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1 Executive summary 

The Study Group on Recruitment Forecasting (SGRF) met at the Institute of Marine 
Sciences (ICM-CSIC) in Barcelona, Spain from October 15–19, 2012, with eleven 
participants and Dr Sam Subbey (Norway) as Chair. 

The formal mandate for this SG meeting was established in 2011/2/ACOM26 under 
Action Plan No: 1.2, 1.10, and 2.5. The objectives of the SG are to decide on guidelines 
and standards with regards to (1) How to develop models for recruitment projections 
which incorporate both abundance indices and environmental drivers, and (2) 
Criteria for validating models and for choosing the ‘best’ or a set of the best models. 

The 2012 meeting focused on: 

a ) A framework for: 
i ) Ecological and biological considerations in developing models for 

short-term recruitment projections, including how to incorporate both 
abundance indices and environmental drivers; 

ii ) The detection of ecological drivers for spikes in fish recruitment; 
iii ) A methodological approach to deriving a representative recruitment 

forecast when confronted with an ensemble of several competing 
model forecasts of recruitment; 

b ) Testing the framework using a designated case study. 

This report summarizes work by the SG in devising practical ecological and 
biological guidelines for developing short-term recruitment forecasting models. The 
report also discusses how to deal with multiple model recruitment forecasts and 
presents an illustrative example using recruitment models for Northeast Arctic Cod 
(NEAc). 

The SG recognizes that understanding the ecological underpinning to recruitment is a 
prerequisite in the development of appropriate models, which link fish recruitment 
to biotic and abiotic process drivers. A good understanding of such drivers is 
necessary e.g. for predicting spikes in fish recruitment. 

The SG advocates combining recruitment forecasts from several candidate models, 
rather than forecasts from an individual ‘best’ model.  The variance across a number 
of models is related to the risk of selecting among these models. Hence the goal of 
combining individual forecasts will be to reduce the variance of the performance 
across the combinations relative to the variance across the individual methods, for 
various measures of variance. A guiding principle is that irrespective of the 
methodology adopted in combining forecasts, the predictive performance of the 
combination must be better than that of the selected individual models. 

Throughout the rest of this report, short-term forecasts will refer to forecasts one year 
ahead. With respect to stock assessment however, the expression ‘short-term forecast’ 
usually refers to predictions associated with year classes that have already been 
spawned but yet to enter the fishery (See ICES 2011 SGRF for a discussion). 

Significantly absent from the suite of recruitment forecasting models for the 
designated case study are the classical Beverton–Holt and Ricker functions. The SG 
investigated the performance of these classical functions using data from the case 
study. Since these classical functions do not include explicite terms for environmental 
drivers, the results are presented separately, in the appendix. 
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2 A framework for recruitment modelling; Incorporating abun-
dance indices and environmental drivers 

2.1 Ecological considerations 

Recruitment is the result of many factors, starting with the parents, which affect 
survival from the egg-stage through to when individuals recruit to the fishery or 
stock. One can treat recruitment as a stepwise process (egg, larvae, juvenile, adult), 
where abundance at one stage is a function of abundance at a previous stage (Paulik, 
1973; Rothschild, 1986; Figure 1). The state of a population in any given year is a 
function of the stock (e.g. reproduction, growth, biomass) and recruitment, which is 
itself a function of past events (e.g. state of the stock, environmental conditions). 
Recruitment is therefore explicitly linked not only to the amount of spawning–stock 
biomass (SSB), but also parental size and growth history of the individual. 
Recruitment must decline if there is insufficient spawning biomass, but may also 
decline when the growth environment of either the prerecruit or the post-recruit (but 
sexually immature) portion of the stock changes (Lorenzen, 2008; Lorenzen and 
Enberg, 2002). Reduced body size will result in decreased recruitment because 
fecundity, egg size, and spawning extent is inextricably linked to the individual’s 
growth history and condition (Kjesbu et al., 1996). Recruitment predictions that make 
incorrect assumptions regarding the spawning stock, ignore non-linear feedback 
mechanisms, or omit interactions between stages and across spatio-temporal scales 
tend to lead to a breakdown of the stock–recruitment relationship (Hutchings and 
Rangeley, 2011; Myers, 1998; Neill et al., 1994). 

