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1 Executive Summary 

The Study Group on Recruitment Forecasting (SGRF) met at ICES HQ (Copenhagen) 
from October 17–20, 2011, with five participants (covering three nationalities) and Dr 
Sam Subbey (Norway) as Chair. 

The formal mandate for this SG meeting was established in 2010/2/ACOM32 under 
Action Plan No: 1.2, 1.10, and 2.5. The objectives of the SG are to decide on guidelines 
and standards with regards to (1) How to develop models for recruitment projections 
which incorporate both abundance indices and environmental drivers, and (2) Crite-
ria for validating models and for choosing the “best” or a set of the best models. 

The meeting adopted an approach involving review of the fisheries literature on 
model-based recruitment forecasting in order to obtain an overview of key modelling 
frameworks.  Aspects of the modelling framework considered as best practice were 
highlighted based on ecological and statistical considerations. 

This report deals with best practice for recruitment modelling and short-term fore-
casting.  It is organized into a review section, a section dealing with guidelines to best 
practice in modelling and forecasting, and a section which identifies key case studies 
for to which the proposed guidelines are to be applied and tested in a subsequent 
meeting. 

The report reviews: 

• Biological and statistical terminologies in the fish recruitment modelling 
and forecasting literature. 

• Current framework on recruitment modelling and forecast. 

In defining best practice, the report 

• Highlights the important (early life) biological and ecological processes 
which underpin the stock to recruitment process. 

• Suggests a statistical framework (with an ecological underpinning) for the 
development of recruitment models. This framework includes 
• Guidelines for model development based on several considerations 

other than just correlations; 
• Diagnostic tools for determining appropriateness of models and choos-

ing between competing class of recruitment models; 
• Evaluation of the significance of covariates (environmental and stock 

indices) on recruitment forecasting. 

The SG recognizes that understanding the ecological underpinning to recruitment is a 
prerequisite in the development of appropriate models, which link fish recruitment 
to biotic and abiotic process drivers.  A key component of a framework for develop-
ment of recruitment is a set of diagnostic tools to evaluate model prediction perform-
ance, and especially to identify cases where model failure is due to information 
collapse in one or several data drivers (biotic and abiotic). This report exemplifies the 
use of a selected number of diagnostic tools through evaluation of two recruitment 
models currently used in stock assessment. 

The contents of this report provides the basic ingredients/building blocks for defining 
best practice in recruitment modelling/forecasting and model performance evalua-
tion. Given the limitations (in terms of attendance and time), this report only ad-
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dresses recruitment forecasting in the short term (max. three years). It is to be viewed 
as a first year interim report of a three-year process in the development of best prac-
tice guidelines for recruitment modelling and forecasting. 

Future developments will involve 

• An elaborate list of steps and guidelines (recipe) for the development and 
evaluation of recruitment forecasts in the short and medium term; 

• Application of the recipe to identified case studies. 
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2 Terms of Reference 2011 

2010/2/ACOM32 The Study Group on Recruitment Forecasting (SGRF), 
chaired by Samuel Subbey, Norway, will be established and be held at ICES 
Headquarters, 17–20 October 2011 to: 

a ) Develop a framework and methodology for modelling of recruitment for 
use in short- and medium-term projections in stock assessment, incorpo-
rating abundance indices and environmental drivers; 

b ) Test this framework using designated case studies; 
c ) Provide guidelines and standard criteria for recruitment model validation 

and for choosing the “best” or a set of “best” recruitment models. 

SGRF will report by 31 October 2011 for the attention of ACOM. 
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Supporting Information 

  

Priority: Because the relationship between early survey indices and recruitment is 
fundamental to the scientific approach to fisheries management, the work 
of this group should be considered of high priority to ICES. 

Scientific justification 
and relation to action 
plan: 

Action Plan No: 1.2, 1.10, and 2.5. 
 
Recruitment models are used to provide input into short- and medium-
term stock projections made as part of an assessment. For a number of 
stocks, the ICES standard tool RCT3 is used. This method uses survey 
indices as input. For other stocks, e.g. NEA cod, recruitment models are 
based on both environmental drivers and survey indices. Correlations 
have a tendency to vanish and especially models including environmental 
drivers (biotic and abiotic) are important to validate frequently. However, 
it is debatable which methods should be used in model validation and 
which criteria should be used for selecting recruitment models for input in 
forecast models. This is a general problem and we propose a study group 
within the ICES framework that consists of international expertise on 
statistical and ecological modelling. Questions that needs to be addressed 
are:  
1) How to develop models for recruitment projections which incorporate 
both abundance indices and environmental drivers 
2) Criteria for validating models and for choosing the “best” or a set of the 
best models.  
The SG should decide on some guidelines and standard methods 
regarding these questions. 
 

Resource 
requirements: 

No specific resource requirements beyond the need for members to 
prepare for and participate in the meeting. 

Participants: Participants would include scientists working with fisheries management 
and scientists  with international expertise on statistical and ecological 
modelling. 

Secretariat facilities: No additional software/hardware is anticipated beyond that which is 
currently available. 

Financial: None specific. 

Linkages to advisory 
committees: 

Reliable stock forecasts are highly dependent on good models for 
recruitment forecasting 

Linkages to other 
committees or groups: 

The activities of the SG are designed to provide input of knowledge to 
various Assessment WGs. There is no potential overlap in activities 
because the latter do not have the resources to consider the nature of this 
new knowledge outside the scope of their current activities. 

Linkages to other 
organizations: 

ICES will seek widened participation for this group including contact with 
relevant academic and intergovernmental organizations (including FAO, 
OECD, and IIFET) for this meeting.  

Secretariat marginal 
cost share: 

ICES 100%. 
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3 Review of Terminologies 

3.1 Definition of recruitment 

The term recruitment is used in a number of ways depending on the context. In bio-
logical and ecological contexts recruitment is used in conjunction with sexual matura-
tion and the addition of individuals to the breeding population. Sometimes the term 
is loosely defined as individuals joining the adult population and thus not specifi-
cally linked to the process of sexual maturation. In this case the term often refers to 
the location of the non-juvenile population, or the part of the population on the feed-
ing grounds which do not form part of the nursery areas. In the context of fisheries 
science the term is more often used for individuals that become part of the fishable 
population. In this context, the numbers of individuals within a year class that recruit 
each year should rise in a similar fashion to a selection ogive as the fish become vul-
nerable to the fishery. However, to simplify the situation the recruitment is usually 
defined by age and treated as knife edged i.e. recruitment occurs at one age only. The 
choice of age-at-recruitment differs between stocks and species but often it is the first 
year class which is fully vulnerable (100% selection) to fishing. 

The assessment literature is not very rigorous with respect to its use of the term re-
cruitment. Within the stock assessment reports ages between 0 and 3 are often used. 
In regard to ages 1 to 3 the numbers usually refer to the 1st January in a year. In the 
case of Age 0 this refers to either approximately 1st of June, connected to a specific 
survey time period or some undetermined fraction of a year. One further complica-
tion that should be mentioned is that in much (but not all) of the herring literature the 
ages are reported as winter rings. Therefore, 1-winter ring fish in the case of autumn 
spawned fish are 1 year and 3 or less months old on the 1st January and approxi-
mately 8–9 months old in the case of spring spawned fish. 

