Citation of the original paper (Dorow et al. 2009 in press Fisheries Management and Ecology) is advised.

What would be the economic and behavioural consequences of altered recreational eel angling regulations in the light of the European eel recovery action plan?

M. Dorow ${ }^{\text {a,b }}$ (m.dorow@lfa.mvnet.de)
R. ARLINGHAUS ${ }^{\text {b,c }}$ (arlinghaus@igb-berlin.de)
B. BEARDMORE ${ }^{\text {d }}$ (abb@sfu.ca)
W. HAIDER ${ }^{\text {d }}$ (whaider@sfu.ca)
${ }^{\text {a }}$ Institute for Fisheries, State Research Centre Mecklenburg-Vorpommern for Agriculture and Fishery, Fischerweg 408, 18069 Rostock, Germany
${ }^{\mathrm{b}}$ Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
${ }^{\text {c }}$ Inland Fisheries Management Laboratory, Department for Crop and Animal Science, Humboldt- University of Berlin, Philippstrasse 13, Haus 7, 10115 Berlin, Germany
${ }^{\mathrm{d}}$ School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada V5A 1S6

Abstract

In response to the current eel (Anguilla Anguilla L.) decline in Europe, the European Union (EU) has implemented a Pan-European eel recovery action plan. Accordingly, each member state is expected to develop an eel recovery management plan. Beside other possible management options also more restrictive recreational eel fishing regulations are discussed. Predicting eel angler's preferences for potential management actions, the associated economic impacts and behavioural changes are important steps in the management development process. Because eel angling is a non tradeable product we send out a mail survey with a discrete choice task to avid eel anglers ($\mathrm{N}=378$) fishing in northern Germany to estimate regulation preferences and economic welfare changes in response to modified restrictions. Anglers preferred slightly up to moderately stricter regulations like the increase of the size limit and reduction of the bag limit. In contrast, anglers strongly disliked regulations which would limit their access to the resource (seasonal closure, rod limit). From the economic perspective, the implementation of some simple tools such as moderately increased minimumsize limits or slightly reduced bag limit would increase the economic welfare, whereas highly restrictive regulations would result in a considerable welfare losses (several million $€$ /year). Furthermore, highly restrictive regulations would not lead to a clear eel angling effort reduction because eel anglers react inelastic in their behavioural response to stricter eel angling regulation. Consequently, managers must be aware that the level of angling regulation strictness result in different economic effects which must be considered for finding balanced management measures.

Keywords: eel management, behavioural intention, management preferences, management decision support tool, recreational fishing, specialisation, welfare change analysis

Contact author: Malte Dorow, Institute for Fisheries, State Research Centre for Agriculture and Fisheries Mecklenburg-Vorpommern, Fischerweg 408, 18069 Rostock, Germany

Introduction

The panmictic population of the European eel (Dannewitz et al. 2005), Anguilla anguilla L., is considered to be outside safe biological limits (Dekker 2003; FAO \& ICES 2006). A number of anthropogenic and natural causes for the eel decline have been discussed, which can be broadly classified to operate in either the oceanic or continental life phases of eel. In the former, climate change is thought to have affected the larval survival of eel (Knights 2003). In the continental life phase, overfishing, habitat loss, destruction of migrating routes, pollution as well as parasites and diseases have been suggested as factors potentially contributing to the eel decline (Kirk 2003; Knights 2003; Winter et al. 2007; Dekker 2008). The excessive predation by fish eating birds such as cormorants (Phalacrocorax carbo) is also suspected to affect the eel population in particular river systems (Brämick \& Fladung 2006). Unfortunately, the relative importance of these factors for the eel decline is unknown (Starkie 2003). Irrespective, effective management action to conserve the rapidly declining eel population is urgently needed, because the loss of the eel resource will have considerable impact on the socio-economic state of many fishing communities in Europe (Dekker 2008).

