This Report not to be quoted without prior reference to the Council*

International Council for the Exploration of the Sea

Digitalization sponsored by Thünen-Institut

REPORT OF THE ARCTIC FISHERIES WORKING GROUP
Copenhagen, 26 September - 3 October 1984

This document is a report of a Working Group of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. It should, therefore, not be quoted without consultation with the General Secretary.

```
*General Secretary
ICES
Paloegade 2-4
DK-1261 Copenhagen K
DENMARK
```

https://doi.org/10.17895/ices.pub. 19260851

TABLE OF CONTENTS

Page

1. PARTICIPANTS 1
2. TERMS OF REFERENCE 2
3. NORTH-EAST ARCTIC COD 3
3.1 Status of the Fisheries 3
3.1.1 Landings prior to 1984 3
3.1.2 Expected landings in 1984 3
3.1.3 Catch per unit effort 3
3.2 Catch in Numbers at Age 3
3.3 Weight at Age 4
3.4 Age at Maturity 4
3.5 Survey Results 5
3.5.1 0-group surveys 6
3.5.2 The bottom trawl surveys 6
3.5.3 Acoustic surveys 6
3.5.4 Evaluation of the surveys 7
3.6 Recruitment 7
3.7 Fishing Mortalities - VPA Runs 8
3.8 Short-term Projection of Stock Biomass and Catch 10
3.9 Medium-term Projection of Stock Biomass and Catch 11
3.10 Stock and Recruitment Relationship 12
4. NORTH-EAST ARCTIC HADDOCK 12
4.1 Status of the Fisheries 12
4.1.1 Landines piror to 1984 12
4.1.2 Expected landings in 1984 13
4.1.3 Catch per unit of effort 13
4.2 Catch in Numbers at Age 13
4.3 Weight at Age 13
4.4 Age at Maturity 14
4.5 Survey Results 14
4.5.1 0-group surveys 14
4.5.2 Bottom trawl surveys 14
4.5.3 Acoustic surveys 14
4.5.4 Evaluation of the surveys 14
4.6 Recruitment 15
4.7 Fishing Mortalities - VPA Runs 15
4.8 Short-term Projection of Stock Biomass and Catch 16
4.9 Medium-term Projection of Stock Biomass and Catch 16
5. DEFICIENCES IN DATA BASE 18
References 19
Tables 1-27 20
Figures 1 - 10 43

REPORT OF THE ARCTIC FISHERIES WORKING GROUP
 26 September - 3 October 1984

1. PARTICIPANTS

A Hylen	Norway
T Jakobsen	Norway
O Nakken (Chairman)	Norway
K Sunnanå	Norway
A Vazquez	Spain

2. TERMS OF REFERENCE

At the 71st Statutory Meeting, the Council decided (C.Res.1983/2:8:13):
"that the Arctic Fisheries Working Group should meet at ICES headquarters from 26 September to 3 October 1984 to:
(i) assess catch options for 1985 inside safe biological limits for cod and haddock in Sub-areas I and II,
(ii) analyse the effect of changes in the data sets of weight at age and age a.t first maturity on the time series of stock and spawning stock biomass.

3. NORTH-EAST ARCTIC COD

3.1 Status of the Fisheries

3.1.1 Landings prior to 1984 (Tables 1-3 and Figure 5A)

The revised figure for total landings in 1982, 363730 tonnes, is $\{139$ tonnes less than the figure used by the Working Group in 1983 (Anon., 1984a), but 63730 tonnes in excess of the TAC. Provisional figures for 1983 indicate a further decline in the landings (Table 1), the total catch of cod in 1983 amounting to 290000 tonnes which is 18000 tonnes less than anticipated by the 1983 Working Group and close to the TAC of 300000 tonnes. From 1982 to 1983 the catches declined in all areas both for trawl and other gears. The most significant reductions were observed in the Norwegian catches by conventional gears in Sub-area I and Division IIa and in the total USSA fishery (Tables 2-3).

3.1.2 Expected landings in 1984 (Tables 1 and 2)

The total landings for 1984 were estimated to 279000 tonnes based on catch statistics for the first half of the year from Norway, USSR, Faroe Islands, Federal Republic of Germany, and on information on catch quotas for other countries. As seen in Table 1, the landings in 1984 were expected to be distributed somewhat differently compared to 1982 and 1983. In Divisions IIa and IIb the declining trend is expected to continue, while landings from Sub-area I increase owing to higher vulnerability and larger catches of cod off East-Finnmark during spring and summer 1984.
3.1.3 Catch per unit effort (Tables 4-6)

The total trawl catches of cod and haddock combined and the total trawl effort (Norwegion units, Table 4) continued to decline in 1983 in all areas, but catch per unit of effort in the total trawl fisheries was maintained in Sub-area I, and only slightly reduced in Division IIa. For cod, the catch per unit of effort figures (Table 5) tended to increase in all areas from 1982 to 1983 except for the USSR fleet in Sub-area. Catch per unit of effort data from the Lofoten fishery (spawning stock) are given in Table 6. In the past three years the figures for gillnets and longline/handine show opposite trends. This was explained in the 1983 Working Group Report (Anon., 1984a).

3.2 Catch in Numbers at Age (Table 15)

Age compositions for 1982 were revised using the same data base as the 1983 Working Group and taking into account revised landings. For 1983 the data available for calculating catch in numbers were:
(a) Landings by areas from each country for the whole year.
(b) Age compositions from the Norwegian catches in all three regions, age compositions from USSR catches in Sub-area I and Division IIa for the first half of the year (data submitted to the 1983 Working Group), age compositions from Spanish catches in Division IIb, and age compositions from the catches of the Federal Republic of Germany in Division IIa.

Catch in numbers at age for other countries were arrived at by using the USSR age composition in Sub-area I and the age composition from Norwegian trawl catches outside the 12 nautical mile limit in Division IIa. In Division IIb the age composition from Spanish trawlers was used for the Spanish and the LSSR catches. Catch in numbers for Norway, Spain and USSR were summed, and the resulting age composition was used for the landings by other countries.

Catch in numbers for 1984 were calculated from the expected landings and age compositions for the first half of the year from Norway, USSR and the Federal Republic of Germany. Catch in numbers for other countries was arrived at by using the age compositions from Norwegian trawlers in Sub-area I and Division IIa. In Livision IIb the USSR age composition was applied to all the expected landings.

3.3 Weight at Age (Tables 7-8)

Table 7 shows figures of mean length at age in the Norwegian winter surveys (Dalen et al., 1984). The values for 7 and 8 year old fish are not representative for the stock, since large portions of these age groups were on spawning migration and thus south of the area covered by the surveys. For 3-6 year olds the values show an increaing trend for all year classes following the 1975 year class. Data on weight at age in all the Norwegian surveys in 1982, 1983 and 1984 show a similar trend, and the figures deviate significantly from those used in previous assessments and which have been kept unaltered for many years. The Working Group, therefore, decided to use the Norwegian winter survey data on weight at age for 3-6 year olds in 1983 and 1984 as input weights in the stock these years. The "old" values were used for all age groups and all years prior to 1983 and for the 7 years and older fish in 1983 and 1984.

Data for the weight at age in the catches were available from Norwegian catches in 1983 and 1st half of 1984, and from Spanish catches in 1983. Weights in the USSR catches were calculated from the length at age data from 1st half of 1983 and 1984 by applying the formula $W=0.9 \times L^{3}$, which is the mean from the Norwegian and Spanish data for 1983. It was decided to use the weighted mean values of these data for the age groups 3-6 in 1983 and leave the older age groups unchanged.

The Norwegian survey data and the USSR length at age data from the catches show an average increase of 15% in weight at age for the age groups 3-7 from 1983 to 1984. The mean weights at age in the catches of 1984 were then calculated as the weights of 1983 raised by 1.15 for age groups 3-7, leaving the older ages unchanged. The weight at age data used in the VPA are shown in Table 8.

The recent increase in the differences in weight at age for the younger fish in the catches and in the stock may be explained by the shift in the fishing pattern. The heavy fisheries on younger age groups no longer persist owing to poor year classes and increased mesh sizes in trawls in the recent years.
3.4 Age at Maturity (Table 9)

Prior to 1981 the Working Group had taken the mature part of the stock to be all fish of age 8 and older. In 1982 the Working Group consi-
dered, however, that it would be more realistic to use a maturity ogive.

An analysis of the publisked maturity ogives indicated that during the last 40 years (1942-81) there had been a slight trend of decreasing age at first maturity (Anon., 1983). Therefore, in 1982 the Working Group introduced a series of ogives which reflected the observed trend.

For the period 1980-82 there was a large difference between data supplied by Ponomarenko (1982) and by Hylen and Nakken (1982). It is not clear whether the differences in these two data sets were due to methodology or to a real change in maturity in 1982, but the Working Group was aware of the sampling problems which Ponomarerko had faced in obtaining accurate maturity ogives from trawl catches only. These problems were to a certain extent solved by the Fylen and Nakken method.

The Working Group decided in 1983 to apply two approaches in calculating spawning stock biomass. As Alternative 1, the spawning stock biomass was calculated with maturity ogives given by Hylen and Nakken, using the 1982 data for the period 1946-82 and the ogive derived in 1983 for that year and for the prediction period (Table 9). As Alternative 2 the 1982 approach was continued, applying the average of the Ponomarenko and Hylen and Nakken data sets for 1982 and using an average, giving double weight to the Ponomarenko data for 1981, 1983 and for the prediction period.

The Working Group recommended in its 1982 and 1983 reports that age at maturity data for earlier years should be made available for each single year in order to make a detailed analysis of the maturity ogives in the past. No additional dats were made available to this meeting for the years prior to 1982 and no new analysis of the maturity ogives in earlier years could be carried out. A maturity ogive for 1984, obtained from survey data (Dalen et al., 1984, Godø et al., 1984a and Godø et al., 1954b) by applying corrections for fishing between survey time and 1 January was given by Hylen and Nakken (1984).

The Working Group decided therefore to calculate spawning stock biomass for the period $1982-84$ using the respective ogives given by Hylen and Nakken for these years (Table 9). None of these ogives could be applied to the previous years with any confidence, and it was decided to use a knife-edge maturity ogive (fish 8 years and older as mature) for the entire period prior to 1982, as used also by the Working Group in its reports before the 1982 report. For the prediction period, the 1984 maturity ogive was applied.

3.5 Survey Results

Survey results which had become available since the 1983 Working Group meeting were:

The Joint Norwegian-USSR 0-Group Survey in August-September 1984 (Anon., 1984b).
The Barents Sea Acoustic and Bottom Trawl Survey in February 1984 (Dalen et al., 1984).

The Svalbard Bottom Trawl Survey in September 1983 (Godø et al., 1984a).
The Spawning Ground Acoustic Surveys (Godø et 튼, 1984b).
Evaluation of the Norwegian Survey Results (Hylen and Nakken, 1984).