Examples of different usages of recruitment age can be seen in northeast Arctic cod 
(age 3; ICES 2011a), North Sea cod (age 1; ICES 2011b), Norwegian Spring-spawning 
(NSS) herring (age 0; ICES 2011c) and North Sea herring (age 0/0-winter ring; ICES 
2011d). 

The numbers of recruits at age are derived in a number of ways and if VPA generated 
abundances are used in any stock and recruitment relationship or any other model-
ling exercise using recruitment then the user should be aware of their source. In the 
cases of NEA and North Sea cod the age 3 and age 1 (respectively) data are generated 
based on survey and catch data and are internally consistent with the year class as its 
abundance changes over its lifetime. In the case of NSS herring the 0-group abun-
dance is back-calculated from older age classes that have a catch history. For North 
Sea autumn spawning herring the 0-group abundance is tuned to the MIK survey, 
however, the abundance is internally consistent with the change in abundance of the 
year class over time as seen in the catch statistics of older ages. 

The overall purpose of predictions or forecasts of recruitment are to provide numbers 
of individuals in the future. In all species the further once projects in to the future the 
greater the influence of one’s perception of the recruitment process and levels of re-
cruitment. In fact in species that live for e.g. 10 years, projections or forecasts of a 
population beyond 10 years means the stock and its structure is solely the conse-
quence of the model that was used to generate the annual recruitment. The further 
recruitment is projected in to the future the greater the importance of predicting fu-
ture environmental and physical drivers for survival of young to a recruiting age. 
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3.2 Simulations, Forecasts and Projections 

In science, simulation is the imitation of a real process based on key characteristics 
representing this process. The key characteristics of this process are usually extracted 
and modelled using some learning sample of data of interest. Simulations are often 
used to generate scenarios. . Simulation and scenario planning are thus usually re-
lated to studying the response of input variables under the influence on output vari-
ables when these are specifically varied. 

The terminologies ‘forecast’ and ‘projections’ have been loosely used in the recruit-
ment literature. The SG therefore realized the need to clarify and distinguish between 
these terminologies. 

In statistics (and other sciences), extrapolation is the process of constructing new 
datapoints outside the supporting data interval while interpolation constructs new 
datapoints between given (known) datapoints. Statistically two general types of ex-
trapolation techniques do exist: forecasting and projection methods. 

3.2.1 Forecasts 

Forecasts are also called predictions or prognoses. Literally, forecasting, predicting or 
prognosticating address the same issue: fore-knowing or foreseeing unknown future 
events. Statistically, they address the process of making statements about the most 
likely outcome of future values of a process or time-series variable whose actual out-
comes are unknown; in other words, attempts to estimate true future values with 
some reliability to be specified. This requires that the pattern of observed time-series 
data is identified and more or less formally described. 

Thus, in sciences forecasting, predicting, and prognosticating refer to formal statisti-
cal methods employing time-series data, cross sectional data or longitudinal data.  

3.2.2 Projection 

Projection is the process of generating new datapoints outside the given supporting 
interval of observed or sampled data. A projection is closely related to simulation and 
scenario generation, but differs from forecasting in that the aim is not to make state-
ments about the most likely outcome of future events as no forecast error is estimated 
that takes into account the distance of the forecasted value from the centre of the 
supporting data. 

3.3 Definition of short, medium and long-term forecasts 

It is often desirable in fisheries science to forecast future stock abundance. Such fore-
casts can be divided into “short”, “medium” and “long-term”. The classification 
however, is to considered in relationship to the life cycle of fish being modelled. In 
general, short-term assessment is by far the most reliable because uncertainties 
around future recruitment are avoided; explaining why this type of forecast is most 
used in stock assessment and management. In contrast, the more uncertain medium- 
and long-term forecasts are more often used in the context of management strategy 
evaluations. 

With respect to stock assessment, the expression ‘short-term forecast’ usually refers to 
predictions associated with year classes that have already been spawned but yet to 
enter the fishery. For NEA cod and NEA haddock stocks for which recruitment to the 
fishery occurs at age 3, a short-term forecast is 1–3 year ahead (ICES CM 
2011/ACOM:05). However, for species like Greenland halibut and redfish, short-term 
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forecast may be as much as 6 years ahead. Barents Sea capelin is a short-lived species, 
which enters the fishery at age 2–3, and therefore a short-term forecast is only one 
year ahead. Further, because fishing at present only takes place on mature individu-
als just prior to spawning (mainly ages 3–5). 

A ‘medium-term forecast’ is synonymous to prediction of the next generation, i.e. fish 
that will be spawned by the current generation. In the case of NEA cod, which have 
an average generation time of about seven years, this gives a medium-term forecast 
range of about 3–10 years. For Barents Sea capelin, which seldom lives for more than 
five years, the medium-term forecast should be in the range 2–4 or 2–5 years. 

A “long-term forecast” is associated with future populations that will be spawned by 
generations that are themselves yet to be spawned. Usually such forecasts involve 
periods of ten years and more, but for short-lived species even a five year forecast 
may be considered to be “long term”. 
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4 Modelling and model overview 

Based on their formulation, two main classes of models have been identified in the 
literature. These included classes (1) Parametric and (2) Semiparametric and non-
parametric models. 

Parametric recruitment models are expressed in terms of specific analytical or semi-
analytical parametric equations for deriving the recruitment relationship. Classical 
parametric recruitment models include the two-parameter Beverton–Holt (Beverton 
and Holt, 1957) and Ricker (Ricker, 1975) models, and various reformulations. 

The Beverton–Holt model expresses a density-dependent relationship between the 
number of recruits per spawner as a (decreasing) function of the number of spawn-
ers. 

The Beverton–Holt model is based on the assumptions that juvenile competition re-
sults in a mortality rate that is linearly dependent upon the number of fish alive in 
the cohort at any time and that, predators are always present. The Beverton–Holt 
model is appropriate “if there is a maximum abundance imposed by food availability 
or space, or if the predator can adjust its predatory activity immediately to changes in 
prey abundance” (Wootton, 1990). 

The Ricker model defines a density-dependent relationship, where the number of 
recruits per spawner is expressed as a decreasing function of the number of spawn-
ers. 

The Ricker stock–recruitment model assumes that the mortality rate of the eggs and 
juveniles is proportional to the initial cohort size. Thus a high mortality rate of eggs 
and juveniles can be supported by high initial number of eggs. Biological realities 
that might lead to this assumption being met include cannibalism of the juveniles by 
the adults (Ricker, 1975), density-dependent reductions in growth coupled with size-
dependent predation (e.g. increase in the time it takes for the young fish to grow 
through a size range vulnerable to predation; Ricker (1975)), and a time-lag in the 
response of a predator to the abundance of the fish (Wootton, 1990). 

For both models, the parameters involved are usually determined by non-linear least-
squares regression, where the goodness-of-fit is assessed using summary statistics 
such as the R2. 

Variants of the Ricker and B–H models have been reported in the literature. These 
include the Power (Cushing, 1973), Saila–Lorda (Iles, 1994), Shepherd (Shepherd, 
1982) and the Sigmoidal Beverton–Holt (Myers et al., 1995).  Included in this class of 
models are those for which the classical functional relationship between SSB and 
recruitment is augmented with secondary (climatic and ecological) data such as, tem-
perature and prey interactions. For instance Gjøsæter and Bogstad (1998) included a 
term for juvenile herring in the B–H model for capelin recruitment. 