The stock–recruitment curve captures the transition from recruitment, which inte-
grates the previous effects of these factors into the dynamics of a single cohort, back 
into the spawning–stock biomass (Skjoldal, 2004). Whether variation in life-history 
traits might affect the stock–recruitment relationship or if these relationships can be 
captured by certain factors should be determined. Diagramming multistage stock–
recruitment relationships (see Figure 1) are an important and visually easy-to-use aid 
for assessing which life-stage might be important to investigate. The eventual 
reproductive success of an individual is determined by the conditions the individual 
experienced up to the point of maturation; any change to the environment of the 
individual will subsequently conclude in change in recruitment. These changes are 
described by the growth dynamics of an individual; once recruitment is viewed from 
a bioenergetics prospective, it is apparent that growth at the prerecruit and 
immature, post-recruit stages will affect recruitment (see Enberg et al., 2011; van Der 
Veer et al., 1994). Individuals utilize an optimal temperature range in order to 
maximize energy intake, the difference between the potential and realized growth is 
referred to as the scope-for-growth (Jobling, 1994; Neill et al., 1994). Even if under 
suboptimal conditions, the individual will attempt to maximize the scope between 
growth and maintenance costs (Pörtner and Farrell, 2008). Individuals typically do 
not achieve their full potential for growth under natural conditions (Figure 2; Dutil 
and Brander, 2003); however, growth should increase when conditions improve, even 
if some conditions are still considered suboptimal. Under declining population size, 
conditions for individual growth are expected to increase as a result of decreased 
density-dependent effects (Rose, 2005). However, when population depletion is not 
accompanied by increased growth (e.g. many Canadian cod populations), per capita 
population growth rate (r) is predicted to decline (Hutchings, 2005). 
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Biological and physical environmental factors tend to influence recruitment directly 
(e.g. mortality of eggs and larvae) or indirectly, through changes in predation, prey 
availability, growth, and, thus, parental trait plasticity. Furthermore, any change that 
results in the contraction of the spatial extent of habitat or productivity of the system 
can lead to a decline in recruitment; it is not until the system shifts states (or the 
spatial extent of habitat expands) that the species will then begin to show stronger 
recruitment (Alvarez-Fernandez et al., 2012). This effect is not directly related to stock 
size, as corroborated by the variable recruitment at similar spawning stock sizes. 
Additional changes are attributed to the effect of fisheries and selective harvesting 
(Enberg et al., 2010). Fishing affects recruitment indirectly, primarily through 
spawner biomass and traits, and directly, should the fishery include sexually 
immature fish (Vasilakopoulos et al., 2011). The relationship between stock and 
recruitment will shift with demographic changes and any changes in fecundity, size 
and age-at-maturity, or spatio-temporal spawning extent of the population. Changes 
in size and age structure of the population will invariably lead to changes in the 
production of viable offspring (Marteinsdottir and Begg, 2002; Trippel, 1995); the 
effect is more chronic in short-lived species. Furthermore, if spawning–stock biomass 
is a factor included in the model, recruitment estimates must consider if there is a 
portion of the stock that does not spawn every year (Skjaeraasen et al., 2012). Due to 
the potential phenomenon of ‘skipped spawning’ the maturity ogive and SSB needs 
to be clearly defined (see ICES 2012,  WKMATCH). SSB can be considered as all fish 
which are sexually mature (a sexually mature fish is defined by WKMATCH as: the 
individual has the capability to enter, either regularly or continuously, the 
gonadotropin-dependent reproductive cycle with the resulting production of sex 
steroids and activation of related hormonal receptors with the proviso that once a fish 
is sexually mature, it remains that way for the rest of its life). Therefore, care must be 
taken to ensure all sexually mature fish are included in the maturity ogive. When 
considering the relationship with recruitment, then factors such as skipped spawners 
need to be taken into account and the SSB should be adjusted to remove those 
individuals that will omit a spawning and not contribute to the egg production or 
viable offspring. 

Recruitment projections 

Short- and medium-term projections of recruitment are needed for stock assessments. 
These projections should be based upon generation time of the species under review 
(see (ICES 2011, SGRF). Projections in the short- and medium-term for short-lived 
species will therefore be at a shorter time-scale than long-lived species. 

2.1.1 Spiked recruitment 

Sporadic, exceedingly strong (or poor) recruitment pulses are often referred to as 
spiked recruitment, which can be defined as periods of exceptionally high (or low) 
survival for the early life stages (Figure 3). Over longer time periods (i.e. centuries), 
spikes may become more apparent, whereas short time-scales (i.e. decades) may 
merely show an increasing (decreasing) trend in the stock. Here, we will only 
consider strong, relatively short-term pulses. Norwegian spring-spawning herring is 
often presented as a good illustration of this phenomenon (Figure 4). Spiked 
recruitment requires a certain level of biomass, which differs by stock, and low 
biomass does not rule out the possibility of such dynamics; North Sea herring has 
shown spiked recruitment at very low biomass. As long as the stock is not in the 
density-independent phase of stock–recruitment, a spike may occur. Moreover, 
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spiked recruitment can appear across many species at the same time (e.g. plaice and 
cod stocks in a number of different adjacent management areas in the Northeast 
Atlantic; Fox et al., 2000). 

Spiked recruitment is an indication that something has happened within the system 
outwith the effects of the spawning stock, providing an indication that conditions 
should be closely monitored. Temperature conditions have been linked to these 
pulses for species that inhabit water near the edge of their thermal optimums 
(O'Brien et al., 2000; Planque and Frédou, 1999), but this is not the sole factor driving 
such dynamics (Petitgas et al., 2011). Shifts in productivity, measured through 
multiple parameters, often underlie such outbursts (Munch and Kottas, 2009); shifts 
in productivity can be viewed by the relationship between SSB and recruitment, split 
into different environmental situations/regimes (Figure 4; Olsen et al., 2011). When 
conditions align spatial-temporally (e.g. temperature, match with prey, low 
cannibalism), there is an appropriate response in recruitment. This aligning of 
conditions can be thought of as an elevator that raises the population to a new state 
(Figure 5; Solari et al., 1997). Under these circumstances, the stock–recruitment 
relationship can be complex. Furthermore, dynamics within the stock are often 
driven for years afterwards by these strong pulses (Skjoldal, 2004), particularly when 
they result in strong density-dependent responses, where recruitment of subsequent 
year classes (at the appropriate lag) is depressed (Caley et al., 1996) or when they 
change the behaviour of the stock (e.g. Huse et al., 2010). 

SSBMLAI

0-wr MIK

Egg production

73
74
7576
77787980

81
82

83

8485
86

87

88

89
90

91 92

93
94
95

96

97
98
9900

01

02
0304 05

06

0708

09 10

11

73
74

7576
77787980

81
82

83

8485
86

87

88

89
90

9192

93
94

95

96

97
98

9900

01

02
030405

06

0708

0910

7677

78

79

80

81

82
83

8485

86

87

88

89

90

91
92

93

94
95

96

97

98

99

00

01

0203
04

05

0607

08
09 10 11

7677

78

79

80

81

82
83

8485

86

87

88

89

90

91
92

93

94
95

96

97

98

99

00

01

02 03
04

05

0607

08
0910

 

SSBMIK O-wr

1-wr IBTS

MLAI

76777879 8081 8283
84
85

86
87

88 89
90

91

92 9394 95
96 9798 99

00

01
02

03

04

05

06

07
08

09

10

11

73747576777879808182 83
84
85
86

87

8889
90

91

92939495
9697 98 99

00

01
02

03

04

05

06

07
08

09

10

7778
79

80

81
82

83

84

85

86

87

88
8990

91

92

93

94

95

96

97

98

99

00

01

0203

7778
79
80

81
82

83

84

85

86

87

88
8990

91

92

93

94

95

96

97

98

99

00

01

02 0304
05

06

07

08

09

10

 