In addition, members of the Working Group had information on the preliminary results of the USSR bottom trawl survey during the winter 1983-1984.

3.5.1 0-Group surveys (Table 10)

The abundance indices for the year classes 1982, 1983 and 1984 are all larger than any of those from the period 1976-1981 and the two last years' figures are only exceeded by that of the 1970 year class.
3.5.2 The bottom trawl surveys (Tables 11 - 13)

In the Norwegian surveys the indices for all year classes show an increasing trend during the first 3-5 years of the life of the fish, probably caused by a lower availability to the trawls by the smaller specimens (Dalen et al., 1984).

The indices from the 1984 bottom trawl survey in the Barents Sea (Table 11) for the year classes prior to 1981 were in agreement with previous results, indicating that the 1980 year class in this area was slightly less abundant than the preceding ones. The index for the 1981 year class which in the two previous years was quite low, showed an unexpected high increase from 1983 to 1984, probably due to difficulties in the separation of 2 and 3 year old fish in the 1984 survey. In the Svalbard area (Table 12) both the 1980 and the 1981 year classes seemed to be less abundant than the previous ones, particularly the 1979 year class.

Both the 1982 and the 1983 year classes were far more abundant in the 1984 (and 1983) bottom trawl surveys than the preceding year classes, thus confirming the results of the $0-$ group surveys.

3.5.3 Acoustic surveys (Table 14)

Details of the acoustic surveys in 1984 are given in the respective survey reports and in Hylen and Nakken 1984 where the surveys are also evaluated.

The acoustic estimates of abundance for $3-7$ year old fish in the eastern part of the Barents Sea were considerably increased from 1983 to 1984. In this area, the 1984 estimates for these age groups were suspected to be overestimates due to a combined effect of high echo abundance from the 1982 and 1983 year classes and the lower catchability of these small fish (Dalen et al., 1934). The acoustic surveys of the spawning grounds in $19 \overline{84}$ indicated spawning stock size about 20% below that found in 1983 (Godx et al., 1984b).

The acoustic abundance estimates of 1 and 2 year old fish in the 1984 Barents Sea survey supported the observations from the 0-group and bottom trawl surveys: The 1982 year class was considerably more abundant than the preceding year classes, while the acoustic estimate of the 1983 year class as 1 year olds was the highest ever obseryed since the surveys started in 1976.

3.5.4 Evaluation of the surveys

Hylen and Nakken (1984) evaluated the Norwegian survey results for 1984 (and 1983). They discussed the sources of errors affecting the results and found: "The most serious of these errors was the upward bias of the acoustic estimates of age group 3 and older fish in the eastern Barents Sea. In this area large quantities of 1 and 2 year old fish made up the bulk of the echo abundance, but since the trawl catches oversample the larger fish and the length distributions from the catches are used directly in the conversion of echo abundances for fish densities, the older age groups (3+) were overestimated. We have, therefore, neglected the acoustic estimates for the eastern Barents Sea and estimated the number of fish in each age group in this area this way:

$$
N_{1984}=\frac{N_{1983}}{I_{N D}^{1983}} \cdot \text { IND }_{1984}
$$

$$
\begin{aligned}
& \text { where } \mathbb{N}_{1983} \text { is the acoustic estimate in } 1983 \\
& \text { IND }_{1983} \text { is the bottom trawl index in } 1983 \\
& \text { IND }_{1} 984
\end{aligned} \text { is the bottom trawl index in } 1984 .
$$

This estimator simply expresses the assumption that the ratio between acoustic estimates and bottom trawl indices for each age group were equal in 1983 and 1984".

Hylen and Nakken used the corrected acoustic estimates together with estimates from the other cruises and the landings in 1984 to assess the total stock and the spawning stock per 1 January 1984. Their results are presented in Trable 14, where also the results from the two preceding years appear. In general, the results of the 1984 surveys confirmed the impression from the bottom trawl survey and the 0-group survey:

The estimate of 4 year olds and older fish fitted reasonably well with the previous years' observations while the estimate of 3 year olds (1981 year class) seemed high, and the two youngest year classes (1982 and 1983) were far more abundant than any of the preceding ones.

Particularly the 1983 year class seemed strong and was estimated to 2400 million individuals at age 1.
3.6 Recruitment (Tables 17 and 18, Figures 4 and 5C)

A summary of the information available from the surveys on the year classes 1981-1984 is given in the text table below.
0 -group index
1 year, bottom trawl index
2 year, bottom trawl index
1 year, acoustic, N : 0^{-6}
2 year, acoustic, N 10^{-6}

1981	1982	1983	1984
0.10	0.59	1.69	1.55
0.1	45	355	
6	127		
1	-	2400	
15	506		

The 0-group indices indicate that the 1983 and 1984 year classes were about 3 times as abundant as the 1982 year class. The bottom trawl indices indicated a 1983 year class which was 8 times stronger than the 1982 year class, while the acoustic survey indicated a ratio of 4:1 between the 1983 and the 1982 year classes when a reasonable natural mortality coefficient was accounted for.

The 1982 year class was estimated to about 400 million specimens at age 3 both from the relationship in Figure 4 and from the acoustic estimate of 2 year old fish when applying an annual natural mortality coefficient of 0.2 . The 1983 year class was estimated to 1000 and 3200 million individuals at age 3 , using the 0 -group index and the bottom trawl index respectively, and 1500 million individuals when projecting the 1 year acoustic estimate. The Working Group therefore agreed on an estimate of 3 year old fish of 1500 million individuals in the 1983 year class. The abundance of the 1984 year class was also set to 1500 million individuals giving more weight to the ratio between the 1983 and 19840 -group indices (1:1) than to the values obtained from the relationship in Figure 4.

3.7 Fishing Mortalities - VPA Runs

A preliminary VPA was run using input F values for 1984 based on the 1983 exploitation pattern from last year's Working Group Report scaled to $\bar{F}_{5-10}=0.55$ to match the expectea catch in 1984. A comparison with the stock estimates from the acoustic survey showed a cood agreement for some age groups and it was evident that relatively minor changes in the input F values would improve this agreement. An evaluation of the total stock based on the acoustic survey has been made only since 1982 and the addition of 1984 as the 3 rd year in this series means that the reliability of the survey data is better established and that more information is available for tuning the VPA to the survey results. A new series of input Fs based chiefly on the survey results were used in a VPA and the text table below shows the VPA stock number estimates 1982-1984 compared with those from the acoustic survey.

Age	1982		1983		1984		
	Stock Number (millions)	Stock Number (millions)		Stock Number (millions)	F		
	Survey	VPA	Survey	VPA	Survey	VPA	
4	87	137	29	67	121	63	.06
5	105	135	81	104	58	52	.25
6	103	99	99	92	59	68	.45
7	95	81	58	64	54	57	.60
8	154	91	43	41	30	37	.70
9	23	15	50	37	19	19	.60
10	12	5	13	5	12	14	.50
	1	2	5	1	4	2	.50

The agreement is generally good for the age groups 5-7. The high survey estimate of 7 -year-old cod in 1982 is explained by the special behaviour of that year class during the 1982 survey (Hylen and Nakken, 1983). Excluding this year class, a linear regression of the survey and the VPA results for age eroups 5-7 in 1982-1984 gives a correlation coefficient of 0.97 . This demonstrates that a high correlation between VPA and survey results can be obtained with input F values that appear to be at a reasonable level. For age group 4, the acoustic survey terds to give underestimates, usually of about 20 per cent, and the 3 -year-old cod is also usually underestimated, although 1984 for special reasons deviates from this pattern (Dalen et al., 1994). From age 8 or 9 the survey tends to produce overestimates compared to the VPA. The reason for this is not clear. Figure 1 shows the fishing mortalities generated by other gears than trawl for the 8-12 year olds.

Plots of fishing mortality generated by Norwegian trawlers versus effort by the same fleet are presented for age groups 5-6 combined in Sub-area I (Figure 2) and age groups $5-8$ combined in Division IIa (Figure 3). The effort in 1984 is estimated on the basis of data from only part of the whole year's trawl fishery, and especially in Sub-area I this fraction is very low. The Working Group therefore felt that no great reliance could be put on the 1984 values. In the plots, the points representing the most recent years are mostly above the regressed line and this indicates an increase in catchability. Plots showing catchability ($Q=F / E f f o r t$) versus year are therefore included on Figure 2 and Figure 3. Both catchability plots show an increasing trend, but the increase appears to be more rapid in the period 1980-1983 than in the 1970's. This is not unreasonable, considering that Norwegian trawlers have been severely restricted by quotas in the $1980^{\prime} \mathrm{s}$, and therefore may have tended to choose the grounds and seasons which give the highest catch rates. Unfortunately, the trend in catchability in the most recent years indicated by the plots is highly dependent on the input F values in the VPA. There is no independent information that can be used to give a reliable estimate of this trend and the plots are therefore at this stage of no practical use in estimating input Fs for the VPA.

In view of the lack of reliable data from other sources, the Working Group agreed that the assessment should be based primarily on the acoustic survey results. The input F values given in the text table are therefore used in the final VPA. For the age groups 5-8 the Fs were chosen to produce stock numbers close to those estimated in the survey. For age 4, the usual underestimate in the survey was taken into account and the Working Croup also felt that it was reasonable to expect that the increased weight at age 4 observed in 1984 would give an increase in the fishing mortality compared to the most recent years. F at age 3 was chosen to make the 1981 year class approximately the same size as the 1980 year class, as other information indicates (Tables $10-13$). For age 9, the survey results indicate that the fishing mortality should be lower than for age 8 ($F 8=0.6$) and a value of 0.5 was chosen for the age groups $9-13$, and 0.45 for the age groups 14-15+.

The fishing mortalities in the VPA are shown in Table 16 and the VPA stock numbers in Table 17 and Figure 5A. The fishing patterns show a shift towards younger fish from 1983 to 1984 but the exploitation
remains at the same level. This is a reduction of about $20 \% \mathrm{com}-$ pared to the period 1979-1982. The historic trend in fishing mortality is shown in Figure 1 and in Figure 5B.

3.8 Short-term Projection of Stock Biomass and Catch

In Table 18 the input for the catch and stock biomass predictions are given. The natural mortality, maturity ogive, and weight at age in catch and stock are those used for 1984 in the assessment.

The Working Group expected the rich 1982-1984 year classes to be more heavily exploited at age 3 and 4 than the preceding ones. The F values for these age groups were therefore increased by approximately 0.1 giving the fishing pattern in Table 18.

The input number of 3 year old recruits were taken to be 400, 1500 , and 1500 million individuals for the 1982, 1983, and 1984 year classes respectively (see 3.6).