The RCT3 model for stock–recruitment (Shepherd, 1997) is a regression model, which 
belongs to the class of parametric models. This model allows for the combination of 
multiple estimates of stock–recruitment derived from different index-series based on 
inverse variance weighted averages. The RCT3 model is used as the main stock re-
cruitment model for NEA cod and NSSH. 

Another subclass of parametric models encapsulates models referred to in the litera-
ture as time-series models. In a subclass of time-series models, the dependent pa-
rameter (recruitment) is regressed on one or several (and often time-lagged versions 
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of) independent dataseries, and may include time-lagged values of the independent 
variable. These models are also referred to as Box–Jenkins (Box and Jenkins, 1976) 
models. The underlying model philosophy is to model recruitment as a combination 
of autoregressive (AR) and moving average (MA) effects, leading to an Auto-
Regressive Moving Average (ARMA) model. In the literature, ARIMAX models have 
been developed for recruitment forecasting for NSSH (Gröger et al., 2010) and cod 
(Gröger et al., 2011). 

A second subclass involves the use of state–space model formulations to link re-
cruitment to population parameters. A discrete-time state–space model is defined by 
two equations namely, the observation (or measurement) equation and the system (or 
transition) equation. The system equations have the flexibility of introducing time 
varying parameters into the modelling framework.   Discrete-time state-space models 
provide the same type of linear difference relationship between the inputs and the 
outputs as a linear ARX (Auto-Regressive models with eXogenous inputs, which are 
defined as variables that are determined outside the modelling process) model, but 
are rearranged such that there is only one delay in the expressions. As an example, a 
Bayesian state–space model for stock–recruitment has been reported for Fraser Piver 
pink salmon (Myers and Millar, 2001). The approach addressed two major problems 
encountered in traditional stock–recruitment analyses, that of errors-in-variables bias 
and time-series bias. Both process and observation errors were explicitly captured in 
the state–space model and quantified through posterior distributions of the parame-
ters via the Bayesian paradigm. 

Semi-parametric and nonparametric estimation methods for recruitment relation-
ships avoid strong assumptions implied by parametric approaches, and are thus be-
coming increasingly popular. Classical nonparametric methods include: construction 
of the distribution of recruitment given stock biomass through nonparametric density 
estimators (Evans and Rice, 1988); using generalized additive models to estimate the 
relationship of recruitment with spawning biomass and an environmental variable, 
such as sea surface temperature (Jacobson and MacCall, 1995); fitting a locally 
weighted smoothing function with nonparametric regression and spline methods 
(Cook, 1998); and using neural networks to estimate the recruitment function (Chen 
and Ware, 1999). A practical drawback of these methods involves uncertainty quanti-
fication for the estimates of the recruitment function and of management reference 
points resulting from the estimated relationship. This is a direct consequence of the 
fact that classical nonparametric estimation techniques do not involve probabilistic 
modelling of the underlying (conditional) distribution.  Hence, by avoiding poten-
tially suspect parametric distributional forms, i.e. by avoiding likelihood specifica-
tion, they are inevitably limited to point estimation. When developed, error bounds 
depend heavily on asymptotic results, which are unreliable because of the small 
sample sizes typically available for recruitment inference. 

4.1 Examples of usage of fish recruitment forecast models that combine 
environmental and stock information 

Predictions of recruitment based on a combination of stock and environmental vari-
ables have been implemented by few stock assessment working groups, although 
there appears to be a growing trend in the number of such models. Here we list some 
examples where such models have been implemented by stock assessment working 
groups. For the sake of completeness, we also list a small selection of relevant models 
developed under the same paradigm but currently not used by any stock assessment 
working group. 
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4.2 Operating recruitment models in stock assessment 

NEA cod and AFWG 

Since 2008 several regression models, which includes stock and climate variables, 
have been combined into a “hybrid” model (i.e. the average of the individual model 
predictions) used by the Arctic Fisheries Working Group (AFWG) for prediction of 
NEA cod recruitment-at-age 3 (ICES CM 2011/ACOM: 05). The individual models 
used are described as below, where the tilde sign (~) is used to express dependence: 

TITOV1: R3t ~ (DOxSatt-13)2 + DOxSatt-13 +CodA2t-11 + Twt-17,  
TITOV2: R3t ~ (DOxSatt-13)2 + ITаt-39 + CodA1t-23 + Twt-17,  
TITOV3: R3t ~ ITаt-39 + log(CodC0t-28)  + Twt-26,  
JES1:       R3t ~ Twt-3 + Age1t-2 + log(CapMatBiot-2). 

The terms DOxSatt-13~ Exp(OxSatt-13) − OxSatt−38 and ITat-39 ~ It-39 +Tat−44. The 
term OxSat refers to the oxygen saturation at bottom layers of the Kola section sta-
tions 3–7, Ta the air temperature at the Murmansk station, Tw the water temperature: 
3–7 stations of the Kola section (layer 0–200 m), and I is the ice coverage in the Bar-
ents Sea. The terms CodA1 and CodA2 represent the acoustic abundances indices for 
age 1 and 2 respectively, and Age1 is the bottom-trawl abundance (age 1 year index) 
of NEA cod from the joint winter Barents Sea acoustic survey. CodC0 is the age 0 
index of NEA cod from the Barents Sea ecosystem survey in August–September. The 
numbers in parentheses are the time-lags in months (relative to 1 January) for the 
TITOV models and in years for the JES model.  The ITa index coincides in time with 
the increase of horizontal gradients of water temperatures in the area of the Polar 
Front (Titov, 2001). 

Table 1. Overview of which models that went into the Hybrid model at the AFWG 2011 assess-
ment (ICES AFWG:CM:05 2011). The Hybrid model was just an average of the individual regres-
sion model forecasts. 

Model One year forecast Two year forecast Three year forecast 

Titov1 X   

Titov2  x  

Titov3 X x x 

JES1  x  

4.3 Examples of non-operating models in stock assessment 
NEA cod 

T. Bulgakova (ICES CM 2011/ACOM:05) developed a model that is a modification of 
Ricker’s model for stock–recruitment defined by: 

R3t~ mt-3 exp[-SSBt-3 + Nt-3] 

Where R3 is the number of age3 recruits for NEA cod, m is an index of population 
fecundity, SSB is the spawning–stock biomass and N is equal to the numbers of 
months with positive temperature anomalies (TA) on the Kola Section in the birth 
year for the year class. The subscript denotes the time-lag in years. For the years be-
fore 1998 TA was calculated relative to the monthly average for the period 1951–2000. 
For intervals after 1998, the TA was calculated relative to a linear trend in the tem-
perature for the period 1998–present. The model was run using two time intervals 
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(using cod year classes 1984–2000, and 1984–2004) for estimating the model coeffi-
cients. 

Hjermann et al. (2007) developed a model with a one year prognosis. Based on a 
modification of this model, Dingsør et al. (WD 19) developed four models with 1–2 
year projection capabilities. The four models (H1–H4) are defined by: 

H1:  log(R3t)~ Tempt-3 + log(Age0t-3) +BMcod3–6 /ABMcapelint-2,t-1 
H2:  log(R3 t)~ Tempt-2 +I(surv)+ Age1t-2 + BMcod3–6 /ABMcapelint-2,t-1 
H3:  log(R3 t)~ Tempt-1 + Age2t-1 + BMcod3–6 /ABMcapelint-1 
H4:  log(R3 t)~ Tempt-1 + Age3t-0 

Temp is the Kola yearly temperature (0–200 m), Age0 is the 0-group index of cod, 
Age1, Age2 and Age3 are the winter survey bottom-trawl index for cod age 1, 2 and 
3, respectively, BMcod3–6 is the biomass of cod between age 3 and 6, and ABM is the 
maturing biomass of capelin. The subscript denotes to time-lag in years. 

