ICES REPORT 2011

Report of the Technical Evaluation of Rockall haddock proposed harvest control rules August 2011

International Council for the Exploration of the Sea Conseil International pour l'Exploration de la Mer

H. C. Andersens Boulevard 44-46
DK-1553 Copenhagen V
Denmark
Telephone (+45) 33386700
Telefax (+45) 33934215
www.ices.dk
info@ices.dk
Recommended format for purposes of citation:

ICES. 2012. Report of the Technical Evaluation of Rockall haddock proposed harvest control rules - August 2011, ICES CM 2011/ACOM: 57. 55 pp.
https://doi.org/10.17895/ices.pub. 19280762
For permission to reproduce material from this publication, please apply to the General Secretary.

The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council.

Contents

Background 3
Annex 1 - NEAFC request on Rockall haddock MP evaluation 3
Annex 2 - Needle and Mosqueira (2011) Working Document) 4
Annex 4 - Khlivnoy (2011) Working Document 24
Annex 5 Draft EU-Russia proposal for harvest control component of a long- term management plan for haddock at Rockall 34
Annex 6 Tables 1-7 35
Annex 7 - Additional Information provided during the RG/ADGHADDOK 42
Annex 8 - Technical Minutes of peer review 49

Background

ICES has received a request from NEACF to evaluate a proposal for the harvest control component of a long-term management plan for Rockall haddock and in particular to consider whether the plan is consistent with the precautionary approach (see Annex 1).

Two different management strategy evaluation (MSE) analyses were conducted to investigate the properties of the proposed HCRs (Needle and Mosqueira, 2011; Khlivnoy, 2011). The analysis conducted by Needle and Mosqueira (2011) is presented in Annex 2 and the evaluation presented by Khlivnoy (2011) in Annex3. Additional information provided during the RG/ADGHADDOK is presented in Annex 4

These evaluations have been subject to a peer review, the review report is available as Annex 5.

Annex 1 - NEAFC request on Rockall haddock MP evaluation

NEAFC requests ICES to evaluate the following proposal for the harvest control component of a long-term management plan for Rockall haddock and in particular to consider whether the plan is consistent with the precautionary approach and will provide for the sustainable harvesting of the stock. ICES will also suggest an alternative approach if necessary.

Draft EU-Russia proposal for harvest control component of a long-term management plan for haddock at Rockall

In the following, the TACs refer to total catches, not just landings.
1 Every effort shall be made to maintain a level of Spawning Stock Biomass (SSB) greater than Bpa and a minimum level of SSB greater than Blim.

2 For [20XX] and subsequent years the Parties agreed to set a TAC to be consistent with a fishing mortality rate of no more than [either Fpa (0.4) or Fmsy (0.3)] for appropriate age-groups, when the SSB in the end of the year in which the TAC is applied is estimated above Bpa.

3 The Parties agree that the TAC that results from the application of the fishing mortality referred to in paragraph 2 will be adjusted according to the following formula.

$$
T A C y=T A C f+0.2 *(T A C y-1-T A C f)
$$

where TACy is the TAC that is to be set by the management plan, TACy-1 is the TAC that was fixed the previous year and TACf is the TAC resulting from the provisions in paragraphs 1 and 2.
4. Where the SSB referred to in paragraph 2 is estimated to be below Bpa but above Blim the TAC shall not exceed a level, which will result in a fishing mortality rate equal to $0.3-0.2$ $\times(B p a-S S B) /(B p a-B l i m)$. This consideration overrides paragraph 3.
5. Where the SSB referred to in paragraph 2 is estimated to be below Blim the TAC shall be set at a level corresponding to a total fishing mortality rate of no more than 0.1. This consideration overrides paragraph 3.
No later than 31 December [20XX], the parties shall review the arrangements in paragraphs 1 to 5 in order to ensure that they are consistent with the objective of the plan. This review shall be conducted after obtaining inter alia advice from ICES concerning the performance of the plan in relation to its objective.

Annex 2 - Needle and Mosqueira (2011) Working Document)

An evaluation of a proposed management plan for haddock in Division VIb (Rockall)
 Working Paper to ACOM
 Coby L. Needle ${ }^{1}$ and Iago Mosqueira ${ }^{2}$
 $1^{\text {st }}$ August 2011

Summary

On the basis of the simulations presented in this paper, it would appear that proposed EU-RF management plan for Rockall haddock is sustainable - that is, the risk of biomass falling below either of the specified biomass reference points over the future 20-year period is very low.

1.1 Introduction

Discussions between the European Union (EU) and the Russian Federation (RF) on possible joint management measures for the Rockall haddock fishery have been progressing for over ten years. Changes in the shape of the EU Exclusive Economic Zone in 1999 led to the renewal of the RF Rockall haddock fishery, and as this fishery has quite different characteristics from the (predominantly) Scottish and Irish fisheries already present in the area, it was clear that joint management would be both necessary and potentially difficult to implement. Meetings involving both scientists and fisheries managers from the EU and the RF have been held on an almost annual basis since 2001 to determine what is known about these fisheries, and how such information can best be used to develop a productive and sustainable management system.

Building on the history of Rockall fisheries and the supporting scientific work presented by Newton et al (2008), the EU-RF Working Group on Rockall haddock met four times during 2008-2010 and produced a state-of-the-art review of available data and scientific analyses pertaining to Rockall haddock (EU-RF 2009). At the fourth of these meetings, in Edinburgh during September 2010, a proposal for a joint EU-RF management plan for Rockall haddock was drafted. Following further refinements, a final version was presented to the appropriate NEAFC plenary meeting towards the end of 2010. The decision was taken there to forward the proposal to ICES for evaluation: the text of the request is given in Annex 1 below.

Although the request was received by ICES towards the end of 2010, technical difficulties with the evaluation and pressure of other work meant that the response to the request could not be included as part of the June 2011 advice release. The current paper provides a quantitative risk-based evaluation of the likely performance of the proposed management plan, although it does not cover all relevant issues as yet.

[^0]Remaining problems are highlighted in the text and will be dealt with during any future revisions of the management plan (if implemented).

The evaluation was implemented in the R programming system (version 2.13.0: R Development Core Team 2011), using the most recent available versions of the FLR libraries (Kell et al. 2007).

1.2 Specific modelling issues for Rockall haddock

One of the authors (Needle) has extensive experience of developing management strategy evaluation (MSE) code for testing proposed plans for haddock in the North Sea (Needle 2008a,b) and West of Scotland (Needle 2010), while the other (Mosqueira) is a key member of the FLR development team and has been involved in a number of management plan evaluations (for example, STECF (2007) and subsequent analyses). The code used previously for haddock MSEs in Needle (2008a,b, 2010) could have been modified to run the Rockall haddock MSE, but it presented two significant problems. Firstly, much of it was bespoke code written to implement features that were not present in the early version of FLR that was available at the time, and such code would have been very difficult for reviewers to understand and check for errors. Recent developments in FLR have in any case rendered much of this bespoke code obsolete. Secondly, the previous code was not optimised for speed, and a single 100iteration simulation run could take over 15 hours (thus limiting the scope of sensitivity analyses). The new version of FLR features a number of optimised analysis algorithms which reduce runtimes dramatically: the same 100-iteration simulation run now takes around 8 minutes.

For these reasons, the Rockall haddock MSE described here does not build on previous haddock MSEs, but rather on MSEs developed for other species using the development version of FLR (to be released in October 2011 as version 2.4). As is usually the case, the code for these MSEs could not be used without modification for Rockall haddock, due to specific features of the stock, assessment and proposed management plan, and further code development was required. However, the programming approach used in the new version of FLR is not particularly intuitive or easy to use, and the resulting code on which this paper is based cannot be guaranteed to be error-free. Furthermore, it does not implement all the features of the system that could be considered, particularly the presence of two different fleets with different catachability characteristics. It is our intention that the evaluation will be a live code that will develop in the future and be used for evaluations of subsequent revisions to the proposed management plan. It is worth noting that the North Sea haddock MSE (Needle 2008a,b) took over two years to develop, a much greater period of time that has been devoted thus far to the Rockall haddock MSE.

Recruitment

Recruitment dynamics for haddock in the North Sea and West of Scotland are characteristically sporadic: that is, there is a strong tendency in those stocks for very occasional large year-classes interspersed with several weak year-classes. Recruitment for Rockall haddock appears to have a stronger relationship with parental spawning stock biomass, as indicated by Figure 1. Therefore, a Ricker stock-recruit model was used to generate stochastic recruitments in the biological simulation model underpinning the evaluation. This model is given by

$$
R_{y}=\alpha S_{y-1} \exp \left(-\beta S_{y-1}\right) \varepsilon_{y-1}^{R}
$$

where R_{y} is recruitment at age 1 in year y, S_{y-1} is the parental spawning stock biomass in year $y-1, \alpha$ and β are fitted parameters, and $\varepsilon_{y-1}^{R} \sim N\left(0, \sigma_{R}^{2}\right)$ where $\sigma_{R}=0.3$ is the assumed recruitment standard deviation. Within the knowledge production model, a simple three-year geometric mean of previous recruitment was used as the best estimate of incoming year-class strength. In the real assessment (ICES-WGCSE 2011), a survey-based RCT3 prediction is used to generate recruitment estimates for the intermediate year, while a long-term (1991 onwards) geometric mean is used for the quota year. These refinements could be included in a future revision of the MSE.

Stock assessment

The Rockall haddock assessment (ICES-WGCSE 2011) is carried out using the original MS-DOS implementation of XSA (Shepherd 1992, Darby and Flatman 1994). The version of the model provided with FLR (FLXSA) is functionally identical to XSA, and has the advantage that it can be built into MSE simulation loops. For this reason, FLXSA is used here to generate the simulated stock assessment on which management decisions are taken. The same run settings are used as for the XSA assessment is ICES-WGCSE (2011), namely:

- Assessment model: XSA
- Tuning indices: one survey index (SCOGFS)
- Time-series weights: none
- \quad Catchability dependent for ages <4
- Regression type: C
- Catchability plateau: 5
- \quad Shrinkage standard error: 1.0
- Shrinkage age-year: 3 ages, 4 years
- Minimum standard error: 0.3
- Plus group: 7+
- Mean F age range: 2-5

The summary outputs from the FLXSA run on historical data are given in Figure 2 (stock summary) and 3 (residuals).

The assessment makes no explicit distinction between reported landings and estimated discards, which are summed together to give total catch. In the simulation forecast, the ratio of landings to discards for each age is assumed to be fixed. In previous work on MSEs for haddock (e.g. Needle 2008a), it has been demonstrated that this assumption can lead to problems (generally underestimation of SSB) with the simulated assessment, particularly when a large year-class is generated. This difficulty may still arise for Rockall haddock, but the magnitude of the effect is likely to be less as the quota is assumed to apply to total catch rather than just landings (see Annex 1). Hence the assumed split between landings and discards is less germane to the simulated stock dynamics.

The simulations were initialised using historical data, as follows:

- Means of the last three historical values were used in forward simulations for biological metrics such as weights-at-age, natural mortality, proportion mature-at-age, and proportion of F and M occurring before spawning.
- The actual 2010 quota (4997 tonnes) was used in generation of total catch for the first year of the simulation. Quotas in all subsequent years were the result of the applied management plan.
- Also in the first simulation year (2010), we use total catch (in other words, the quota) as the intended catch and "true" F as the intended F. In subsequent years these arise from the management plan.

Aside from these added complications, the simulation algorithm is functionally similar to that used for the North Sea haddock MSE (Needle 2008a), to which the reader is referred for details on such aspects as the target- F iterative loop and the sliding F rule.

Research-vessel survey indices

The ICES assessment for Rockall haddock uses indices from one research-vessel survey (the Scottish Q3 groundfish survey), which has been conducted annually since 1991 (save for three years during which the survey did not take place). Figure 4 gives the time-series of the survey indices for each age, along with distributions of the same indices but with stochastic noise applied. For a survey index datum $I_{a, y}$ for age a in year y, in the $k^{\text {th }}$ iteration, the stochastic version is generated using

$$
\tilde{I}_{a, y, k}=I_{a, y} e^{\varepsilon_{a, y, k}^{I}-\frac{1}{2} \sigma_{T}^{2}}
$$

where $\varepsilon_{a, y, k}^{I} \sim N\left(0, \sigma_{I}^{2}\right)$ and $\sigma_{I}=0.3$ is the assumed survey standard deviation. Figure 5 shows the resultant distributions of assessed mean fishing mortality, SSB and recruitment when K assessments are run using the K stochastically-generated survey index time-series.

Survey indices must also be generated for each year in the future simulations, to enable these to include stock assessments. The historical relationship between estimated abundance $N_{a, y}$ and $I_{a, y}$ survey indices for each age was generated by fitting straight lines to logged values,

$$
\ln I_{a, y}=\gamma_{a}+\eta_{a} \ln N_{a, y} .
$$

These relationships are illustrated in Figure 6. In each year y of each future simulation, the required survey indices were then generated using

$$
I_{a, y, k}=\gamma_{a} e^{\eta_{a} N_{a, y, k}} \varepsilon_{a, y, k} .
$$

Maximum fishing mortality

In the FLR implementation used here, true simulated fishing mortality has an upper bound of 2.0. This can be reached (very occasionally) in the simulations following (we think) a combination of an increasing trend in fishing mortality, limited scope to match quota to stock abundance (due to a constraint of interannual variation in quota), and a coincidental run of relatively low recruitments. This is not a common occurrence: for the 500 simulations with a target F of 0.3 reported below, the maximum F was reached for only 9 (0.018%) iterations. However, as Figure 8 shows, the high true F does not appear to be immediately reflected in a high assessed F, so it is not clear that managers would be aware of the effect were it to occur in reality. The summary results presented here do not include these outlying runs, as we do not yet fully understand why they happen in the simulations and they do not appear to be
very realistic, but this is an ad hoc solution to the problem which needs to be readdressed in future work.

1.3 Results

The great advantage of the new FLR implementation used for this MSE is the speed with which each evaluation can be completed. Previous work (e.g. Needle 2008a) was limited to 50 iterations for each target F, whereas here we have been able to run 500 iterations for each F (and indeed 1000 iterations would have been quite possible). This greatly increases coverage of the range of simulated possibilities, and improves our confidence in our conclusions. Two values of target F were considered, and each iteration was run for 22 years into the future (being a standard 20 year simulation period, with two extra years to allow for quota-setting forecasts in the final simulation year).