Figure 1. A multistage stock–recruitment relationship for North Sea autumn herring (updated 
from Payne et al., 2009). (Left) Relationship between spawning stock – egg-production – larval 
abundance (MLAI) – 0-group. (Right) Relationship between spawning stock – larval abundance 
(MLAI) – 0-group – age-1 group. See Nash and Dickey-Collas (2005) for details on data sources 
and methodologies. 
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Figure 2. Food unlimited change in growth rate for Atlantic cod from age 4 to age 5 at several 
different temperatures (upper lines) compared to change in growth rate for 15 stocks of Atlantic 
cod (lower line); taken from Dutil and Brander (2003).  
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Figure 3. Top panel: Recruitment over time for Norwegian spring-spawning herring, showing 
periodic peaks in recruitment. Mid panel: Index of survival rate (R/kg SSB) over time indicating 
peak in survival for one of the strong recruitment pulses. Lower panel: Survival index on the log 
scale shows a large amount of variability exists in this index over time and indicates that even 
during a low period of stock size, survival rate was approximately average (1970–1980). 
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Figure 4. Effect of different environmental conditions on the stock–recruitment relationship for 
North Sea cod; taken from Olsen et al. (2011). 

 

Figure 5. Multiple stable states proposed for the Baltic cod stock–recruitment relationship, 1973–
1993, taken from Solari et al. (1997). 
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3 Criteria for single model evaluation 

Diagnostic tools are required to evaluate model fit to observations, fidelity to under-
lying assumptions, and to assess model predictions of recruitment. Standard hypoth-
esis testing methods (F-tests, likelihood ratio test, score test, etc.) can be used to 
compare complicated (highly parameterized) to less complicated models (McCullagh 
and Nelder, 1989). Such methods are however, only directly applicable to nested 
models.   Information-theoretic methods, e.g. Akaike Information Criteria (AIC) and 
Bayesian Information Criteria (BIC) are applicable to non-nested models. A brief de-
scription of information-theoretic methods is provided below. 

3.1 AIC(c) 

If we define k as the number of parameters in the statistical model and L as the max-
imized value of the likelihood function for the estimated model, then the AIC is de-
fined as: 

AIC=2k-2ln(L) or alternatively, AIC=χ2  + 2k. 

The latter form is often convenient, because most model-fitting programs produce χ2 
as a statistic for the fit. Given a set of candidate models for the data, the preferred 
model is the one with the minimum AIC value. Hence AIC not only rewards good-
ness-of-fit, but also includes a penalty that is an increasing function of the number of 
estimated parameters, and thus limits over-fitting. The classical AIC, though, is only 
valid asymptotically. Thus if the number of datapoints is small (such as in recruit-
ment data), then the corrected AIC, AICC must be used. The AICc is defined as: 

AICc =AIC + 2k(k+1)/(n-k-1), 

Where n is the number of datapoints Burnham and Anderson (2002) strongly recom-
mend using AICc, rather than AIC, if n is small or k is large. Since AICc converges to 
AIC as n gets large, AICc generally should be employed regardless, (Burnham and 
Andersen, 2002). 

3.2 BIC 

A convenient formulation of the Bayesian Information Criterion (BIC) is given by 

BIC= χ2 + k ln(n). 

A comparison of AIC/AICc and BIC is given by Burnham and Anderson (2002, Sec-
tion 6.4). The authors argue that AIC/AICc has theoretical advantages over BIC. The 
authors present a few simulation studies that suggest AICc tends to have practi-
cal/performance advantages over BIC. In particular, AIC is asymptotically optimal in 
selecting the model with the least mean squared error, under the assumption that the 
exact "true" model is not in the candidate set (as is virtually always the case in prac-
tice); BIC is not asymptotically optimal. 

3.3 Cross-validation 

Cross validation involves using a ‘training dataset’ (a subset of the total dataset) to 
estimate the parameters of the model and using the resulting model to predict the 
remaining data (the ‘test dataset’). The ability of the model to predict the test set is 
used to select the explanatory variables to include in the model. If too many explana-
tory variables are used, one obtains good model fit for the training data but a model 
with poor predictive ability since the good fit also includes fitting noise, rather than 
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only signal. If too few explanatory variables are used, the model performance is poor 
for both test and training datasets. K-fold validation is a version of cross validation 
that makes more use of the data than simple cross.-validation. In K-fold CV, the data 
are divided into k-equal parts and the model is run k-times, each time rotating 
through each of the k-subsets as the test dataset and using the remaining data as the 
training dataset. A potential drawback with cross validation is that it does not neces-
sarily parallel the likelihood inference that is used to estimate the model parameters. 
This is because a test criterion is required, and simple least squares are often used 
(Trevor Hastie et al., 2001). However, the likelihood function may differ from the 
least-squares criterion. 

3.4 Dealing with multiple recruitment model predictions 

In general, the task of choosing the ‘best’ model among a variety of candidates is a 
statistically challenging and non-trivial problem. For a review, see de Gooijer, Abra-
ham, Gould and Robinson (1985). When short time-series are used as input, it is hard 
to distinguish between closely related models (based e.g. on AIC, BIC) since selection 
indices tend to be very close to each other. A change in for instance, the length of the 
input data, may result in a different model choice, and consequently in the forecast. 
See a detailed discussion in Zou, H. and Yang, Y. (2004).  When candidate models use 
different datasets or different combinations of such in the modelling process, choos-
ing a ‘best’ candidate model becomes an even more challenging task especially when 
the variable to be forecasted is inherently highly uncertain. This can happen when the 
variable to be forecasted is derived for instance, from models which take uncertain 
data as input, e.g. forecasting recruitment based on model derived estimates of 
spawning–stock biomass. Thus choosing a ‘best’ recruitment model based on com-
paring forecasts with e.g. recruitment values from an assessment model could be 
misleading and risky. Put in other words, when there is uncertainty about the ‘best’ 
individual forecasts or combination, it might be riskier to select among individual 
forecasts than to select among their combinations, Hibon, M. and Evgeniou, T. (2005). 