Barents Sea capelin 

The capelin spawns close to the shore on the north Norwegian and northwestern 
Russian coast during March–April. After hatching the larvae rise from bottom and 
drift northeastward. The age of maturation vary from age 2–5. The capelin is an im-
portant food source for all the large fish species, as well as for seals, whales and sea-
birds. In years with high abundance of herring in the Barents Sea, the survival of 
capelin larvae tend to be low due to predation from herring. The capelin stock bio-
mass may fluctuate widely between. Annual catches of capelin have varied from zero 
to 3 million tonnes. 

Stiansen et al. (2005) developed a model: 

Rec1 t ~ TempSkinBSt-1 + 0groupt-1 + capmatbiot-1 

where the subscript denotes the time-lag in years. Rec1 is the number of recruits 
(acoustic survey estimates back-calculated to 1 August), TempSkinBS the skin tem-
perature from the NCEP reanalysed database average from January to March and 
over the Barents Sea subarea between 30–45°E and 71–75°N one year earlier, 0group 
the capelin 0-group trawl survey index one year earlier (in August) and capmatbio 
the capelin maturing biomass in tonnes (acoustic survey estimates of fish above 
14 cm length) one year earlier. Data available for the model reach back to 1984 for the 
response variable. The model gives a one-year prognosis of the capelin recruitment. 
The surface temperature in the Southern part of the Barents Sea during winter was 
chosen as climatic parameter. The chosen area is occasionally partly covered in ice in 
this period, and thereby influencing the estimate of skin temperature. This climatic 
term is therefore a proxy for both heat conditions (temperature) and available area 
(ice cover). The 0-group term is the link back to the parent population. It is not obvi-
ous how the maturing biomass is coupled to the 1-group, because this is not the par-
ent population that gives the 1-group we are looking at. Most capelin die after 
spawning (Gjøsæter, 1998) so there should not be a direct link between the maturing 
term on one side and the 0-group and 1-group term on the other side. However, this 
combination of parameters and time-lag gave the best fit. If one should speculate 
about how they are coupled, two mechanisms are likely. First, feeding conditions 
would be equal for both the maturing and the 0-group populations, which gives the 
survival from 0-group to 1-group. Second, the maturing populations may act as a 
buffer for predation, i.e. cod, as a major predator (Mehl, 1989), prefer larger individu-
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als to small ones (0-group/1-group), but will eat anything if large individuals are not 
accessible (years with low mature population). 

Titov et al. (ICES CM 2011/ACOM:05) developed a model for one-year forecast of 
Barents Sea capelin recruitment, using the capelin 0-group abundance indices of cap-
elin 0-group in the year of spawning (Cap0t-12) and the capelin mature biomass the 
year before spawning (Mbiot-24) as stock variables. As climate drivers mean monthly 
anomalies of ice coverage of the Barents Sea (I), mean monthly anomalies of air tem-
perature at the Murmansk station (Ta) and mean monthly anomalies of saturation by 
oxygen of near-bottom-water layers at 3–7 stations of the Kola Section (OxSat) were 
used. The subscript denotes number of months that the variables are lagged com-
pared to the predictor. 

Cap1 t ~ (OxSatt-12)2 + ITat-20 + Cap0t-12 + MBiot-24 

NSAS herring 

Motivated to understand better the recent years of reproductive failures of commer-
cially valuable North Sea herring large-scale climate changes in the North Atlantic 
Ocean and their potential effects on stock regeneration were studied by Gröger et al. 
(2010). Applying time-series analyses, it was possible to reconstruct the full-time-
series of recruitment solely from climate cycles, indexed by the North Atlantic Oscil-
lation (NAO) as an index of atmospheric variability (lagged by five years) and the 
Atlantic Multidecadal Oscillation (AMO) as an index of sea surface temperature 
(lagged by three years). Based on these two climatic drivers a prognostic model was 
developed to provide forecasts of herring stock–recruitment three years in advance 
which, in contrast to competing models (Ricker, Beverton–Holt, Ricker extended by 
climate), did best in terms of the diagnostic measures used (AICC, performance, fore-
cast power) and explained most of the recruitment variability. 

NSS herring 

Stiansen et al. (2005) developed the model: 

Rec3 t ~ TempSkinNSt-3 + 0groupt-3 

where the subscript denotes the time-lag in years. Rec3 is the number of three recruits 
of Norwegian spring-spawning herring from ICES Northern Pelagic and Blue Whit-
ing Working Group (WGNPBW) 2004 SEASTAR assessment (ICES CM 2004/ACFM: 
24), TempSkinNS the NCEP skin (sea surface) temperature in degree C in the Norwe-
gian Sea subarea between 64–70°N and 6°W–8°E averaged from January to March 
three years earlier and 0group the 0-group logarithmic index of herring larvae from 
the 0-group survey in August three years earlier. The data used for the model are 
from the period 1983–2002 for the response variable. The model gives a three-year 
prognosis of the herring recruitment. The winter surface temperature around the 
spawning sites was picked as the climatic term, while the 0-group was picked as the 
link back to the parent population. The latter is very closely linked to the number of 
three-s, and also optimizes the time-lag used in the prediction. Even if it is possible to 
go even further back in time, there is a large change in the distribution of young her-
ring around 1983, when the stock started to recover (stock overview is given in Chap-
ter 6.1). 
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Georges Bank cod 

Climatic influences on Georges Bank cod recruitment were investigated by Gröger 
and Fogarty (2011) using the North Atlantic Oscillation (NAO) as an index of atmos-
pheric variability and the Atlantic Multidecadal Oscillation (AMO) as an index of sea 
surface temperature. A quantitative approach based on a simple Cushing-type stock–
recruitment model was developed and extended to include climate influences using 
the technique of generalized transfer functions (ARIMAX modelling). This allowed 
the autoregressive nature of the interacting exogenous and endogenous processes to 
be taken into account. Based on two information criteria, the resulting best transfer 
function contains winter NAO with a lag of three years, annual AMO with a lag of 
one year (both as exogenous climate factors), loge(spawning–stock biomass) as a 
structural model component, plus two autoregressive parameters. The model is char-
acterized by the smallest information criteria, 92% of explained recruitment variation 
(vs. 55% from the simple Cushing-type model), excellent forecasting behaviour, and 
all model assumptions being fulfilled. It is proposed that the model’s recruitment 
hindcasts (ex post forecasts) and forecasts be incorporated into stock and risk assess-
ments as well as management strategy evaluations, either as a climate-induced re-
cruitment index for projections or as real forecasts to establish sustainable cod 
fisheries on Georges Bank conditioned by climate as a forcing factor. 
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5 Developing a framework for best practice 

5.1 Understanding the mechanism (linkages) 

5.1.1 Early life-history and recruitment processes 

The numbers of recruits is considered as the number of individuals that either join 
the adult population or become vulnerable to the fishery (see definitions above). 
Starting from the numbers of breeding individuals (represented as Spawning–Stock 
Biomass, SSB) or probably more importantly the numbers of mature females (female 
only SSB) a number of eggs are spawned, of which a small percentage survive 
through to adulthood. In general the major commercially exploited species have a 
high fecundity with either benthic/demersal eggs (e.g. herring and sandeel) or pelagic 
eggs (e.g. cod, haddock, plaice, etc). The numbers of eggs spawned is a function of a 
number of different factors including the number of mature females, the extent of 
skipped spawning, condition and fat reserves of the females along with the annual 
investment in fecundity. The eggs develop over time, the development rate generally 
being species-specific and temperature modulated (see Pepin, 1991; Geffen and Nash, 
2011). Egg mortalities are a due to a number of diverse factors, including malforma-
tions, disease and predation. The latter is probably stage dependent thus longer de-
velopment times may result in large absolute losses through the egg phase. 

