	-	-	-	-
Ireland	8314	8525	11567	14395	23022	27508	24217	40791	92271	109700
Netherlands	7785	7315	13263	15007	35766	50815	62396	91081	88117	67200
Norway	34600	32597	1907	4252	362	1900	25414	25500	21610	19000
Poland	10536	22405	21573	21375	2240	-	92	-	1	-
Spain ${ }^{\text {a }}$	25677	30177	23408	18480	21853	19142	15556	15000	11469	25600
Sweden	-	-	-	38	-	-	-	-	-	-
UK (England \& Wales)	13081	$21 \quad 132$	31546	57311	132320	213344	244293	150598	75722	82900
UK (N. Ireland)	93	75	30	95	97	213 46	25	-	4153	9600
UK (Scotland)	5170	8 466	16174	28399	52662	103671	103160	108372	109153	130000
USSR	65.202	103.435	309 666	262 384	16396	$\underline{-}$	103160	-	-	-
Unallocated							54000	98258	140322	114700
Total, ICES members	215104	284496	468384	465754	325974	503913	601303	604761.	609402	595900
Bulgaría Rumania	4341	13558	20830 2166	$\begin{array}{ll}28 & 195 \\ 13 & 222\end{array}$	-	-	-	-	-	-
. Grand Total	219445	298054	491380.	507178	325974	503913	601303	604761	609402	595900

- Preliminary
**) Working Group estimate
+ Includes S japonicus

Table 4.1. B. Landings of MACKEREL (tonnes) by Sub-areas ir the Weatern area.

* Preliminary.

Table 4.2.A. Catch in numbers by age group $\left(x 10^{-3}\right)$ of the Western stocr: in 1981.

Age	Divisions and Sub-area					
	IIa + IVa	VIa	VITa-c	VIId-k	VIII	
0				5052	33295	38347
1	-	7612	647	210921	46847	266027
2	-	40592	20047	424561	21033	506233
3	123	26180	14603	176262	6662	223830
4	78	8333	2012	18493	2521	31437
5	402	56464	21976	91159	3270	173271
6	1397	74888	14129	62514	2232	155160
7	1565	54869	8041	29639	1090	95204
8	1878	63880	16237	28163	1567	111725
9	738	19430	3115	7609	1002	31894
, 10+	4996	218613	29296	61664	6378	320947

Table 4.2.B. Catch in numbers by age group $\left(x 10^{-3}\right)$ of the western atock in 1982 .

Year Class	DIVISIONS					Total
	IIa	VIa	VIIa-c	VIId-k	VIIIa-C	
19820	-	-	0	1674	291	1965
1981	-	75160	232	129718	4717	209827
19802	-	156569	1680	284854	5055	-448158
1979 3	4984	166095	4434	310515	6711	492739
1978 4	4973	77442	6120	90917	2816	182268
1977 5	1066	9262	966	11428	1351	24073
1976 6	3297	64277	4931	61469	2. 553	136527
2975 7	3334	57021	4787	38982	5639	109763
1974 8	3849	45109	4707	25588	4461	83714
1973 9	3343	49279	5768	26923	2987	88300
Pre-1973 10*	11617	145934	17408	75188	12030	262177
TOTAL	36463	846148	51033	1057256	48611	2039511

Table 4.2.0. Western stock.
Catches in numbers ($x 10^{-3}$) of the Western stock (Jan. - June 1983)

Year class	1982	1981	1980	1979	1978	1977	1976	1975	1974	<1974
Numbers $\left(10^{-3}\right)$	8282	343597	200639	180350	37052	12213	29415	20903	19477	47059