Combining individual model forecasts as introduced by Bates and Granger (1969) is 
often considered as a successful alternative to using just an individual forecasting 
method. Further, there is theoretically proven advantage of a proper combining over 
any selection method, see Yang (2004).  Specifically for time-series forecasting, it has 
been shown that predictive performance increases through combining forecasts 
(Armstrong, 1989; 2001; Clemen, 1989; Makridakis and Winkler, 1983). 

This SG therefore advocates for combining recruitment forecasts from several candi-
date models, rather than forecasts from an individual ‘best’ model.  The variance 
across a number of models is related to the risk of selecting among these models 
(Bousquet and Elisseeff, 2002; Vapnik, 1998). Hence the goal of combining individual 
forecasts will be to reduce the variance of the performance across the combinations 
relative to the variance across the individual methods, for various measures of vari-
ance (Breiman, 1998; Evgeniou, Pontil and Elisseeff, 2004). Irrespective of the meth-
odology adopted in combining forecasts, the combined forecasts must be such that (i) 
the predictive performance of the combination is better than that of the selected indi-
vidual models and (ii) the risk, measured as the difference in post-sample perfor-
mance between the selected and the best possible, for selecting among individual 
methods is no higher than the risk for selecting among combinations. 

The literature contains several methodologies for dealing with multiple competing 
models and model predictions. This report presents an example methodology, which 
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generates a representative prediction through a weighted average of multiple predic-
tions. The weights are determined by the historical performance of each model, and 
updated as new data are included in the analysis. 

3.4.1 Example methodology; the AFTER algorithm 

The SGRF meeting in 2012 has tested an example approach which involves combin-
ing weighting individual forecasts. The approach is based on using the Aggregated 
Forecast Through Exponential Reweighting (AFTER) algorithm. Individual model 
weights are based on past model prediction performance. A brief description is pro-
vided below. However, a detailed methodological description can be found in Yang, 
Y. (2004) and Zou, H. and Yang, Y. (2004). 

3.4.1.1 Algorithm description and assumptions 

It is assumed that 

1 ) The conditional distribution of  given  is Gaussian for all  
with conditional mean, , and conditional variance, ; 

2 ) For each forecasting procedure, in addition to the forecast, , an estimate 
of  is obtained based on . 

To combine forecasts from J models, at each time n, the AFTER algorithm looks at 
their past performances and assigns weights accordingly as follows. Let Wj,1 =1/J and 
for , let 

 

Note that after each additional observation, the weights on the candidate forecasts 
are updated, and that the weight Wj,n depends only on the past forecasts and the 
past realizations of Y. 

This report illustrates the application of the above weighted averaging methodology 
using recruitment models for northeast Arctic cod.  A brief description of the models 
is provided in the next section, as well as details about model runs and analysis. 
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4 Designated case study 

The SG used the northeast Arctic cod (NEAc) as a primary case study.  Though a 
description of this stock is provided in the SGRF 2011 report, this is repeated here for 
the sake of completeness. The NEAc stock spawns along the Norwegian coast, mainly 
north of 67°N, during March-April. Most of the larvae drift into the Barents Sea, 
where the cod spends the rest of its life, except for the spawning migration. Recruit-
ment to the fisheries has been at age three. The NEAc is an opportunistic feeder, for-
aging mostly on available species of suitable size, though capelin appears to be its 
preferable prey. In years when capelin abundance is low in relation to the cod densi-
ty, cannibalism may cause a substantial mortality on juveniles. Other important 
predators of cod are seals and whales. 

4.1 Model descriptions, simulation results and diagnostics 

Since 2008 several regression models, which includes stock and climate variables, 
have been used by the Arctic Fisheries Working Group (AFWG) for prediction of 
NEA cod recruitment-at-age 3 (ICES CM 2011/ACOM: 05).  Although several re-
cruitment models exist only four of such models have been chosen to demonstrate 
how competing model predictions can be combined into generating a representative 
statistic with reduced variance.  Detailed description of the models can be found in 
the SGRF 2011 report. 

The calibration dataseries is from the period 1984 to 2008. The calibrated model was 
then used for recruitment predictions in the period 2009–2010. For the retrospective 
analysis, the models were run, excluding data one year at a time. The shortest time-
series used was from 1984 to 1999 and the longest was for the period 1984–2008 (full 
series). The 2012 AFWG VPA assessment was used as “truth”. 

4.1.1 Model 1—JES 

This model was first described in Stiansen et al. (2005), and further evaluated in Sub-
bey et al. (2008). The model is given as: 

JES: R3t ~ Twt-3 + Age1t-2 + log(CapMatBiot-2), 

where Tw the water temperature: 3–7 stations of the Kola section (layer 0–200 m),  
Age1 is the bottom-trawl abundance (age 1 year index) of NEA cod from the joint 
winter Barents Sea acoustic survey and CapMatBio is the biomass of mature capelin 
in October. The numbers in parentheses are the time-lags in years. 

Table 1 is a table of correlation coefficients between the covariates of the model, and 
shows the highest correlation between the estimates of recruitment and Tw. 

Table 1.  Correlation of model time-series. 

 R3 (VPA) TW AGE1 CAPMATBIO 

R3(VPA) 1 0.69 0.29 0.27 

Tw 0.69 1 0.01 0.24 

Age1 0.29 0.01 1 -0.2 

CapMatBio 0.27 0.24 -0.2 1 
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4.1.1.1 Retrospective analysis and discussion 

The model gave a good fit to the VPA until around 2006, from when the fit (R2) start-
ed to decrease. From 2007 the capelin term became insignificant, and the same ap-
plied to the Age 1 term from 2008. 