The termination of the egg phase occurs at hatch resulting in the larval phase. The 
initial larval phase is usually supported by endogenous nutrition through the use of 
yolk-sac reserves. The end of the yolk-sac stage results in the larva being fully de-
pendent on exogenous feeding and the presence of adequate quantities of suitable 
prey. Predation is also still a major influence on survival through the larval phase. 
Growth and hence duration of the larval phase depends on both available prey qual-
ity and levels along with the effect of temperature on metabolic rates. Once again 
stage duration can have a fairly large impact on the absolute losses of individuals 
through the larval phase. 

Autumn spawned fish e.g. North Sea herring generally undergo the winter period 
still in the pelagic larval phase. Often, there is very limited prey availability and feed-
ing conditions e.g. light levels are relatively poor. Most spring-spawning fish meta-
morphose in the early summer, arriving on nursery grounds and undergoing 
settlement. The onset of the juvenile phase is often associated with a shift in habitat 
and thus a change in diet and behaviour. This is the most extreme in the case of flat-
fish where metamorphosis is a radical change in body shape and there is a major shift 
from a three-dimensional pelagic habitat to what is essentially a two dimensional 
benthic existence (Geffen et al., 2007). Nursery ground existence can be accompanied 
by elevated densities and predation from a range of larger predators. Growth is again 
influenced by productivity and environmental conditions of the nursery ground i.e. 
both prey levels and physical factors e.g. temperature. The overwintering period is 
accompanied by a scarcity of prey and adverse environmental conditions and may 
result in elevated mortality rates, especially for smaller individuals within a cohort. 

The remaining period of time through to recruitment varies depending on the species 
and which age or development period is utilized for recruitment in the stock assess-
ment. In the case of e.g. cod then losses during the subsequent two juvenile years can 
occur through cannibalism (density-dependent effects and spatial dynamics between 
the adult and juvenile population). 



ICES SGRF REPORT 2011 |  15 

 

Much of the above is summarized in Houde (2002, 2008) and Nash and Geffen (2011) 
with relevant references given therein. 

There are a number of ways to visualize the early life-history dynamics of fish. The 
one method shown here is through the use of Paulik diagrams (Paulik, 1973; Ulltang, 
1996; Nash, 1998). This report concentrates on the prediction of recruitment and the 
classical stock to recruitment relationship is illustrated in quadrant 4 (top right hand 
part of the four panel graph; Figure 1). 

 

Figure 1. Conceptual model of plaice life history, redrawn from Nash (1998). Solid lines and 
dashed box indicate the range of abundance in each quadrant. Quadrant 4 is the classic stock and 
recruitment plot. Quadrants 1 to 3 follow the development of the spawning–stock through to 
recruitment using a number of transitions (SSB to eggs, eggs to larval metamorphosis and meta-
morphosis to recruitment). Each of the three quadrants therefore corresponds to processes occur-
ring internally to the fish (Quadrant 1, egg production), the pelagic phase (Quadrant 2) and the 
nursery ground (Quadrant 3). The summation of Quadrants 1 to 3 is Quadrant 4 i.e. Stock to re-
cruitment. The present conceptual model accepts non-stationarity in the system and the ranges 
accept that the productivity of the various phases may change between years, not all changing in 
tandem. 

5.2 Developing the statistical/Mathematical Model 

5.2.1 Principal model types 

Before selecting a recruitment model, the purpose of the model to be identified must 
be clarified beforehand, i.e. the intention whether it should serve explaining a 
mechanism which specifies a more or less clear cause–response relationship or 
whether it should be purely used for prognostic reasons. 

An endemic problem to be resolved in this context is the model type selection; i.e. the 
clear formulation of the biological working hypotheses and research foci, their trans-
lation into statistical hypotheses (H0, H1) and the derivation of the principal model 
type from these. 

5.2.1.1 Causality and mechanistic models 

Causal models are designed to explain causal mechanisms. If the model to be estab-
lished aims at explaining causal mechanisms it is important to note that imposing 
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causality always implies imposing a causal direction which restricts the number of 
suitable methods to those which establish asymmetric relationships; causal models in 
a true sense usually address unidirectional functional relationships of type y = f(x) or 
output = f(input) where y or output represent the endogenous variable (response vari-
able) and x or input the exogenous one (factor). Sometimes input does not only repre-
sent one variable, but a set of variables (vector of variables). These type of models are 
then called multiple or multifactor models. If also output represents a vector of vari-
ables then we have it to do with a multivariate case. 

In contrast to asymmetric or causal models, symmetry is a feature of non-directed (a-
functional) relationships that are usually identified by procedures originating in the 
family of correspondence analyses being usually based on association techniques 
(association measures). These include techniques such as simple and multiple as well 
as canonical correlation. It should be noted that correlation techniques are in princi-
ple linear methods why they cannot be uncritically applied to non-linear cases, i.e. 
without any specific adjustment. 

The clear unidirectional cause may sometimes be confused by feedback effects. Feed-
back models represent a class of functions that are at minimum bidirectional where y 
does not only depend on x, but at the same time x on y; hence y = f(x) and x = f(y). For 
feedback models it is rather complicated to correctly specify them and estimate the 
associated model parameters. Moreover, these usually require many datapoints, 
hence long time-series. Feedback models play a specific role in control theory and 
cybernetics. Some of these models are called interdependent models or simultaneous 
equations. 

Another important issue is the type and timing of effects. The effects of factors on 
recruitment, for instance, can be direct or indirect, i.e. mediated through other com-
ponents of the system such as the food chain, the adults, or hydrographical and me-
teorological features. Moreover, they can affect recruitment, for instance, immediately 
or in a delayed manner. The latter case can often be observed when so called latent 
factors that are global scale play an important role. These then need some time to 
penetrate or cascade through all intermediate components of the system before they 
can affect the endogenous variable, for instance the recruitment. Consequently, it is 
an important business identifying and taking into account lagged influences of ex-
ogenous factors. 

Another important issue in this context is the complexity of the model which usually 
depends on the number of exogenous variables included and the number of parame-
ters to be estimated. The problem here is that exogenous variables (and thus parame-
ters) are not uncorrelated among each other. Otherwise it would be sufficient to 
establish one univariate model per each exogenous variable, with always the same 
endogenous variable as response. Correlation means overlapping (doubled, redun-
dant) information and in this sense represents and specifies a joint interaction effect. 
Incorporating highly correlated exogenous variables would thus over-pronounce the 
joint effect resulting in an inflation of the variance estimates linked to the model pa-
rameters. In an extreme case this can lead to an inability of estimating the parameters 
(rank loss in the variance-covariance matrix). Given this, it is good practice to select a 
more parsimonious model with a smaller number of variables and/or parameters, 
even if the fit of this is a little worse compared with that of a more complex one. Spe-
cific performance criteria (information criteria, adjusted coefficients of determination, 
etc.) may help to resolve the issue of variable selection. 
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Endemic problems to be resolved in this context are variable selection, multi-
collinearity, redundancy, structural constancy or misspecification. 