Projections of catches in 1985 and stock size at 1 January 1986 are given in Figure 6. The yield per recruit curve is shown in the upper part of the figure. $F_{\max }=0.33$ compared to a current level of $\bar{F}_{5-10}=$ 0.56. Management options for 1985 are given in the text table below.

MANAGEMENT OPTIONS

Species: NORTH EAST ARCTIC COD
Area : ICES Sub-areas I and II

1984				Management option for 1985	1985				1986	
Stock biom. (3+)	Spawn. stock biom.	$F_{(5-10)}$	$\left\lvert\, \begin{aligned} & \text { Catch } \\ & (3+)_{*} \end{aligned}\right.$		Stock biom. (3+)	Spawn. stock biom.	$\bar{F}_{(5-10)}$	$\begin{aligned} & \text { Catch } \\ & (3+) \end{aligned}$	Stock biom. (3+)	Spawn. stock biom.
735	374	0.558	279	$F_{\text {max }}$	730	303.	0.33	170	1569	297
				$\mathrm{F}_{1985}=\mathrm{F}_{1984}$			0.56	269	1465	235
				TAC 1985 $=350$			0.79	350	1380	180
				TAC 1985 $=300$			0.64	300	1432	216
				TAC 1985 $=\quad 250$			0.51	250	1485	247

Weight in thousand tonnes
*Expected catch estimated by the Working Group

3.9 Medium-term Projection of Stock Biomass and Catch

Also for the medium-term projection, the 1984 values for the weight-atage in the catches and in the stock were used. It should be noted that slower growth of the strong year classes 1983-1984 would give lower estimates of catches and stock biomass for 1986, and especially for 1987, than those presented. An increase in the exploitation on the younger age groups is also likely to produce lower catch weights for these age groups.

The following text table shows the development of the spawaing stock for 5 alternatives of fishing strategy in the period 1985-1987. The total biomass and catches for 1988 and 1989 are not given in the table because of the uncertainty of the growth of the 1983 and 1984 year classes and the unknown recruitment of 3 year old fish in these years.

NORTH EAST ARCTIC COD.
Projections of stock, spawning stock biomass and eateh.

Management strategy Year	$\bar{F}_{\text {max }}=0.33$				$\bar{F}_{84}=0.56$			
	STB	SSBI	SSBII	Catch	STB	SSBI	SSEII	Catch
1985	730	303		170	730	303		268
1986	1569	297		314	1465	235		462
1987	2843	341	327	625	2575	231	218	893
1988		605	334			409	187	
1989		1067	364			680	171	

Management strategy Year	TAC $=250$				TAC $=300$				TAC $=350$			
	STB	SSBI	SSBII	\bar{F}	STB	SSBI	SSBII	$\overline{\mathrm{F}}$	STB	SSBI	SSBII	$\overline{\mathrm{F}}$
1985	730	303		0.51	730	303		0.64	730	303		0.79
1986	1485	247		0.27	1432	216		0.35	1380	186		0.44
1987	2819	309	295	0.12	2709	260	247	0.16	2599	215	202	0.20
1988		681	- 378			604	307			533	249	
1989		1.478	534			1346	444			1220	362	

STB : Stock biomass
SSBI : Spawning stock biomass using maturity ogive for 1984
SSBII: Spawning stock biomass as for SSBI except fish of the 1983-1985 year classes.

All alternatives give two sets of figures for the spawning stock biomass in 1987-1989. One set - SSBI - shows the values arrived at when applying the maturity ogive used for 1984 to the whole period. The alternative SSBII - shows the spawning stock biomass when all fish of the 1983 and 1984 year classes at ages 6 years or less were removed from the spawning stock. The reason for presenting these two alternatives was that the Working Group considered it unlikely that the two last years' strong year classes with distribution areas extending far to the east and north in the Barents Sea, would become mature at a rate similar to that observed during the past 3 years.

All alternatives of fishing strategy result in a spawning stock level in 1986 below that of 1985, the 1986 level being 186 and 297000 tonnes for catches in 1985 of 350000 tonnes and 170000 tonnes, respectively. In 1987 and 1988, the spawning stock biomass increases for 4 of the alternatives, but continue to decrease if the fishing mortalities in 1985 and 1986 are kept similar to those in 1984 and if the 1983 and 1984 year classes do not contribute to the spawning stocks. Bearing in mind the differences observed in maturity ogives for cod during the past 30 years (Anon., 1983), the horking Group was of the opinion that Alternative 5 should not be chosen since this may result in a spawning stock in the late $1980^{\prime} \mathrm{s}$, which is about half the present level. The spawning stock levels of $350000-400000$ tonnes in $1983 / 1984$ have produced rich year classes and the Forking Group, therefore, consider Alternative 4 ($\mathrm{F}_{\max }$) as the better as far as future recruitment is concerned.

3.10 Stock and Recruitment Relationship

In its last report (Anon., 1984a), the Working Group made plots of parent stock and number of 3 year olds for the period 1946-1976 for two alternatives of spawning stock. The differences in the spawning stocks arrived at by the two alternatives are large (see discussion in 3.4). The main use of a stock/recruitment relationship would be to determine a minimum level above which the spawning stock should be maintained in order to safeguard recruitment. The Working Group found it extremely difficult from the amount of information available up to now to decide on such a minimum level, because of the uncertainties encountered regarding parent stock size in the past. Diurnal measurements of the spawning stock exist only for the last three years, 19821984. In these years, the spawning stock biomass was estimated to 400000,350000 , and 370000 tonnes respectively, and year classes of fair and strong abundance have been produced. Until information is available which permits the calculation of more precise figures for the spawning stock in the past, the Working Group recommends that effort should be made to keep the spawning stock as close to the level of 1982-1984 as possible, or higher.
4. NORTH-EAST ARCTIC HADDOCK
4.1 Status of the Fisheries (Tables 19-20, Figure 9A)
4.1.1 Landings rrior to 1984

The revised figure for total landings in 1982, 46955 tonnes, is about 300 tonnes less than the figure used by the Working Group in 1983
(Anon., 1984a). Provisional figures for 1983 showed a further decline in the catches of haddock both in Sub-area I and in Division IIa. The total catch in 1983 of about 22000 tonnes is well below the figure of 27000 tonnes estimated by the 1983 Working Group.
4.1.2 Expected landings in 1984 (Table 19)

Based on information about landings in the first half of the year from Norway, USSR, Faroe Islands and the Federal Republic of Germany, the Working Group estimated the landings in 1984 to be approximately the same as in 1983. However, since a significant part of the haddock catches are now taken in the Norwegian coastal fishery in autumn, the landings for the whole year are difficult to estimate.
4.1.3 Catch per unit of effort (Table 21)

Cpue in the Norwegian fisheries showed a sharp decline from 1982 to 1983, both in Sub-area I and Division IIa, the 1983 figures being only half the 1982 figures.
4.2 Catch in Numbers at Age (Table 24)

Age compositions for 1982 were revised using the same data base as the 1983 Working Group and taking into account the revised landing figures. For 1983, the data available for calculating catch in numbers at age were:
(a) Landings by areas from each country for the whole year;
(b) Age compositions from the Norwegian catches, age compositions from the USSR catches in Sub-area I and Division IIa for the first half of the year (data submitted to the Working Group in 1983), age compositions from the Federal Republic of Germany catches in Division IIa.

Catch in numbers at age for the landings of other countries were arrived at by using the age compositions from Norwegian catches in Sub-area I, age compositions from Norwegian trawl catches outside the 12 nautical mile limit in Division IIa, and age compositions from Norwegien trawl catches off East Finnmark in Division IIb. For 1984, the catch in numbers at age were calculated from the expected landings and the age compositions for the first half of the year from the Norwegian catches in the respective areas, following the scheme used for the 1983 data.

4.3 Weight at Age

In the 1983 Working Group report, the same set of weights was used for both catch and stock. There was no evidence indicating significant changes in the stock weights, which therefore have been kept unchanged.

In the most recent years, an increasing part of the catches have been taken by Norway which in 1984 is expected to account for about 90% of the landings. This has led to changes in the catch weights and the Working Group felt that it would be most appropriate to use the weight-at-age data from the Norwegian landings in 1983 as catch weights in 1983. 1984 and for the predictions. The catch and stock weights are shown in Table 27.

4.4	Age at Maturity (Table 27)
	Only two maturity ogives (Sonina 1981, and Sætersdal 1954) were available for hadzock at the Korking Group meeting in 1983. No additional data were made available to this meeting, so therefore the Working Group decided to apply the standard maturity ogive established last year (Satersdal 1954) for the whole period and for the prediction period.
4.5	Survey Results
	The survey information that was used originated from the same surveys as for cod (see Section 3.5).
4.5 .1	O-group surveys
	Table 22 shows the 0-group indices for haddock. In the last three years, the indices have increased considerably compared with the period 1977-1981, the index for 1984 being the highest observed since the 0 group survey started.
4.5 .2	Bottom trawl surveys (Table 23)
	The abundance indices from the Norwegian bottom trawl surveys in the Barents Sea in February are shown in Table 23. The indices for the year classes prior to 1982 are all low and their confidence limits rather high (Dalen et al., 1984). As for cod, it is thought that the index of 15.2 for the 1981 year class as 3 -year-olds is an overestimate. The indices for the 1982 and 1983 year classes are much higher than those for the preceding year classes, thus confirming the results from the 0 -group surveys, and also indicating a similar ratio for year class strength between these two year classes (1:2) as do the 0-group indices.
4.5 .3	Acoustic surveys
	Acoustic estimates of haddock are given by Dalen et al. (1984). The estimates for the year classes prior to 1982 are all low, showing 1015 million 4 -year-old fish in the 1978-1980 year classes. The estimate for the 1981 year class as 3-year-olds (in 1984) was frobably biased upwards for the same reasons as for cod.
	In the 1984 acoustic survey, the 1982 and 1983 year classes were estimated to 1000 million and 2100 million individuals, respectively.
4.5 .4	Evaluation of the surveys
	The estimates and indices arrived at for the year classes prior to 1982 were very low and variable both for the bottom trawl and for the acoustic surveys. The maximum information that can be extracted from the figures is that these year classes, 1978-1981, at an age of 3 years probably constituted $10-25$ million specimens, taking into account that the acoustic estimates for this age group tend to be an underestimate - at least for cod.
	The estimates for the 1982 and 1983 year classes are in good agreement with the results from the 0-group and bottom trawl surveys. However, Nakken and Ulltang (1982) showed that the acoustic surveys of the 1975 year class tended to overestimate haddock and underestimate cod at ages 2, 3 and 4. The acoustic estimates of the youngest age groups should therefore be used with care.