TEble 4．3．A VIRTUAL POPULATION AAALYSIS

MACKEREL，WESTERN STOCK

```
CATGH IN IUMAERS UNIT: MILLIUNS
```

	1976	1977	1970	1979	1980	1981	7902
7	34.2	2．0	10.3	14．3	14.5	38．3	2.0
1	2．79．4	153.5	31.3	Sb1． 1	464.3	2．66．0）	20．4．8
2	184.9	289．5	563.8	01.6	403.7	$5 \cap 6.2$	448.2
3	322.3	154．月	42.0	sil2． 5	7b．？	2．23．s	442．7
4	170.6	$166.1)$	243.7	305.5	3×1.3	31.4	1 $x<.3$
5	288.8	51．0	250．3	21\％．2	でて． 0	173.3	24.0
6	118．6	140．t？	77.4	233.1	14 ¢．？	755.2	136.5
7	2．19．7	64.4	151.9	86.8	156.4	$95 . ?$	1199.8
8	438.8	89．4	50.7	154.2	52.4	111.7	83.7
9	ก．0	15\％．5	83.2	70.3	139.6	31.9	8ல． 3
$10+$	ต． 9	ก．0	219．8	263.7	206.9	32ח．4	262．2
TOTAL	2117.3	1208.3	2100.9	2465．7	2413.7	1953.9	2054.3
Catch in weight（ $t \times 10^{-3}$ ）							
SUM OF	HRODUC	UNIT：	THOUSAND	TONAES			
SOF	682	383	626	767	503	677	707
Nominal	507	326	504	606	605	610	596

Iahle.4.3.B VIRTUAL POPILATIOA AI:ALYSIS

MACKEREL. WESTERA STOCK

FISHIUG MORTALITY COFFFICIENT UNIT: YEAT-1 NATURAL DORTALITY COEFFICIENT = D.IS

Tanle 4.3.0 VIRTUAL POPULATION ANALYSIS

MACKEREL, WESTERN STOCK

```
STOCK SIZE IN NUmbers UNIT: MILLIUNS
```

gIOTAASS TOTALS UNIT: THOUSAIND IONNES
ALL VALUES, EXCEPT THOSE REFERRING TO THE SHAWNING STOCK ARE GIVEN FOR 1 JANUAKY; THE SPAWNING
Stock data reflect the stock situation at spawning time, whekeiby the folgowing values are
USED: PROPDRTIUN OF ANNUAL F BEFORE SPAWNING: 0.4n
PROPORTIUN OF ANNUAL BEFORE SHAWNING: O. 40 O

	1976	1977	1976	1979	1487	1981	1982	1483
7	5285.0	634.1	5360. 4	0222.9	4104.6	2796.1	2	
1	4475.9	4517.2	345.9	3001.:	$5 c 882.4$	3519.1	2371.2	1×4.4
2	2890.0	3593.7	3145.6	439.2	2310.4	4098.1	2782.0	1846.7
3	3234.2	2316.2	2\%25.1	2702.0	521.0	1555.5	3058.4	1930.6
4	1054.3	2485.4	1351.0	2058.5	1109.6	206.9	1151.8	2177.3
5	2295.0	758.3	1435.3	1367.7	1416.7	1170.8	149.0	895.0
6	$8 \% 7.5$	17 n .2	675.4	1470.0)	970.4	456.7	84\% 5	100.1
7	1218.5	657.6	1345.6	434.0	$104 \% .7$	796.1	6.31 .7	603.2
8	2772.9	842.0	270.4	11913.3	311.0	757.0	519.7	483.2
9	0.0	19xก.9	642.0	5x2. 4	729.6	219.3	548.2	369.9
$1)^{+}$	0.7	0. 0	1070.7	1434.0	1081.3	2275.8	102.1.9	1540.9

TOTAL NO 24187.419493 .619240 .720537 .419357 .618193 .313934 .910068

Table 4.4.A. Input data used in the forecasts for the Western Stock

Age	nb in 1983 $\left(x 0^{-6}\right)$	Fishing pattern	Weight at age in the catch	Weight at age in the stock	Maturity ogive
1	1000	0.53	0.131	0.113	0.18
2	1847	1.0	0.248	0.131	0.38
3	1981	1.0	0.283	0.201	0.67
4	2177	1.0	0.343	0.251	0.89
5	806	1.0	0.373	0.264	0.93
6	106	1.0	0.455	0.316	1.0
7	603	1.0	0.497	0.380	1.0
8	485	1.0	0.508	0.412	1.0
9	370	1.0	0.539	0.511	1.0
10^{+}	159	1.0	0.573	0.511	1.0