5.2.1.2 Prognostic models 

Prognostic models are designed to forecast the future by first identifying the internal 
characteristics of one or more processes independently of each other rather than by 
identifying a functional (asymmetric) cause–response relationship between them. In 
contrast to causal models they do not necessarily make use of exogenous variables, 
but are solely be based on the information gathered from only one single endogenous 
variable of interest. These types of models are typically represented by TSA models. 
The simplest TSA model is a time-trend model based on simple regression. All other 
TSA models are linear or non-linear extensions of this, starting with so called lag-
endogenous models. 

However, even if these models are not intended to describe a functional mechanism 
involving exogenous variables, they also assume a specific minimum variant of cau-
sality in the sense that past values, for instance, of recruitment influence present and 
future values of recruitment but not vice versa. This means, that the causality assump-
tion which is normally related to external effects is reduced to the fact that the pres-
ence is a reaction to the past; a process is thus considered to be chronologically 
predetermined prior to the current period, implying that the past contains all relevant 
information for the future. Consequently, the endogenous variable (for instance, re-
cruitment) is considered to be a response to the environment accumulating all rele-
vant information from past outside effects. This type of causality is called Granger 
causality. Granger causality implicitly supports the idea of including delayed or 
lagged effects, even of external factors. 

Endemic problems to be resolved in this context are stationarity as well as the correct 
specification of lags related to, for instance, AR and/or MA components in case of 
ARIMA models. 

5.2.1.3 Combined models 

In this context, the focus of combined models is also on forecasting the future. Com-
bined models such as time based regressions models or transfer functions (including 
intervention functions) such as ARIMAX models are typically prognostic models that 
are not only based on picking up the features of one endogenous variable represent-
ing the process to be studied, but at the same time integrate additional external in-
formation represented by exogenous variables (factors). It is thus a model type that 
combines prognostic and mechanistic features. 

The functional relationship between endogenous and exogenous variables as well as 
potentially delayed influences is usually found by performing one-by-one cross-
correlations between both groups of variables being made stationary and pre-
whitened. 

The most sophisticated combination of endogenous with exogenous variables is rep-
resented by so called rational transfer functions. Rational transfer functions are com-
plex transfer functions composed of numerator and denominator polynomials 
associated with the exogenous variables; they contain much more information re-
garding the integrated exogenous processes than regular mechanistic models as they 
do not only take into account the delay-structure of the exogenous effects, but the lag-
structure of the integrated exogenous processes themselves. 



18  | ICES SGRF REPORT 2011 

 

Endemic problems to be resolved in this context are pre-whitening and cross-
correlation (beside all other issues related to prognostic models). 

5.2.2 Evaluating model choice 
Diagnostic tools are required to evaluate model fit to observations, fidelity to under-
lying assumptions, and to assess model predictions of recruitment. 

Standard hypothesis testing methods (F-tests, likelihood ratio test, score test, etc) can 
be used to compare complicated model (highly parameterized) to less complicated 
models (McCullagh and Nelder, 1989). Such methods are however, only directly ap-
plicable to nested models.   Information-theoretic methods, e.g. Akaike Information 
Criteria (AIC) and Bayesian Information Criteria (BIC) are applicable to non-tested 
models. 

AIC(c) 

If we define k as the number of parameters in the statistical model and L as the 
maximized value of the likelihood function for the estimated model, then the AIC is 
defined as: 

AIC=2k–2ln(L) or alternatively, AIC=χ2  + 2k. 

The latter form is often convenient, because most model-fitting programs produce χ2 

as a statistic for the fit. 

Given a set of candidate models for the data, the preferred model is the one with the 
minimum AIC value. Hence AIC not only rewards goodness-of-fit, but also includes 
a penalty that is an increasing function of the number of estimated parameters, and 
thus limits overfitting. The classical AIC, though, is only valid asymptotically. Thus if 
the number of datapoints is small (such as in recruitment data), then the corrected 
AIC, AICC must be used. The AICc is defined as: 

AICC =AIC + 2k(k+1)/(n-k-1), 

Where n is the number of datapoints. 

Burnham and Anderson (2002) strongly recommend using AICc, rather than AIC, if n 
is small or k is large. Because AICC converges to AIC as n gets large, AICC generally 
should be employed regardless, (Burnham and Andersen, 2002). 

BIC 

A convenient formulation of the Bayesian Information Criterion (BIC) is given by 

BIC= χ2  + k ln(n). 

A comparison of AIC/AICC and BIC is given by Burnham and Anderson (2002, Sec-
tion 6.4). The authors argue that AIC/AICC has theoretical advantages over BIC. The 
authors present a few simulation studies that suggest AICC tends to have practi-
cal/performance advantages over BIC. In particular, AIC is asymptotically optimal in 
selecting the model with the least mean squared error, under the assumption that the 
exact "true" model is not in the candidate set (as is virtually always the case in prac-
tice); BIC is not asymptotically optimal. 

Cross-validation 

Cross-validation involves using a ‘training dataset’ (a subset of the total dataset) to 
estimate the parameters of the model and using the resulting model to predict the 

http://en.wikipedia.org/wiki/Asymptotic_analysis
http://en.wikipedia.org/wiki/Mean_squared_error
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remaining data (the ‘test dataset’). The ability of the model to predict the test set is 
used to select the explanatory variables to include in the model. If too many explana-
tory variables are used, one obtains good model fit for the training data but a model 
with poor predictive ability because the good fit also includes fitting noise, rather 
than only signal. If too few explanatory variables are used, the model performance is 
poor for both test and training datasets. K-fold validation is a version of cross-
validation that makes more use of the data than simple cross-validation. In K-fold 
CV, the data are divided into k-equal parts and the model is run k-times, each time 
rotating through each of the k-subsets as the test dataset and using the remaining 
data as the training dataset. A potential drawback with cross-validation: It does not 
necessarily parallel the likelihood inference that is used to estimate the model pa-
rameters. This is because a test criterion is required, and simple least squares are of-
ten used (Trevor Hastie et al., 2001). However, the likelihood function may differ 
from the least-squares criterion (perhaps not, for most of recruitment models in use?) 

5.2.3 Graphical model performance diagnostics 

In general, there are four principal assumptions which justify the use of linear regres-
sion models for purposes of prediction: 

1 ) Linearity of the relationship between dependent and independent vari-
ables; 

2 ) Independence of the errors (no serial correlation); 
3 ) Homoscedasticity (with respect to time and predictions); 
4 ) Normality of the error distribution. 

If any of these assumptions is violated (i.e. if there is non-linearity, serial correlation, 
heteroscedasticity, and/or non-normality), then the forecasts, confidence intervals, 
and economic insights yielded by a regression model may be (at best) inefficient or 
(at worst) seriously biased or misleading. 

The SG discussed simple diagnostic tools to help detect model misspecification and 
also to detect when model performance becomes unreliable because the underlying 
assumptions no more hold valid (break down), such as when there is change in the 
data generating statistics. 