Halting the alarming eel decline is probably the most pressing need that contemporary European inland fisheries management faces. Several recent political actions in support of the eel population have thus been undertaken. In 2007, the European eel was listed by the Convention on International Trade in Endangered Species (CITES) in its Appendix II to control its international trade. In the same year, the European Union (EU) adopted an eel recovery action plan (EC 2007). Accordingly, each Member State of the EU must develop eel management plans to achieve a target escapement rate of 40% adult silver eels from all river basins relative to an "undisturbed" situation. In the management plans, measures have to be prescribed to achieve this objective, and these can include various ways to control fishing mortality as well as measures related to reducing mortality at hydropower facilities, improving longitudinal connectivity of river ecosystems and other stock-enhancement activities such as increased stocking (EC 2007). If no eel management plan was submitted to the European Commission (EC) for approval by the end of 2008, temporal closures on eel fishing could be implemented. Such temporal closures would not only affect commercial eel fishing, but also threaten recreational fishing for eel, which is popular in many European countries (Starkie 2003; Tesch 2003; Arlinghaus 2004). In fact, recreational fisheries constitute the most important use of most inland (and migrating) fish stocks in all industrialised countries (Arlinghaus et al. 2002), and thus must be explicitly considered in the development of eel management plans (EC 2007).

To conserve the eel population in Europe reducing fishing mortality through more stringent harvest regulations has been suggested (Dekker et al. 2007). However, stricter harvest, gear and effort regulations will most likely reduce the quality of the angling experience for eel anglers and may therefore affect their behaviour and welfare. Understanding which future management strategies are likely to receive support from various eel angler groups would help the decision makers to match regulatory changes with angler preferences to avoid conflicts as much as possible and also improve rule compliance (Aas \& Ditton 1998; Arlinghaus 2005). It is known that support for harvest regulations such as bag limits or minimum-size limits among recreational anglers is not only dependent on the type of regulation (Beard et al. 2003) but is also influenced by catch and harvest variables (Aas et al. 2000) due to their relation to the ultimate product of a recreational fishing experience, which is angler satisfaction (Arlinghaus \& Mehner 2005; Arlinghaus 2006; Arlinghaus et al. 2008). Eel anglers might be willing to trade-off stricter harvest, gear and effort regulations against
improved catch or harvest but this is likely to vary significantly with the angler type (Aas et al. 2000; Oh \& Ditton 2006).

The theory of recreational specialization (Bryan 1977; Ditton et al. 1992) is particularly suited to capture some of the heterogeneity in preferences among anglers for trading-off regulations with catch expectations and other quality-determining attributes of a fishing experience (e.g. licence price) (Oh \& Ditton 2006). Recreational specialisation is a multi-dimensional concept originally conceptualised by Bryan (1977) for trout anglers as a "continuum of behaviour from the general to the particular". More specialised anglers are characterised by a higher level of involvement, psychological commitment to and dependency on fishing (Ditton et al. 1992). Consequently, the psychological benefits received through fishing experiences are higher for more specialised anglers compared to less specialised anglers (Arlinghaus \& Mehner 2003, 2004; Oh et al. 2005b). These benefits can be quantified by the economic concept of consumer surplus and net willingness-to-pay (WTP), which are measures to express the utility experienced by anglers in their outdoor experience in monetary units (Arlinghaus \& Mehner 2004; Oh \& Ditton 2006).

In addition to experiencing higher benefits (alternatively termed utilities or welfare by economists), more specialised anglers were also found to be more receptive to stricter regulations than less specialised anglers, in part due to their supposedly higher concern for preservation of fish stocks that facilitate high quality fishing experiences (Ditton et al. 1992; Salz et al. 2001; Oh \& Ditton, 2006). More specialised anglers also exhibit a distinctly different preference structure for catch and harvest variables, typically favouring fish size over number of fish and emphasising the release of fish over retention of fish for consumption (Bryan 1977; Aas et al. 2000; Arlinghaus 2007; Arlinghaus et al. 2007). It is unclear whether such patterns also hold for eel anglers that according to anecdotal evidence are supposed to be highly consumptively oriented irrespective of degree of specialisation, at least in Germany. It might thus be assumed that more specialised eel anglers will be particularly penalized by highly restrictive eel harvest regulations and therefore be "losers" of such policies.