4.6 Recruitment (Tables 26 and 27 , Figure 9c)

Information available on the abundance of the recruiting year classes 1982, 1983 and 1984 is:

	Year class		
	$\frac{1982}{0.38}$	$\frac{1983}{0.62}$	$\frac{1984}{0.78}$
0-group index	315	663	
1-year, bottom trawl	356		
2-year, botton trawl	-	2148	
1-year, acoustic	1002		
2-year, acoustic			

The figures for the 0 -group and the bottom trawl surveys are abundance indices and those for the acoustic surveys are given in millions of individuals. Looking at Table 22, it appears that only one single year class, the 1969 year class, has recruited more than 1000 million individuals at age 3 , while several year classes have amounted to about 300 million individuals at this age. The figures above indicate the following ratios between the abundance of the three year classes:

$$
\frac{1982}{1} \quad \frac{1983}{1.5} \quad \frac{1984}{2.0}
$$

A natural mortality coefficient of 0.2 was applied in order to compare the two acoustic estimates. On the basis of these considerations, the Working Group decided to use figures for the 3 year olds in these three year classes as follows:

$$
\begin{array}{lll}
\frac{1982}{200} & \frac{1983}{300} & \frac{1984}{400}
\end{array}
$$

where the figures are in millions of individuals.

4.7 Fishing Mortalities - VPA Runs

A preliminary VPA was made using input F values for 1984 based on the 1983 exploitation pattern from last year's Working Group Report scaled to $F_{4-7}=0.20$ to match the expected catches in 1984 . With the current low stock size, 0 -group indices and survey results are of limited values in estimating the size of the most recent year classes in the VPA. In an adjusted VPA, the exploitation pattern was changed slightly to correspond better to that of the years 1980-1982 except that the F at ages 3 and 4 were set relatively higher to give a better agreement between surveys and VFA for the year classes 1980 and 1981 (Tables 22 and 23). Apart from this, it could only be concluded that the trial VPA was not inconsistent with the other information.

The adjusted VPA shows a sharp decline in fishing mortalities after 1982 to a level in 1984 of about half the level in 1980-1982. Normally a major part of the haddock is taken as by-catch in the fisheries for cod. Therefore, comparison between fishing mortality, catch per unit of effort and biomass for these two species is thought to
allow conclusions to be drawn for haddock based on the cod assessment. In Figure $7, \bar{F}_{6-7}$ generated on cod by Norwegian trawlers in Division IIa is plotted against \bar{F}_{5-7} generated by the same fleet on haddock. In Figure 8, the ratio of the biomasses ($3+$) of cod and haddock is plotted against the ratio of total international trawl catches of cod and haddock.

In both plots, the scatter of points is too large to allow accurate estimation of the current fishing mortality level on haddock. However, in both cases the 1984 point is close to the regressed line and since there is no other information on the level of exploitation in 1984, the trial VPA was accepted as the final.

The fishing mortalities and stock numbers from the haddock VPA are given in Tables 25 and 26. The historic trend in fishing mortality is given in Figure 9B.

4.8 Short-Term Projection of Stock Biomass and Catch

In Table 27 are given the different input data used in the 1985 and medium-term projections. As mentioned earlier, the weight-at-age in catches were revised for 1984. This weight-at-age series is also used for 1985 . Also, the 1984 fishing pattern is assumed for 1985. These data do not give an $F_{m a x}$ value on the yield per recruit curve as can be seen in Figure 10, Alternative 1. $F_{0.1}$ is almost equal to F_{1984}. Therefore, only one option is given for the short-term projection presented in the table below.

MANAGEMENT OPTIONS

Species: HADDOCK
Area : ICES Sub-areas I and II

1984				Management option for 1985	1985				1986	
Stock biom. (3+)	Spawn. stock biom.	$\bar{F}_{(4-7)}^{1)}$	$\begin{aligned} & \text { Catch } \\ & (3+) \end{aligned}$		Stock biom. (3+)	Spawn. stock biom.	$\bar{F}_{(4-7)}$	$\begin{aligned} & \text { Cateh } \\ & (3+) \end{aligned}$	Stock biom. (3+)	Spawn. stock. biom.
110	62	. 25	21	$\mathrm{F}_{1984}=\mathrm{F}_{1985}$	229	58	. 25	47	434	66

$\left.{ }^{1}\right)_{F_{0.1}}=0.23$
4.9 Medium-Term Projection of Stock Biomass and Catch

For the medium-term projection, several alternatives are given. Alternative 1 is the same as in the short-term projection. The Working Group expects that the strong 1982, 1983, and 1984 year classes will be more heavily exploited than the previous ones. The fishing mortalities are therefore increased with 0.1 for ages 3 and 4 are presented as Alternative 2: There is no $F_{\max }$ on the yield per recruit curve for this alternative either.

On the basis of stronger year classes and heavier fishing, the Working Group also considers a third alternative with the weight in the catch reduced to the same level as the weight in the stock. This represents
a change of weights for 3,4 , and 5 year olds. Together with the expected fishing pattern, this gives an $F_{\text {max }}$, as seen in Figure 10, Alternative 3. This $F_{\max }$ is almost the same as the expected \bar{F}_{4-7} in 1985, and this alternative is presented in the projection table. Also $F_{0.1}$ for the same situation is given as alternative 4.

North-East Arctic HADDOCK. Projections of stock and spawning stock biomass and catch.

Alternative	1			2			3			4		
Management strategy	$\begin{aligned} F_{84} & =0.24 \\ \left(F_{0.1}\right. & =0.23) \end{aligned}$			$\bar{F}_{4-7}=0.31$			$\begin{aligned} \bar{F}_{4-7} & =0.31 \\ \left(F_{\max }\right. & =0.34) \end{aligned}$			$F_{0.1}=0.19$		
Year	SB	SSB	Catch									
1985	229	58	47	229	58	75	229	58	42	229	58	27
1986	434	66	101	415	64	166	415	64	89	434	70	62
1987	737	109	181	664	94	260	665	94	148	728	114	106
1988		203			162			162			212	
1989		340			256			256			361	

1. Fishing pattern and fishing mortality as applied for 1984. Expected weight-at-age data.
2. Expected fishing pattern and weight-at-age data. Fishing mortalities in 1984 adjusted for the change in the 1984 fishing pattern.
3. Expected fishing pattern. Fishing mortalities as in 2. Weight-at-age data the same as used in 1983 ky the Working Group (Anon., 1984).
4. Expected fishing pattern and weight-at-age data as in VPA.

The stock and catch predictions for 1988 and 1989 are not given. because the estimates are considered to be very uncertain.

The spawning stock biomass of haddock is currently at a low level, and a significant increase will not occur until 1987, when about 25 per cent of the 1982 year class is expected to reach maturity. Also, the current low level of fishing mortalities means that a relatively large change in exploitation is needed to make a significant difference to the spawning stock biomass in 1986, even in relative terms.

The spawning stock biomass in 1987 will also be relatively insensitive to the 1985 TAC. For the long-term development in the spawning stock biomass, changes in the exploitation pattern may be much more crucial than the 1985 TAC.

5. DEFICIENCES IN DATA BASE

The deficiences in the data base were:
(a) Lack of age compositions from other countries than Norway, USSR, Spain and Federal Republic of Germany.
(b) Lack of age compositions for the second half of 1983 from USSR fisheries.
(c) Lack of weight-at-age data for years prior to 1982. Such data should always be given together with the age compositions.
(d) The results from the USSR bottom trawl surveys 1983-1984 should have been made available.
(e) Insufficient knowledge of the rate of maturation in years prior to 1982. The use of the published information produces a time series of the spawning stock which does not seem reasonable. Reliable information on maturation rates in the past is essential both for a stock and recruitment relationship and for the prediction of the spawning stock.

REFERENCES

Anon., 1983. Report of the Arctic Fisheries Working Group, Copenhagen, 21-28 September 1982. ICES C.M. 1983/Assess:2, 1-62 (mimeo.)

Anon., 1984a. Report of the Arctic Fisheries Working Group, Copenhagen, 15-22 September 1983. ICES C.M.1984/Assess:3, 1-62 (mimeo.)

Anon., 1984b. Preliminary report of the International 0-Group Fish Survey in the Barents Sea and Adjacent Waters in August-September 1984. ICES C.M. 1984/H:36 (mimeo.)

Dalen, J., Hylen, A., Jakobsen, I., Nakken, O., and Randa, K: 1984. Preliminary report of the Norwegian investigations on young cod and haddock in the Barents Sea during the winter 1984. ICES C.M. 1984/G:44, 1-26 (mimeo.)

Godö, O.R., Randa, K., and Smedstad, O.M. 1984a. Freliminary report of the Norwegian Groundfish Survey at Bear Island and West-Spitsbergen in the autumn 1983. ICES C.M.1984/G:46, 1-18 (mimeo.)

Codö, O.R., Nakken, O., and Raknes, A. 1984b. Acoustic estimates of spawning cod off Lofoten and Møre in 1984. ICES C.M.1984/G:47, 1-10 (mimeo.)

Hylen, A. and Nakken, 0. 1982. Stock size of North-east Arctic cod estimated from acoustic survey data 1982. ICES C.M.1982/G:61, 1-24 (mimeo.)

Hylen; A. and Nakken, 0. 1983. Stock size of North-east Arctic cod estimated from survey data 1982/1983. ICES C.M.1983/G:57, 1-14 (mimeo.)

Hylen, A. and Nakken O., 1984. Stock size of North-east Arctic cod, estimates from survey data 1983/1984. ICES C.M.1984/G:45, 1-12 (mimeo)

Nakken, O. and Ulltang, Ø. 1983. A comparison of the reliability of acoustic estimates of fish stock abundances and estimates obtained by other assessment methods in the North-east Atlantic. ICES Symp. Fish. Acoust., Bergen, Norway, June 1982. No. 38:1-19 (mimeo.)

Ponomarenko, I.Ya, 1982. Portion of mature cod specimens and sex ratio in different age and length groups within the 60's and 70 's. ICES C.M.1982/G: 18, 1-20 (mimeo.)

Saetersdal, G. 1954. Some investigations on the Arcto-Norwegian haddock. ICES C.M. 1954 (47) (mimeo.)

Sonina, M.A. 1981. The ratio of mature and immature haddock Melanogrammus Eeglefinus (L.) in the Barents Sea and Norwegian Seas. ICES C.M. 1981/G:23, 1-25 (mimeo.)

Table 1. COD. Total nominal catch (tonnes) by fishing areas
(landings of Norwegian coastal cod not included).