A selected number of methods are briefly discussed below. Where convenient, exam-
ple plots are presented, using recruitment models from Arctic Fisheries Working 
Group (AFWG). 

a ) Plot standardized residuals vs. fitted (expected) values – Assessing model 
misspecification 

It is usually assumed that in a bivariate or multiple linear regression analysis, the 
distribution of residuals (observed data, Yobs - predicted data, Ypred), is, in the 
population, normal at every level of predicted Ypred and constant in variance across 
levels of Ypred. 
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Figure 2. Example plot of the residuals vs. predicted Y for JES1 model (left) and Titov1 model 
(right). The patterns indicate no problems with the assumption that the residuals are normally 
distributed at each level of Y and constant in variance across levels of Y. 

b ) Plot square-root of absolute values of standardized residuals vs. standard-
ized fitted (expected) values – Assess whether variance changes as a func-
tion of predicted value (should not) 

Homoscedasticity defines a constant variance of the errors with respect to (i) time or 
(ii) predictions (or vs. any independent variable). The opposite (non constant vari-
ance) is referred to as Heteroscedasticity. The presence of heteroscedasticity may 
have the effect of giving too much weight to e.g. a small subset of the data (namely 
the subset with the largest error variance) when estimating model coefficients. Plots 
of residuals vs. time and residuals vs. predicted value should give evidence of het-
eroscedasticity, i.e. residuals that are getting larger (i.e. more spread-out) either as a 
function of time or as a function of the predicted value. 

  

Figure 3. Example residuals plots— Left: The residuals are skewed towards the top of the plot, 
which indicates that the residuals are not normally distributed Right: The residuals are mostly 
positive with low and high predicted values of the dependent variable and mostly negative with 
medium predictions. A curve with one bend links the mean values (see red dots) of the residuals, 
suggesting that an appropriate modelling approach for the data is a non-linear (rather than a 
linear) model. 

c ) Plot observed vs. predicted (expected) values: Assess qualitatively whether 
explanatory variables are indeed able to reduce variance in the data 

Non-linearity is usually most evident in a plot of the observed vs. predicted values or 
a plot of residuals vs. predicted values, which are a part of standard regression out-
put. The points should be symmetrically distributed around a diagonal line in the 
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former plot or a horizontal line in the latter plot. A “bowed” pattern indicates that the 
model makes systematic errors whenever it is making unusually large or small pre-
dictions. 
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Figure 4. Plot of observed (horizontal axis) vs. predicted (vertical axis) values for JES1 model (left) 
and Titov1 model (right). 

d ) Recursive (time varying) parameters and residuals 

Non-linear dependence of the level of a series on previous datapoints is of interest 
because it can indicate the advantage of using predictions derived from non-linear 
models, over those from linear models, as for example in non-linear autoregressive 
exogenous models. 

Among other types of non-linear time-series models, there are models to represent 
the changes of variance along time (heteroscedasticity). 
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Figure 5. Plot of model parameter trajectory with time, for the models JES1 (left) and Titov1 
(right). Each model is fitted to data from 1984 until the terminal year. 

e ) Q-Q (Quantile-Quantile) plots: Determine whether the residuals are consis-
tent with assumed error model 

A Q-Q plot is a plot of the quantiles of two distributions against each other, or a plot 
based on estimates of the quantiles. The pattern of points in the plot is used to com-
pare the two distributions. The points plotted in a Q-Q plot are always non-
decreasing when viewed from left to right. If the two distributions being compared 
are identical, the Q-Q plot follows the 45° line y = x. If the two distributions agree 
after linearly transforming the values in one of the distributions, then the Q-Q plot 
follows some line, but not necessarily the line y = x. If the general trend of the Q-Q 
plot is flatter than the line y = x, the distribution plotted on the horizontal axis is more 

http://en.wikipedia.org/wiki/Nonlinear_autoregressive_exogenous_model
http://en.wikipedia.org/wiki/Nonlinear_autoregressive_exogenous_model
http://en.wikipedia.org/wiki/Heteroskedasticity
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dispersed than the distribution plotted on the vertical axis. Conversely, if the general 
trend of the Q-Q plot is steeper than the line y = x, the distribution plotted on the 
vertical axis is more dispersed than the distribution plotted on the horizontal axis. Q-
Q plots are often arced, or "S" shaped, indicating that one of the distributions is more 
skewed than the other, or that one of the distributions has heavier tails than the other. 

  

Figure 6. Left: A Q-Q plot of a sample of data vs. a Weibull distribution. The deciles of the distri-
butions are shown in red. Three outliers are evident at the high end of the range. Otherwise, the 
data fit the Weibull(1,2) model well. Right: A normal Q-Q plot comparing randomly generated, 
independent standard normal data on the vertical axis to a standard normal population on the 
horizontal axis. The linearity of the points suggests that the data are normally distributed. 

http://en.wikipedia.org/wiki/Statistical_dispersion
http://en.wikipedia.org/wiki/Statistical_dispersion
http://en.wikipedia.org/wiki/Weibull_distribution
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6 Case studies 

6.1 Description of the stocks in the case studies 

Northeast Arctic cod (NEA cod) 

The main spawning is along the Norwegian coast, mainly north of 67°N, during 
March–April. Most of the larvae drift into the Barents Sea, where the cod spend the 
rest of its life (Figure 7), except for the spawning migration. Age of recruitment to the 
fisheries has been defined as age 3. The cod can reach an age of at least 20 years and a 
size greater than 130 cm. Economically it is the most important fish stock in the area, 
with typical annual catches between 400 and 800 thousand tonnes. The cod is an op-
portunistic feeder, eating most available species of suitable size; however it seems 
that it prefers capelin where it is available. In years when capelin abundance is low or 
the cod density is high, cannibalism may cause a substantial mortality on juveniles. 
Seals and whales are important predators of cod. 

North Sea cod (NS cod) 

The North Sea cod stock is widely distributed over the North Sea. In general the 
younger age classes (1 and 2) are generally found in the southern part and adults 
tend to be concentrated in discrete groups. The North Sea cod stock is really a meta-
population where each of the components fluctuates in abundance and contribution 
to the overall stock. This information is summarized in the stock annex of the ICES 
WG report (ICES 2009). The metapopulation structure is reflected in the spatial sepa-
ration of the spawning areas and there are probably significantly different trends in 
the SSB for each component. The majority of the spawning occurs between January 
and April. Maturity occurs between 4 and 5 years old with fishing mortality high 
from age 2 onward. At present the SSB is relatively low. The juveniles (O groups) 
currently are predated by grey gurnards but several other predators contribute to the 
predation mortality, namely whiting and seabirds. 

Norwegian spring-spawning herring (NSS herring) 

During the 1950s and 1960s overwintering concentrations were observed in the Nor-
wegian Sea.  However, since the 1970s (collapse and recovery of the NSS herring 
stock) adult herring generally overwinter along the North Norwegian west coast 
(Figure 7). In late winter the herring migrate to the spawning grounds along the 
Norwegian coast (mainly between 62 and 67°N in recent periods). After spawning the 
herring starts on a feeding migration into the Norwegian Sea, mainly feeding on co-
pepods and euphausiids. The eggs are benthic and after hatching the larvae move up 
into the water column where they are advected along the Norwegian coast. Some 
larvae enter the coastal fjords and others are dispersed across the Barents Sea, where 
they spend their first three years. The Barents Sea juveniles feed mostly on zooplank-
ton, but can also feed on capelin and cod larvae. Important predators on herring are 
seals, whales and to some extent cod, saithe and seabirds. The herring is one of the 
largest fish stocks in the Norwegian Sea/Barents Sea and is economically very impor-
tant. Annual catches have varied from nearly zero to 2 million tonnes. 