This may serve as an example of a model that does no longer captures the dominant 
dynamics influencing the stock recruitment. Thus, recruitment prognoses from this 
model cannot be considered as single accurate estimates. However, in line with the 
approach adopted in this report, recruitment forecasts from JES may be included in 
defining averaged ensemble prognosis of stock recruitment. The prognosis given by 
the model is 924 072 (for 2009) and 952 637 (for 2010), in thousand individuals. 

The model mean square prediction error is estimated through retrospective analysis. 
Table 2 shows a summary of the retrospective analysis and the estimated mean 
square prediction error (MSE), which is calculated as the average of the squared dif-
ference between the VPA and the prognoses. 
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Table 2. Calculation of mean square error (MSE), based on the retrospective runs. 

 

VPA P1 (PROGNOSIS ONE YEAR AHEAD) P2 (PROGNOSIS TWO YEARS AHEAD) DIFF (VPA-P1)^2 DIFF(VPA-P2)^2 

2000 613 588 577 427.4 

 

1 307 588 992 

 2001 520 652 530 838 524 701.8 103 754 596 16 400 880.04 

2002 454 916 688 360 689 438.4 54 496 101 136 55 000 756 102 

2003 709 786 811 730.9 843 472 10 392 762 636 17 871 946 596 

2004 310 760 677 055.3 692 105.5 1.34172E+11 1.45424E+11 

2005 580 528 713 233.3 734 483.5 17 610 696 648 23 702 295 980 

2006 602 424 456 457.1 463 067 21 306 335 896 19 420 373 449 

2007 1 345 611 601 367.7 584 910.6 5.53898E+11 5.78665E+11 

2008 1 180 149 823 126.8 681 847.2 1.27465E+11 2.48305E+11 

      MSE 

   

1.02306E+11 1.36051E+11 

stdev 

   

319 853 368 851 
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4.1.2 Model 2—RCT3 

Similar to last AFWG (ICES, 2008) the following default settings have been chosen for 
running RCT3 during the SGRF 2012 meeting: 

1 ) Regression type = C; 
2 ) Tapered time weighting applied; 
3 ) Power = 3 over 20 years; 
4 ) Survey weighting not applied; 
5 ) Final estimates shrunk towards mean; 
6 ) Minimum S.E. for any survey taken as 0.20; 
7 ) Minimum of 3 points used for regression; 
8 ) Forecast/Hindcast variance correction used. 

The input data for the model were time-series survey data for ages 0, 1 and 2 from the 
Russian autumn survey and for ages 1, 2 and 3 from the joint Norwegian-Russian 
winter survey. There are two types of indices available from the joint winter survey; 
acoustic and bottom-trawl estimates. In contrast to the AFWG runs where both types 
of data were used, only acoustic indices have been used here, since they show closer 
relationship with recruitment-at-age 3 from the VPA. The list of the six chosen indices 
is as follows: 

1 ) R-0      Russian Swept-area trawl survey, area I+IIb,   age 0 
2 ) R-1      Russian Swept-area  trawl survey, area I+IIb,   age 1 
3 ) R-2      Russian Swept-area  trawl survey, area I+IIb,   age 2 
4 ) N-BSA1     Norwegian Barents Sea Acoustic survey age 1 
5 ) N-BSA2     Norwegian Barents Sea Acoustic survey age 2 
6 ) N-BSA3     Norwegian Barents Sea Acoustic survey age 3 

It was observed that predictions for year classes 2007 and 2008 are highly driven by 
the shrinkage parameter, and the mean VPA estimates used in shrinkage diverge 
considerably from the survey predictions. It should also be mentioned that the stand-
ard errors for some indices are extremely high. An alternative model configuration 
without shrinkage has been tested in retrospective analysis (see below). 

The prognosis given by the model is 529 (for 2009), 390 (for 2010) and 690 (for 2010) in 
million individuals. The results are summarized in Table 3. 

Table 3.  RCT model predictions and associated variance estimates of recruitment. 

YEAR 
VPA 2012 
(MILL. IND.) 

PROGNOSIS FOR NUMBER OF 
YEARS AHEAD OF 2008 ASSOCIATED VARIANCES 

  1 year 2 years 3 years 1 year 2 years 3 years 

2009 750 529   109 541   

2010 457  390   121 680  

2011 691   690   123 945 
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4.1.2.1 Retrospective analysis and discussion 

With the exception of two year classes (2004 and 2005), Figure 6 shows that the model 
gives a reasonably good prediction (compared to the VPA) of NEA cod recruitment-
at-age 3. 

A possible explanation for the less accurate prediction of year classes 2004 and 2005 
could be the shrinkage procedure used in RCT3 program, as this limits the model 
ability to predict big changes in recruitment. An extra run has been performed to test 
the influence of shrinkage on model performance. RCT3 runs without shrinkage 
demonstrate slightly better predictions for year classes with outstanding abundance. 
However, the quality of predictions for other year classes, become less accurate, Fig-
ure 7. 

Another possible explanation for model inability to predict 2004 and 2005 year-class 
strength is a possible error in the VPA estimates. These two points clearly deviate 
from the general pattern in the VPA/index regressions, see Figure 8. 

Comparison of the last three years assessment values shows that their estimates are 
rather unstable and belongs to unconverted part of VPA (Figure 9). As it was recog-
nized by AFWG (ICES 2012) the current VPA estimates become very sensitive to XSA 
model assumption regarding density-dependent survey catchability. Hence a possi-
ble error in these year class estimates may explain the failure of all recruitment mod-
els to predict them correctly. 
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Figure 6. Recruitment forecasts for 1, 2 and 3 years (coloured lines), using the RCT3 model. The 
figure shows a comparison to the VPA estimates of NEA cod recruitment-at-age 3 (black dotted 
line). The mean square deviations of predicted age 3 recruitment values by the RCT3 model were 
in range of 47–49% of the average recruitment for the period (see Table 4). 
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Table 4. Absolute and relative mean square deviations of predicted RCT3 recruitment values 
from VPA estimates for northeast Arctic cod at age 3. 