Figure 7 gives a summary plots for one realisation of the simulation for which the target $F=0.3$ (recall that 500 such realisations were run for each of two target F values used). Permitted quota follows an overall upwards trajectory with only minor fluctuations, with true landings and discards following suit according to the fixed relationship between them. True (or realised) mean F fluctuates around the target F level (0.3), although the assessed mean F is much closer to the target. The fluctuation is caused by a combination of the following factors.
a) Implementation lag. Each year of the simulation includes a two-year-ahead forecast, the result of which determines what quotas should be for the following year. However, these forecasts contain assumptions about recruitment, and if these are not accurate (as they generally won't be), the permitted quota may be too large or too small for the actual population to which it is applied. If the quota is taken regardless, this will result in realised mean F that is higher or lower than intended.
b) The TAC constraint. Fixing the amount by which quotas can change from year to year will also hinder achievement of the target F. In a situation of rising (or falling) stock size, the quota is not allowed to rise (or fall) commensurately, and realised mean F is affected as a result.

Even with these fluctuations, the average F over the simulation period is consistently lower than the historical average. Recruitment strength remains around an average value in this run. SSB fluctuates in a manner similar (but opposite) to mean F, and for this iteration is always above B_{pa}.

In contrast, Figure 8 shows one of the few examples of an iteration for which true mean F hits the maximum value (2.0). Such an extreme discrepancy between true and assessed stock values for mean F and SSB is difficult to interpret, and (as mentioned above) such runs have all been removed from the overall analysis.

Staying with the same run (target $F=0.3$), Figure 9 summarises all 491 simulation iterations (that is, all 500 iterations minus the 9 runs for which F became equal to 2.0 (see above for a discussion). The median values from these plots are the result of smoothing across different realisations of recruitments, and are therefore only useful as an indication of likely future events. Given this caveat, the simulations indicate that SSB is likely to rise initially before stabilising at or around 25 to 30 kt , mean F is likely to fluctuate considerably around the target level (but should in any case be able to remain low on average), and total catches will rise to a mean level of around 8 kt .

Figure 10 provides the same summary information for the run with target $F=0.4$. Here there were 456 valid runs (91.2% of the total) for which F did not hit 2.0. The yield in these runs is similar to those for which the target $F=0.3$ (at around 8 kt on average), but at the cost of a lower SSB (generally less than 20 kt). Recruitment is also similar to the previous case. We note that the true mean F for this analysis is much closer to the target $F(0.4)$ than for the previous case (when the target $F=0.3$).

We summarise risk from these simulations as follows. For each value of the target F, we consider each iteration separately, and count the number of years in that iteration for which biomass was less than B_{pa} or $B_{\lim }$. The results of this analysis for all nine evaluation runs are summarised in Table 1, and Figures 11 and 12. For both levels of the target F, the risk of biomass falling below either biomass reference points is very low. The number of years for which $B<B \lim$ in particular is significantly less than one, for both target F values.

Table 1. Summaries of risk (number of years in each iteration for which biomass is less than reference points, averaged over iterations) for each of the tested levels of the target F. Only valid iterations have been included here (that is, those for which F does not reach 2.0).

Run	Target F	Num years B $<$ Bpa	Num years B < Blim
1	0.3	1.69	0.03
2	0.4	1.18	0.28

1.4 Conclusions

On the basis of the simulations presented in this paper, it would appear that proposed EU-RF management plan for Rockall haddock is sustainable - that is, the risk of biomass falling below either of the specified reference points over the future 20year period is very low. Several caveats should be borne in mind, however, when considering this result.

The evaluation follows the example of the ICES stock assessment in not allowing explicitly for the presence of two fleets with very different characteristics. The simulations are based on an assessment and data which end in 2010, a year in which very few Russian (RF) vessels fished at Rockall (due in part to considerable fishing opportunities in the Barents Sea). The simulations are therefore based on a view of fishery dynamics which is overwhelmingly driven by the characteristics of the EU fleet. Should the RF fleet return to Rockall in significant numbers in the future, this view may not longer pertain. It is possible to model separate fleets in FLR, and this should be considered as a priority in any future revisions.

The evaluation is also limited by the general hindrances that affect all analyses of this type. There is no bioeconomic feedback loop in the simulation, so fishing practices at Rockall (and, importantly, the number of vessels that fish there) are assumed to affect stock dynamics only through the medium of quotas. In reality, increased prices for haddock might increase the number of vessels fishing at Rockall, and thereby have an effect on the risk estimates outlined in this paper - increased fuel costs could have the opposite effect. The proportions discarded-at-age are assumed to be fixed through time (and these are in any case generally extrapolations from the North Sea). Finally, the lack of a multispecies component to the analysis could (for some mixed-fishery vessels, at least) leads to difficulty in drawing firm conclusions.

Annex 3: Request to ICES from NEAFC

NEAFC requests ICES to evaluate the following proposal for the harvest control component of a long-term management plan for Rockall haddock and in particular to consider whether the plan is consistent with the precautionary approach and will provide for the sustainable harvesting of the stock. ICES will also suggest an alternative approach if necessary.

Draft EU-Russia proposal for harvest control component of a long-term management plan for haddock at Rockall

In the following, the TACs refer to total catches, not just landings.
1) Every effort shall be made to maintain a level of Spawning Stock Biomass (SSB) greater than Bpa and a minimum level of SSB greater than Blim.
2) For $[20 X X]$ and subsequent years the Parties agreed to set a TAC to be consistent with a fishing mortality rate of no more than [either Fpa (0.4) or Fmsy (0.3)] for appropriate age-groups, when the SSB in the end of the year in which the TAC is applied is estimated above Bpa.
3) The Parties agree that the TAC that results from the application of the fishing mortality referred to in paragraph 2 will be adjusted according to the following formula:

$$
\mathrm{TAC}_{\mathrm{y}}=\mathrm{TAC}_{\mathrm{f}}+0.2^{*}\left(\mathrm{TAC}_{\mathrm{y}-1}-\mathrm{TAC}_{\mathrm{f}}\right)
$$

where $\mathrm{TAC}_{\mathrm{y}}$ is the TAC that is to be set by the management plan, $\mathrm{TAC}_{\mathrm{y}-1}$ is the TAC that was fixed the previous year and TAC $_{f}$ is the TAC resulting from the provisions in paragraphs 1 and 2.

4) Where the SSB referred to in paragraph 2 is estimated to be below Bpa but above Blim the TAC shall not exceed a level, which will result in a fishing mortality rate equal to $0.3-0.2 \times(\mathrm{Bpa}-\mathrm{SSB} /(\mathrm{Bpa}-\mathrm{Blim}))$. This consideration overrides paragraph 3.
5) Where the SSB referred to in paragraph 2 is estimated to be below Blim the TAC shall be set at a level corresponding to a total fishing mortality rate of no more than 0.1. This consideration overrides paragraph 3.

References

Darby, C. D. and Flatman, S. (1994). Lowestoft VPA Suite Version 3.1 User Guide, Lowestoft, MAFF.

EU-RF (2010). Report Of The European Community - Russian Federation Scientific Expert Working Group On Rockall Haddock. Edinburgh and Moscow, 2008-2010.

ICES-WGCSE (2011). Report of the Working Group on the Celtic Seas Ecoregion. ICES CM 2011/ACOM:12.

Kell, L. T., Mosqueira, I., Grosjean, P., Fromentin, J-M., Garcia, D., Hillary, R., Jardim, E., Mardle, S., Pastoors, M. A., Poos, J. J., Scott, F., Scott, R. D. (2007). FLR: an open-source framework for the evaluation and development of management strategies. ICES Journal of Marine Science, 64(4): 640-646

Needle, C. L. (2002). Recruitment models: diagnosis and prognosis, Reviews in Fish Biology and Fisheries 11(2): 95-111.

Needle, C. L. and Hillary, R. (2007). Estimating uncertainty in nonlinear models: Applications to survey-based assessments. ICES CM 2007/O:36.

Needle, C. L., O'Brien, C. M., Darby, C. D. and Smith, M. T. (2003). Incorporating time-series structure in medium-term recruitment projections, Scientia Marina 67(Suppl. 1): 201-209.

Needle, C. L. (2008a). Management strategy evaluation for North Sea haddock, Fisheries Research 94(2): 141-150.

Needle, C. L. (2008b). Evaluation of interannual quota flexibility for North Sea haddock: Final report. Working paper for the ICES Advisory Committee (ACOM), September 2008.

Needle, C. L. (2010). An evaluation of a proposed management plan for haddock in Division VIa (2 ${ }^{\text {nd }}$ edition). Working paper to ICES ACOM.

Newton, A. W., Peach, K. J., Coull, K. A., Gault, M. and Needle, C. L. (2008). Rockall and the Scottish haddock fishery, Fisheries Research 94(2): 133-140.

R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.
Shepherd, J. G., 1992. Extended Survivors' Analysis: An improved method for the analysis of catch-at-age data and catch-per-unit-effort data. Working Paper to the ICES MultispeciesWorking Group, June 1992.

STECF (2007) STECF advice on the STECF-SGMOS 07-07 expert group on evaluation of "policy statement" harvest rules.

Figure 1. Diagnostics for Ricker stock-recruit model. The fitted Ricker curve is shown in the topleft plot (red line), along with comparative non-parametric loess smoothers (blue lines).

Historical XSA estimates

Figure 2. Summary results of the FLXSA assessment applied to historical Rockall haddock data.

XSA tuning residuals

Figure 3. Survey-index catchability residuals from the FLXSA assessment applied to historical Rockall haddock data.

Figure 4. Time-series of research vessel survey indices by age. Black line: values used in the real assessment. Red lines: percentiles ($5 \%, 25 \%, 50 \%, 75 \%, 95 \%$) of distributions of survey indices to which a multiplicative error term has been applied.

Figure 5. Comparison of summary population values from the standard ("true") assessment (black lines) with those from $K=500$ iterations including stochastically-generated survey indices (red lines; $5 \%, \mathbf{2 5 \%}, \mathbf{5 0 \%}, \mathbf{7 5 \%}$ and $\mathbf{9 5 \%}$ quantiles are shown).

Figure 6. Scatterplots (by age) comparing the logged survey indices (log I) with the logged stock abundance estimates $(\log \mathrm{N})$ from the "true" historical assessment. Fitted lines give the best linear relationships.

Figure 7. Summary plots for iteration 1 of the Rockall haddock MSE. Here the target F is 0.3 . For all plots, the vertical blue line denotes the last historical year. Top left: total catch (black solid line), landings (green solid line) and discards (green dashed line). Red circles show the intended TAC for each year. Top right: time series of mean F, with true values in black while the assessed values from each year of the forward simulation are shown in red. Green dots indicate the intended mean F. The horizontal blue line shows the value of $F_{\text {pa. }}$. The same colour scheme is used for SSB (bottom left; horizontal lines show B_{pa} and B_{lim}) and recruitment (bottom right).

Figure 8. Summary plots for iteration 6 of the Rockall haddock MSE. See caption to Figure 7 for details.

True stock values: all 491 stripped iterations

Figure 9. Summary plots true population values from the 491 valid simulation iterations (that is, all those without maximised F), with target $F=0.3$. The short horizontal lines indicate the medians, the boxes the quartiles ($25^{\text {th }}$ and $75^{\text {th }}$ percentiles), and the whiskers the $5^{\text {th }}$ and $95^{\text {th }}$ percentiles. Outliers are shown by open circles. The line on the top-right plot shows the target F (upper) and F $=0.1$ (lower), while those on the bottom-left plot show B_{pa} (upper) and $B_{\text {lim }}$ (lower). Vertical dashed blue lines show the last historical year.

True stock values: all 456 stripped iterations

Figure 10. Summary plots true population values from the 456 valid simulation iterations (that is, all those without maximised F), with target $F=0.4$. The short horizontal lines indicate the medians, the boxes the quartiles ($25^{\text {th }}$ and $75^{\text {th }}$ percentiles), and the whiskers the $5^{\text {th }}$ and $95^{\text {th }}$ percentiles. Outliers are shown by open circles. The line on the top-right plot shows the target F (upper) and F $=0.1$ (lower), while those on the bottom-left plot show B_{pa} (upper) and Blim (lower). Vertical dashed blue lines show the last historical year.

Num yrs for B < Bpa by iteratio

Num yrs for B < Blim by iteratic

Figure 11. Histograms of the number of years within each iteration (target $F=0.3$, 491 valid runs only) in which SSB $B<B_{\mathrm{pa}}$ (upper) or $B<B_{\text {lim }}$ (lower). The average number of years (out of a maximum total of 20) is given for each case.

Figure 12. Histograms of the number of years within each iteration (target $F=0.4,456$ valid runs only) in which SSB $B<B_{\mathrm{pa}}$ (upper) or $B<B_{\text {lim }}$ (lower). The average number of years (out of a maximum total of 20) is given for each case.

Draft
 The analysis of EU-Russia proposal for harvest control component
 of a long-term management plan for haddock at Rockall
 Khlivnoy V.N.
 (PINRO)

Introduction

Haddock fishery at the Rockall bank has a long history. Post-war, the importance of the Rockall fishery has fluctuated and the total international landings amounted to 370000 t . Fishing mortality levels have historically been high but have decreased since 2005. In 2006 and 2009-2010, mortality reached the lowest estimate for the recent 20 years.

The Rockall haddock is characterized by wide interannual fluctuations in abundance, mainly influenced by the rate of egg and larva survival, which, most probably in its turn, depends on the environmental conditions in the spawning period (Jones, 1982; Khlivnoy, 2005; Vinnichenko, Khlivnoy, 2006; Filina, Khlivnoy, Vinnichenko, 2009; Anon., 2009; ICES, 2010; ICES, 2010a). Abundant year-classes appear in the years with both high and low spawning stock. Recruitment for the last four years has been low despite a large SSB. The minimum size of the spawning stock was registered in 2001-2002, when it was beyond the safe biological limits, that, despite faulty estimation, afforded ICES the ground to recommend the reduction in the catch rate to a possible low level. Due to the appearance of above-average year-classes in 2000-2001 and 2005, the haddock stock has increased over the subsequent few years. The recruitments since 2007 are estimated to be extremely weak and there is a high probability that SSB will decrease to levels below Bpa in 2013.

The international landings of haddock are characterized by significant year-to-year variations that are caused by economic reasons and population abundance dynamics. Last years the landings amounted to 3000-6000 t.