Proportion of F before spawning $=0.4$.
Mean weights at age used in calculating SB and SSB were those at 1 Jenuary

Mable 4.4.B Forecasta for the Western Stock - (Basic paraneters are given in Table 4.4.A) catches and stock biomasses are given in tonnes $x 10^{-3}$

1982		1.983				Management option for 1984	1984				1985	
Total land- ings	$\bar{F}_{(3-8)}$	Stock bioma日居	Spawn. stock biom.	$\overline{\mathrm{F}}(3-8)$	Total landings		Stock biom.	Spawn. stock biom.	${ }^{\sim}{ }_{(3-8)}$	Total landinga	Stock biomass	Spawn. stock biom.
009	0.19	2. 955	2178	0.20	650	No fiuhing	2476	$\left[\begin{array}{ll} 2 & 041 \\ 1 & 884 \\ 1 & 847 \end{array}\right.$	0	0	2515	2124
						$F_{84}=F_{83}$			0.20	534	2.087	1610
						maintain total land.			0.25	650	1994	1463
						$F_{84}=F_{0.1}$		1906	0.17	463	2144	1676

x Includes landings taken from outside the western area
excludea landings of N sea stock from within the western area
Soawning atock biomase are estimated at 1 June and atock biomass are estimated at I January
Weights in 1000 tonnes

Table 5.1 Nominal catch (tonnes) of MACKBREE in Sub-area IX - 1973-1982

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	$1982^{\text {F }}$
Portugal	1635	2329	2224	$2595{ }^{39 \%}$	$1743^{3 日 6}$	$1555^{\text {356 }}$	1071^{335}	1. 921 *F\%	$3108{ }^{\text {57E }}$	3600
Spain	2334	3264	3345	2520	2935	6221	6280	2719	$2111^{\text {FFF }}$	796
France	-	-	1	-	-	-	-	-	-	-
Poland	-	-	-	-	8	-	-	-	-	-
USSR	-	-	44	466	2879	189	211	-	-	-
Total	3969	5593	5614	5581	7565	7965	7462	4640	521.9	4396

* Preliminary

Werking Group estimate

Table 6.1.A. Landings of HORSE MACKHRET in Sub-area IV, by country (In tonnes)

Country	1974	1975	. 1976	1977	1978	1979	1980	1981	198 ${ }^{\text {\# }}$
Belgium	34	23	15	14°	. 15	9	8	34	7
Denmark	-	-	-	63	1543	496	199	3576	1616
Faroe Islands	772	156	116	130.	3	-	260	-	2327
France	582	140.	147	325	182	221.	292	2	570
German Den, Rep.	-	-	4	-	-	-	-	-	-
Germany Fed.Rep.	686	696	162	2	1993	376	+	139	30
Iceland	203	-	-	-	-	-	-	-	-
Ireland	-	-	-	-	\cdots	\sim	1161	412	-
Netherlands	576	173	82	223	106	88	101	355	559
Norway	20713	2174	4842	450	1037	199	119	2292	7
Poland	62	-	11	6	-	-	-	-	-
Spain	-	-	-	-	-	-	-	-	-
Sweden	$2^{\text {a) }}$	+	-	-	. b)	+	-	-	-
U.K. (Engl.\&Wales	5	3	11	22	36	23	11	15	5
U.K. (Scotland)	1222	2	+	4	5	+	-	-	-
U.S.S.R.	5894	6566	3278	87	-	-	-	-	-
TOTAL	30751 i	9933	8668	1326	4920	1412	2151	6825	5122