  PREDICTIONS   

  1 year 2 years 3 years 

Mean square deviation (RMSE) 331 349 352 

N (number of years in prediction) 9 8 7 

Average Recruitment (mill. Ind.) 702 713 741 

Mean percentage deviation in 47 49 48 
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Figure 7. Results of 1, 2 and 3 years’ predictions (coloured lines) by RCT3 in comparison to esti-
mates of NEA cod recruitment-at-age 3 from VPA (black dotted line). The results are based on no 
shrinkage to the mean recruitment. 
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Figure 8. Regressions between VPA recruitment-at-age 3 and acoustic indices from the joint win-
ter survey at ages 1–3. The axes are on logarithmic scale. The 2004 and 2005 year classes are denot-
ed by red triangles. 
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Figure 9. Estimates of NEA cod recruitment-at-age 3 by the AFWG (2010–2012) and recruitment 
estimate using the 2012 assessment data, which assumes a power relationship between VPA 
numbers and survey index at age 8 (black dotted line). 

4.1.3 Model 3 and 4—TITOV 

An approach to model stock–recruitment by including indices which reflect varia-
tions in the physical and chemical environment has been implemented for the Barents 
Sea capelin and northeast Arctic cod (Titov, 1999; Titov, 2001). The statistical models 
were revised in 2009 (Titov et al., 2005; Titov, 2008). In the revision, data prior to, and 
including the year 1983 were excluded in the model calibration and analysis in 2010. 
In order to improve prediction, water temperature data were added as an explanato-
ry variable in one of the models in 2011. Some terms were also dropped from the 
model formulation in order to avoid over-fitting the regression models, and thus 
improve model prediction power. This was done in 2011 in accordance with statisti-
cal criteria (Titov, 2011). 

A description of the input data and two of the models (Titov3 and Titov2) used in the 
case study for the SGRF 2012 meeting is presented below. 

4.1.3.1 Data and model description 

1 ) (Ta) mean monthly anomalies of air temperature at the Murmansk station; 
2 ) (Tw) mean monthly anomalies of water temperature at stations 3–7 of the 

Kola section (0–200 m layer); 
3 ) (I) mean monthly anomalies of ice coverage of the Barents Sea (percentage 

ratio between the area covered by ice and total area); 
4 ) (OxSat) mean monthly anomalies of saturation by oxygen of near-bottom-

water layers at 3–7 stations of the Kola; 
5 ) (Cod3) values of abundance of cod at the age of 3 (Anon, 2012); 
6 )  (CodC0) values of 0-group cod abundance index(Anon, 2012); 
7 ) (CodA1) sum of acoustic abundance of cod at the age of 1 (Anon, 2012); 
8 ) (CodA2) sum of acoustic abundance of cod at the age of 2 (Anon, 2012); 
9 ) (CodA3) sum of acoustic abundance of cod at the age of 3 (Anon, 2012); 
10 ) (SSB) values of spawning part biomass of cod population (Anon, 2012). 
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Indices ITa and DOxSat are calculated on basis of I, Ta and OxSat (Titov, 2011). 

4.1.3.2 Linking recruitment (Cod3) with abiotic and biotic parameters 

The final set of predictors was determined by the method of step-by-step multiple 
regression, using the Statgraphics Plus package for Windows 2.1. The equation for 
the forecast of Cod3, 1 year (Titov1) and 2 years (Titov2) in advance based on param-
eters estimated in 2011 are given below. 

(Titov2) Cod3t ~ DOxSatt-13 ^2+ ITаt-39 + CodA1t-23 + Twt-17 

(Titov3) Cod3t ~ ITаt-39 +log(CodC0t-28)  + Twt-26  

Both statistical models had p-values <0.01, corresponding to 99% level of significance. 

For this particular report, each model was tuned to the time-series from 1984 to 1999. 
Independent forecasts were made for the period 2000–2011. Values of the standard 
deviation for each of the models (RMSE) are calculated on basis of data for 2000–2008.  
Prognoses from models (Titov3 and Titov2) are shown in Table 5. 

Table 5. Recruitment models prognoses using Titov 2. 

YEAR 
VPA 2012 
(MILL. IND.) 

PROGNOSIS FOR NUMBER OF 
YEARS AHEAD OF 2008 ASSOCIATED VARIANCES 

  1 year 2 years 3 years 1 year 2 years 3 years 

2009 750 727   240   

2010 457  561   272  

2011 691       

Table 6. Recruitment models prognoses using Titov 3. 

YEAR 
VPA 2012 
(MILL. IND.) 

PROGNOSIS FOR NUMBER OF YEARS 

AHEAD OF 2008 ASSOCIATED VARIANCES 

  1 year 2 years 3 years 1 year 2 years 3 years 

2009 750 621   242   

2010 457  490   271  

2011 691   381   293 

4.2 Multiple recruitment predictions; ensemble averaging 

To illustrate the application of the weighted averaging we used results from the set of 
four models in the case study. The models were calibrated using data for the period 
1994–2008. The AFTER algorithm was then applied to model predictions (with esti-
mates of prediction variance) of recruitment for 2009 and 2010.  Table 7 shows a tabu-
lated comparison of the predicted values while Figure 10 shows the graphical 
representation. Observe that in general, the variance of the averaged model (when 
compared to the VPA estimates in retrospect) is lower than variance range defined by 
the complete ensemble of models, see Figure 10. 
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Table 7. Individual model predictions of recruitment-at-age 3 for northeast Arctic cod. 