A method that is capable to analyse the trade-offs between utility-determining attributes of an eel angling experience (i.e. catch/harvest variables, regulations) an angler is willing to make is the stated preference discrete choice experiment (Louviere et al. 2000; Paulrud \& Laitila 2004). Inclusion of a cost variable in such survey experiments allows calculation of the economic welfare changes associated with different hypothetical management policies based on the concept of consumer surplus (Edwards 1991; Freeman III 2003). Consumer surplus is the utility non market goods, such as a recreational fishing experience, provide to an angler. In other words, it is an economic measure of the welfare consumer's gain from using a resource that is not traded on formal markets or conducting a leisure activity at prices below what they would be willing to pay for the good (Freeman III 2003). Estimating the economic welfare changes via changes in the consumer surplus to hypothetical, yet plausible, modifications in utility-determining attributes of a fishing experience (e.g. harvest regulations, size of fish) is of particular interest to decision makers because it allows quantifying objectively the consequences of policy changes for social wellbeing (Lawrence 2005; Paulrud \& Laitila 2004). Because consumer surplus is the quantification of the quality of fishing experiences as perceived by anglers, this concept developed to value non market goods does not involve the flow of real money, which sometimes creates confusion among fisheries managers and other decision makers (Edwards 1991). Only few applications of this technique are available from the recreational fishing sector (e.g. Paulrud \& Laitila 2004; Lawrence 2005; Oh et al. 2005a) and only one study has linked the concept of angling specialisation to angler welfare changes in response to modifications in regulations (Oh \& Ditton 2006). No study is available in the context of recreational angling for eel, yet such studies are important to facilitate formal cost-benefit analyses of future eel management policies where changes in angler welfare in association
with altered regulations or catch qualities is the appropriate economic concept to apply (see Edwards 1991 for review).

In the evaluation possible recreational eel fishing policies also the effects of altered eel angling regulations on the angling behaviour needs to be considered. When factors (regulations, higher costs) constrain the current participations anglers may respond by altering their eel angling behaviour (Ditton \& Sutton 2004). This behavioural response could include changes in the angling frequency for eel, substitution of the mainly target species (eel) by another species or a complete stop of recreational fishing (Ditton \& Sutton 2004). Therefore, eel managers are faced with the critical question: in which degree stricter eel angling regulations will impact the current eel angling frequency? In other words, how elastic will be the behavioural response of anglers to stricter eel stricter eel angling regulations. The term elasticity is based to the central economic concept of the theory of supply and demand. In this context, elasticity refers to how supply (eel angling day characteristics) and demand respond (intended eel angling frequency) to various factors (Tietze 1999).

By using the recreational specialization theory as an underlying framework for the segmentation of our eel angler sample the objectives of the study were (1) to asses the preferences for different eel catch aspects and eel angling regulations (2) to quantify the economic welfare changes associated with different eel angling policies (3) to quantify the intended behavioural response of eel anglers to stricter eel angling regulations.

Materials and methods

Study area

The study was conducted among anglers with a residence in the state of MecklenburgVorpommern (MV) located in the north east of Germany. Eel is found in all running and most standing waters and in the coastal area of MV (Lemcke 2003), and is exploited by commercial and recreational fisheries. Eels are currently managed by a set of harvest regulations together with routine stocking activities, which are often funded by angling organizations and clubs. Harvest regulations for eel in inland waters rely heavily on minimum-size limits (45 cm), rod limits (3 rods per day), and sometimes a daily bag limit of 3 eel is in place but this depends on local, fishery-specific regulations.

According to recent surveys of anglers in MV conducted by Dorow \& Arlinghaus (2008), in 2006 the total population of anglers with residence in MV is $153.000(\pm 16.000$ at 95% CI). This estimate encompasses active anglers fishing at least once in the 2006 fishing season. Around 47% of the active anglers (i.e. 72.000 in total) targeted eel at least once during a one year fishing season.
Selection of the angler sample
Anglers participating in this study were recruited by telephone by random digit dialling (RDD) as well as random selection from a recreational fishing license frame of MV (see Dorow \& Arlinghaus 2008 for details). From this sample of anglers, people that indicated they had fished for eel at least once in the previous season or who had reported catching eel in reminder telephone calls as part of a complementary diary study (see below) were selected.

