${ }_{8}^{2}$

Simulated archival tagging programme for albacore tuna in the North East Atantic including an analysis of factors affecting tag recovery

Ronan Cosgrove ${ }^{* 1}$, Igor Arregi ${ }^{2}$, Deirdre Brophy ${ }^{3}$, Ha ritz Arizabalaga ${ }^{2}$, Victoria Ortiz de Zarate ${ }^{4}$ and Nigel Griffin ${ }^{5}$

Introduction

With a nnual la ndings worth a p proximately €60 million, a lbacore tuna (Thunnus a la lunga) is a highly c ommerc ially importa nt spec ies in the North Atla ntic. Stock status has dec lined in recent years, however, with the latest stock a ssessment categorising the stock a s overfished. Very little information is a vaila ble on the behaviour of fish in relation to environmental va riables, a nd evidence of the existence of sub populations within the North Atla ntic is inc reasing. These issues which have major implic ations for the stock assessment process could be addressed by electronic tagging but no information is a vaila ble on the surviva bility of a lbacore tuna camying archival ta gs. This study a imed to assess the physiologic al ca pability of juvenile albacore to camy archival tags. Also, an ICCATconventional tag database was a nalysed to examine factors at the point of release which affect rec overy, which could boost recovery rates in future tagging programmes

Methods

1. Dummy tagging

- 353 releases with dummy tags in 2005 a nd 2006 - Irish trolling vessels 200-300 miles ssw of Ireland - Dummy tags: epoxy resin, lead shot and fishing line - €200 reward

2. Factors affecting recovery

- Database of 13187 conventional releases with 1484 recaptures
- Binary logistic model applied to factors at the time of release unaffected by differences in rewards: Fish length, fishing gear (trolling or baitboat), month, effort
-Model applied to 2 datasets in order to deal with association between fishing gearand effort

Conclusions

$\theta=\frac{e(a+\beta 1 \times 1+\beta 2 \times 2+\ldots+\beta i x i)}{1+}$ $1+e(\alpha+\beta 1 \times 1+\beta 2 \times 2+\ldots+\beta i x i)$
$\theta=$ probability of recapture,
$a=$ the constant of the equation $\mathrm{b}=$ the coefficient of the predictor variables

Despite higher rewards, a lower recapture rate wasobserved fordummy archivaltagged fish (2.5\%) compared to conventional tagged fish (7%) tagged under similar conditions (troll caught, high effort years).
The times at liberty, distances travelled and growth of recaptured dummy archival tagged fish were comparable to conventional tagged fish. This suggests that for fish which survive the implantable tagging technique, impacts on behaviour and physiology are no greater than conventional tagging
Fish length and geartype were signific ant factors in the model which can be experimentally controlled. A 5\% recovery rate is predicted if fish of $65-74 \mathrm{~cm}$ FL caught by trolling are tagged in future programmes.

Tagging fish of $65-74 \mathrm{~cm} \mathrm{FL}$ (age $2 \& 3$) is appropriate for advancing knowledge of sub populations of juvenile fish. Recaptures of age $2-5$ fish will provide a reasonable size range for analysis of behaviour in relation to environmental variables. Exclusion of larger fish in future archival tagging programmes would be justified by the increased probability of recapture and cost effectiveness of tagging smaller fish.