YEAR JES RCT3 TITOV2 TITOV3 AFTER VPA 

2009 924 529 727 621 700 750 

2010 953 390 562 490 591 457 

 

Figure 10. Graphical rendering of results in Table 7. 
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5 Conclusions and further directions 

Both the biotic and abiotic environment can influence the survival of early life-history 
stages and the stock–recruitment drivers are most probably attributable to multiple 
factors. Since the ecosystem is subject to dynamic fluctuations, the principal drivers, 
or combination of drivers, may not always be the same. Models for recruitment 
forecasting which do not include environmental drivers may be limited in their 
ability to capture and predict e.g. spikes in stock recruitment.  However, there must 
be a clear biological/ecological reasoning for the inclusion of one or several 
environmental time-series as drivers for recruitment. Further, when there is time-lag 
between time-series representing environmental drivers and recruitment, such time-
lag must have ecological/biological underpinning and supported by sound statistical 
evaluations. 

Since the input data (time-series) are invariably uncertain, quantifying risk and 
uncertainty must be important components of recruitment forecasting. The combined 
effect of model choice being influenced by several factors (choice of data type, scale, 
length and condition), and uncertainties (both in the data and models) implies that 
there is no single, correct forecasting model. A hybrid forecast based on combining 
recruitment forecasts from several candidate models, rather than forecasts from an 
individual ‘best’ model is a conservative approach, which reduces the risk of forecast 
failure. The literature addresses several methods for combining model forecasts. This 
report presents an example approach. Irrespective of the methodology adopted in 
combining forecasts however, the combined forecasts must possess lower variance 
and be such that the predictive performance of the combination is better than that of 
the selected individual models. 

The results presented in this report only address issues related to short-term 
recruitment forecasts. The meeting in 2013 will aim at extending the analysis and case 
studies to forecasts in the medium term, as well as include other stocks. 
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6 Recommendations 

The SG suggests meeting in Barcelona in xx–xx October 2013. For the meeting in 2013, 
the group has identified the need to apply the framework developed in 2011–2012 to 
the following stocks: 

1 ) North Sea cod (NS cod); 
2 ) Norwegian spring-spawning herring (NSS herring); 
3 ) North Sea Autumn Spawning herring (NSAS herring). 

There is therefore a need to actively involve stock–recruitment models and modellers 
working with these stocks. The group also suggests an extension of the meeting dura-
tion from four days (at present) to at least twice as long (eight days), to allow for ade-
quate time to address the 2013 ToRs and case studies. 
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Appendix A: Forecasting Barents Sea cod recruitment using 
simple stock–recruit models with autocorrelated errors 

Methodology 

The method only requires a time-series of stock–recruit estimates, (R1,S1),….,(RT,ST). It 
is similar to the approach of Needle et al. (2003), although these authors adjusted for 
autocorrelation in residuals after fitting the stock–recruit models, whereas in the cur-
rent approach this adjustment is incorporated as part of the stock–recruit model fit-
ting. The approach is very similar to Minto (2011). 

Recruitment is considered to be random and is modelled as a simple function of stock 
size. For simplicity stock size is not considered to be random. Let μ(S) denote a model 
that gives the value of R at some level of S. Two simple parametric models are con-
sidered: 

1 ) Beverton–Holt (BH): μ(s) = αs/(β+s). 
2 ) Ricker (RK): μ(s) = αsexp(-βs). 

The statistical estimation model is LOG(RT) = LOG{μ(ST)} + εot+ εpt, where εo is in-
dependent and identically distributed (iid) observation error and εp is μ process er-
ror that is assumed to be autocorrelated. Both these errors are assumed to be 

normally distributed. The observations errors, , are not of interest but 
the process errors are. They represent departures in recruitment from the simple 
model μ. The process errors are assumed to be AR(1) autocorrelated, 

   
Where 

  

are iid. This variance assumption for  means that the stationary variance for  is 

. Also, . AD Model Builder (ADMB Project 2009) with the random 
effects module was used to implement the model. 

A stock–recruit model for Barents Sea cod can be used to forecast recruitment (at age 
three) in the next three years based on the current estimate of SSB and the estimates 
for the last two years. 

The model was applied to data obtained from the most recent assessment. SSB esti-
mates for 2010–2011 are not yet converged and were not used in the stock–recruit 
model. 

Retrospective analyses were used to assess forecast accuracy; however, retrospective 
stock–recruit data were not available. Only the time-series from the most recent as-
sessment was available. To mimic the effect of VPA variability of recruitment esti-
mates, the three most recent recruitment values were discarded when performing 
retrospective forecasts. No retrospective assessment error was added to the SSB esti-
mates but this should not affect recruitment estimates for the assessment year (year 0 
projection; P0) because Barents Sea cod recruit at age 3 and current year recruitment 
is derived from SSB of three years ago which should be converged in the VPA. This 
also applies to one year forecasts (i.e. P1). Forecast or prediction error was measured 
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using the root mean squared difference between retrospective predictions and the 
2011 VPA results, which are taken to be the best estimates available and used as a 
baseline. 

Therefore, in this application the stock–recruit model is used to predict recruitment 
for the three years with omitted data, and to also predict recruitment in the next three 
years (i.e. the forecast). In total there are six predictions. 

Results 

Beverton–Holt 

The measurement error variance estimate was at a lower bound (0.007). All of the 

variability was accounted for by process errors (  = 0.59). Minto (2011) implemented 
essentially the same model for this stock and found a very similar result. The nega-
tive log-likelihood was 43.71. The stock–recruit data and model fit, ignoring process 
errors, are shown in Figure 1. While highly variable, there is evidence of a relation-
ship between stock size and recruitment. 
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Figure 1. VPA estimates of SSB and subsequent recruitment-at-age 3 for Barents Sea cod. The 
solid line is a fitted BH curve. 

Really poor recruitment has only occurred at low stock sizes, but good recruitment is 
possible over a wide range of stock size. Diagnostics of the model fit (Figure 2) look 
reasonable; however, it is clear that residuals are autocorrelated. Temporally adjacent 
residuals are usually similar in value. There is also no evidence of serious model mis-
specification in Figure 3. 
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Figure 2. Residual diagnostic plots. 
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Figure 3. Residuals vs. stock size. The solid line indicates a loess (R, 2011) smooth of the residu-
als. 