Year	Sub-area I	Division IIa	Division IIb	Total Catch
1960	357327	155116	91599	622042
1961	409694	153019	220508	783221
1962	548621	139848	220797	909266
1963	547469	117100	111768	776337
1964	206883	104698	126114	437695
1965	241489	100011	103430	444930
1966	292253	134805	56653	483711
1967	322798	128747	121060	572605
1968	642452	162472	269160	1074084
1969	679373	255599	262254	1197226
1970	603855	243835	85556	933246
1971	312505	319623	56920	689048
1972	197015	335257	32982	565254
1973	492716	211762	88207	792685
1974	723489	124214	254730	1102433
1975	561701	120276	147400	829377
1976	526685	237245	103533	867463
1977	538231	257073	109997	905301
1978	418265	263157	17293	698715
1979	195166	235449	9923	440538
1980	168671	199313	12450	380434
1981	137033	245167	16837	399037
1982	96576	236125	31029	363730
1983*	64803	200279	24910	289992

* Provisional figures

Expected Catches

1984	73000	184000	22000	279000

Table 2 Total nominal catches (thousand tonnes) by trawl and other gear for each area

ICES areas	Sub-Area I				Division IIa				Division IIb	
	Cod		Haddock		Cod		Haddock		cod	Haddock
Year	Traw1	Others	Trawl	Others	Trawl	Others	Trawl	Others	Trawl	Trawl
1967	238.0	84.8	73.8	34.3	38.7	90.0	20.5	7.5	121.1	0.4
1968	588.1	54.4	98.1	42.9	44.2	118.3	31.4	8.6	269.2	0.7
1969	633.5	45.9	41.3	47.7	119.7	135.9	33.1	7.1	262.3	1.3
1970	524.5	79.4	36.7	22.8	90.5	153.3	20.2	6.4	85.6	0.5
1971	253.1	59.4	27.3	29.0	74.5	245.1	15.0	6.6	56.9	0.4
1972	158.1	38.9	193.4	27.8	49.9	285.4	34.4	7.6	33.0	2.2
1973	459.0	33.7	241.2	42.5	39.4	172.4	13.9	9.4	88.2	13.0
1974	677.0	46.5	133.1	25.9	41.0	83.2	39.9	7.1	254.7	15.1
1975	526.3	35.4	103.5	18.2	33.7	86.6	34.6	9.7	147.4	9.7
1976	466.5	60.2	77.7	16.4	112.3	124.9	28.1	9.5	103.5	5.6
1977	471.5	66.7	57.6	14.6	100.9	156.2	19.9	8.6	110.0	9.5
1978	360.4	57.9	53.9	10.1	117.0	146.2	15.7	14.8	17.3	1.0
1979	161.5	33.7	47.8	16.0	114.9	120.5	20.3	18.9	8.1	0.6
1980	133.3	35.4	30.5	23.7	83.7	115.6	14.8	18.9	12.5	0.1
1981	91.5	45.1	19.0	17.9	77.2	167.9	21.8	18.7	17.2	0.5
1982	44.8	51.8	9.0	8.9	65.1	171.0	18.5	10.5	21.0	-
1983*	36.6	28.2	3.7	3.8	56.6	143.7	7.6	6.3	24.9	0.2
1984*	36.8	36.4	3.8	4.4	33.3	150.9	5.2	7.4	21.5	0.3

[^0]Table 3. North-East Arctic COD. Nominal catch (tonnes, whole weight) by countries (landings of Norwegian coastal cod not included). (Sub-area I and Divisions IIa and IIb combined). Data provided by Working Group members.

Year	Faroe Islands	France	German Dem.Rep.	Germany, Fed.Rep.	Norway	Poland	United Kingdom	U.S.S.R.	Others	Total all countries
1960	3306	22321	-	9472	231997	20	141175	213400	351	622042
1961	3934	13755	3921	8129	268377	-	158113	325780	1212	783221
1962	3109	20482	1532	6503	225615	-	175020	476760	245	909266
1963	-	18318	129	4223	205056	108	129779	417964	-	775577
1964	-	8634	297	3202	149878	-	94549	180550	585	437695
1965	-	526	91	3670	197085	-	89962	152780	816	444930
1966	-	2967	228	4284	203792	-	103012	169300	121	483704
1967	-	664	45	3632	218910	-	87008	262340	6	572605
1968	-	-	255	1073	255611	-	140387	676758	-	1074084
1969	29374	-	5907	5543	305241	7856	231066	612215	133	1197226
1970	26265	44245	12413	9451	377606	5153	181481	276632	-	933246
1971	5877	34772	4998	9726	407044	1512	$80 \quad 102$	144802	215	689048
1972	1393	8915	1300	3405	394181	892	58382	96653	166	565287
1973	1916	17028	4684	16751	285184	843	78808	387196	276	792686
1974	5717	46028	4860	78507	287276	9898	90894	540801^{17}	38453	1102434
1975	11309	28734	9981	30037	277099	7435	101834	$343580{ }^{1}$)	19368	829377
1976	11511	20941	8946	24369	344502	6986	89061	$343057{ }^{1}$)	18090	867463
1977	9167	15414	3463	12763	388982	1084	86781	$369876^{1)}$	17771	905301
1978	9092	9394	3029	5434	363088	566	35449	267 1381)	5525	698715
1979	6320	3046	547	2513	294821	15	17991	105846	9439	440538
1980	9981	1705	233	1921	232242	3	10366	115194	8789	380434
1981	12825	3106	298	2228	277818	-	5262	83000	14500	399037
1982	11998	761	302	1717	287525	-	6601	40311	14515	363730
1983*	11106	126	473	1243	234000	-	5840	22975	14229	289992

* Provisional fie

1) Murman cod included

Table 4 North-East Arctic COD and HADDOCK catches ('000 tonnes) and total trawl effort in Norwegian units

AREAS	SUB-AREA I			DIVISION IIa			DIVISION IIb	Total
Year	$\begin{aligned} & \text { CPSE } \\ & \times 10^{-3} \end{aligned}$	$\begin{aligned} & \mathrm{ct} \\ & x 10^{-3} \end{aligned}$	$\begin{aligned} & \text { Trawl effort } \\ & \times 10^{-3} \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \times 10^{-3} \end{aligned}$	$\begin{aligned} & c t \\ & x 10^{-3} \end{aligned}$	$\begin{aligned} & \text { Trawl effort } \\ & \times 10^{-3} \end{aligned}$	$\begin{aligned} & \mathrm{Ct} \\ & \times 10^{-3} \end{aligned}$	Trawl effort $\times 10^{-3}$
1972	0.96	351.5	366.1	1.17	84.3	72.0	35.2	473.5
1973	1.40	700.2	500.1	1.09	53.3	48.9	101.2	622.7
1974	2.02	810.1	401.0	1.70	80.9	47.5	269.8	584.4
1975	2.08	629.8	302.7	1.80	68.3	37.9	130.8	404.5
1976	1.96	544.2	277.6	1.93	140.4	72.7	109.1	406.2
1977	1.65	529.1	320.6	1.30	120.8	92.9	119.5	489.6
1978	1.50	414.3	276.2	1.26	132.7	105.3	18.3	394.2
1979	1.21	209.3	172.9	1.24	135.2	109.0	8.7	289.1
1980	1.92	163.8	85.3	1.49	98.5	66.1	12.6	158.6
1981	2.06	110.5	53.6	1.39	98.4	70.7	17.7	134.9
1982	1.82	53.8	29.5	1.39	83.6	60.1	31.0	109.9
1983**	1.85	40.3	21.7	1.22	63.0	51.6	25.1	91.2
1984*		40.6			38.5		22.1	

* Projected figures

Table 5. North-East Arctic COD.
Catch per unit effort (tonnes, round fresh)

	Sub-area 1			Division IIb			Division IIa		
Year	Norway ${ }^{1)}$	U.K. ${ }^{2)}$	USSR ${ }^{31}$	Norway ${ }^{1)}$	U.K. ${ }^{2)}$	USSR ${ }^{31}$	Norway ${ }^{1 /}$	U.K. ${ }^{2)}$	Norway ${ }^{4)}$
1960		0.075	0.42		0.105	0.31		0.067	3.0
1961		0.079	0.38		0.129	0.44		0.058	3.7
1962		0.092	0.59		0.133	0.74		0.066	4.0
1963		0.085	0.60		0.098	0.55		0.066	3.1
1964		0.056	0.37		0.092	0.39		0.070	4.8
1965		0.066	0.39		0.109	0.49		0.066	2.9
1966		0.074	0.42		0.078	0.19		0.067	4.0
1967		0.081	0.53		0.106	0.87		0.052	3.5
1968		0.110	1.09		0.173	1.21		0.056	5.1
1969		0.113	1.00		0.135	1.17		0.094	5.9
1970		0.100	0.80		0.100	0.80		0.066	6.4
1971		0.056	0.43		0.071	0.16		0.062	10.6
1972	0.90	0.047	0.34	0.59	0.051	0.18	1.08	0.055	11.5
1973	1.05	0.057	0.56	0.43	0.054	0.57	0.71	0.043	6.8
1974	1.75	0.079	0.90	1.94	0.106	0.77	1.19	0.028	3.4
1975	1.82	0.077	0.85	1.67	0.100	0.43	1.36	0.033	3.4
1976	1.69	0.060	0.66	1.20	0.081	0.30	1.69	0.035	3.8
1977	1.54	0.052	0.50	0.91	0.056	0.25	1.16	0.044	5.0
1978	1.37	0.062	0.37	0.56	0.044	0.08	1.12	0.037	7.1
1979	0.85	0.046	0.36	0.62	-	0.06	1.06	0.042	6.4
1980	1.47	-	0.36	0.41	-	0.16	1.27	USSR	5.0
1981	1.42	-	0.41	(0.96)	-	0.07	1.02	0.35	6.2
1982	1.30	-	0.35	-	-	0.26	1.01	0.34	6.4
1983	1.58	-	0.31	(1.31)		0.36	1.05	0.38	7.6
1984 ${ }^{\text {K }}$			-			-		(0.30)	7.0

м) Projected figures for January-March

1) Norwegian data - tonnes per 1000 tonne-hours fishing
2) United Kingdom data - tonnes per 100 tonne-hours fishing
3) USSR data - tonnes per hour fishing
4) Norwegian data - tonnes per gill-net boat week in Lofoten

Table 6. North East Arctic COD.
Catch per unit effort. Data from the Lofoten fishery are given in gutted weight with head off.

Year	Norwegian vessels			
	Catch (kg per man per day worked in the Lofoten fishery (Division IIa))			
	Gill-net	Long-line	Hand-line	
1960	77.8	148.3	56.7	
1961	101.5	141.1	75.5	
1962	94.9	134.4	57.8	
1963	80.8	116.3	56.2	
1964	104.5	62.1	51.5	
1965	81.8	78.3	68.4	
1966	121.8	131.9	72.6	
1967	107.9	245.4	120.7	
1968	158.0	184.6	61.5	
1969	170.6	200.4	142.8	
1970	180.3	304.3	127.6	
1971	334.3	510.7	192.7	
1972	318.7	400.1	110.2	
1973	189.7	366.5	112.1	
1974	96.3	146.4	63.9	
1975	122.0	188.3	96.1	
1976	131.4	258.4	134.8	
1977	173.2	279.6	143.5	
1978	237.6	381.7	134.6	
1979	201.3	306.0	125.1	
1980	169.9	207.8	100.9	
1981	217.0	327.9	109.6	
1982	199.1	753.4	252.0	
1983	308.0	348.8	134.0	
1984	301.0	208.4	95.6	

Table 7. Length at age from the Norwegian surveys in 1978-1984 in cm . The 1975 year class is indicated. The values for 7 and 8 years old fish are uncertain.