The discard rate in the past was as high as $52-87 \%$ by numbers by results of discards trips (ICES, 2004; Newton et al., 2004; Khlivnoy, 2004; Khlivnoy, 2006; Anon., 2009). Last years the discards are significantly reduced as a result of the small number of young haddock in population. The discard ratio is around 47% in 1991-2009 and 34% in the recent period (1999-2009). Discards are not reflected in the fisheries statistics that leads to underestimation of total catch. Discards decrease precision of the estimation and entail uncertainties in projection of the stock state. Having few data on reported discards it would be problematic to determine the true size of haddock catch.

It is the opinion of the ICES and NEAFC that it would be beneficial to develop and introduce into fisheries practiccal measures aimed at preventing discards of haddock (ICES, 2010; ICES, 2010a). Elaboration of such measures complies with recommenda-
tions under the UNGA Resolution 61/105 that urges states to take action to reduce or eliminate fish discards (UNGA Resolution 61/105, 2007, Chapter VIII, item 60).

In 2010 European Community and Russian Federation have proposed draft the plan for harvest control component of a long-term management plan for haddock at Rockall. NEAFC requests ICES to evaluate this component of the long-term management plan for Rockall haddock (Annex 1).

Methodology for evaluation of harvest control rules

Evaluation of harvest control rules (HCR) was done using simulation model for the population. The following issues for evaluation of harvest control rules were resolved:

- Choice of population model and initial values for simulations
- Inclusion of uncertainty in model
- Choice of harvest control rules for use in the evaluation:
the construction of F rules
the reduction in F when $\mathrm{SSB}<\mathrm{Bpa}$
the probability of $\mathrm{SSB}<\mathrm{Bpa}$
the probability of SSB<Blim
the limit on year-to-year variation in catches
the reduction in interannual variation in catches when SSB<Bpa
- Comparison of the measures proposed in HCR and other management rules.

The population model was used in the evaluation. Model used the functions VPA (Baranov equation, Popes approximation etc. and Ricker stock-recruitment relationship). The simulations were carried out using the EXCEL.

Included in model were recruitment residuals and assessment errors (the simulations were carried with take into account errors).

Uncertainties in HCR

There is accurate data on the landings only. Discards samples are very poor. There were not annual discards samplings and yield (total catch) had to be simulated. Discards are not reflected in the fisheries statistics that leads to underestimation of total catch and entails uncertainties in projection of the stock state. Furthermore, there are ways of evading TACs including discarding and misreporting. The main uncertainty in the assessment and forecast is estimation of discards. The results of any evaluation of the HCR for haddock at Rockall are applicable only for the existing practice of establishment of quotas on the basis of landings.

Model settings

For all runs 100 iterations for 28 years (2011-2039) were made. The simulations were made for $\mathrm{F}=0.2, \mathrm{~F}=0.3, \mathrm{~F}=0.4$ and $\mathrm{F}=0.5$.

Two scenarios of interannual adjusting of TAC were tested:
15% the limit on year-to-year variation in catches
and proposed in HCR: TACy $=$ TACf $+0.2 *($ TACy $-1-\mathrm{TACf})$.
Limitations for interannual adjusting of TAC were tested also.
Where the SSB in the end of the year is estimated to be below Bpa but above Blim the TAC a fishing mortality rate was taken equal to:
$0.5-0.4 \times($ Bpa - SSB $/($ Bpa - Blim $) \quad$ for Ftarget $=0.5$
$0.4-0.3 \times($ Bpa - SSB $/($ Bpa - Blim $) \quad$ for Ftarget $=0.4$
$0.3-0.2 \times($ Bpa - SSB $/($ Bpa - Blim $) \quad$ for Ftarget $=0.3$
$0.2-0.1 \times($ Bpa - SSB $/($ Bpa - Blim $) \quad$ for Ftarget=0.2

Input data

The input data for the simulations are used as for Haddock VIb assessment is WGCSE. The chosen population model was:

Recruitment: age 1
Plus group: 7+
Fbar: 2-5

Maturation	
age 1	0
age 2	0
age 3	1
age 4	1
age 5	1
age 6	1
age $7+$	1

Natural mortality at age: 0.2.
For long-term forecasting discards and landings, the proportion of discards/landings at age in 1999-2009 was used.
For long-term simulations mean values for the period 1991-2010 were used for stock weights and catch weights

Start Year for runs: 2010

Stock-recruitment relationship

The segmented regression approach with a stochastic term was chosen to generate recruitments. The Ricker stock-recruitment relationship was used. The Ricker recruitment function gives recruitment according to the following function (1):
$\mathrm{R}=\mathrm{A}^{*} \mathrm{SSB}_{\mathrm{y}-1}{ }^{*} \exp \left(-\mathrm{SSB}_{\mathrm{y}-1} / \mathrm{K}\right)$
where A and K are constants, SSBy- 1 is the spawning stock biomass (tonnes) in year y -1.

Taking into account the recruitment residuals the number of recruits Rsum was modeled using the following equation (2):

Rsum $=R \cdot \exp \left(\varepsilon_{y-1}\right)$
where R is the number of recruits by Ricker stock-recruitment relationship, ε is the recruitment residuals in year y-1.

The observed residuals obtained from the results of WGCSE stock assessment lie in the range of -2.053 to 1.02 . The residuals for the recruitment simulation were modeled using method of random numbers in the range of -2.053 to 1.02 .

The following values of the constants $\mathrm{A}=16.7$ and $\mathrm{K}=9940.1$ were used. The Ricker recruitment stock-recruitment dependence and the recruitment analysis are shown in Figure 1.

Assessment errors

Year-to-year variations of TSB obtained from the results of stock assessment lie in the range of -0.66 to 1.28 . The assessment errors for the simulations were modelled using method of random numbers in this range.

Results

32 scenarios of catch rules were simulated. For each run 2800 simulations (100 iteration for 28 years) were made. The results of runs are shown in Table 1. More details of runs are presented in Annex 2.

The probabilities of cases for which SSB is below reference points Bpa (9000t) for scenarios of 15% limitation on year-to-year variation in TAC ranged from 3.7 to 16.0%. For proposed in HCR plans equation TACy $=\mathrm{TACf}+0.2$ * (TACy-1-TACf) it was from 3.1 to 14.6%.

The probabilities of cases for which SSB is below reference points Blim (6000 t) for 15 $\%$ limitation in TAC were 0.0 to 1.18%. In the latter simulation (Ftarget=0.5) three cases were derived when stock collapse was projected.

In the proposed HCR equation the risk of SSB decrease below Blim (6000 t) was found to be low (0.0-0.214\%).

There are some details which are not fixed in proposed HCR:

1. What is the procedure to be applied if a stock after using paragraph 2 of HCR is above Bpa but will be below Bpa after applying of paragraph 3 (i.e. TACy $>$ TACf when SSB were before Bpa). Neglecting of this fact leads to the decreasing of SSB below Bpa.
2. Is it necessary to apply interannual adjusting of TAC if SSBy-1 is below Bpa? Applying of limitation of TAC if SSBy-1 is below Bpa leads to a reduction of catches when SSB has high level.

These restrictions of interannual adjusting of TAC were used for some scenarios of runs.

The restriction 1 in which adjusting of TAC is not used if SSBy $+1<$ Bpa resulted in a significant reduction in the probability of risk of decreasing SSB below Blim. And the risk of decreasing SSB below Blim (6000 t) was 0.0% for Ftarget $=0.2-0.4$ (for all methods of interannual adjusting of TAC).

The restriction 2 in which adjusting of TAC is not used if SSBy- $1<$ Bpa was found to be more important in cases of 15% TAC adjustment.

Application of both restrictions gave a low probability of decreasing SSB below Blim.
For final runs scenarios with limitation on year-to-year variation in TAC which was proposed in HCR plans equation TACy $=$ TACf +0.2 * (TACy-1 - TACf) and restriction 1 in which adjusting of TAC not used if SSBy $+1<$ Bpa were used. These scenarios give low risk of decreasing SSB below Bpa (5.4% Ftarget $=0.3,9.0 \%$ Ftarget $=0.3$) and below Blim (0.0% Ftarget $=0.3-0.4$) and high recruitment level. The annual landings (median) for $\mathrm{F}=0.3-0.4$ are at 4034-4368 t and SSB at 15161-17257 t (Table 2).

Summary plots of the final runs are shown in Figure 2 and Figure 3.

Conclusions

The scenarios with limitation on year-to-year variations in TAC which are proposed in HCR plans (equation TACy $=$ TACf $+0.2 *$ (TACy- $1-\mathrm{TACf})$) and restriction in which adjusting of TAC not used if SSBy $+1<$ Bpa give low risk of decreasing SSB below Bpa and Blim and high recruitment level for both Ftarget 0.3 and 0.4.

The limitations in which adjusting of TAC is not used if SSBy $+1<$ Bpa resulted in a significant reduction in the probability of risk of decreasing SSB below Blim. This limitation needs to be includes in the proposed HCR.

The discard rate in the past was as high as $52-87 \%$ by numbers by results of discards trips. Discards are not reflected in the fisheries statistics that leads to underestimation of total catch and consequently of fishing mortality rates. Discards decreas precision of estimates and entails uncertainties in projection of the stock state.
Results of discards trip show that fish with the length of $20-35 \mathrm{~cm}$ prevail in catches. The EU minimum legal landing size of 30 cm for haddock forces discarding of fish smaller than 30 cm . It would be wrong to assume that the increase in quotas would reduce the discards.

The setting of the quota at the level of the total catch will result in a significant yield increase compared to TAC. Landings will reach the level of quotas, which will be defined as the total catch, including discards. There are ways of evading TACs including high rates of unreported discarding and misreporting. This can cause collapse of the stock.

It would be beneficial to develop and introduce into fisheries practice measures aimed at preventing discards of haddock (ICES, 2010). Elaboration of such measures complies with recommendations under the UNGA Resolution 61/105 that urges states to take action to reduce or eliminate fish discards (UNGA Resolution 61/105, 2007, Chapter VIII, item 60). As a first stage, it is necessary to work out measures to reduce discards.

In ICES practice TACs of Rockall haddock are established on the basis of projected catches disaggregated into landing and discard components (ICES, 2010; ICES, 2010a).

At present it is impossible to control the total catch. It is needed to disaggregate the TAC into two components: landings and discards. At the same time to prevent the uncontrolled fishing it is needed to develop recommendations on TACs on the basis of landings as only landings are available for control.

Proposal for HCR

Draft EU-Russia proposal for harvest control component of a long-term management plan for haddock at Rockall

In the following, the TACs refer to total catches, not just landings. The TAC must be disaggregated into two components: the landings and the discards. The catch limit for the fishery must be set on the basis of landings.

1. Every effort shall be made to maintain a level of Spawning Stock Biomass (SSB) greater than Bpa and a minimum level of SSB greater than Blim.
2. For $[20 X X]$ and subsequent years the Parties agreed to set a TAC to be consistent with a fishing mortality rate of no more than [either Fpa (0.4) or Fmsy
(0.3)] for appropriate age-groups, when the SSB in the end of the year in which the TAC is applied is estimated above Bpa.
3. The Parties agree that the TAC that results from the application of the fishing mortality referred to in paragraph 2 will be adjusted according to the following formula:

$$
\text { TACy }=\text { TACf }+0.2 *(\text { TACy }-1-\text { TACf })
$$

where TACy is the TAC that is to be set by the management plan, TACy- 1 is the TAC that was fixed the previous year and TACf is the TAC resulting from the provisions in paragraphs 1 and 2.

This paragraph is not applied, when the SSB calculated in paragraph 3 is below Bpa.
4. Where the SSB referred to in paragraph 2 is estimated to be below Bpa but above Blim the TAC shall not exceed a level, which will result in a fishing mortality rate equal to $0.3-0.2 \times(\mathrm{Bpa}-\mathrm{SSB} /(\mathrm{Bpa}-\mathrm{Blim})$ for target $\mathrm{F}=0.3$ or equal to $0.4-0.3 \times(\mathrm{Bpa}-\mathrm{SSB} /(\mathrm{Bpa}-\mathrm{Blim})$ for target $\mathrm{F}=0.4$. This consideration overrides paragraph 3 .
5. Where the SSB referred to in paragraph 2 is estimated to be below Blim the TAC shall be set at a level corresponding to a total fishing mortality rate of no more than 0.1. This consideration overrides paragraph 3.

No later than 31 December [20XX], the parties shall review the arrangements in paragraphs1 to 5 in order to ensure that they are consistent with the objective of the plan. This review shall be conducted after obtaining inter alia advice from ICES concerning the performance of the plan in relation to its objective.

Reference

Anon. 2009. Report of the European Community - Russian Federation Scientific Expert Working Group on Rockall haddock. Moscow, April 2008. Edinburgh, 4-6 February 2009. Moscow , 9-11 September 2009, pp. 102.

Finina E.A., Khlivnoy V.N., Vinnichenko V.I., 2009. The Reproductive Biology of Haddock (Mellanogrammus aeglefinus) at the Rockall Bank. Journal of Northwest Atlantic Fishery Science, Vol. 40, 2009: pp. 59-73

ICES, 2004. Report of an Expert Group on Rockall Haddock Recovery Plans following a request for advice made on behalf of the European Community and the Russian Federation. 13-15 January 2004. Galway, Ireland. ICES/ACFM. 300 p.

ICES, 2010. Report of the Working Group on the Celtic Seas Ecoregion (WGCSE)12-20 May 2010, Copenhagen, Denmark. ICES CM 2010/ACOM:12. 1436 p.

ICES, 2010a. Report of the ACOM. Book 5. ICES Advice 2010, Advice June 2010 Book 5, 149156 pp.

Jones B.W., 1982. A stock assesment of haddock on Rockall bank. ICES C.M. 1982/G:22. 5 p.
Khlivnoy V.N., 2004 Preliminary assessment of the Rockall haddock (Melanogrammus aeglefinus) stock. Working Document to the Working Group on the Assessment of Northern Shelf Demersal Stocks. Copenhagen. 14 p.

Khlivnoy, V.N. 2005. Life history and seasonal migrations of main commercial Rockall fish species. Proceedings of the International Conference of RAS "Fish behaviour", Borok. M. Aquaros, p.530-536 (in Russian)

Khlivnoy V.N., 2006. New methodical approaches to recovery of catch structure and haddock stock assessment in the Rockall Bank area // Voprosy rybolovstva. Vol. 7. №1(25). pp. 161175 (in Russian).