The model interpolated recruitment. Predictions of unobserved recruitments are 
shown in Figure 4 (triangles). Predictions of the size of the 2004–2005 year classes 
were quite different from the VPA estimates, but these estimates were contained in 
the 95% prediction intervals. 

A comparison of retrospective predictions and current VPA estimates of recruitment 
is shown in Figure 5. Differences between forecasts and VPA results are also shown 
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in Figure 6. The root mean squared errors of these differences (for each projection 
period) are shown in Table 1. The values are large and this is caused by the anoma-
lous VPA estimates of the 2004–2005 year classes. None of the retrospective predic-
tions of the size of these year classes came close to the 2011 VPA values. The 
retrospective errors increased slightly with the length of the forecast, which is ex-
pected, although the increase is small. 
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Figure 4. Model estimates (solid lines) and predictions (triangles) of recruitment for Barents Sea 
cod. The dashed lines indicate 95% prediction intervals. Circles are the converged VPA estimates, 
which are considered to be the best available estimates and used as a baseline. 
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Figure 5. Retrospective estimates (solid lines) and predictions (grey lines), including three year 
forecasts, of recruitment. The model interpolated recruitment estimates, and the retrospective 
solid lines all overlap. Circles are the converged VPA estimates, which are considered to be the 
best available estimates and used as a baseline. The dashed line represents the average of the 
VPA estimates for 1946–2008; the time frame considered to be converged in the current assess-
ment. 



26  | ICES SGRF REPORT 2012 

 

P0
P1
P2
P3

Forecast errors

Forecast Year

-6
00

-4
00

-2
00

0
20

0

20
09

20
08

20
07

20
06

20
05

20
04

20
03

20
02

20
01

20
00

 

Figure 6. Differences between 2011 VPA estimates of recruitment to 2008 and retrospective stock–
recruit model predictions for the current year (P0) and three year forecasts (P1–P3). Some P0–P4 
differences could not be computed for 2006–2008 because some of the forecasts in these years 
were for recruitments later than 2008. 

Table 1. Root mean squared error of retrospective predictions for the current assessment year (P0) 
and three year forecasts (P1–P3). 

MODEL P0 P1 P2 P3 

Beverton–Holt 340.3 346.0 363.3 397.2 

Ricker 340.2 346.1 362.4 377.1 

Ricker 

The measurement error variance estimate was also at a lower bound (0.007); howev-
er, not all retrospective estimates hit the bound but they were all close. All of the var-

iability was accounted for by process errors (  = 0.59). The negative log-likelihood 
was 43.75 which was approximately the same as the BH model fit. The stock–recruit 
data and the model fit, ignoring process errors, are shown in Figure 7. 



ICES SGRF REPORT 2012 |  27 

 

200 400 600 800 1000 1

50
0

10
00

15
00

SSB (10^6 tonnes)

R
ec

ru
itm

en
t (

m
illi

on
s)

 

Figure 7. VPA estimates of SSB and subsequent recruitment-at-age 3 for Barents Sea cod. The 
solid line is a fitted Ricker curve. 

Diagnostics of the model fit (Figures 8 and 9) look similar to the BH results. 
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Figure 8. Residual diagnostic plots. 
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Figure 9. Residuals vs. stock size. The solid line indicates a loess (R, 2011) smooth of the residu-
als. 

Recruitment predictions are shown in Figure 10. Predictions of the size of the 2004–
2005 year classes were also quite different from the VPA estimates, similar to the BH 
model. 

Comparison of retrospective predictions and current VPA estimates of recruitment 
are shown in Figures 11 and 12. Root mean squared errors (Table 1) are almost as 
large as the BH results. 
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Figure 10. Model estimates (solid lines) and predictions (triangles) of recruitment for Barents Sea 
cod. The dashed lines indicate 95% prediction intervals. Circles are the converged VPA estimates, 
which are considered to be the best available estimates and used as a baseline. 
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Figure 11. Retrospective estimates (solid lines) and predictions (grey lines), including three year 
forecasts, of recruitment. The model usually interpolated recruitment estimates, and the retro-
spective solid lines almost all overlap. Circles are the converged VPA estimates, which are con-
sidered to be the best available estimates and used as a baseline. The dashed line represents the 
average of the VPA estimates for 1946–2008; the time frame considered to be converged in the 
current assessment. 
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Figure 12. Differences between 2011 VPA estimates of recruitment to 2008 and retrospective 
stock–recruit model predictions for the current year (P0) and three year forecasts (P1–P3). Some 
P0–P4 differences could not be computed for 2006–2008 because some of the forecasts in these 
years were for recruitments later than 2008. 

Discussion 

It is usually difficult to separate observation and process errors. In this application all 
the variability was estimated to be process errors. It is not clear if this is appropriate. 
However, Minto (2011) implemented essentially the same model for this stock and 
found very similar results, so it does not seem that there are implementation errors. 
At this stage the method and results should be considered as “illustrative”. Future 
research into the efficacy of the approach is required. 

The method is not intended to be a competitor of recruitment models that incorporate 
specific ecological knowledge of the stock and additional survey and environmental 
data. However, it is an approach that requires only standard data and stock 
knowledge and can be easily applied to other stocks. It is also interesting to compare 
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the prediction accuracy of more complicated models with the simple approach pro-
posed here. 

P2 and P3 forecast accuracies did not include assessment variability of SSB. P2 and P3 
forecasts are derived from SSB in the assessment year and the year previous to this, 
and these SSB’s will not be converged and therefore have assessment variability that 
could affect the P2 and P3 forecast accuracies. However, the three most recent re-
cruitment estimates were not used in the P1–P3 recruitment forecasts, and this likely 
overinflates the forecast standard deviations. A better approach to evaluate stock–
recruit model forecast accuracies is to use retrospective stock–recruit estimates when 
deriving recruitment forecasts. 
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