Questionnaire design

The survey was conducted by mail and consisted of two sections. In the first part, the respondents were asked about their experience with eel angling and were presented a series of multi-item scales designed to measure the specialisation level of anglers. In these scales, each angler evaluated items intended to measure the angler's centrality to lifestyle to eel angling and consumptive orientation on a 5 point Likert-type agreement scale ranging from 1 -strongly agree to 5 -strongly disagree. Previous research has shown that both centrality of life-style and consumptive orientation are valid subdimensions of angler specialisation (Bryan 1977; Sutton 2003). The administered items were derived from published scales for centrality to lifestyle (Kim et al. 1997; Sutton 2003) and consumptive orientation of anglers (Fedler \& Ditton 1986;

Aas \& Vittersø 2000; Anderson et al. 2007); they were reworded specifically towards eel angling and used in a translated form in German (Tab. 1).

Table 1. Items and reliability analysis of the specialisation dimensions used for the segmentation of eel anglers in northern Germany.

Eel angling specialisation dimensions and items ${ }^{\text {a }}$	Mean	SD	Cronbach's alpha
Centrality to lifestyle			0.84
When I go fishing eel is my favourite fish species	2.90	0.99	
Most of my friends are in some way connected with eel angling	4.03	1.00	
If I could not go eel fishing, I would not know which other species to target	4.15	0.93	
I consider myself to be an eel angling expert	3.47	0.94	
Compared to other anglers I own high quality eel angling gear	3.16	0.86	
Other anglers would probably say that I spend too much time eel fishing	4.19	0.88	
Eel angling is very important to me	3.02	1.06	
Eel angling provides me the greatest angling satisfaction	3.17	1.10	
A restriction of eel angling would not bother me a lot ${ }^{\text {b }}$	2.63	1.15	
If somebody fishes for eel regularly, it tells a lot about this person	3.68	1.01	
I like to talk with my friends about eel angling	2.63	1.02	
I am not really interested in eel angling ${ }^{\text {b }}$	2.03	0.96	
Catch orientation			0.72
I would rather catch 1 or 2 big eel than 10 smaller partly undersized eel	1.64	0.90	
I like to fish for eel because of the challenge	2.42	0.88	
I like to fish for eel where I know I have a chance to catch a trophy fish	2.29	0.90	
When I go eel fishing, I am not satisfied unless I catch at least one eel	3.35	1.10	
The more eel I catch, the better the fishing trip	3.03	1.24	
The bigger the eel I catch, the better the fishing trip	2.30	1.08	
I am happiest with the fishing trip if I catch a challenging game eel	2.24	1.05	
Overall, I am satisfied with an eel angling day if I catch the bag limit Retention orientation ${ }^{\text {c }}$	2.86	1.21	-
The most important reason for eel fishing is my personal consumption; other reasons such as relaxation are secondary	3.01	1.13	
Usually, I retain every eel I catch	2.42	1.14	
Sensitivity to restriction ${ }^{\text {c }}$			-
Stricter eel angling regulation would entice me to discontinue of my angling activities	4.29	0.97	
In the case of stricter eel angling regulation I would stop fishing specific for eel	3.43	1.07	

${ }^{\text {a }}$ items coded on a 5-point scale: 1 - strongly agree, 2 - agree, 3 - neutral, 4 - disagree, 5 strongly disagree
${ }^{\mathrm{b}}$ item reverse coded before calculation of index
${ }^{\text {c }}$ no reliability analysis was conducted as item number per factor was <3
Centrality to lifestyle scales measure the extent to which a participant's lifestyle and social network are connected to angling (Sutton 2003). As eel angling becomes a more central part of life relative to other leisure activities, including fishing, participation in targeted eel angling becomes more important as a means of self-expression and satisfaction of personal leisure needs (Sutton 2003). Consumptive orientation of anglers is defined as the degree to which an angler values different catch related aspects of the angling experience (Arlinghaus 2006; Anderson et al. 2007). Dimensions of consumptive orientation may include catching
something, numbers of fish, catching large/trophy sized fish and fish retention orientation (i.e. harvest versus release) (Aas \& Vittersø 2000; Anderson et al. 2007). Due to the assumed consumptive nature of eel angling, several items were added to the original ones (Anderson et al. 2007) to measure retention orientation of eel anglers more reliably (Tab. 1). In addition to these scales, specific items also assessed anglers' perceptions of skill level and their selfreported behavioural sensitivity to stricter eel angling regulations (Tab. 1).