Newton A.W., Peach K.J., Coull K.A., Gault M., Needle C.L., 2004. Rockall and the Haddock Fishery. Working document for Working Group on the assessment of Northern Shelf demersal stocks. Copenhagen. 39 p .

Vinnichenko V.I., Khlivnoy V.N. , 2006. Study of demersal fishes on Rockall Bank //Rybnoey Khoziaystvo. №1. pp. 21-39 (in Russian).

Table 1. Results of long- term stochastic simulations. Probabilities of SSB<Bpa, SSB<Blim and median values of SSB, yield, landings, recruitment and fishing mortality.

${ }^{*}$ - including 3 cases of the collapse of stock, ${ }^{* *}$ - adjusting of TAC not used if SSBy $+1<$ Bpa, ${ }^{* * *}$ - adjusting of TAC not used if SSBy-1<Bpa including 3 cases of the collapse of stock

Table 2. Results of the final simulations. Probabilities of SSB<Bpa, SSB<Blim and median values of SSB, yield, landings, recruitment and fishing mortality.

$\begin{gathered} \mathrm{F} \\ \text { target } \end{gathered}$	Method forinterannual adjusting of TAC	$\begin{array}{\|c\|} \hline \text { Limitations for } \\ \text { interannual adjusting of TAC } \\ \hline \end{array}$		SSB<Bpa		SSB<Blim		Recruits	SSB	F	Yield	Landings
								N**10-3	t			t
		SSBy+1<Bpa**	SSBy-1<Bpa***					Percentile	Percentile	Percentile	Percentile	Percentile
				N	\%	N	\%	50	50	50	50	50
0,2	$\mathrm{TAC}_{\mathrm{y}}=\mathrm{TAC}_{f}+0.2 *\left(\mathrm{TAC}_{\mathrm{y}-1}-\mathrm{TAC}_{\mathrm{f}}\right)$	Yes	No	86	3,071	0	0,000	19757	21203	0,191	4891	3491
0,2	$\mathrm{TAC}_{\mathrm{y}}=\mathrm{TAC}_{\mathrm{f}}+0.2 *\left(\mathrm{TAC}_{\mathrm{y}-1}-\mathrm{TAC}_{\mathrm{f}}\right)$	Yes	Yes	87	3,107	0	0,000	19837	21170	0,193	4904	3497
0,3	$\mathrm{TAC}_{\mathrm{y}}=\mathrm{TAC}_{\mathrm{f}}+0.2 *\left(\mathrm{TAC}_{\mathrm{y}-1}-\mathrm{TAC}_{\mathrm{f}}\right)$	Yes	No	152	5,429	0	0,000	22741	17257	0,279	6119	4043
0,3	$\mathrm{TAC}_{\mathrm{y}}=\mathrm{TAC}_{\mathrm{f}}+0.2 *\left(\mathrm{TAC}_{\mathrm{y}-1}-\mathrm{TAC}_{\mathrm{f}}\right)$	Yes	Yes	159	5,679	0	0,000	23024	17121	0,282	6135	4065
0,4	$\mathrm{TAC}_{\mathrm{y}}=\mathrm{TAC}_{\mathrm{f}}+0.2 *\left(\mathrm{TAC}_{\mathrm{y}-1}-\mathrm{TAC}_{\mathrm{f}}\right)$	Yes	No	252	9,000	0	0,000	25970	15161	0,358	6920	4368
0,4	$\mathrm{TAC}_{\mathrm{y}}=\mathrm{TAC}_{f}+0.2 *\left(\mathrm{TAC}_{\mathrm{y}-1}-\mathrm{TAC}_{\mathrm{f}}\right)$	Yes	Yes	271	9,679	0	0,000	26218	14993	0,364	6985	4418
0,5	$\mathrm{TAC}_{\mathrm{y}}=\mathrm{TAC}_{\mathrm{f}}+0.2 *\left(\mathrm{TAC}_{\mathrm{y}-1}-\mathrm{TAC}_{\mathrm{f}}\right)$	Yes	No	379	13,536	5	0,179	28154	13369	0,423	7577	4561
0,5	$\mathrm{TAC}_{\mathrm{y}}=\mathrm{TAC}_{\mathrm{f}}+0.2 *\left(\mathrm{TAC}_{\mathrm{y}-1}-\mathrm{TAC}_{f}\right)$	Yes	Yes	403	14,393	5	0,179	28503	13206	0,434	7659	4620

${ }^{* *}$ - adjusting of TAC not used if SSBy $+1<$ Bpa, ${ }^{* * *}$ - adjusting of TAC not used if
SSBy-1<Bpa including 3 cases of the collapse of stock

Figure 1. The Ricker recruitment stock-recruitment dependence and the recruitment analysis.

Figure 2. Results of simulation with Ftarget 0.4, limitation on year-to-year variation in TAC by equation TACy $=$ TACf +0.2 * (TACy-1 - TACf) and restriction 1 in which adjusting of TAC not used if SSBy $+1<$ Bpa were used. Solid lines is $25-$ th, 50 -th and 75 -th percentiles.

Figure 3. Results of simulation with Ftarget 0.3, limitation on year-to-year variation in TAC by equation TACy $=$ TACf +0.2 * (TACy-1 -TACf) and restriction 1 in which adjusting of TAC not used if SSBy $+1<$ Bpa were used. Solid lines is $25-$ th, 50 -th and 75 -th percentiles.

Annex 5 Draft EU-Russia proposal for harvest control component of a long-term management plan for haddock at Rockall

In the following, the TACs refer to total catches, not just landings.

1. Every effort shall be made to maintain a level of Spawning Stock Biomass (SSB) greater than Bpa and a minimum level of SSB greater than Blim.
2. For $[20 X X]$ and subsequent years the Parties agreed to set a TAC to be consistent with a fishing mortality rate of no more than [either Fpa (0.4) or Fmsy (0.3)] for appropriate age-groups, when the SSB in the end of the year in which the TAC is applied is estimated above Bpa.
3. The Parties agree that the TAC that results from the application of the fishing mortality referred to in paragraph 2 will be adjusted according to the following formula:
$\mathrm{TACy}=\mathrm{TACf}+0.2$ * $(\mathrm{TACy}-1-\mathrm{TACf})$
where TACy is the TAC that is to be set by the management plan, TACy- 1 is the TAC that was fixed the previous year and TACf is the TAC resulting from the provisions in paragraphs 1 and 2.
4. Where the SSB referred to in paragraph 2 is estimated to be below Bpa but above Blim the TAC shall not exceed a level, which will result in a fishing mortality rate equal to $0.3-0.2 \times(\mathrm{Bpa}-\mathrm{SSB} /(\mathrm{Bpa}-\mathrm{Blim})$. This consideration overrides paragraph 3.
5. Where the SSB referred to in paragraph 2 is estimated to be below Blim the TAC shall be set at a level corresponding to a total fishing mortality rate of no more than 0.1. This consideration overrides paragraph 3.

No later than 31 December [20XX], the parties shall review the arrangements in paragraphs1 to 5 in order to ensure that they are consistent with the objective of the plan. This review shall be conducted after obtaining inter alia advice from ICES concerning the performance of the plan in relation to its objective.

Annex 6 Tables 1 － 7

Table 1．Results of long－term stochastic simulations．Probabilities of SSB＜Bpa，SSB＜Blim and val－ ues of SSB，yield，landings，recruitment and fishing mortality．Settings： F target $=0.3,15 \%$ the limit on year－to－year variation in catches，no addition restriction in variation of catches