North Sea Autumn Spawning herring (NSAS herring) 

The North Sea autumn spawning herring is composed of a number of components 
that currently are considered as Orkney/Shetland, Buchan, Banks and Downs. Each of 
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these components has a distinct spawning location, spawning generally starting in 
August/September in the north (Orkney/Shetland) and finishing in winter in the 
south (Downs). The larvae generally drift eastward from the spawning grounds to-
ward the Skagerrak and German Bight. In this species the overwintering stage is as 
larvae. The juveniles spend the early part of their life in relative shallow coastal wa-
ters, moving further offshore as they age. Recruitment to the adults stock and sexual 
maturity is generally between 2 and 3-winter rings (3+ years old). Much of the back-
ground information and historical record for this stock is summarized in Dickey-
Collas et al. (2010). It should be noted that in NSAS herring the ages are given in win-
ter rings and because they are autumn spawners there is no winter ring for the first 
winter. Thus to match up the age with the correct year class and hence  SSB it is nec-
essary to go back the age (in winter rings) plus 1 to get the correct SSB i.e. a 3wr fish 
in 2000 is from the 1996 year class and SSB. 

 
 

Figure 7. Spawning, hatchery and feeding area of NEA cod and NSS herring. 

6.2 Abundances of early life-history stages during the recruitment 
process of the stocks in the case studies 

6.2.1 Cod 

North Sea (NS) cod 

Numbers-at-age and SSB were obtained from ICES (2007d). Egg productions esti-
mated as laid out in Kell et al. (in prep) using the mean-weights-at-age in the stock as 
reported by ICES (2007d) and assuming males and females had the same weight-at-
age and there was a 50:50 male to female sex ratio. The fecundity relationship was 
obtained from the EU project RASER (O.S. Kjesbu, A. Thorsen, IMR, Bergen and P.J. 
Witthames, Cefas, Lowestoft, pers. comm.). 
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Figure 8. Paulik diagram for North Sea cod. Estimated egg production (Kell et al., pers. comm.) 
and age 1 and age 2 abundance data and the estimated SSB from the VPA. 

Northeast Arctic (NEA) cod 

Numbers-at-age and survey indices were taken from ICES (2007c). Egg productions 
were estimated here based on the formulae and procedures laid out in Marshall et al. 
(2004, 2006). The most recent relationships e.g. length–weight were obtained from 
Marshall CT (University of Aberdeen, pers. comm.). Planktonic early life-history 
stage abundances were obtained from Russian surveys (N. Yaragina, PINRO, pers. 
comm.). 
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Figure 9. Paulik diagram for northeast Arctic cod. Survey estimates of O- and 1-group juveniles 
are used (note that surveys of O- and 1-group juveniles started in the early 1980s). 
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Planktonic egg and larvae data from N. Yaragina (PINRO, Murmansk, Russia)  

Figure 10. Multi-panel life-history transition graph for northeast Arctic cod. Data on early life-
history phases from Russian surveys. 

6.2.2 Herring 

North Sea autumn spawning (NSAS) herring 

The methods for estimating egg production are laid out in Nash and Dickey-Collas 
(2005). The original Paulik diagram was updated using data given in ICES (2007a). 
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a. b. 

Figure 11. Paulik diagrams for North Sea autumn spawning herring. a. utilizing SSB to egg (fe-
cundity transition) with recruitment-at-age 0-wr b. utilizing SSB to larvae transition and recruit-
ment at 1-wr. See text for methods. 
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Figure 12. Life-history transitions for North Sea autumn spawning herring. Each graph represents 
a life-history stage from egg production, early pelagic phase, first-feeding/overwintering, re-
mainder of first year of life and then the summation of all life-history stages in recruitment with 
SSB to the end of the second winter period. 

Norwegian Spring-spawning (NSS) herring 

Data on larvae abundance (1987–2006) and VPA numbers-at-age and SSB (1950–2006) 
were taken from ICES (2007b). Egg production was estimated from the numbers and 
mean weights-at-age given in ICES (2007b), assuming males and females had the 
same weight-at-age and there was a 50:50 sex ration, using the formula presented in 
Óskarsson et al. (2002). 
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a. b. 

Figure 13. Paulik diagrams for Norwegian Spring-spawning herring. a. with all available data 
(stock to recruit panel is for 1907–2006). b. Data restricted to the period 1987 to 2006 as this is the 
period when larvae abundance has been estimated. 
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7 Preliminary conclusions and further directions 

This preliminary report has identified the key components for defining a framework 
for best practice in recruitment modelling and forecasting. 

In particular, the SG has identified that when applied to large statistical populations, 
prognostic estimates from TSA can be very accurate, although they might be solely 
based on one given time-series. As there is no single right forecasting method to use, 
method selection (Trend models or time regression, ARIMA models, transfer func-
tions, Kalman-filtering, spectral analysis, etc.) should be based on objectives and con-
ditions (type, scale and length of dataseries, number and type of variables, etc.). 

As the knowledge of the future is incomplete, quantifying risk and uncertainty are 
important components to forecasting. It must be considered as good practice to indi-
cate the degree of uncertainty associated with a given forecast. This can be done in 
terms of specifying the forecast errors or forecast intervals. In contrast to confidence 
intervals a forecast error or interval always contains a component that quantifies the 
distance of the forecasted value from the centre of the supporting data. Thus the 
greater the distance, the wider the intervals and the more uncertain is the forecast. 
Reliable forecasts can only be made for a few time units ahead (normally for only one 
time unit), depending on the time unit itself (years, quarters, months, etc.), the length 
of the TS as well as the lag structure of the TS model specified and the exogenous 
variables if included (ARMA, transfer function). 

It is however imperative that any models or projections of recruitment must satisfy 
the basic principles of ecology and population dynamics, irrespective of the statistical 
or mathematical approach. This must be the ultimate litmus test for applicability of a 
recruitment model in stock assessment. 

There are a number of basic tenets, in this respect, that need to be adhered to. For 
instance, in relation to the bounds of recruitment (1) recruitment cannot be less than 
zero and (2) the number of recruits can never be greater than the total egg produc-
tion. The consequence of the latter statement is that the numbers of breeding adults 
can have an influence on the level of recruitment and the scope for very large num-
bers of recruits will be impacted to a greater extent at lower population sizes. There is 
probably also a minimum population size whereby successful recruitment can occur 
i.e. Allee or depensatory effects will occur. The absolute number of pre-recruits is 
probably determined by the carrying capacity of the habitats occupied prior to join-
ing the adult phase, similar constraints will apply to the adult population thus den-
sity-dependent factors need to be considered at higher population sizes. Both the 
biotic and abiotic environment can influence the survival of early life-history stages 
and the controls or drivers of survival are most probably not single factors. The prin-
cipal drivers may not always be the same or in the same combination each year, the 
ecosystem fluctuates. 

The results presented in this report are preliminary, and only address issues related 
to a framework for short-term forecasts. Subsequent meetings will aim at finalizing 
the framework and applying it to the case studies identified in this report. Further 
work will also seek to extend the analysis and case studies to medium and long-term 
recruitment forecasts. 
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8 Recommendations 

The SG suggests meeting in Barcelona in October 2012. The group also suggests an 
extension of the meeting duration from four days (at present) to at least twice as long 
(eight days), to allow for adequate time to address the ToRs. 
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