The second part of the questionnaire presented respondents with a discrete choice experiment consisting of hypothetical eel angling experiences composed of several attributes including catch variables (number and size of catch), various types of regulations (harvest regulations: size limit, daily bag limit; gear regulations: rod restrictions; effort regulations: temporal closure) and a price variable (increase in daily costs of eel angling over current costs) (Tab. 2). Each attribute had three to four levels that were systematically varied to allow estimation of preferences for varying conditions (Tab. 2).

Table 2. Attributes and levels used in the choice experiment (underlined levels reflects the current state) to assess the angler's preferences for eel angling.

	Attribute	Levels
Expectations	Catch number	$1 \mathrm{eel} /$ day, $2 \mathrm{eel} /$ day, 3 eel/day, 4 eel/day
	Average length	$50 \mathrm{~cm}, 55 \mathrm{~cm}, 60 \mathrm{~cm}, 65 \mathrm{~cm}$
Regulations	Minimum-size limit	$45 \mathrm{~cm}, 50 \mathrm{~cm}, 55 \mathrm{~cm}, 60 \mathrm{~cm}$
	Daily bag limit	$1 \mathrm{eel} /$ day, $2 \mathrm{eel} /$ day, 3 eel/day, 4 eel/day
	Temporal closure	0 days/month, 7 days/month, 14 days/month
	Rod limit	1 rod, 2 rods, 3 rods
Cost	Cost increase per eel trip	same as today, $+2.50 €,+5.00 €,+10 €$

To familiarize respondents with the layout of the choice task, anglers were first presented with an example choice set, followed by four choice sets composed of attribute levels that followed an orthogonal statistical design (Figure 1). In each choice set, anglers first were forced to choose between two hypothetical eel angling experiences. Thereafter, respondents were asked to allocate ten hypothetical angling days among eel angling and all possible other angling alternatives: fishing for eel, freshwater non-piscivorous species, freshwater piscivorous species, undirected freshwater fishing, fishing in coastal areas or not fishing. This allocation task was undertaken for both the chosen and not chosen eel angling alternative.

To combine attributes and their levels in choice sets, a full factorial experimental design would require $84,934,656\left(4^{10} \times 3^{4}\right)$ different combinations. Administering this enormous number of choice sets is neither feasible nor needed. Instead, an orthogonal fractional factorial design was applied to reduce the number of combinations to 64 , while still allowing estimation of the main effects (Raktoe et al. 1981; Hensher et al. 2005). To further reduce the burden on each respondent, an additional orthogonal variable grouped the choice sets into 16 blocks consisting of 4 choice sets. One of these blocks was randomly assigned to each respondent.

Survey administration and non-response bias

A 14-page final questionnaire was mailed in April 2007 along with a personalized cover letter and stamped mail-back envelopes to $\mathrm{N}=381$ eel anglers fishing in MV. After two weeks, a reminder telephone call was conducted to non-respondents and new questionnaires were mailed as needed. As this study was part of a larger study (Dorow \& Arlinghaus 2007, 2008, 2009), some basic information on demographic background and angler characteristics was available for the gross sample of anglers that received the questionnaire. A comparison between respondents $(N=214)$ and non-respondents $(N=173)$ to this survey revealed no significant differences in average age, average monthly income, distribution of educational levels, average number of angling trips in MV in 2006 and average years of angling
experience. There was therefore no indication of non-response bias in the present study such that we assumed the data to be representative for eel anglers in MV.

Figure 1: Example of a choice set for the identification of eel angling day preferences and the associated allocation task.

Complementary diary study

Eel anglers receiving the above-mentioned mail questionnaire were part of a largescale diary study on angler catches in MV (see Dorow \& Arlinghaus 2007, 2008, 2009). The sample of eel anglers responding to this survey were matched to the sample of anglers providing information on catches and fishing effort in the diary study. Diaries recorded angler-specific fishing behavioural information from September 2006 to August 2007 in the state of MV. These data were used to compare the intensity of fishing and the harvest rates of eel anglers to better understand fishing behaviours of differently specialised eel anglers.