*) Preliminary
a) Includes IIIa
b) Included in IIIa

Table 6.1.B. Landings of HORSE MACKERES in Subwarea VI, by countxy (in tonnes)

Country	1974	1975	-1976	1977	1978	1979	1980	1981	1982*
Belgium	-	-	+	-	-	-	-	-	-
Denmark	- .	-	-	-	-	443	734	341	2785
Faroe Islands	342	2	2	-	-	-	-	-	-
France	-	-	293	113	91	151	45	454	4
Ireland	-	-	-	-	59	-	-	-	-
Germany, Fed. Rep.	209	263	5	-	-	155	5550	10212	2114
Netherlands	-	106	69	19	114	6910	2385	$100^{\text {a }}$)	$50^{\text {a }}$)
Norway	627	869	90	-	-	-	-	5	-
Poland	1067	479	48	-	-	-	-	-	\cdots
Spain	400	150	175	147	91	20	-	-	-
U.K. (Engl.\& Wales)	14	6	37	40	44	73	9	5	+
U.K. (Scotland)	41	187	85	105	9	39	1	17	83
U.s.s.R.	780	1210	3390	246	-	-	-	-	-
TOTAL	3521	3379	4299.	670	408	779	8 724	11134	5036

* Provisional
a) Estimated from biological sampling

Table S.I.C. Landings of HORSE MACKRRIS in Sut-area VII, by country (in tonnes)

Country	1974	1975	1976	1977	1978	1979	1980	1981	1982*
Belgium	3	4	2	1	1	3	+	1	1
Denmark	-	-	-	-	2104	4287	5045	3099	877
France	2466	2443	3.800	2448.	3'564	4407	1983	2800	2314
German Dem. Rep.	8	-	92	45	-	-	-	-	-
Germany, Fed.Rep.	825	521	3	308	2923	5333	2289	1079	12
Ireland	-	-	-	1133	3388	-	-	16	-
Netherlands	-	41	280	2088	10556	25174	23002	25000^{2})	$27500^{\text {a }}$
Norway	16	-	-	-	29	959	394	-	-
Poland	4.643	1869	2967	640	61	-	-	-	-
Spain	12315	10890	17124	483	516	676	50	234	104
U.K.(Eng1.\&Wales)	675	438	2014	1343	2918	2686	12933	2520	2670
U.K. (Scotland	-	-	-	-	-	-	1	-	-
U. S.S.R.	95650	101393	150728	20366	-	-	-	-	-
TOTAL	116601	117599	177010	28855	26060	43525	45697	34746	33478

* Provisional
a) Estimated from biological sampling

Mable 6.I.D. Landings of HORSE MACKEREL in Subwareas VIII and IX, by country (in tonnes)

Country	1974	1975	1976	1977	1978	1979	1980	1981	$1982^{\text {F }}$
Sub-area VIII									
Denmark	-	-	-	-	-	127		-	-
France	2477	2386	3380	4881	3643	4240	3361	3711	3073
German Dem. Rep.	-	-	14	-	-	-	-	-	-
Netherlands .	-	-	-	-	19	-	-	-	-
Spain	62836	72916	95401	104812	80139	42766	34134	36362	19610
U.K. (Eng1. \&Wales)	-	-	-	-	-	22.	-	+	1
U.S.S.R	925	11436	30763	15213	3	-	-	-	-
TOTAL	66238	86738	129558	124906	83804	47155	37445	40073	22684
Sub-area IX									
Poland	-	-	-	168	-	-	-	-	-
Portugal	48071	43491	49041	51342	32043	26977	25132	26032.	29494
Spain	2954	1882	3339	981	14.787	12880	11679	12120	8840
U.S.S.R.	-	422	644	14898	381	250	-		
TOTAL	51025	45795	53024	67388	47211	40107	36811	38152	38334

**)Provisional

Figure 3.1 MACKEREL. Norwegian catches July-September 1981 and 1982 (coastal fishery excluded). 1000 tonnes. Data provided by the Institute of Marine Research, Bergen, Norway.