				Recruits＊ 100			TSB						F		Catch（land	dina＋discard			Landina，t		nding
Iteration N		）SSB＜Blim（N）	Percen	50 Percent		ent	150		5 Percent 5	50 Per	cen	25 Perceni 5	150 Percen	5 Percen 2	25 Percent	Perc	Perce	erce	Percent	P	
1	2		12376，4	536，505	43，18	23477，82	32572，97	41682，51	13424，37	16274，81	28010，78	0，177811	0，222217	0，327472＇	矿8，92	，	，	2873，254	3594，47＂	5080，389	115467
2	1		D＂15016，76＂	＂28422，571＂	＇49555，68	27113，32	31733，65	36073，66	16233，54	19809，77	23825，0	0，205936	0，24624	0，316015＂						9，437	1154
3	3		＂10173，02＂	20433，387＇	34975，97	19622，1	37053，9	46505，26	13220，14	23016，6	30404，92	0，069919	0，173394	0,261308 ＂	2051，802＇	3497，974＂	6751，257＂	1669，82	3070，50	， 81	97982，84
4	2		D＂11552，51＂	25078，178 ${ }^{\circ}$	54644，88	22425，2	29405，52	33930，81	140	18056，21	21769，99	0，202285	0，251632		413，565＂		580，373	23	3765，23	696，656	118637，3
5	1		＂ 7169,257	＂12521，603＇	42924，79	22207，0	33317，79	41505，86	12802，49	20003，1	32604，24	0，108202	0，15	0,24	2884，84	＊4019，935＇	5628，9	1974	3052，	4222，79	92855，52
6	3		D＂7472，984＂	11385，387＊	32264，09	18216，31	32023，87	363，8	10909，11	17453，6	30192，01	0，110921	0，166892	0，241481	2323，94	064，5	860，709＂	，	，		922
7	0		D＇5107，94	11162，726 ${ }^{\text {b }}$	40051，86	27209	35530，42	42462，27	14771，87	22054，53	31255，56	0，056386	0，193913	0，255328	2114，71	3849，9	6149，76	184	3386	4279，625	91077，66
8	0		D＂7698，547＂	36320，385＂	55927，52	24447，91	36517，36	50474，12	14254，15	18287，02	32304，99	0，167844	0，239189	0,286947	4590，276	6321，361＇	7994，398	2931，57	4452，89	64	127845，3
9	3		＇ $4821,397{ }^{\text {P }}$	17185，373	35141，07	23842，5	35334，52	39693，2	12816，54	25356，92	30645，91	0，152875	0，211648	0，258382	＇3400，459	5557，306＇	6951，22	2577，3	3746，0	254	114070，7
10	0		D＂10023，46＂	24830，324 ${ }^{\text {a }}$	57406，57	27856，08	33248，44	45351，42	14914，82	20418，81	31134，18	0，217947	0，232628	0,269678	5254，512	6423，726＇	8906，253	3314，1	4004，5	6577，45	142399，2
1	0		D 5457,475	17560，773	41322，28	26231，51	38493，56	49336，45	13151	20488，96	37959，15	0，152875	0，201865	0，26827	4066，55	位，	995，2	274，		6462，633	
2	1		＂ 8040,118	＂15233，233＇	52663，81	31196，23	39214，89	45021，02	16871，19	27618，3	39584，94	0，070231	0，143241	0，19266	2326，27	537．	5685，	1964，6	2826，7	3944，724	9475
13	0		D＂6649，005＂	12120，65	＂47685	24568，92	37001，24	49104，95	13474，22	22438，27	33791，35	0，070322	0，184952	0，2207	2667，98	4057，6	5282，415	2866，32	2883，5		89231，72
14	1		＂11027，93＂	31468，837 ${ }^{\prime}$		29943，07	36796，69	41670，5	14677，96	21672，25	29267，77	0，217265	0，281829			，			4699，2		135358，9
5			D＂8358，995＂	12645，312	9426，2	20831，92	26979，51	36118，53	10764，45	16307，52	22369，8	0，220162	0,252275	0，306803	4497，672	5622，08	6909，89	2849，87	3798，49	14	117008，5
16	－ 2	0	＂8077，587＊	15138，615	＊2479，34	21066，94	29602，94	38116，97	12141，22	17041，82	25700，5	0，101182	0，211914	0，272024	2869，94	4232，78	5554，70	2090，69	3014，	4235，423	88636，45
17	3	0	D＂12607，09＂	22913，307 ${ }^{\circ}$	＊41651，65	212	27934，07	32047，68	11495，49	17393，42	21231，76	0，259128	0，292347	0，34659	419				4281，37		118
18	－ 1		＂13947，59	23130，646	41462，24	20112，19	31828，18	35589，38	11606，18	18631，27	22598，64	0，20882	0，262061	0，326195	4003，35	830，2	990，7	，	（27，	4729，456	113808，8
19	0	0	O 10968	17251，494	49912，84	22847，18	27224，49	32951，09	13545，17	17511，16	22779，28	0，157318		0，3		4，31		2664，13	3362，	4242，79	98849，46
20	0		$0^{\prime} 12162^{*}$	23818，648 ${ }^{\circ}$	56817，28	28068，96	32335，43	35775，28	16677，36	20196，98	23803，38	0，218377	0，245098	0,267804 ＂	5294	745，54	171，34	3644，14	4103，9	4315，676	114517，2
21	3		D＇9835，089＂	30231，873	58748，89	28627，43	32764，62	45135，67	15862，84	20701，08	27745，91	0，214012	0，246909								
22	－ 2		＇ $4666,826{ }^{\text {F }}$	11325，144	＇39145，18	18562	32531，	45605，16	11154，39	21868，2	32389，55	0，067928	8231	0，14391	1516，22	2774，952	4220，35	1192，87	1953，	2935，161	79878，5
23	－ 1		＂15416，53＂	27779，894 ${ }^{4}$	8832，73	26250，07	30714，01	36318，78	16516，01	19575，97	23119，81	0，23546	0，256506	0,27684	5091，	187，43	6604，96	3386，78	4129，0	4900，263	119
24	${ }^{2}$	0	＂ $9944,263{ }^{\text {r }}$	16833，473	＇39149，01	18334，41	27367，12	38149，61	11636，88	16135，75	26351，53	0，194349	0，241768	0，2		5308，404＂			3569，8		107
25	－ 2		＇10791，13＂	18148，318 ${ }^{\prime \prime}$	60014，24	22954，4	34437，78	38792，09	10679，97	18871，68	27395，48	0，213479	0，260671	$0,310804^{\prime \prime}$	3928，69	6486，31＂	7261，93	2683	4477，16	位	120291，6
26	－ 1		D＂ 8610,944 ＂	17645，896	38385，42	25738，49	33512，94	42059，34	15092，65	2049，91	35597，89	0，073363	0，156725				820，4			67	95251，41
27	0		7571，069＂	26870，045	56875，31	30716，43	34752，77	40535，2	16957，3	24407，12	29964，72	0，148696	0，19965	0，26936	4066，03	6367，731	7322，8	3079，34	4485，47	5159，304	121617，7
28	－ 2		D＇8016，929＂	14362，836 ${ }^{5}$	40050，92	26667，72	29380，38	34292，33	15696，18	16984，13	22644，9	0，064605	0，190126	0，241		3497，9	5138	1501	2931		77889，19
29	4	0	＂5311，227	12441，603	47265，06	22301，56	39049，	45349，11	12343，76	25616，72	35957，24	0，139604	0，173702	0，249	3581，7	4736，8	7019，	＊2623	3264，		
30	3	0	＂14435，69	25013，238	51498，15	26196，94	34443，41	42871，08	15048，73	20050，16	26605，36	0，194694	0，250199	0，33454	5115，35	378，5	158，96	3040	4082，2	5282，	129
31	－ 1		0＂4967，957	18872，971	40447，77	25562，43	33853，7	43629，43	12	20256，25	33719，56	0，162177	0，185265	0，228					仿7，		104883，8
32	0		10887，86	35679，602	54369，34	27267	31066，	35328，27	14161，98	18990	22825，44	0，229031	0，26586	0，327	5247，82	6035，00	4468，22	3352，	4060，1	866，413	119806，4
33	1		D＇9620，301＂	20949，432	45201，49	26280，92	34441，02	37651，73	13703，54	22866，64	29842，29	0，08428	0，18551	0，2	2422，03	3910，29	6685，2	＇1860	2968，3	4504，945	99838，45
34	3	＊	7309，122	13366，073	37975，79	24627，1	36296，38	42968，34	13932，66	22693，03	35980，61	0，110039	0，164212	0,24229	3207，30	4877，90	6419，00	2455，	3108，40	5022，	104
35	4		D＇10063，12＂	17155，145	32724，34	18331，09	23439，2	33027，51	10670，53	16036，46	23489，35	0，066042	0，213294	0，285	1615，	588	651，	12	2550	252	76668，82
36	－ 1		＂13756，6	27879，25＂	50642，47	26055，76	31579，14	40057，03	15935，73	19348，43	26328，4	0，152875	0，246703	0，2	3881，	584，9	906，0	2931，5	3943，	4933，733	325，9
37	－ 7		4807，73	12978，373	30082，64	16524，79	33462，43	48394，24	9664，282	15374，17	37086，32	0，100717	0，134604	0，1923	2421，6	3497，9	870，8	1579，0	243		， 46
38	－ 2		$0^{\prime} 4762,424$	14639，651 ${ }^{\text {² }}$	41469，17	22736，2	33219，89	44365，48	12093，87	21369，64	39604，17	0，077626	0，122146	0，19615	2284，62	347，9	5006，5		2931	4037，198	86834，31
39	1		D＇12113，67＇	25148，163＇	49192，36	22517，69	25866，05	36152，06	12951，94	15537，94	20116，61	0，205142	0，256936	0，31780	4262，54	4943，4	6414，89	2978，6	3340，4	3860，314	107078，7
40	0	${ }^{\circ}$	＂ 15746,5	23443，559＂	43140，47	23260，	33833，63	41445	13809，13	19680，56	26212，86	0，176856	0，242438	0，2659	3503，8	552	76，6	256	4094，5	5179，703	109787，1
41	4	0	D 10708，49	30005，418	46127，18	22525，68	30427，69	37844，39	11106，27	17922，05	26571，08	0，194485	0，252059	0，30408	4209，36	6110，3	88，59	2931，5	3958	5775，311	118918，9
42	－ 2	20	7131，169	24703，073	53301，87	24257，81	30279，73	39023，35	14542，51	18219，36	27968，51	0，118484	0，194206	0，232619	2694，77	4016，144	5472，436	2096，43	2992，782	3754，322	91464，52
43			4794，204	24305，26	65	26713，54	38927，52	23，31	15538，81	22626，22	35796，46	0，152875	0，188214	2642	4276，491	689	6507，492	2795，388	， 73	5058，591	122248，9
44	－ 2	0	12990，85	31013，151	54365，17	26279，06	30453，57	34583，45	15257，14	18079，96	22960，64	0，212745	0，259638	0，298291	5503，555	6065，979	6818，918	3710，602	4105，319	4808，15	127
45	1	10	13693，91	26479，577	58093，59	29424，42	33987，07	35758，86	14905，51	19080，93	25815，43	0，207245	0，283142	0,325816	4097，92	6633，143	7721，538	2958，525	4430，152	5457，316	25
46	0	0	5277，935	20247，354	38455，81	23811，65	33693，81	42256，58	12524，81	21055，43	33914，92	0，088014	0，130612	0，216296	2596，115	3759，918	4972，492	1766，861	2931，577	3611，278	86518，81
47		0	8519，531	22235，147	76693，65	24992，27	33247，25	40858，26	13269，19	19846，08	25715，86	0，223675	0，27148	0，334052	5267，878	6953，259	7710，5	3417，238	4081，375		130
48	－ 2		8435	13728	35321，18	28159，25	33119，8	42671，47	14947，76	20287，02	30900，44	0，09754	0，233874	0，276254	3432，652	3，17	，73	2405，318	126	4542，865	101644，9
49			9270，571	34392，539	50817，79	23370，5	34031，3	46993，94	12602，92	16839，47	32135，04	0，177614	0,213833	0，308908	4623，207	6114，192	7402，05	2819，368		6087，297	
50	0	0	7782，54	25227，617	57038，87	25322，06	33613，97	37552，73	15595，7	22148，24	25488，83	0，213198	0,226412	0，260303	4214，864	6240，733	6784，24	2931，577	4362，161	5055，082	2，6
51	－ 6	0	6343，557	18192，478	44954	19599，79	31590，51	53566，87	9181，655	19130，82	14597，45	0，137569	0，200945	0，295518	3497，974	5838，329	7780，498	2301，203	3493，14	2931，5	130914，4
52	1	0	9368，523	29361，534	41924，65	26335，95	34116，72	43322，95	12663，58	19484，9	29428，1	0，160615	0，216092	0,32066	4066，449	5675，181	7103，095	2773，841	4009，836	5188，142	119417，7
53	3	0	8234，162	16229，163	45613，34	21047，58	35582，61	43731，45	11307，22	21829，81	32244，19	0，1798	0，211419	0，252075	3847，647	5797，824	6815，495	2668，805	3736，759	5681，058	117753，8
54	3	3	5990，956	18364，987	42846，36	26767，86	32777，9	39131，73	16624，32	23147	31028，47	0，061652	0，138514	0,173162	1531，477	3497，974	6440，178	1269，424	2591，924	4186，356	1013
55			2，9	23709，515	41883，88	21927，89	28732，65	35099，91	11870，96	17179，53	24037，15	0，209434	0，243168	0，300677	4243，707	6195，636	5，48	2931，577	4025，957	22	125602，6
56	2	0	8725，238	11443，732	43416，06	23715，71	31686，73	36981，32	15905，02	21907，95	28597，18	0，072564	0，181139	0,231136	2256，374	3960，375	5887，712	1846，015	2948，467	4201，998	90862，4
57	3	0	9355，971	16059，909	33075，64	25981，9	33904，5	41904，63	15927，64	27265，38	31301，23	0，066719	0，152875	0，214657	1896，135	3813，805	5043，758	1686，267	2931，577	3472，301	2403，88
58	2	0	9633，85	20327，416	42046，68	20066，99	31094，33	39097	10985，78	18674，02	26606，11	0，141765	0,207958	0，270776	3495，029	528，835	372，098	2255，203	3962，41	5339，051	118748，1
59		0	10032，88	23827，603	57115，57	25011，61	31883，26	40212，5	13567，81	19977，63	26392，28	0，188149	0,228772	0，320771	4345，898	6173，342	8164，245	2915，802	77，71	5464，815	133133，3
60			1109	20302，395	36027，79	27633，01	38387，13	45095，28	12964，05	20790，06	32796，83	0，076504	7315	9939	2188，321	4401，495	，906	1725，11	726，903	4357，538	101513，8
61			8836，514	21513，957	51165，24	27384，68	36281，52	41063，05	14519，93	24843，23	33448，65	0，07567	0，190508	0,270147	3132，976	4807，413	6217，439	2561，958	3373，127	4823，366	102421
62	1	0	13629，75	24653，94	49251，2	27274，81	30427，97	40064，87	15414，8	19790，27	25222，47	0，208671	0，241345	0,311174	5056，541	5987，578	7918，572	3373，309	4115，283	5678，911	129677
63	2	0	8954，885	18048，911	33939，95	23077，73	30483，86	34480，05	13021，67	17938，15	24017，63	0，213522	0，260155	0，304846	4959，42	5886，63	6610，559	2977，661	4159，418	5012，201	113623，5
64		0	15187，75	31006，541	44182，19	22946，34	28820，65	38066，79	13823，94	19089，5	23024，33	0，178455	0，223848	0，252944	3497，974	4855，772	6364，667	2605，67	3309，228	4362，33	105740，6
65	3		9692，516	14964，288	47053，94	17813，43	26151，99	41809，52	10832，73	14179，85	26373，81	0，087778	0，198634	0，326909	2315，954	3497，974	693，227	1550，458	2529，941	4265	93155，53
66	2		13068，26	22952，623	47419，28	25608，39	31615，25	36349，97	14843，48	20729，87	24762，64	0，152875	0，195277	0，250067	3311，156	5035，855	6310，506	2327，992	3559，674	4684，669	105627，7
67		0		10983，548	66112，52	27760，5	42829，03	51295，78	16096，6	26931，61	40452，29	0，122757	0，162718	0，202657	3497，974	4923，826	6511，759	2270，684	3401，753	5393，901	109575，9
68	1		8080，431	16638，371	49517，21	27149，35	35195，93	40442，02	13752，16	22204，4	29876，91	0，075419	0，211133	0，273691	3209，876	4771，845	625，926	2475，944	3480，803	4385，696	98620，08
69	1	0	10784，15	22301，944	42588，76	21310，31	27673，22	33010，21	13152，36	16807，95	22904，7	0，193731	0，222629	0，260723	3679，877	5032，611	5478，689	2743，357	3380，777	4033，523	97995
70			7645，788	15706，118	43186，69	22495，69	27156，38	34396，59	13241，16	18424，66	23384，23	0，153927	0，205656	0，238802	3987，631	4585，776	5956，587	2778，739	3030，962	3982，832	111773，6
71			13280，2	27494，492	49776，45	26582，56	31323，02	36933，77	15184，08	19952，68	23702，72	0，209901	0，247345	0，31586	5312，417	5878，619	6774，219	3402，741	3991，46	5052，999	123929，8
72			8558，832	25121，224	38825，11	24130，99	30064，48	41400，75	15190，34	18096，18	30739，97	0，088711	0，181235	0，261022	3156，704	4422，77	6166，806	2266，917	3039，46	4015，978	98649，83
73	3		8201，141	26885，734	42306，27	30457，45	35016，13	44305，94	16142，07	24575，23	30176，65	0，175143	0，218624	0,300583	3965，301	6600，295	8728，891	3008，989	4427，42	6216，401	132945，8
74	2	0	9466，811	22954，29	53513，79	29788，73	33929，71	43441，8	17461，43	22962，14	30216，04	0，171808	0，233064	0，270517	5284，594	6429，237	6988，875	3303，111	4582，301	5362，23	128856，3
75	0	0	9781，123	19254，427	45592，62	22408，22	30922，68	37380，97	13621，61	16253，19	27780，85	0，134816	0,235715	0，341399	3498，056	5125，104	6589，454	2472，148	3725，653	4802，003	104792，6
76	5	0	－8968，401	14959，034	50730，32	18139，8	30338，69	48769，64	9518，33	15112，19	30045，12	0，170954	0，211187	0，287136	3460，17	5262，486	7802，318	2373，002	2931，577	6393，216	117372，5
77			8807，383	19801，137	66096，45	27795，02	32347，23	34846，86	14616，6	18702，14	23975，75	0，243731	0，267987	0，296835	5467，136	6288，185	6580，998	3735，492	4183，38	4689，345	122409， 1
78	－ 4		8912，157	15098，785	21778，34	18198，38	23862，13	28877，11	10698，94	15704，97	20189，06	0，09794	0，137578	0,243365	1872，308	3459，83	4682，884	1525，704	2261，018	3454，223	79078，32
79	2	0	7478，485	15056，578	48981，09	26256，58	33822，22	40506，05	15795，7	22937，91	28371，37	0，138672	0，200803	0,264735	3935，331	5234，612	6158，367	2931，577	3954，978	4739，009	111278，2
80	0	0	5798，391	14340，571	62660，54	28273，03	39383，41	52558，93	13800，94	20658，09	36695，13	0，120541	0，205134	0，260248	2902，925	6337，039	7509，133	1890，377	3813，334	5728，376	116160，7
81	0	0	16430，07	35433，674	61446，79	30515，35	35163，37	37691，61	16728，19	20883，07	25090，41	0，237962	0，262523	0，292152	5891，97	6775，766	7180，277	3767，363	4525，41	5318，881	133293，3
82	，	0	12034，4	21003，817	47246，95	27302，53	35677，63	40998，33	14610，97	19588，66	30845，36	0，142413	0，23602	0，326763	2913，02	5788，435	7816，565	2332，914	3716，923	5640，246	116517，3
83	1	0	10660，18	26654，215	39802，86	24504，8	27452，01	32534，65	14015，15	16253，46	20356，73	0，230678	0，272583	0，318629	4684，843	5438，283	6397，98	3108，116	3693，888	4649，413	112388，9
84	8	0	5414，545	12891，268	36022，52	18818，13	29284，51	45689，71	8903，462	17403，84	29879，87	0，151776	0,227535	0，317697	3652，882	6092，899	7592，639	2381，083	3976，741	6194，136	118069，6
85	0	0	12366，26	16730，373	31828，61	19969，98	24819，74	38247，24	10816，3	15212，13	23295，1	0，153775	0，203812	0，315713	3266，105	4479，589	6812，895	1960，065	3187，376	4795，294	107047，7
86	2	0	11844，94	26742，687	42131，88	23625，22	27676，85	35654，74	12037，63	16858，93	22973，95	0，213761	0，260263	0，316624	4684，316	6195，008	7070，378	2931，577	4310，086	5173，722	114243，6
87	－ 2	0	5371，081	9824，681	38893，27	19170，19	35471，42	52970，54	12515，25	22826，44	45876，42	0，093116	0，126418	0,223458	2766，463	3497，974	5127，128	1853，182	2457，016	4435，464	92279，84
88	0	0	8695，752	23250，751	44724，33	24669，26	34671，35	42243，86	12804，39	21010，66	30054，44	0，214182	0，255989	0,297793	5212，788	6801，771	7285，547	3650，618	4483，262	5776，659	134836，7
89		10	11771，11	24291，331	40193，46	24752，35	27984，21	34775，27	14960，94	17753，75	23273，14	0，210871	0，224219	0,272861	4619，834	5598，439	6387，179	2931，577	3816，093	4731，175	112268，5
90	－ 2		8082，587	28603，062	63372，93	28196，22	36373，51	44879，01	14589，24	21676，29	31728，15	0，194123	0，249857	0，330551	4638，247	6026，362	7622，8	2949，07	4353，34	5287，868	125715，9
91	4	0	7566，537	14660，881	47310，54	22082，67	31027，72	36672，02	11469，56	19062，4	27211，24	0，152875	0,227033	0，307063	3645，371	5128，046	6927，624	2358，278	3528，398	4684，608	116859，2
92	0	0	7464，143	16107，439	64682，73	26902，28	35266，41	50814，22	16327，54	20778，03	36584，97	0，161892	0，192844	0，237906	4635，284	6130，163	7278，582	2931，577	4520，471	5693，478	130897，9
93	2	0	12002，68	29361，018	45291，79	25101，29	27503，82	37819，41	15422，23	17012，52	19476，56	0，217215	0，303386	0,351784	4758，316	6025，57	7180，599	3367，556	3837，742	4714，859	120958
94		0	4873，961	19372，939	49709，69	18843，94	32985，66	49456，22	11633，91	18280，17	40825，49	0，104651	0，152875	0，211971	2715，186	4029，626	6128，558	1958，358	2931，577	4694，944	103223，9
95	－ 2		6915，538	20304，831	49253，89	20950，15	32844，38	41127，1	12230，81	18673，48	29570，66	0，191703	0，228167	0，254093	3703，155	5907，544	7448，368	2418，655	3653，946	5683，441	119310，9
96	1	0	17715，83	23474，698	48193，52	23524，31	28579，83	34442，91	11523，3	16381，92	22201，74	0，22475	0，281125	0，308016	4404，351	5824，754	6718，077	2804，131	3509，754	5028，883	115344，2
97	2	0	10338，35	20458，096	37840，26	17744，41	28311，22	34567，38	10959，34	15781，26	26412，18	0，098665	0，211159	0，293689	2824，366	3839，73	5210，85	2234，351	2681，278	3733，229	82206，67
98	2	0	6293，243	16258，021	38165，31	23419，38	30969，42	45717，69	12762，1	20083，44	36054，24	0，068319	0,216447	0，276199	3180，062	4537，025	5489，686	2433，685	3346，664	4075，795	94367，32
99	－ 1		11975，65	28681，21	40893，36	23556，13	34417，48	43237，96	13136，82	17733，33	32798，36	0，133204	0，199439	0,322712	3595，725	5463，38	7232，287	2857，896	3862，624	5562，958	
100			15639，54	25536，783	62782，43	27409，62	33796，08	38305，24	15091，07	21358，49	23518，7	0，201767	0，25398	0，288578	5005，576	6096，817	7083，322	3126，777	4183，387	5015，556	23173
tal	168		3 8922，051	19995，476	47267，8	24057，78	32045，	40623，6	13072	19155，	28474	0，1528	0，2202	0，288	3497，9	5472	60，9	2551，	3667	4957	
Total landi	25 percentile	50 percentile	75 percentil																		
	98799，55	4157，	2121123																		