Age	1978	1979	1980	1981	1982	1983	1984
3	32.13	33.10	34.15	35.50	37.55	34.85	35.79
4	45.86	42.02	42.50	44.65	46.32	46.77	49.23
5	54.19	53.27	52.45	52.96	54.71	56.02	57.89
6	64.63	64.37	63.46	61.28	63.09	64.45	67.39
7	67.56	74.73	73.58	69.59	70.84	73.30	79.60
8	76.87	82.97	83.61	77.90	82.87	80.38	82.20

Table 8. Input data to the VPA-run on CCD. Weight in catches and weight in stock versus age

Age	Weight in stock and catches 1982 and earlier	Weight in stock		Weight in catches	
		1984	1983	1984	
3	0.65	0.36	0.53	0.90	1.04
4	1.00	1.01	1.20	1.46	1.68
5	1.55	1.63	1.90	2.19	2.52
6	2.35	2.53	2.91	2.78	3.20
7	3.45	3.45	3.97	3.45	3.97
8	4.70	6.17	4.70	4.70	4.70
9	7.70	6.17	6.17	6.17	4.70
10	9.25	7.70	7.70	7.70	6.17
11	10.85	9.25	9.25	9.25	7.70
12	12.50	10.85	10.85	10.85	9.25
13	13.90	12.50	12.50	12.50	10.85
14	15.00	13.90	13.90	13.90	12.50
$15+$		15.00	15.00	15.00	15.00

Table 9. North-East Arctic COD.
Maturity ogives used in the assessment, Alternative 1, for the estimate of the spawaing stock biomass

Period	1946-1982 ${ }^{1}$	$1983{ }^{2}$	$1984{ }^{3}$
Age	Percentage mature		
3		1	
4	5	8	1
5	10	10	18
6	34	30	32
7	65	73	69
8	82	88	100
9	92	97	100
10	100	100	100
11	100	100	100
12	100	100	100
13	100	100	100
14	100	100	100
$15+$	100	100	100

${ }^{1}$ Hylen and Nakken, 1982
${ }^{2}$ Hylen and Nakken, 1983
$3_{\text {Hylen }}$ and Nakken, 1984

Table 10. North-East Arctic COD.
Year class strength. Number per hour trawling for USSR Young Fish Surveys is for 3 year old fish

Year class	USSR Survey No. per hour trawling			USSR assessment	0-group survey index (Logarithmic) All areas	Virtual Population No. of 3 yeer olds $x 10^{-6}$$M=0.2$
	$\begin{aligned} & \text { Sub- } \\ & \text { area I } \end{aligned}$	$\begin{aligned} & \text { Divi- } \\ & \text { sion IIb } \end{aligned}$	Mean			
1957	12	16	13	- Average		791
1958	16	24	19	+ Average		919
1959	18	14	16	+ Average		731
1960	9	19	13	Poor		474
1961	2	2	2	Poor		339
1962	7	4	6	Poor		778
1963	21	120	76	Rich		1584
1964	49	45	46	Rich		1293
1965	<1	<1	<1	Very poor	+	170
1966	2	<1	1	Very poor	0.02	112
1967	1	<1	1	Very poor	0.04	197
1968	7	1	5	Poor	0.02	405
1969	11	6	9	Poor	0.25	1016
1970	74	86	76	Rich	2.51	1819
1971	37	24	32	Average	0.77	524
1972	53	17	40	Average	0.52	622
1973	74	5	46	Rich	1.48	615
1974	6	1	4	Poor	0.29	350
1975	93	4	62	Rich	0.90	654
1976	4	<1	3	Poor	0.13	214
1977	2	1	1	Poor	0.49	165
1978	1	3	2	Poor	0.22	169
1979	<1	8	3	Poor	0.40	(137)
1980	(<1)	(<1)	(<1)	Poor	0.13	(69)
1981	(<1)	(<1)	(<1)	Poor	0.10	(66)
1982					0.59	
1983		$!$ -			1.69	
1984		!			1.55	

0
() = estimated
*) $=$ USSR Murman cod included for 1974-78.

Table 11. North-East $C O D$. Results from the Norwegian bottom trawl survey in the Barents Ses. Index of number of fish in each year class.

Year	YEAR CLASS												
	1983	1982	1981	1980	1979	1978	1977	1976	1975	1974	1973	1972	TOTAL
1981				0.7	11.0	8.6	16.9	34.1	37.9	4.8	1.0	0.3	115.3
1982			0.1	0.9	16.1	20.4	21.4	16.0	15.8	1.4	0.2		92.3
1983		44.6	5.9	10.8	28.0	31.9	14.3	4.7	3.0	0.6			143.8
1984	355.3	126.6	60.2	19.2	15.6	9.4	3.0	0.4	0.2				589.9

Table 12. COD. Results from the Norwegian bottom trawl survey in the Svalbard area. Index of number of fish in each year class.

Year	year class												
	1982	1981	1980	1979	1978	1977	1976	1975	1974	1973	1972	1971	TOTAL
1981			0.1	22.2	9.0	5.5	1.6	6.1	3.8	0.7	0.4	0.4	49.8
1982		1.5	4.0	22.3	9.6	2.8	1.9	2.9	0.4	0.1	0.1		45.6
1983	14.6	5.1	6.2	9.5	3.0	2.5	1.3	1.6	0.4	0.2			44.4

Table 13. COD. Results from the USSR bottom trawl survey in the Barents Sea and the Norwegian Sea. Mean catch in numbers caught per hour of trawling.

Year	A GE							
	3	4	5	6	7	8	TOTAL	
	5.9	33.8	9.8	4.3	2.9	2.1	59	
1980	5.0	3.8	10.6	2.9	1.0	1.2	25	
1981	5.3	3.9	2.2	4.6	0.8	0.5	17	
1982	3.1	2.9	1.7	0.4	1.1	0.5	10	

Data provided ky Working Group members 1982.

Table 14. COD. Stock numbers in millions at 1 January 1982 and 1983 from Hylen and Nakken (1982) (1983).

Year	A G E												
	1	2	3	4	5	6	7	8	9	10	11	12	13
1982	1	4	81	105	103	95	154	23	12	6	3	2	1
1983		27	29	81	99	58	43	50	13	5	2	+	+
1984	2382	506	121	58	59	54	30	19	12	4			

North-East Arctic COD.
Virtual Population Analysis. Catch in numbers. Unit: thousands.

	1967	- 1963	1964	1963	1466	1967	1468	1964	1410	1×71	1972
3	42416	13190	5296	15725	25937	34467	5709	2507	7104	7754	35536
4	170566	106984	45912	25999	55644	100048	174585	24545	10142	13739	45431
5	167241	205549	y 7950	78299	34676	69235	267961	238511	25813	11831	20332
6	89460	95498	So5 57	-3511	42559	22001	107051	181239	137029	4527	12089
7	28297	35518	19042	25444	37169	26295	26701	79363	96420	59290	7918
6	21996	16221	9162	8430	13 ¢	25139	10599	26989	31420	52003	34885
9	7956	11894	6146	3569	5077	11323	11597	13463	8.753	12093	22315
10	2728	3684	3253	146%	1445	2324	Sos\%	5192	3249	2434	4572
11	2603	102%	783	1161	380	687	657	1413	1232	762	1215
12	1647	1023	172	131	403	316	122	414	260	418	353
13	342	498	387	6%	77	225	124	121	106	149	315
14	200	129	264	91	9	40	70	25	39	42	121
15+	103	157	131	174	70	14	40	46	35	2.5	40
IOTAL	535605	491574	248025	22908%	251976	352179	612089	574026	323742	170067	191022
	1974	1975	1976	1977	1476	1974	1900	1481	1987	1983	1984
3	91855	45782	85337	39594	78822	3600	3911	3407	844%	3108	3481
4	437377	59793	114541	168609	45400	77464	17006	9466	20953	19594	10807
5	203772	226646	79993	136335	88495	43677	81936	20803	19345	20473	22340
6	47006	118567	118236	52425	56023	31943	40061	63435	28004	17656	23575
7	12630	29522	47872	61821	254107	16815	17664	21788	42496	17014	16861
8	4370	9353	13962	23530	31621	8274	7442	9933	8545	10329	7003
4	2523	2617	4051	5654	4408	10974	- 3308	4267	2×18	2545	4918
10	56.37	1555	936	$1 \geqslant 21$	1227	1785	3140	1311	708	640	097
11	2127	1920	SS8	010	913	427	678	482	271	229	<05
12	322	575	442	271	446	103	19	109	200	74	104
13	151	231	139	122	748	59	24	37	27	58	44
14	63	15	20	92	48	30	20	3	5	20	15
$15+$	62	37	33	54	31	43	8	1	5	5	3
TOTAL	807805	496120	$40594{ }^{\circ}$	490451	359009	200224	1730́09	135440	132535	99741	$90 \leq 15$

Table 16. North-East Arctic COD.
Virtual Population Analysis. Fishing mortality coefficient.
Unit: Year-1. Natural mortality coefficient $=0.20$.