Statistical analysis

Eel anglers were segmented into specialisation groups to investigate heterogeneity in preferences for eel angling regulations and angler segment-specific welfare changes associated with changes in eel angling and regulation scenarios. To segment the eel angler population, a list of items designed to measure centrality of life-style and consumptive orientation were subjected to principal component analysis using varimax rotation to identify the factor structure of the scales. Reliability analysis based on Cronbach's alpha was used to justify creation of specialisation indices based on item means when Cronbach's alpha exceeded 0.7 (Cortina 1993). In total, four subdimensions of recreational eel angling specialisation were identified resulting in four indices: centrality of eel fishing to lifestyle, general catch eel orientation, eel retention orientation and sensitivity to eel regulations (Tab. 1). A Ward hierarchical cluster analysis was performed on these indices resulting in three clusters that reflected varying degrees of eel angling specialisation similar to the approaches of angler segmentation conducted by Oh et al. (2005a) and Oh \& Ditton (2006). Specialisation groups were compared on a number of variables (e.g. specialisation indices, number of fishing days, expenditure for fishing) by one-way-analysis of variance (ANOVA)
and appropriate post-hoc-tests (Tuckey for homogenous variances, Dunnett-T-3 for heterogeneous variances) or chi-square analysis for categorical data (e.g. educational level). Significance was assessed at $P<0.05$. All analyses were conducted with the SPSS software package version 14.0 (SPSS Inc., Chicago, USA).

The statistical analysis of preferences for catch quality variables and fishing regulations as articulated by the respondents in the discrete choice part of the survey was grounded in random utility theory (McFadden 1974). The underlying assumption is that the utility (benefit/welfare) of an alternative is a function of its components, and that individuals make choices in order to maximize their overall utility (Ben-Akiva \& Lerman 1985, Louviere et al. 2000). To obtain the so-called part-worth utility (PWU) for attributes and attribute levels, i.e. the contributions of each attribute and attribute level to the overall utility of the alternative, the indirect utility function was estimated, which was comprised of a deterministic component and a random error component (Louviere et al. 2000). The coefficient of the deterministic component represents the PWU of an attribute level. Each PWU represents the proportion of utility that can be attributed to a specific attribute or attribute level. In our study, utility was modelled using a conditional logit model, which assumes that the error term follows a Gumbel distribution (Ben-Akiva \& Lerman 1985; for applications of this approach to recreational fishing see for example Aas et al. 2000; Lawrence 2005).

To estimate the conditional logit model, preferences articulated in the forced choice of eel alternatives were weighted by the number of eel fishing days as indicated in the subsequent allocation task (Figure 1). In addition, a base alternative was constructed by aggregating the number of days allocated to all non-eel fishing activities. In cases where anglers allocated at least one day of angling to their chosen eel angling alternative, weights for the chosen alternative ranged from a single day to all ten days; in cases where both eel angling alternatives were rejected, a weight of ten was assigned to the non-eel angling alternative. Separate parameter estimates were derived for each angler specialisation segment in a jointly estimated model using the known class function of Latent Gold 4.0 (Statistical Innovations Inc., Belmont, MA.). This approach ensured identical parameter specifications for each segment to facilitate comparison between groups. To test for significant differences of preferences between the eel angler segments a Wald-test was performed at $p<0.05$. Overall model fit was assessed based on the pseudo- R^{2} statistic, where values ~ 0.3 and above indicate a good model fit (Hensher et al. 2005).

An advantage of stated preference models over models based on observed angler behaviour (i.e. revealed preferences) is that model results can be used to rank hypothetical but realistic management scenarios (Oh et al. 2005a; Oh et al. 2007), with the base condition being the status quo (Lawrence 2005). In the present paper, first four alternative policy scenarios compared the current state were developed (see Tab. 4; scenarios 2-5), reflecting possible management approaches to reduce the impact of recreational eel fishing on eel stocks. The severity of regulatory control increased from scenario 2 to scenario 4 by launching increasingly stricter eel angling regulations (e.g. decreasing bag limit and increasing minimum-size limit). With the exception of scenario 5 , the catch variables were held constant to isolate the impact of increasing regulation severity from altered catch qualities on angler welfare. Additionally, in scenarios 6-10 the effects of changes of individual harvest regulations (minimum-size limit or bag limit) on angler welfare were simulated. For scenarios 6-10 also the predicted changes in eel angler harvest were estimated based on the distribution of sizes of eel in the angler harvest and daily eel harvest numbers based on data reported in the above-mentioned diary study from the fishing season September 2006 to August 2007. Only eel harvest data for the anglers responding to the choice experiment were included in the analysis.