Table 2. Results of long- term stochastic simulations. Probabilities of SSB<Bpa, SSB<Blim and values of SSB, yield, landings, recruitment and fishing mortality. Settings: F target $=0.4,15 \%$ the limit on year-to-year variation in catches, no addition restriction in variation of catches

Table 3. Results of long- term stochastic simulations. Probabilities of SSB<Bpa, SSB<Blim and values of SSB, yield, landings, recruitment and fishing mortality. Settings: F target=0.5, 15% the limit on year-to-year variation in catches, no addition restriction in variation of catches

Table 4. Results of long- term stochastic simulations. Probabilities of $\mathrm{SSB}<\mathrm{Bpa}, \mathrm{SSB}<\mathrm{Blim}$ and values of SSB, yield, landings, recruitment and fishing mortality. Settings: F target=0.3, the limit on year-to-year variation in catches by equation TACy $=$ TACf $+0.2 *$ (TACy-1 -TACf), no addition restriction in variation of catches

Table 5．Results of long－term stochastic simulations．Probabilities of SSB＜Bpa，SSB＜Blim and val－ ues of SSB，yield，landings，recruitment and fishing mortality．Settings：F target＝0．4，the limit on year－to－year variation in catches by equation TACy $=$ TACf +0.2 ＊（TACy－ $1-\mathrm{TACf}$ ），no addition re－ striction in variation of catches

Landing．t．
.28
138
130497

为高商

[^1]

Table 6. Results of long- term stochastic simulations. Probabilities of $\mathrm{SSB}<\mathrm{Bpa}, \mathrm{SSB}<\mathrm{Blim}$ and values of SSB, yield, landings, recruitment and fishing mortality. Settings: F target=0.3, the limit on year-to-year variation in catches by equation TACy $=$ TACf +0.2 (TACy- $1-\mathrm{TACf}$), addition restriction: adjusting of TAC not used if SSBy $+1<$ Bpa