	1962	1963	1964	1965	1900	1907	1908	1969	1970	1971	1472	1973
3	0.006	0.031	0.017	0.023	0.040	0.030	0.024	0.023	0.041	0.021	0.039	0.196
4	0.305	0.236	0.144	0.111	0.104	0.152	0.207	0.221	0.142	0.103	0.167	0.199
5	0.648	0.738	0.352	0.384	0.212	0.181	0.408	0.481	0.332	0.228	0.298	0.353
6	0.823	0.999	0.481	0.445	0.379	0.202	0.467	0.537	0.371	0.236	0.384	0.392
7	0.607	0.962	0.569	0.397	0.465	0.427	0.401	0.768	0.619	0.518	0.314	0.419
8	0.654	0.873	0.716	0.515	0.566	0.608	0.520	0.927	0.657	0.828	0.067	0.038
9	0.800	0.935	1.047	0.690	0.080	0.835	0.764	1.132	0.959	0.930	1.117	1.001
10	0.963	1.293	0.653	0.770	0.709	0.788	0.725	0.949	0.970	0.771	1.222	0.713
11	0.808	1.333	1.059	0.734	0.400	0.862	0.535	1.128	0.036	0.039	1.216	0.5 .76
12	0.810	0.910	0.864	0.491	0.616	0.859	0.3 ל	0.782	0.432	0.467	0.704	0.635
13	0.673	0.621	1.145	1.052	0.006	0.864	1.151	0.721	0.466	0.474	0.768	0.340
14	0.500	0.490	0.610	0.960	0.370	0.750	0.740	0.680	0.540	0.340	0.910	0.310
$15+$	0.500	0.490	0.810	0.960	0.370	0.750	0.740	0.680	0.340	0.340	0.910	0.310
$(5-10) u$	0.749	0.967	0.660	0.334	0.502	0.517	0.548	0.799	0.723	0.385	0.067	0.586

		1974	1975	1970	1477	1978	1979	1980	1981	1902	1983	1984
	3	0.214	0.084	0.166	0.133	0.142	0.045	0.026	0.023	0.075	0.051	0.060
	4	0.496	0.210	0.312	0.560	0.221	0.203	0.119	0.082	0.167	0.232	0.250
	5	0.537	0.521	0.479	0.754	0.667	0.344	0.342	0.208	0.241	0.282	0.450
	6	0.507	0.701	0.372	0.083	0.648	0.543	0.011	0.485	0.476	0.360	0.600
	7	0.445	0.703	0.695	0.67 .8	0.652	0.662	0.666	0.816	0.710	0.599	0.700
	б	0.433	0.703	0.880	0.400	0.954	0.766	0.708	1.039	0.648	0.786	0.600
	9	0.403	0.604	0.774	1.204	1.280	1.047	0.904	1.254	1.038	0.775	0.500
	10	0.937	0.460	0.451	0.76 S	0.981	0.929	1.071	1.104	0.110	0.099	0.500
	11	0.913	1.115	0.303	0.603	1.742	1.222	1.220	1.042	0.118	0.536	0.500
	12	0.601	0.681	0.654	0.230	1.312	1.189	0.707	0.651	1.081	0.433	0.500
	13	1.739	1.255	0.342	0.618	2.049	0.586	1.053	1.142	0.327	0.761	0.500
	14	0.700	0.860	0.450	0.400	0.530	0.500	0.560	0.340	0.440	0.430	0.450
	$15+$	0.700	0.860	0.430	0.400	0 0.5	0.560	0.500	0.340	0.440	0.430	0.450
	5-10)u	0.555	0.610	0.043	0.833	0.927	0.71)	0.717	0.017	0.000	0.384	0.356

North-East Arctic COD.
Table 17. Stock size in numbers. Unit: thousands. - Biomass totals. Unit: tonnes. All values are given for 1 January.

	1962	1963	1964	1965	1406	1907	1406	1409	1470	1971	1972	1973
		473648	338965	776297	1583341	1243334	170103	112218	197121	405034	1013616	1818561
3	731060	473648 560267	375876	272737	623016	1245998	1027772	135920	89743	154922	324012	799599
4 5	711544 385017	560267 429262	375876 362442	266360	199856	459904	875420	684297	69191	63790	114450	224845
6	173646	164112	168008	208774	147805	132414	314183	476723	346502	49853	41520	6.9585
7	67909	63439	49469	65058	109496	d2820	¢ 6550	161273	228059	160351	32244	23192
8	50000	30293	19535	229411	46×06	56328	44227	48534	61243	100490	78182	19283
4	15729	21279	10357	7815	11224	21705	23057	21523	15728	21104	35933	32641
10	4792	5785	6840	2971	3211	4654	7730 1734	9024 3065	3681 2659	4933 1762	7011 1868	1091
11	5112	1498	1300	2434	1129	1244	1734	3065	2059	1762 1239		453
12	3230	1863	323	369	957	583	447 146	831 257	612 511	1239 432	762 640	509
13	d73	1176	615	112	165	423	146	257 51	511 102	160	220	243
14	779	364	518	160	32	83	146	51	102	195	73	226
$15+$	236	444	2. 37	315	24.5	29	90	102	92	95	73	226
TOTAL NO	2147976	1752431	1334525	1048355	2727506	3299637	2554708	1653822	1057419	964767	1653390	3000452
SPS No	80801	62704	1 59745	+67123	0374 ?	65100	70234	83391	86833	130816	124688	64070
TOT.BIOI	2900074	2513295	1406201	2189410	3028463	3856483	3980021	3419435	2427719	1870436	2052081	2972262
SPS BIOM	477312	378725	242659	213831	341265	460042	440169	473221	470546	685002	080838	
	1974	1975	1976	1477	1978	1974	1980	14×1	19×2	1983	1984	1985
3	524448	621846	014977	350435	654332	214582	163551	166543	156004	66993	63585	*****
4	1221955	346698	468275	426622	251222	464688	167758	131847	134419	105998	55081	50001
5	5362006	017215	2301122	280633	1983 88	104821	310695	121445	99408	91612	67515	34229
6	129306	250690	296617	196635	108119	8335%	95712	180734	81112	63483	50>96	35246
7	3×511	63760	104217	137047	48218	37848	39644	42536	91129	41239	36531	25431
\checkmark	12486	20204	25841	42574	30479	16844	10005	10079	15406	36669	16554	14652
7	8344	6376	8190	8727	14085	18341	0410	6457	4833	3140	13677	8337
10	4886	450%	2823	3093	2137	3207	5770	2126	1509	1401	1938	0792
11	3863	3108	2346	1472	1175	655	105%	1478	577	604	570	463
12	718	1270	と 54	1419	$0\rangle 9$	101	158	244	427	231	289	283
15	147	349	526	284	418	145	40	54	116	119	122	144
14	130	78	31	300	128	47	00	11	15	63	43	61
$15+$	154	70	106	180	136	115	20	4	15	16	9	28
TOTAL NO	7486355	1935029	1754910	156947\%	1330440	1004704	806170	672072	506541	414065	515415	
SFS $\quad \therefore 0$	35868	35403	40802	5805\%	76211	39565	240105	27063	123228	107157	91213	
TOT. $810: 1$	3070231	2.737103	2515613	2155007	1808096	1415847	1286400	1153613	1008575	$80887 ?$	134566	
SPS BIJ:1	237440	217371	? 34071	317320	413426	229701	10550	151971	411491	374893	573731	

Table 18. North-East Arctic COD.
Input data for the catch and stock projections. Input variables by age group.

Age	$\begin{gathered} 1985 \\ \text { stock size } \end{gathered}$	fishing pattern	natural mortality	maturity ogive	weight in the catch	weight in the stock
3	400000	0.15	0.20	0.00	1.040	0.530
4	50801	0.35	0.20	0.01	1.680	1.200
5	34229	0.45	0.20	0.18	2.520	1.900
6	35246	0.60	0.20	0.32	3.200	2.910
7	25431	0.70	0.20	0.69	3.970	3.970
8	14852	0.60	0.20	1.00	4.700	4.700
9	8337	0.50	0.20	1.00	6.170	6.170
10	6792	0.50	0.20	1.00	7.700	7.700
11	963	0.50	0.20	1.00	9.250	9.250
12	283	0.50	0.20	1.00	10.850	10.850
13	144	0.50	0.20	1.00	12.500	12.500
14	61	0.45	0.20	1.00	13.900	13.900
15+	28	0.45	0.20	1.00	15.000	15.000
	$\begin{gathered} 1000 \\ \text { individuals } \end{gathered}$				kg	kg

Recruitment: $1985 \quad 400$ millions
(age 3 years) 19861500 millions 19871500 millions

Table 19. North-East Arctic HADDOCK.
Total nominal catch (tonnes) by fishing areas.
(Data provided by Working Group members.)

Year	Sub-area I	Division IIb	Division IIa	Total
1960	125675	1854	27925	155434
1961	165165	2427	25642	193234
1962	160972	1727	25189	187888
1963	124774	939	21031	146744
1964	79056	1109	18735	98900
1965	98505	939	18640	118079
1966	124115	1614	34892	160621
1967	108066	440	27980	136486
1968	140970	725	40031	181726
1969	88960	1341	40208	130509
1970	59493	497	26611	86601
1971	56300	435	21567	78302
1972	221183	2155	41979	265317
1973	283728	12989	23348	320065
1974	159037	15068	47033	221138
1975	121686	9726	44330	175742
1976	94064	5649	37566	137279
1977	72159	9547	28452	110158
1978	63965	979	30478	95422
1979	63841	615	39167	103623
1980	54205	68	33616	87889
1981	36834	455	39864	77153
1982	17948	2	29005	46955
1983*	7550	185	13872	21607

*Provisional figures.

EXPECTED CATCHES

1984	8000	+	13000	21000

Table 20. North-East Arctic HADDOCK. Nominal catches (tonnes) by countries. (Sub-area I and Divisions IIa and IIb combined). (Data provided by Working Group members.)

Year	Faroe Islands	France	German Dem.Rep.	Germany, Fed.Rep.	Norway	Poland	United Kingatom	U.S.S.R.	Others	Total
1960	172	-	-	5597	47263	-	45469	57025	125	155651
1961	295	220	-	6304	60862	-	39650	85345	558	193234
1962	83	409	-	2895	54567	-	37486	91910	58	187438
1963	17	363	-	2554	59955	-	19809	63526	-	146224
1964	-	208	-	1482	38695	-	14653	43870	250	99158
1965	-	226	-	1568	60447	-	14345	41750	242	118578
1966	-	1072	11	2098	82090	-	27723	48710	74	161778
1967	-	1208	3	1705	51954	-	24158	57346	23	136397
1968	-	-	-	1867	64076	-	40129	75654	-	101726
1969	2	-	309	1490	67549	-	37234	24211	25	130820
1970	541	-	656	2119	37716	-	20423	26802	-	87257
1971	81	-	16	896	45715	43	16373	15778	3	78905
1972	137	-	829	1433	46700	1433	17166	196224	2231	266153
1973	1212	3214	22	9534	86767	34	32408	186534	2501	322626
1974	925	3601	454	23409	66164	3045	37663	78 5481)	7348	221157
1975	299	5191	437	15930	55966	1080	28677	$650151)$	3163	175758
1976	537	4459	348	16660	49492	986	16940	42 4851)	5358	137265
1977	213	1510	144	4798	40118	-	10878	52 2101)	287	110158
1978	466	1411	369	1521	39955	1	5766	$458951)$	38	95422
1979	343	1198	10	1948	66849	2	6454	26365	454	103623
1980	497	226	15	1365	61886	-	2948	20706	246	87889
1981	381	414	22	2398	58856	-	1682	13400	-	77153
1982	496	53	-	1258	41421	-	827	2900	-	46955
1983*	428	-	1	729	19371	-	259	680	139	21607

*Provisional figures. 1) Murman haddock included.