Inclusion of an appropriate payment vehicle (here increase in overall costs for fishing for eel) in the choice experiment allowed calculation of changes in economic welfare (as
perceived by anglers) associated with changes to the angler utility-determining attributes of the fishing experience that were compared relative an alternative situation (Lawrence 2005). Relative change in net willingness-to-pay (WTP) (i.e. a measure of consumer surplus) for an eel angling day was estimated based on changes in eel angling regulations relative to the status quo. Because the coefficient of the cost variable is equivalent to the marginal utility of income (Kaoru et al. 1995), it can be used to quantify the net WTP for a fishing trip, which is a measure of the net economic value (consumer surplus) experienced by the angler. This approach was pioneered by Hanemann (1984) using the coefficient for the cost variable (termed PWU of cost) from a conditional logit model $\beta_{\text {tripcost }}$ as a means to monetize utility measures from choice experiments as follows:

$$
\Delta W T P=\frac{1}{\beta_{\text {trip } \cos t}}\left(V_{0}-V_{1}\right),
$$

where $\triangle W T P$ is the change in WTP from the base to the alternative state, V_{0} indicates the utility acquired from the fishing trip under baseline conditions, and V_{1} is the utility from the angling trip under the modified conditions. WTP estimates were computed using segmentspecific parameters (PWUs) representing the increase or decrease of the non market value of a fishing experience in a specific eel angling scenario. Extrapolated to the entire eel angler population in MV, this economic measure represents the loss or gain in economic welfare from changes to attributes of the fishing experience as perceived by anglers, which can be used to rank different management scenarios or to be included in cost-benefit analyses (Edwards 1991) of eel conservation policies.

To estimate the intended behavioural change as a reaction to stricter eel angling policies the allocation task (Fig. 1, question 2) was used. Based on the allocation task the fraction of days which were assigned to every option (compare Fig. 1) was modelled. By contrasting the percentage utility change (y, based on the part-worth utilities in the forced choice) and the percentage change (x) of the intended eel angling frequency the elasticity $E_{x, y}$ of the behavioural response of angler to stricter regulations can be calculated (Tietze 1999).

$$
E_{x, y}=\left|\frac{\% \Delta x}{\% \Delta y}\right| \text {, where } \% \Delta x=\left(x_{1}-x_{2} / x_{1}\right) \times 100, \text { similarly for } \% \Delta y
$$

Therefore, elasticity is the percentage change in one variable divided by the percentage change in another variable. It is a measure of relative changes. A value of $0<E_{x, y}<1$ indicates an inelastic demand response, whereas values $E_{x, y}>1$ reflect an elastic demand response (Tietze 1999).

Results

Of the 378 selected eel anglers, 214 anglers responded to the survey resulting in a response rate of 57%. In the final analysis, only respondents that resided in the state of MV $(N=193)$ were included, and the response rate for these anglers was 53%.

Eel angler specialisation

Four indices of eel angling specialisation were identified (Tab. 1), namely centrality of eel fishing; eel catch orientation; eel retain orientation, and sensitivity against eel angling restrictions (Tab. 1). Cronbach's alpha for the centrality scale was 0.84 and for the catch orientation scale 0.72 , indicating satisfactory internal reliability. Ward cluster analysis generated three eel angling specialisation segments (Tab. 3), which were labelled advanced eel anglers ($N=88 ; 45.6 \%$), intermediate eel anglers ($N=64,33.2 \%$) and casual eel anglers
($N=41 ; 21.2 \%$), respectively (terminology followed Oh \& Ditton 2006). The resulting groups significantly differed from each other in the four indices of angler specialisation (Tab. 3).

Table 3. Characteristics (average $\pm \mathrm{SD}$) for the specialisation subdimensions, behavioural commitment and demographic characteristics and observed eel angling behaviour and eel harvest of differently specialised eel anglers in northern Germany. Different letters indicate statistically significant differences between the eel anglers segments; n.s. - not significant.