Percentile 25 Iteration N SSB<Bpa (N)	SSB<Blim (N)	N $\begin{array}{r}\text { Recruits }{ }^{*} 1000 \\ 25 \text { Percent } 50 \text { Percentili } 75\end{array}$			TSB TS 25 Percen 50 Perceni		\qquad			$\text { ni } 75 \text { Percent } 2 \text { 2 }$	$125 \text { Percen! }$	F		Catch (landing+discards).t				Landing.t		$\begin{aligned} & \text { ninding.t } \\ & \hline \text { LTotal } \end{aligned}$			
										25 Percent		150 Percent 7	75 Perc	150 Perceni7									
												1779			0,2922		5152,291		7240,6		4184244		
2	1	- 14832,61	29669,2																				
3	4	99,07	21003,925	52812,56	21499,74	34102, 13		10886,43	20449,8	26164,63		2306		3976,269	6742,627		2851,395	4567.783		125,1			
4	2	11671,65	24770,411	56966,64	23360,64	28825,64	35701,65	14440,75	18824,51	22237,23	0,22531	0,244619	0,292918	4503,618	5592,64	6446,631	2931,577	3976.538	4788,025	42,2			
5	0	10068,88	20847,339	41453.47	21824,26	26685,03	34206,32	12850,64	15755,88	21552,01	0,241516	0,295162	0,334771	5142,925	5987,714	7332,636	3449,96	3926,369	5089,638	3,7			
6	3																						
7	2	8396,834	16522,018	7.71	23799,97	31127,81	36149,26	11576,78	16689,65	24100,9	0,227542	0,259319	0,314415	4992,822	6058.91	6774,176		4065,78					
8	0	8013,724	36320,385	6738971	23557,68	36177,55	46935,64	13825,46	18283,63	29907,38	0,225052	0,274149	0,306307	4410,855	6583,069	9298,941	3294,931	4443,597	6529,457	135507,8			
9	3	8313,168	19579,083	51457.62	21949, 27	33159,76	37820,48	12964,42	20084,45	25773.52	0.224599	0,265119	0.323407	4642.088	5538.06	8158,469	2751,598	3860.897	5964,837	125656,5			
10	0		32368.078		27472.5	18.8	43966.52		18926.68	27400.96	0.219486	0.274399	0.321385	5303.688	6486.557	8599.531	3375.26	4522.161		147231.9			
11	0		18768.46	56264.77	00,9		48857,47		22907.24	33437.96		0,255305	0,318234	5443,592	7464,674	8870,041	3122,702	5057.457					
12	0	10380,52	24047,399	58429.08	22883,13	32824,97	40508,26	14085,41	17812,55	26756,06	0,20578	0,286377	0,327697	3497,974	6549,802	9502,677	2839,966	4630,958	6553,016	132759			
13	0	11213,33	19372,995	54458.43	23662,93	29425,85	38439, 84	12033,76	18285,77	21567.45	0,209322	0,284534	0,312692	4743,727	6247,146	7240,664	3017,261	4078.774	5210,74	117397,5			
14	0	5	32523,462	63268,7	28670,66	35410,98	41811.2	13807,92	19224,25	25786.85	0,283981	0,314415	0,332236	5360,735	6995,456	8446,587	3595,307	4700.544	5757,694	138492,9			
15	1		13566,087	50322,97	20387,36	26787,75	34741,45	10953,82	1119,4	20992,65	0,236958	0,278555	0,330304	3911,019	5556,494	6772,896	2522,906	4342.588	5037,449				
16	1	8979,22	23683,135	47925,94	23611,85	29834,98	35175,75	12644,93	16445,32	22143,79	0,235669	0,279915	0,335951	4292,202	5967,574	7058,684	3067,741	4332.893	4863,961	114958			
17	2	12644,48	23186,864	4126343	21856.5	27283,31	31658,75	12470,89	17234,44	20020,24	0,278839	0,304263	0,321395	4603,392	5903,145	6950,809	2972,385	4000,398	4830,265	118098,			
18	1	5.46	23819,259	41611.01	20198,41	30422,26	35166,16	11610,92	19438,75	22405,67	0,22186	0,271618	0,325206	3905,683	5635,788	7087,564	2623,104	3953.222	4870,223	119691,3			
19	0	2,	17117,096	72,5	23080,29	27048,69	29880,08	13715,73	15558.87	20341,73	0.222088	0.264994	0.32174	4389,635	5147,641	6259,789	2931,577	3454,663	4537,248	106829,8			
20	0	12606.71	25497.606	58953.47	26992.99	31102.38	35691	15852.83	18454.25	22203.28	0.218777	0.273488	0.319301	4996.13	6007.467	6884.944	3268.124		4701.628	120436.4			
21	1	11855,04	31868,287	59118,2	28554,93	31414,26	40391, 65	16576, 25	19120,64	24463.92	0.24156	0.261026	0,325052	5295,74	6745,851	7665,298	3543,725	4349868	6056,302	135327,8			
22	2	11487,05	16367,812	54646.15	19227, 14	22238,15	28612,17	10683,13	13217,22	16442,35	0,234245	0,295088	0,324564	3497,974	4609,151	6733,43	2561,684	3238.2	4332,88	112867,3			
23	1	,78	27727,631	8, 84	25934,19	30802,53	36382,77	15928,76	19385,91	2217377	0,2346	0,269724	0,333815	5322,474	5974,347	6875,886	3207,904	4317,463	4888,218	122232,3			
24	$\stackrel{2}{2}$	1154,11	16833,375	40795,32	18326,93	27026,65	37522,87	11106,43	14838,99	24438,41	0,241441	0,275995	0,32066	4009,546	5455,874	6985,043	2733,603	3503.121	4951,235	12674,5			
25	2	10713,16	19895,464	59417.87	23003,70	33702,58	36142,11	10769,93	18065	25469,91	0,21172	0,284844	0,328361	4399,789	6379,465	7400,546	2931,577	4353,972	5250,195	121652,8			
26	1	,02	21157,58	60242,29	23643,83	29712,53	35405,5	14609,28	17118,49	2443,09	0,206976	0,309253	0,333324	5234,013	6272.58	7575,725	3243,394	4321,299	5653,278	127682,			
27	0		29041,674	44	27843,38	33743, 15	39292,44	16695,12	20555,6	26197,56	0,225594	0,260896	0,321543	5952,775	6525,705	7525,556	3850,558	4735,03	5690,09	133594,7			
28	2		29134,462	47458.16	21681,58	28234,92	31413,02	12162,93	16551,76	18674.66	0,216861	0,266014	0,328253	3923,889	5339,518	6269,614	2658,699	${ }^{3667.535}$	4288,042	102836,5			
29	4	8507, 633	16092,269	4924595	21292,21	35127,6	40107,47	12218,05	18472,61	26970,97	0,205377	0,263642	0,313145	3888,896	6611,932	8165,659	2931,577	4158,923	6203,931	130643,8			
30	$\stackrel{ }{2}$	1736579	25656.31	5273388	28889.88	33792,49	40083.79	16065,25	20309933	24867.29	0.247706	0.268342	0,328902	5313.687 142577	${ }_{6}^{6715.278}$	7855.248	34999426 2607	${ }_{4}^{4246535}$	5507,944 484629	138607.8 11374			
31	1	8799.541	21965.311	41927. 1	20630.16	28676.54	37178.72	11720.86	16651.7	2546422	0.218787	0.240275	0.267668	4425.77	5109.14	6541.902	2680.797	3573341	4846.249	113474			
32	0	25.1	34184,613	51459.52	26242,02	29493,98	35093.5	13636,54	17862,35	22557.85	0,261829	0,307342	0,32473	5057,077	6305,882	7011,106	3447,523	4176.913	5120,757	125002,1			
33	1	12270, 13	27576,409	48431.03	23661,17	28125,28	36166,11	12523,28	16838,79	21616,48	0,237575	0,298551	0,327701	4339,702	5763,786	7961,78	2931,577	3922.896	5405,692	120874,1			
34	10	9079,316	17669,098	49768,55	23451,2	31858,44	38582,58	14558,73	17894,71	25278,33	0,205998	0,253656	0,296322	4683,754	5723,341	6997,312	2931,577	3966,781	4778,483	120943,7			
35	4	10747,76	10926,103	42660,86	18023,28	21729,37	25781,27	10806,36	13218,48	16330,55	0,212909	0,267666	0,305598	3637,876	4175,52	4901,176	2539,119	2931,577	3329,687				
36	1	5,33	29166,731	54268,62	25682,35	31634,17	35293,99	15608,92	18624,89	22442,81	0,225926	0,256736	0,296773	4808,46	6056,918	6909,476	3126,802	3928.016	5002,922	119750			
37	6	8838,25	16852,612	43334,97	17168,93	22619,91	37605,08	9816,494	14129,07	23630,9	0,212816	0,270214	0,315669	3229,121	4215,911	8381,761	2183,461	2931.577	4612,633	110641			
38	00	10842,75	20258,771	51003,51	2826,8	76	35883,93	13096,44	18106,89	22216,37	0,243613	0,270145	0,338096	5181,466	6038,568	7069,795	3029,42	2260.851	5212,39				
39	1		25725,149	52823,29	23022.46	26382,05	34130,95	12992,71	16016,38	19712.01	0,254969	0,281983	0,344694	4551,248	5161,629	6542,349	3273,318	3583,		111544,3			
40	0	15472,49	26707,965	986,65	26094.6	33496.58	39611,63	15001,36	18376,28	25277,77		0,256238	0,294385	4557,944	6583,667	7455.901	3275,926	4307.923	5238,809	120025,1			
41	4	1167973	31383.4	46099.98	23135.71	29217.07	37575.66	12911.49	16303.87	2490276	0.25836	0.277851	0.349302	4421.655	5921,396	7617.546	3087.417	3935.137	5413.081	122189.5			
42		9306,454	24260,937	68192.73	23279,16	26214,89	35821	11526,73	15395,74	21880.08	0,224748	0,288373	0,345345	4141,577	5611,598	7270,102	2931.577	3561.011	4649,093	114449			
${ }^{43}$	$\stackrel{2}{2}$	11505,44	28179,808	72112.22	26962.78	36706,48	44014,85	15399,08	20344,67	${ }^{27900,3}$	0,20534	0,294152	0,323507	${ }_{4}^{4615,05}$	6096,58	9574,32 7465.49	3424,186 3584665	3748.756	6445,526 5127235	142472,1			
44	$\stackrel{ }{2}$	15929,1	31878,872	54476.42	26096,82	29796,13	34295,32	14990,49	17824,86	20845,76	0,247427	0,2831	0,317689	4938,935	6320,526	7465,499	3554,666	4201.421	5127,235	130107,9			
45	1		26844,375	59121.88	28320,37	32594,99	35812,96	14255,73	19042,7	22834,83	0,25365	0,307152	0,334954	5139,553	7007,877	7726,814	3697,45	4843.113	5347,909	130545,6			
46	10	0 9047,466	20504,693	40600,56	21881,97	28457,93	32770,33	12660,93	17042,15	20310,53	0,23379	0,264034	0,333524	3554,624	5140,618	7136,863	2931,577	3736413	4919,678	111106,3			
47	$0 \quad 0$	8244,068	21931,986	75523.29	25498,42	33421,9	40500,05	13726,77	19573,49	25472,08	0,257572	0,291751	0,333519	5069,761	6666,105	7813,555	3363,307	4336.488	5492	136497,5			
48	0	8617,344	15703,398	70757,34	25532,72	32133,12	37230,23	13206,51	20412,05	25093,44	0,224897	0,264114	0,282102	4649,999	6587,543	7484,271	3189,064	4249.863	5547,318	122363,6			
49	1	11613,16	35907,054	70516,04	26403773	31962,44	42540,22	14625,42	16837,92	24400,17	0,247446	0,291681	0,342472	4954,246	6796,303	8317,762	3715,862	4489,342	5710,507	132493,9			
50	0	8489,756	23740,048	59060.79	24556,21	31604,46	37231,88	14826,44	21170,18	23683.93	0,222219	0,261761	0,305995	4979,768	6128,039	7069,076	3626,058	4068.001	4900,701	124175,4			
51	30	09758.529	23250,442	63787.16	23484,85	29007	44412,47	11536,94	17281.24	14597.45	0,222588	0,301426	0,341188	4142.469	5746,512	8442.759	2931,577	39842222		${ }^{136772.5}$			
52	1	12658.09	25132.724		24260.17	33839.25	93.31	80.89	19552.32	25724.23	0.209958	0.277405	0.327186	4146.734	6517.026	8599.393	2965.131	4012.8	1.664	129337.3			
53	3	11786,43	23033,628	5008271	20177,64	31562,37	40801,45	11953,28	17096,21	26135.81	0,239712	0,292885	0,322834	4433.146	5707,425	8295,214	2931,577	4097247	4963.462	124704,			
54	$\stackrel{2}{2}$		19753,899	52706.58	20195,85	24644,18	40084,26	11685,64	16302,07	21329,72	0,23325	0,283005	0,308841	4242,108	5017.05	8580,242	2834,854	3532,182	5609,441	126762,5			
55	0	16072,98	27725,969	46130,12	22828,62	28046,05	34924,54	12375,56	16662,27	23187.85	0,247201	0,286977	0,314885	4758,654	5814,909	6999,112	3122,559	4091.928	5409,216	126449,3			
56	$\stackrel{ }{2}$	10490,96	10211,976	48332,51	21920,5	27005,3	34019,9	13784,64	16786,11	20992,15	0,234922	0,261721	0,309552	4332,379	5157,668	7126,6	2931,577	3712442		110750,5			
57	5	0,397	20276,367	53181.16	20914,65	28826,34	42053,62	10779,61	16984,59	26011,57	0,221743	0,270933	0,316754	4431,321	5302,688	8650,796	2743,998	3624.826	5989,147	123466,5			
58	2	815	21387,715	56774.36	21702,73	30901,16	36903,72	12243,2	18129,72	23744,66	0,246519	0,276239 0	0,317544	4403,498	6468,157	7697.879	3039,209	4236.966	6012,437	131956,5			
59	10	11260,05	23668,939	58069.26	24094,08	31275,74	41440,62	14012,84	20013,97	23958.09	0,219424	0,257608	0,310933	4306,37	6480.67	9379,799	3003,31	4537.854	6219,009	135962			
60	1	14916,42	22915,197	44477.46	20437,98	34228,6	41432,65	12981,33	17418,38	27237,39	0,221209	0,275496		4209,902	6316,415	8121,647	2912,634	4445.132		122049,5			
61	1	11239,69	34193,184	6018335	26377.1	32813,42	38223,96	13394,44	17629,34	23686,19	0,243169	0.30566	0,353557	4958.045	6726,934	8770.459	3112.008	4312375	5901.567	136616,7			
62	0	13842.76	31121.013	5104632	27051.78	29940,78	37424.81	14953.95	19034.36	23456.57	0.233471	0.280719	0.34936	4974.123	6517.573	7492.141	3450.461	${ }_{4}^{4204.46}$	5322.375	134652.3			
${ }_{6}^{63}$	2	8996,268	19305,368	34775.22	22093,65	29490,56	33513,91	13015,76	16872,28	21888,24	0,232348	0,271763	0,314724	4312,54	5917,771	6890.889	2931.577	4133.081	5060,832	115270,7 114712			
64 65	1 3		30263,295	45334,56 500501	22994,27			13115,84	${ }^{17183,22} 13$	${ }^{21332,54}$	0,233589				4744,705	6807,292	2875,261	${ }^{3529,09}$	${ }_{4}^{4922,616}$	114971,2 108249,1			
66	1	15547,22	30999,425	51006,93	24016,07	30666,52	33993,65	14618,8	16686,57	21649,7	0,221635	0,27052	0,320255	- 41069,65	5799,951	68256,625	${ }^{29631,577}$	2043,022	4878,796	115824,9			
67	1	7074,946	18488,135	63327.56	24651,18	32648,95	42844,16	13857,27	18467,75	29542,64	0,250009	0,272385	0,326136	5182,272	7477,913	8728,344	3935,459	4856.623	6298,448	138348,7			
68	10	0 9791,089	23646,5	50746.59	25998,33	32099,4	37327,13	14027,61	18331,37	25090,63	0,233145	0,269971	0,321703	4525,263	6247,327	7399,729	3130,876	4237.765	5195,925	120168,8			
69	10	0 11445,88	24120,645	4378447	20884,69	25315,23	32131,43	12870,05	15607,94	19715,22	0,233501	0,295346	0,313024	4050,478	5177,683	5954,63	2885,532	3665.166		103802,8			
70	1	84477.167	177666,602	4198476	19304,42	26926,71	30484,31	12655,96	16205,25	20690,21	0,199958	0,251966	0,293378	3497,974	5112,822	6720.601	2303,771	3400,722	4765,042	116810,1			
71	1	14835,66	30906,167	48776.59	27225,49	31280,54	35404,25	16041	19100,2	22629.49	0,218976	0,271935	0,32097	5336.802	6137,293	6977,793	3691,746	42799922	5075,219	126157,4			
72	10	10748.71	21592.275	59648	23478.23	29827.06	40348.34	12184.47	16587.56	25125.2	0.258313	0.297361	0.351036	4503.58	6035.483	7843.07	3290.191	4004.786	5526.483	135408.6			
73	2	010568.55	30624.5	50484.03	27457.68	31930.9	42975.26	14300.03	19314.93	27156.63	0.240603	0.298817	0.325854	5376.199	6354.216	8718.574				139660.8			
74 78	2	11191,54	21067,42	66801,6	27259,91	30047,74	45949,49	16087,84	21892,47	$\xrightarrow{28803,5}$	0,233064	0,280355	0,310179	4956,444	6516,744	9049,017	${ }^{32969,931}$	${ }^{4781.595}$	${ }^{6754,28}$	147002,5			
75	0	10095,25	19447,228	515983.39	21948,14	29541,95	33501,39	13085,55 1097	${ }^{16307746}$	21110,23	0,246244	0,291647	0,344859	4821,631	5680,261 506234 1	6810,835	3064,961	3881,35 31325	4731,066	117036,7			
76	50	- 10764,04	18285,01	50800, 1	17643,5	26528,2	42490,95	9968,743	13440,21	27060,17	0,236308	0,28308	0,319231	3497,974	5262,334	7443,736	2503,76	3138,35	5984,949	120843,			
77	10	08945,813	19156,57	66562.23	26650,05	31837,49	34420,17	15003,22	19004,11	23133,27	0,244314	0,26978	0,330882	5343,421	6022.81	7375,245	3680,04	4342,25	4974,35	126454,2			
78	4	10269,66	19042,3	24736,8	16814,32	22128,35	25450,42	10439,82	12923,98	17622,6	0,202542	0,294089	0,334753	3497,974	4111,881	6067,331	2372,648	2910.573	4181,314	92967			
79	1	93991,487	20525,014	5944576	29756,39	32856,58	37045,79	16546, 22	21688,83	25400,32	0,212875	0,254417	0,292862	5361,754	6215,317	7202,211	3691,574	45034333	4980,487	124139			
80	2	10211,93	16663,624	65331.88	26289,52	32122,64	45750,76	12132,39	182866.63	2912308	0,213773	0,280588	0,357964	5614,033	6718,401.	8546,29	2931,577	4703,179	6968,539	141856,4			
81	0	0\% 17144, 11\%	1 '35986,43	62323.5	30583774	34409,16	39032,77	16294,89	20673,11	24621,73	0,237962	0,281083	0,329103',	, 5920,506	'6452,015	8372,80	3696,93	4623.66	921,4	${ }^{1378677,4}$			
82 83	3	13626.49	$9^{23213,84}$		26877,82	29908.47 2806595	32957.44		${ }^{18617717} 1$	${ }_{2}^{218655385}$			0,333	'4888,	${ }^{6408.711^{\prime}}$	8294	3138	422	- 5801.965	131580,8 11760			
84	9	$8770,646^{\prime}$	\% 114099.088		17467,68	26589,62	38011,23	8117, 138	16832,66	22256.25	0.228952	0, 0 047778	0,3	3497, 97		6686,931	293979	364575	509169,908	${ }_{119298,8}^{11360.9}$			
85	00^{0}	0\% $13833,35^{\prime \prime}$	5"17848,49	13377.66	18353,86	23048,9	37898,88	10740,03	12662,59	21757,12	0,205841	0,301471	0,358174	3387,213	5 5135,025"	7369,08	'240, 32	3682.66	5167,532	114151,5			
86	2	0\% 12900,97*	27354,54	43951,92	23489,87	27485,7	36218,93	12147,37	16446,2	21260,15	0,245718	0,29616	0,32782	'4086,092	'6192,27	6823,57	2931,5	4187,75	5110,215	116891,1			
87	1	$11571,27^{\prime \prime}$	${ }^{17907,00}$	44738.43	18468808	${ }^{26350,76}$	41017.56	11154,36	15074,01	${ }^{24361,74}$	${ }^{0,233313}$	0,266846	0,31871	3405,9	\% 62608	7374,93	2474,1	31964	993,405	123352,			
${ }_{89}$	1		\% 257985 ,264		${ }_{24655,73}^{2484}$	27806,98	34339,98	14520,84	17879,71	${ }_{22134,69}$	0,22167	0,238362	0,3047	4601,7	5565,7	6842,547		3911,	4831,091	138018,8 11468,5			
90	20	$0{ }^{\circ} 11874,6$	${ }^{\prime} 31141,56$	6130785	29106,87	35793,94	40612,69	16284,94	20421,08	27058,97	0,220424	0,285501	0,342877	5855,174	7011,846	8807,177	4163,27	4901.5	6078,26	142902,2			
91	3	9712,254.	18180,34	48826.07	19853,99	29863	33940,62	11406,7	16860,81	23259,36	0,23715	0,28575	0,344274	4285,535	5300,374	7706,7	2900,2	529					
92	$\stackrel{2}{2}$	$00^{6117,961}$	19827,663	70561.96	28312,99	33435,19	47222,3	14523,44	20543,86	33270,3	0,226913	0,247553	0,326413,	5551, 64	, 6932,154	10159,3	3204,49	52951	, 6358,989	149189			
93	1	Or 12955.61	29459.69	46566.32	25521.89	27991.89	37080	14774.15	17076.11	2103405	0.25485	0.3190666	0.3517	4997. 313	${ }^{63317.064}$	7142.1	35180.649	4033	778.625	125554.3			
94 95	1	0 \% 8997.72	23546.0	57661.07	20339.58 1941681	26718.09 3222621	${ }_{4}^{42223} 387$	12019.91 12024	${ }_{1}^{14008.58}$		0.214308 0.223183	0.2836											
${ }_{96}^{95}$	${ }^{2}$				${ }^{19416}$	32026,21	${ }^{397393, .38}$	12075,58	16893,44	1996607	0,223183	0,2367687								121976,8 11823,9			
97	5	${ }_{11528,38^{\prime}}$	21557,41	43000,29	18210,05	22563,59	30234,18	10242,51	13006, 13	17000,57	0,2495	0,30165	0,33	711		546,		2931.	3913,6	96676,73			
98	1 0	0 o' 13681,24	23749,09	45686,97	22693,02	28137,69	36199,38	14275,41	15636,53	22554,65	0,251044	0,284691	0,31133	4387,8	254,5	805,	3066,403'	776,20	541,638	126611,6			
99	I	, 1163			21475,18	33058,06	40847,87	12731,09	17495,42	26752,86	0,243785	0,268679	0,33105							,2			
100	1	$0^{0} 115628,26^{\circ}$		66482,75	${ }_{2}^{27555,97}$	${ }^{33469907}$	37471,56 37670,61	15184,33 12759,95	19889959 1725708	${ }^{23989948}$	${ }_{0}^{0,251845}$	0,287287	${ }^{0,3068811^{\prime \prime}}$	" $523543747{ }^{\text {4 }}$	6461,567	${ }^{7082.516 "}$	2626,539"			, 9			
Total landil 25	52	- 105552,81				29937,89																	

Table 7. Results of long- term stochastic simulations. Probabilities of SSB<Bpa, SSB<Blim and values of SSB, yield, landings, recruitment and fishing mortality. Settings: F target=0.4, the limit on year-to-year variation in catches by equation TACy $=$ TACf +0.2 * (TACy-1 -TACf), addition restriction: adjusting of TAC not used if SSBy $+1<$ Bpa

Annex 7 - Additional Information provided during the RG/ADGHADDOK

Additional notes following Needle and Mosqueira (2011)

The following results come from a run carried out on 23/08/2011, taking 1 hour 47 minutes. A target F of 0.4 was assumed. The results in Figures 1-3 are based on ALL 500 iteration runs (i.e. including those for which true F reached to FLR-imposed maximum of 2.0), while Figures $4-6$ give the results when the 56 runs for which F reached 2.0 have been removed (as I would still argue that these need to be dealt with in some way!).