- 46 -
(1)

Fitsure 4.2 The percentage frequency of MACKRRRE less than 30 cm total length in the Ceatic Sea fisheries January 1982 \rightarrow February 1982. The small digits in the comer of each statistical rectangle give the number of samples taken in the rectangle.

Tigure 4.2 conta. The percentage frequency of MACKARH less than 30 cm January - April 1983 The small digits in the comer of each statistical ractangle give the number of samples taken in the rectangle.

APPENDIX A

Method used to allocate a Mixed Oatch to Stock Components

The system considered consists of two stocks which originate from two areas and mix in a third area where they are fished.

Les $N^{j}=$ total number of fish (all age groups)

$$
\text { in area } j, j=1.2
$$

$P_{i} N^{1}=$ stock number in age group i, in stock 1 , before mixing
$Q_{i} N^{2}=$ stock number in age group i, in stock 2 , before mixing.
All fish in the area of mixing are assumed to come from either stock 1 or stock 2. Before mixing, there are no fish in the area of mixing.

Let θ_{j} be the fraction of fish migrating from area j to the area of mixing.
Thus, the total stock numbers after mixing become

$$
N^{\operatorname{mix}}=\theta_{1} N^{1}+\theta_{2} N^{2}
$$

we assume that the same fractions of all age groups migrate i.e.,

$$
N_{i}^{m i x}=\theta_{1} N^{1} P i+O_{2} N^{2} Q_{i}
$$

We assume that fishing mortality remains constant for all age groups, i.e. there is a constant factor S, so that the numbers caught in the area of mixing become

$$
C_{i}^{\operatorname{mix}}=S N_{i}^{\operatorname{mix}}
$$

for all age groups.
Thus

$$
C_{i}^{m \dot{x} x}=S \theta_{n} N^{1} \times P_{i}+S \theta_{2} N^{2} \times q_{i j}
$$

Let $c^{\text {mix }}=\sum_{i} C_{i}^{m i x}$, the total number caught in the area of mixing and let

$$
r_{i}=\frac{c_{i}^{\operatorname{mix}}}{c^{\operatorname{mix}}}
$$

$$
\begin{equation*}
r_{i}=\frac{s \theta_{1} N^{1}}{C^{m i x}} p_{i}+\frac{s \theta_{2} N^{2}}{C^{m i x}} q_{l} \tag{1}
\end{equation*}
$$

Because $\sum_{i} r_{i}=1.0, \sum_{i} p_{i}=1.0$ and $\sum_{i} q_{i}=1.0$ we have:

$$
\frac{S \theta_{1} N^{1}}{C^{m i x}}+\frac{S \theta_{2} N^{2}}{C^{m i x}}=1.0
$$

If we rename $x=\frac{s \theta_{1} N^{\prime}}{c^{m i x}}$ then

$$
1-x=\frac{S \theta_{2} N^{2}}{c^{m i x}}
$$

and equation (1) can be wwitten

$$
\begin{equation*}
r_{i}=x p_{i}+(1-x) q_{i} \tag{2}
\end{equation*}
$$

Asscimi iliad, r_{i}, p_{i} and g. are known, then equation (2) can, be solved for x

$$
\begin{equation*}
x=\frac{r_{i}-q_{i}}{p_{i}-q_{i}} \tag{3}
\end{equation*}
$$

If all assumptions given above were fulfilled, and if the estimates of r_{i}, P_{i} and Q_{i} were without sampling errors equation (3) would hold for all age groups. As this is not the case when considering real data, we use the average over age groups as an estimate for x

$$
\hat{x}=\frac{1}{n} \sum_{i=1}^{n} \frac{r_{i}-q_{i}}{p_{i}-q_{i}}
$$

The split of $c^{m i x}$ into stock components is estimated by

$$
\mathrm{c}^{2}=\hat{X} c^{\operatorname{mix}} \text { and } c^{2}=(1-\hat{X}) c^{\operatorname{mix}}
$$

and the numbers in each age groups in the mixed catch are estimated by

$$
\hat{C}_{i}=P_{i} \hat{x} C^{m i x} \text { and } \hat{C}_{i}^{2}=q_{i}(1-\hat{x}) C^{m i x}
$$

The assumption being that the age distribution of the catch taken in the mixing area equals that of the original stock.