Table 21. North-East Arctic HADDOCK. Catch per unit effort

Year	Sub-area I		Division IIB		Division IIa	
	Norway ${ }^{1)}$	$\begin{aligned} & \text { United }^{2)} \\ & \text { Kingdom } \end{aligned}$	Norway ${ }^{1)}$	$\begin{aligned} & \text { United }^{2} \\ & \text { Kingdom } \end{aligned}$	Norway ${ }^{1)}$	$\begin{aligned} & \text { United }{ }^{2)} \\ & \text { Kingdom } \end{aligned}$
1960		33		2.8		34
1961		29		3.3		36
1962		23		2.5		42
1963		13		0.9		33
1964		18		1.6		18
1965		18		2.0		18
1966		17		2.8		34
1967		18		2.4		25
1968		19		1.0		50
1969		13		2.0		42
1970		7		1.0		31
1971		8		3.0		25
1972	0.06	14	0.02	23.0	0.09	18
1973	0.35	22	0.18	20.0	0.39	20
1974	0.27	20	0.09	15.0	0.51	74
1975	0.26	15	0.06	4.0	0.44	60
1976	0.27	10	+	3.0	0.24	38
1977	0.11	4	+	0.2	0.14	16
1978	0.13	5	+	4.0	0.14	15
1979	0.36	-	0.07	-	0.18	-
1980	0.45	-	+	-	0.22	-
1981	0.64	-	-	-	0.37	-
1982	0.51	-	-	-	0.38	-
1983	0.27	-	(0.04)		0.17	
1984*						

*Projected figures

1) Norwegian data - tonnes per 1000 tonne-hours fishing
2) United Kingdom data - tonnes per 100 tonne-hours fishing

Table 22. North-East Arctic HADDOCK.
Year class strength. The number per hour trawling for USSR Young Fish Surveys is for 2 year old fish.

Year class	USSR Survey No.per hour trawling Sub-area I	0-group survey index (Logarithmic) All areas	Virtual Fopulation No. of 3 year olds x $\left.10^{-6^{*}}\right)$
1957	9		242
1958	4		109
1959	14		241
1960	40		274
1961	50		320
1962	3		100
1963	9		243
1964	12		291
1965	<1	0.01	20
1966	<1	0.01	17
1967	13	0.08	164
1968	<1	+	97
1969	69	0.29	1025
1970	33	0.64	270
1971	3	0.26	54
1972	9	0.16	49
1973	8	0.26	56
1974	35	0.51	115
1975	96	0.60	171
1976	13	0.38	143
1977	1	0.33	18
1978	<1	0.12	6
1979	<1	0.20	(18)
1980	<1	0.15	(21)
1981	(<1)	0.03	(23)
1982		0.38	
1983		0.62	
1984		0.78	

() = Estimated
*) = USSR Murman haddock included for 1974-77.

Table 23. North-East Arctic HADDOCK.
Results from the Norwegian bottom trawl survey in the Barents Sea.
Index of number of fish in each year class.

Year	YEAR CLASS											
	1983	1982	1981	1980	1979	1978	1977	1976	1975	1974	1973	Total
1981				0.3	4.8	2.3	9.5	2.0	6.1	0.5	0.2	25.7
1982			0.5	0.9	1.8	2.1	2.2	5.5	2.7	0.2		15.9
1983		314.5	5.7	4.1	3.8	1.9	2.3	3.9	1.8			338.9
1984	663.2	355.8	15.2	1.6	0.7	0.2	0.3	0.4				1037.4

Table 24. North-East Arctic HADDOCK.
Virtual Population Analysis. Catch in numbers - Unit: thousands.

	1962	1963	1464	1465	1966	1967	1408	1969	1410	1971	1972	1973
3	39604	28567	22305	3911	20157	15918	057	1520	23004	1979	230229	70204
4	39604 30947	72995	49102	40161	22469	41373	67632	1905	24198	24359	22240	258173
5	49028	19035	30592	40032	02724	13505	41207	44526	1 ¢70	1258	42849	24018
6	35927	13627	5000	12578	28040	25736	7740	16956	21445	418	3196	$6 \checkmark 72$
7	3209	9290	3519	1672	5711	8878	15594	3611	7448	9279	1606	418
\checkmark	1344	1245	2709	470	318	1617	2292	4925	1974	3056	0736	422
9	1778	561	$\checkmark 32$	893	435	218	655	1624	1478	826	2630	1680
10	243	404	104	122	188	176	182	315	726	1043	896	525
11	247	74	206	274] 86	125	101	43	106	369	988	146
12	4 S?	84	234	173	25	70	115	45	26	131	538	340
1.5	20	169	121	14	8	27	18	14	92	27	53	68
$14+$	8	41	07	205	7	7	19	2	19	4	42	13
TOTAL	160832	146100	115631	108885	$14732 \times$	107686	134285	77542	62166	43248	312009	363479

	1974	1975	1976	1977	1978	1974	1980	1981	1ソธ2	1983	1984
3	4604	10037	13989	55467	47311	17540	027	486	do 3	704	1482
4	41701	14089	13449	22.1043	18812	35240	22878	2561	y00	1930	2681
5	88111	33871	60138	7360	41176	10645	21144	22124	3372	884	1903
6	5827	49712	20784	2386	1389	1429	2971	10685	12203	1374	311
7	4138	2135	401544	1781	1020	812	250	1034	2025	5282	553
8	382	1236	1247	11043	2596	540	504	162	344	906	1500
\bigcirc	617	92	1349	311	0215	1400	230	162	75	52	299
10	2043	131	193	388	102	2310	842	72	60	37	65
11	955	500	279	96	258	101	1249	530	$y 1$	29	14
12	276	147	652	101	3	87	111	264	520	21	24
13	458	53	351	84	74	2	35	27	204	21	19
$14+$	143	92	40	98	65	33	13	42	54	91	146
TAL	154315	112095	49170	107800	82567	70301	31530	38249	21131	9331	4497

North-East Arctic HADDOCK.
Virtual Population Analysis. Fishing mortality ceofficient - Unit: Year-1 Natural mortality coefficient $=0.20$

		190 ?	1963	1964	1963	1966	1967	1968	1469	1970	1971	1972	1973	
	3	0.200	0.122	0.060	10.067	0.126	0.002	0.057	0.102	0.108	0.023	0.283	0.336	
	4	0.595	0.680	0.317	0.235	0.388	0.300	0.402	0.149	0.233	0.268	0.378	0.593	
	5	1.04%	0.935	0.690	7.462	0.375	0.427	0.554	0.506	0.207	0.184	1.059	0.918	
	6	1.043	0.992	0.859	0.090	0.722	0.494	0.467	0.536	0.206	0.148	0.962	0.466	
	7	0.620	0.956	0.770	0.655	0.600	0.510	0.059	0.415	0.432	0.416	0.416	0.302	
	\succ	0.603	0.525	0.844	0.497	0.497	0.554	0.060	0.423	0.420	0.314	0.609	0.182	
	9	ก. 978	0.652	0.320	0.772	0.436	0.353	0.457	0.433	0.302	0.311	0.488	0.297	
	10	0.400	0.633	0.235	0.261	10.359	0.315	0.562	0.417	0.531	0.258	0.050	0.167	
	11	0.407	0.71%	0.780	0.490	0.798	0.568	0.301	0.247	0.405	0.303	0.414	0.206	
	12	- 0.719	0.230	1.953	1.883	0.295	0.937	$1.101)$	0.202	0.252	0.645	0.979	0.244	
	13	0.600	0.600	0.600	0.600	0.607	0.600	0.600	0.400	0.400	0.400	0.600	0.300	
	$14+$	0.607	0.600	0.600	0.600	0.000	0.6015	0.0015	0.400	0.400	0.400	0.000	0.300	
6	4-7)u	0.327	0.891	0.659	0.511	0.621	0.433	0.516	0.402	0.330	0.254	0.704	0.570	5
		1974	1975	1976	1477	147.8	1974	1980	1981	1482	1483	1984		
	3	0.2211	0.754	0.321	0.756	0.501	0.145	11.035	0.101	0.057	0.038	0.100		
	4	0.347	0.569	0.634	1.265	0.62 .9	0.502	0.283	0.215	0.273	0.169	0.200		
	5	0.41 ?	0.510	0.001	0.890	0.663	0.922	0.074	0.490	0.483	0.471	0.250		
	6	0.594	0.432	0.704	0.483	0.405	0.884	0.730	ก.853	0.355	0.371	0.300		
	7	0.513	0.453	0.752	17.030	U.040	0.441	0.505	0.012	0.322	0.261	0.250		
	8	0.499	0.333	0.524	0.477	0.445	0.40%	0.544	0.429	0.422	0.542	0.200		
	9	0.437	0.212	0.742	0.237	U. 545	0.486	0.500	0.335	0.561	0.103	0.180		
	17	0.712	0.154	0.913	0.491	0.187	0.400	0.580	ก. 186	0.215	0.304	0.180		
	11	0.502	0.374	0.564	2.201	0.719	0.328	0.412	0.473	0.578	0.151	0.180		
	12	0.741	0.134	1.244	0.409	0.582	0.570	0.345	0.316	1.231	0.139	0.180		
	13	0.600	0.300	0.2100	0.300	$0.04{ }^{\text {a }}$	0.475	0.472	0.130	0.100	0.220	0.180		
	$14+$	0.6130	0.300	0.500	0.500	0.600	0.475	0.473	0.130	0.180	0.220	0.180		
(4-7)	0.480	0.492	0.073	0.317	0.056	0.667	0.515	0.343	0.458	0.323	0.250		

North-East Arctic HADDOCK.
Table 26. Stock size in numbers. Unit: thousands. Biomass totals. Unit: tonnes. Alle values are given for 1 January.

Table 27. North-East Arctic HADDOCK.
Input data for stock size and catch projections.
List of variables by age

Age	1985 stock size	1984 fishing pattern	expected fishing pattern	natural mortality	maturity ogive	weight in the catch	weight in the stock
3	200000	0.10	0.20	0.20	0.00	1.520	0.660
4	16995	0.20	0.40	0.20	0.05	1.860	1.030
5	10902	0.30	0.30	0.20	0.23	2.100	1.790
6	6027	0.25	0.30	0.20	0.53	2.380	2.380
7	799	0.20	0.25	0.20	0.88	2.860	2.860
8	1752	0.18	0.20	0.20	0.98	3.330	3.330
9	6100	0.18	0.18	0.20	1.00	3.700	3.700
10	1365	0.18	0.18	0.20	1.00	4.410	4.410
11	297	0.18	0.18	0.20	1.00	5.400	5.400
12	64	0.18	0.18	0.20	1.00	6.700	6.700
13	110	0.18	0.18	0.20	1.00	7.400	7.400
$14+$	754	0.18	0.18	0.20	1.00	8.000	8.000
	1000		.				

$\begin{array}{lll}\text { Recruitment: } & 1985 & 200 \text { millions } \\ \text { (age 3) } & 1986 & 300 \text { millions } \\ & 1987 & 400 \text { millions }\end{array}$

- $43-$

- 47 -

- 49 -
A
－ 50 －

－ 51 －

[^0]: * Provisional