Note that these plots will not be identical to those in Needle and Mosqueira, as a different set of randomised recruitment values has been used.

The conclusion from Figure 2 is that, on average, B will be less than Bpa for 2 years out of the 20 years included in the simulation. Figure 3 shows that the probability of B being less than Bpa increases steadily as the simulations progress forward in time. Stripping the $\mathrm{F}=2.0$ runs from the analysis reduces these probabilities by about 50%, so the removal of these runs is very influential (more than I would have thought).

Figure 1 (cf. Figure 10 in Needle and Mosqueira) - target $F=0.4$, all 500 iterations included:

Figure 2 (cf. Figure 12 in Needle and Mosqueira) - target $F=0.4$, all 500 iterations included:

Figure 3: probability (over all 500 iterations) of $B<B(p a)$ or $B<B(l i m)$, assuming target $F=0.4$.

Figure 4: as Figure 1 but for 444 stripped iterations

Num yrs for B < Blim by iteration

Figure 5: as Figure 2 but for 444 stripped iterations

Figure 6: as Figure 3 but for 444 stripped iterations

Annex 8 - Technical Minutes of peer review

Review /Advice Drafting Group
 NEAFC request on Rockall Haddock Management Plan Evaluation

Review group Technical Minutes
23-24 August 2011
Participants: Ghislain Chouinard (Chair)
Alain Biseau
Carmen Fernandez
Jean-Jacques Maguire
Norman Graham
Coby Needle
Vladimir Khlivnoy
Cristina Morgado (ICES Secretariat)

General

The RG/ADG considered analyses regarding a request from NEAFC for an evaluation of a proposal for the harvest control rule (HCR) component of a long-term management plan for Rockall Haddock (see Annex 1 -Request). The RG/ADG worked by correspondence and three WEBEX meetings. The RG/ADG received two separate analyses (Needle and Mosqueira WD2011 and Khlivnoy WD2011) to consider since the timing of the analyses did not allow for a unified analysis to be received from WGCSE. The material for the review was received by the RG/ADG on August 15 about 5 working days prior to the start of the RG/ADG meeting. As can be the case in these reviews, clarification had to be sought from the principals involved in the analyses. While documentation of the analyses was provided, the level of details of the documentation required for these types of analyses to conduct a proper review is high and was incomplete on some aspects of the methodology. This required a number of exchanges to obtain clarifications. The RG/ADG received good collaboration from the analysts who conducted the analyses. Without the help of those involved in the analyses, the review could not have been completed. However, there were issues in understanding the analyses due to terminology differences, translation and WEBEX sound quality such that full understanding of the analyses was not possible. The RG/ADG notes that availability of the analysts during the review is essential for these to be efficient.

Technical comments

a) Main conclusions

While the analyses performed were evaluated to have been well conducted, the RG estimates that no definite conclusion could be made on the precautionary aspects of the plan. This was because a larger range of analyses would be required in order to be able to conclude as to whether the plan was precautionary or not. Specifically:

- The assumed stock-recruitment relationship makes the simulations very unlikely to reproduce a period of low recruitments under moderately high SSB, as experienced in recent years (even with the random variability assumed around the stock-recruitment relationship).
- The evaluation follows the example of the ICES stock assessment in not allowing explicitly for the presence of two fleets (EU and RF) with very different characteristics, especially in terms of fishing pattern. The relative catches of these 2 fleets have been highly variable in the past. Using a constant selection in the simulations is unlikely to reflect future conditions
- The analyses assumed perfect implementation, i.e. the set TAC is not exceeded but this condition is unlikely to be met.
b) Secondary issues

i- Comments relative to the draft HCR

Although the assumed objective of Paragraph 3 of the proposed HCR is TAC stability, the proposed HCR is different from rules in other management plans to promote TAC stability. The rule implied by paragraph 3 allows for stability when the TAC in the previous year is close to the value calculated in Paragraph 2.
Paragraph 4 only provides continuity in terms of the F value to be applied in the TAC year with respect to paragraph 2 when the target F in paragraph 2 is 0.3 . The way the proposed HCR is stated currently produces a discontinuity in the F to be applied in the TAC year when Ftarget=0.4 depending on whether the SSB computed in paragraph 2 is just above or just below Bpa. This issue should be examined if further requests for evaluation are prepared.

ii - Specific comments on the working documents

The main difference in terms of methodology between the two WDs was that one used forecasts with uncertainties (including accounting for errors in the assessment) while the other combined forecast and re-assessment with uncertainties in both. The RG/ADG noted that the second approach is the one more frequently adopted for such analyses.
As noted above, the relationship between stock and recruitment (S-R) is very weak but it was further noted that the parameters of the S-R of the Needle-Mosqueira and the Khlivnoy analyses were different. A possible cause could be the slightly different time series used in the two analyses to estimate the relationships, but it could not be clarified whether there might be other reasons too.

The authors noted that the work represents evaluations of the likely performance of a management plan. In reality, what is being evaluated is a harvest control rule that may form a part of a management plan. Other management plans (e.g. cod) contain a wide range of other attributes such as effort constraints, technical measures, etc.
a) Needle-Mosqueira working document

Overall, the text was relatively clear. Details that were not provided in the text were, for the most part, clarified with the analyst. An additional analysis was also performed during the RG/ADG.
On page 2, the comment '...the resulting code on which this paper is based cannot be guaranteed to be error-free' was of concern to the RG/ADG group in terms of confidence in the analyses. Upon further discussion with the analyst, it was accepted that much the code had been reasonably tested (particularly the FLR bits) and would be used as the basis for
advice. However, the RG considers that thorough checking of all aspects of the code is required for future analyses based on the code presently developed.

In the equation at the bottom of page 2 , the "epsilon" factor in this formula needs to be exponentiated.

The selection pattern at age for the simulations was not adequately described in the WD.
On page 5, the sentence 'The median values from these plots are the result of smoothing across different realisations of recruitments, and are therefore only useful as an indication of likely future events.' suggested that some type of smoothing was applied. This was not the case and the sentence should be clarified. It was explained that the word smoothing is probably inappropriate, the meaning being that the trajectory of the median is unlikely to correspond to any individual trajectory (among the 500 iterations).

In the simulation package used by Needle-Mosqueira, the maximum value of F is set at 2.0. It was noted that the potential impacts of the constraint of F on the results of the analyses should be investigated. Furthermore, the simulations that reached the constraint were excluded from the results as they were difficult to explain. The RG concluded that excluding these simulations would result in an underestimation of the probabilities of falling below biomass reference points. Other techniques of restricting F increases between years in simulations should also be explored.

On the third line of second paragraph page 6, there was reference to 9 evaluations runs but there are only 2.

In Table 1 (page 6), the value 1.69 should be replaced by 0.169 .
It would be useful for analyses of this type to provide data on the number of years for which F is above the target as well as indicating the probability of being above the target in specific years (for example, 2015 and 2030).

There was reference to true F and assessed F in the document. A clear explanation of the terms "true" and "assessed" would be useful. It was explained that the true F is what the stock is actually subjected to (using $\mathrm{F}=\ln (\mathrm{Na} / \mathrm{N}(\mathrm{a}+1))-\mathrm{M})$, while the assessed F is what the FLXSA assessment says the F is (on the basis of catch and survey data).

In Figure 7, for the years just before 2020, the XSA assessments (red lines) seemed to overestimate F and also overestimate SSB and recruitment (truth is black lines), yet the catch values were fit exactly (top left panel of Figure 7). This could not be fully explained. In a discussion with the analyst, the latter mentioned that the catch data used for the XSA assessment during the management strategy evaluation phase is not the "true" catch but has a 10% error. This should be explained in the working document (which did not mention it), as well as how the error in the catch is exactly incorporated (e.g. whether it differs for different ages or is the same for all ages, whether it is incorporated in catch in weight or in numbers, etc). It was thought unlikely that this was the cause of the overestimation of F and SSB in the years before 2020 in Figure 7, although it was noted that the catch displayed in the top left panel of Figure 7 is the "true" catch and not the catch data that goes into the XSA assessment.

There was some confusion about the interpretation of the box plots whiskers in Figures 9 and 10. It appears that the description in the caption did not match the representation. This produced an apparent discrepancy between the results of Figs 9 and 10 as well as the results shown in different figures (Figs 9-10 and 11-12). It has been explained that these whiskers are not the 5% and 95% percentiles as indicated in the captions of Figures 9 and 10. Instead, the R help tool indicates that the whiskers correspond to the more usual definition of boxplots and are based on 1.5 times the inter-quartile range.

An additional run was conducted with a target $\mathrm{F}=0.4$ with the objective of calculating the actual probabilities of SSB < Bpa or Blim in each of the next 20 years (in addition to calculating the number of these years in which SSB may be expected to below Bpa or Blim). These results suggested that on average SSB will be less than Bpa in 2 out of the 20 years and slightly less than 1 year in 20 for $B<B l i m$ when including all iterations (i.e. including those reaching the constraint of $\mathrm{F}=2.0$). The probabilities that SSB $<\mathrm{Bpa}$ or Blim showed an increasing trend over the 20 year period, being above 20% and 10%, respectively, in some years at the end of the period. This suggested that analyses including low recruitment scenarios, other assumptions for the selection pattern and implementation error, which would lead to higher probabilities of SSB < Bpa or Blim, may indicate that the HCR's for this target F may not be precautionary. It was noted that whether or not the simulations when F reaches the constraint of 2.0 are included in the result has a large influence on the conclusions. Excluding these simulations reduces the abovementioned probabilities by about 50%.
b) Khlivnoy working document

Generally, the description of the analyses was more difficult to understand. Responses provided by the analyst helped in the understanding but differences as to the meaning of terms and translation and WEBEX connection difficulties left some issues unclear.

The document examined more scenarios than the Needle-Mosqueira document and examined other HCR's than those suggested in the request, including an HCR that would remove discontinuities in F referred to above. The RG/ADG considered that even though these options are not in the draft of the proposed HCRs, they are particularly relevant.

The paper notes that there is only accurate data on landings, in fact this isn't the case either as there is considerable area misreporting between VIb, VIa and IVa. Where information is available, this is now reported by WGCSE.

It was understood that the inputs used as the basis for the analysis were those used in the most recent assessment of the stock conducted in 2011 (unlike the Needle-Mosqueira analysis, which started from the stock assessment conducted in 2010).

The document referred to a method of random numbers a few times to introduce variability (recruitment estimates and assessment errors) but it was unclear how the method was used. Further clarifications would be required to explain how this was conducted.
It was not entirely clear how the "assessment error" feature was incorporated in the management strategy evaluation. Also the RG suspects that the "assessment errors" were based on SSB and not TSB (total stock biomass) as indicated in the document, but this needs to be checked and clarified by the author.
In Table 1 (page 8), it was unclear what 'YES' and ' NO^{\prime} meant for the analyses. It was concluded that when one column contained a NO the TAC constraint was not removed, whereas when it contained a YES the TAC constraint was removed.
Suggestions for changes in the HCR with regards to setting the TAC on landings versus on total catches were provided by the author of the paper but the RG/ADG concluded that setting the TAC on total catches could be feasible if adequate monitoring mechanisms for these were in place.

As for the Needle-Mosqueira work, the RG considers that thorough checking of all aspects of the code used for this analysis is required for future analyses based on the code presently developed.

Conclusion

The analyses reviewed by the RG on the proposed harvest control rules (HCR's) of a long-term management plan for Rockall haddock were considered preliminary and incomplete. The RG/ADG could thus not confidently conclude whether the HCR's are consistent with the precautionary approach or not.

While the simulations appear to be not that different to approaches used elsewhere, additional documentation would have been useful. It would be beneficial that some of the points outlined above are examined in more detail and other management options are also evaluated e.g. improvements in the selection profile of the fishery. Additionally, thorough checking of all aspects of the code is required.

References

Khlivnoy, V. 2011. The analysis of EU-Russia proposal for harvest control component of a longterm management plan for haddock at Rockall. ICES ACOM working document. 18 p.

Needle, C. and I. Mosqueira 2011. An evaluation of a proposed management plan for haddock in Division VIb (Rockall). ICES ACOM working document. 20 p .

Needle, C. and I. Mosqueira 2011. Additional notes following Needle and Mosqueira (2011). (additional analysis conducted during RG/ADG)

[^0]: 1 Marine Scotland - Science, Marine Laboratory, PO Box 101, 375 Victoria Road, Aberdeen, Scotland. Email: needlec@marlab.ac.uk, coby.needle@scotland.gsi.gov.uk.

 2 European Commission, Joint Research Center, IPSC/Maritime Affairs Unit, FISHREG, Via E. Fermi 2749, 21027 Ispra VA, Italy. Email: iago.mosqueira-sanchez@jrc.europa.eu.

[^1]: 为