North Sea Egg Surveys

The total egg production estimate for the North Sea given by Iversen and Eltink (1983, in press) is underestimated at about 10%. In that paper, the age of the egro is based on Danielssen and Iversen (1977), and the average surface temperature for the spawning area for each survey. If the temperature varies appreciably within the spawning area, this will bias an estimate based on an average temperature. This was the situation at the time of the Dutch survey. During the Noxwegian surveys the temperature was more stable in each case. The criteria of eggs to be used are different for the Dutch and Noxwegian investigations. The Dutch use the same system as applied for egg surveys on the Western stock (Lockwood, Nichols and Dawson, I981). The Norwegian stage used at the temperatuxe range encountered are about 25% older than those classified by the Dutch. If this is taken into account and also applying a more representative temperature for Sub-areas, the total egg production is estimated at 110×1012 eggs (App.B, Figure 1).
A document prepaxed by Walsh et al. (C.M.1982/H:49) for the ICES Statutory Meeting in 1982, using the same egg survey data, also suffered from the defect discussed above, that the egg stage durations used were inconsistent between surveys. In that case the correction required would be much higher but in the opposite direction. Accordingly, the Working Group decided not to use this estimate.

Appendix B. Figure 1 The egg production curve based on the Dutch and the four Norwegian surveys in 1982 (1). The spawning intensities of mackerel at "Ekofisk" (2) and "Cod" (3) in 1982.

Preliminary Report on the 1983 Plankton Survey to Estimate the
 Western Mackerel Spawning Stock Size

An informal meeting of representatives of some laboratories participating in the 1983 mackerel egg survey was held at ICES headquarters on 5 September 1983. Those attending were:

S Coombs, IMER, England
A Eltink, RIVO, Netherlands
J Guéguen, ISTPM, France
S Lockwood, Maff, England
A Saville, DAFS, Scotiand.
Although no representative of the Federal Republic of Germany attended the meeting, the data from their sampling in March-April were available for inclusion in the assessment.
As on previous occasions, the survey was carried out between March and July in the Bay of Biscay, Celtic Sea and west of Ireland (Appendix C, Figure 1). Six ships participated in a total of 10 cruises. The cruises were arranged so that, as far as possible, there was always one ship on the spawning ground, and at the peak of spawning (late May to early June) there were two ships on the spawning ground. This procedure ensured more intense coverage than on previous occasions. Whereas in 1977 and 1980 sampling was generally limited to alternate rows of stations, liaison between scientists in charge of conservative cruises in 1983 ensured that virtually all stations within the main grid were sampled. Thus, the total daily stage 1 mackerel egg production estimates were made with very few interpolated values for unsampled rectangles.

Daily egg production estimates (and interpolations for unsampled rectangles) were made following the same procedures as those used in 1980 (Lockwood et aI., 1981). The daily egg production rate per m^{2} in each ${ }^{2}{ }^{\circ} \times \frac{1}{2}^{\circ}$ rectangle was raised by the area of the rectangle. The daily egg production rate for the entire survey area was estimated by the gum of all the rectangle estimates within the main survey area (App.C., Fig.l). Four total production estimates were made; these are given in App.C, Table 1 and are shown in App.C, Fig.2.The estimates for 1 April and mid-May were made by combining data from two cruises, "Anton Dohrn" + "Cirolana 1", and "Scotia"l + "Tridens 1 " respectively.The peak production estimate was made using the results from "Cirolana $2^{\prime \prime}+$ "Tridens 2 " + "Scotia 2 "+"Challenger".

On the northern and southern extremeties of the grid this of ten utilised two observations per rectangle, but in the important central sector, over the Great Sole Bank (between $48^{\circ} 30^{\prime \prime}$ and $50^{\circ} \mathrm{N}$) there were four observations per rectangle. The production estimate for July is a minimum estimate, as "Mhalassa 1" did not manage complete coverage of the grid. Data from "Thalassa 2" were not ready in time for this meeting.
The total egg production estimate for the Western mackerel stock in 1983 was: 1.44×10^{15} stage 1 egss.

The egg production estimate was converted to spawning stock following the procedures adopted in 1980 (Lockwood et aI., 1981). Using length frequency information from the Dutch commercial fighery and trawl hauls made by the research vessels during the plankton survey, the mean length of mature fish (28 cm and larger) was calculated. Separate mean lengths were calculated to correspond with each production estimate, plus one for mid-April based on

Dutch commercial data only. Mean fecundity was calculated from these mean lenghts by the relationship:

$$
\mathrm{F}=8.8 \ell^{3.02}
$$

The fecundity estimates, their corresponding egg production estimates and spawning stock estimates are given in App.C, Table 1 . The total number of spawning fish was estimated by area under the spawning stock curve shown in App.C,Figure 3.
The 1983 Western mackerel spawning stock estimate was 7200 million mature fish.
These estimates of total egg production and spawning stock size axe almost the same as those made in 1980. A brief discussion of these results was held in view of recent VPA assessments, which estimated a decline in spawning stock size over the period 1980-82 (Anon., 1982). It was noted, however, that this, the third Western mackerel plankton survey, was the most comprehensive to date and, therefore, might result in estimates which were not minimum estimates as was previously the case, particularly for the 1977 data.
It was agreed at this meeting that stage 1 mackerel egg data from each research vessel cruise should be sent to all other participants, so that each has a complete set of data. Dr Lockwood is to prepare a paper, presenting these results for the 1984 Statutory Meeting of ICES.
It was also agreed that a second meeting should be held at which not only the mackerel egg data will be considered, but all data collected during the course of this survey, The meeting will be convened by Dr Lockwood and will be held at the Fisheries Laboratory, Lowestoft, probably 8-10 February incl. 1984. Informal papers for discussion will be invited from anyone who has an interest in these gurveys, or on related work in the Western mackerel stock spawning area.

App.C, Table 1. Western mackerel stock, monthly stage 1 ege production estimates (shown in App. $\mathrm{C}, \mathrm{Fi} \mathrm{g} .2$), mean lengths of mature fish, mean fecundities and spawning population, by months, March-July 1983.

	1 April Anton Dohrn + Cirolana 1	Mid-April Commercial data	$\begin{aligned} & \text { Mid-May } \\ & \text { Scotia 1. } \\ & + \text { Tridens } 1 \end{aligned}$	June Cirolana $2+$ Tridens 2 + Scotia $2+$ Challenger	July Thalassa 1
$\mathrm{Sr} . \mathrm{I}$ egg production P $\times 10^{-10}$	380	$(900)^{x}$	2775	2457	777
$\ell \mathrm{cm}$	33.4	35.6	36.0	34.6	- ?
Mean fecundity, F	351720	426500	441000	391500	391500
$\begin{aligned} & \text { Mature fi.sh } \times 10^{-6} \\ & ((P / F) \times 2) \end{aligned}$	21.6	42.2	80.5	125.6	39.7

1
x) From curve in App.C.,Figure 2.

[^1]

[^0]: x) General Secretary, ICES,
 Palægade 2-4, DK-1261 Copenhagen K, Denmark.

[^1]: App.C.,Figure 1. The Western Mackerel spawning area. Samples were
 taken at the centre of each $\frac{1}{2}^{\circ} x \frac{1}{2}^{\circ}$ rectangle within
 the bold line.