	Advanced eel anglers ($\mathrm{N}=88$)	Intermediate eel anglers ($\mathrm{N}=64$)	Casual eel anglers ($\mathrm{N}=41$)	$\begin{array}{\|c} \hline \mathrm{F} \text { or } \\ \mathrm{Chi}^{2} \\ \text { value } \\ \hline \end{array}$	p
Specialisations subdimension					
Centrality to lifestyle ${ }^{1}$	$3.1 \pm 0.5 \mathrm{y}$	$3.2 \pm 0.6 \mathrm{y}$	$3.7 \pm 0.6 \mathrm{z}$	14	0.0001
Consumptive orientation ${ }^{1}$	$2.3 \pm 0.5 \mathrm{y}$	$2.4 \pm 0.5 \mathrm{y}$	$3.1 \pm 0.6 \mathrm{z}$	29.6	0.0001
Retain orientation ${ }^{1}$	$2.4 \pm 0.6 \mathrm{y}$	$2.5 \pm 0.7 \mathrm{y}$	$3.7 \pm 0.7 \mathrm{z}$	63.6	0.0001
Sensitivity against restrictions ${ }^{2}$	$4.3 \pm 0.5 \mathrm{y}$	$3.0 \pm 0.6 \mathrm{z}$	$4.3 \pm 0.6 \mathrm{y}$	114.8	0.0001
Behavioural commitment (12 month recall period)					
Eel angling experience (years)	18.9 ± 14.5	18.3 ± 13.7	18.2 ± 12.6	0.1	n.s.
Angling days total in 2006	40.9 ± 33.8	35.2 ± 32.9	32.1 ± 31.9	1.1	n.s
Eel angling days in 2006	12.3 ± 15.1	11.8 ± 16.1	11.3 ± 18.6	0.6	.s.
Number of eel caught in 2006	9.6 ± 14.4	6.6 ± 9.1	5.9 ± 9.8	1.8	n.s
Importance of eel ${ }^{3}$	$2.7 \pm 1.1 \mathrm{y}$	$2.9 \pm 1.2 \mathrm{y}$	$3.5 \pm 0.9 \mathrm{z}$	7.2	0.001
Expenditure for an eel angling day	10.3 ± 7.7	9.3 ± 7.8	10.4 ± 10.3	0.3	n.s.
No of angling friends	7.1 ± 8.6	5.8 ± 6.3	5.3 ± 4	1.0	n.s.
Annual gear and bait expenditures ($€$)	251.3 ± 468.7	158.4 ± 225.4	117.3 ± 94.7	2.2	n.s.
Demographic variables					
Age	41.2 ± 15.7	42 ± 15.5	39.8 ± 15.1	0.3	n.s.
Monthly income ${ }^{5}$	3.5 ± 1.5	3.0 ± 1.5	3.4 ± 1.5	1.9	.s.
Household size	3.1 ± 1.1	2.8 ± 0.9	3.0 ± 1.0	1.4	n.s.
Percentage high school ${ }^{6}$	8	6.3	7.3	4.3	n.s.
Angling behaviour in 2006/2007 ${ }^{7}$					
No of angling trips per year	$28 \pm 21.2 \mathrm{y}$	$21 \pm 17.2 \mathrm{z}$	$17.7 \pm 10.6 \mathrm{z}$	4.3	0.05
No of directed eel trips per year	3.4 ± 5.2	2.1 ± 5.3	2.1 ± 4	1.2	n.s.
Total hours fished for eel (h) per year	18.5 ± 31.4	9.6 ± 22	8.8 ± 14.4	2.4	n.s.
No of eel caught per year	7.8 ± 12.8	5.1 ± 14.6	3.8 ± 6.5	1.4	n.s.
No of eel retained per year	6.2 ± 9.1	3.9 ± 10.4	2.9 ± 5.3	1.8	n.s.
Relative frequency of No of eel retained per successful eel trip				15.8	0.05
1 eel per trip (\%)	53.4	49.1	69.9		
2 eel per trip (\%)	29.1	31.5	23.8		
3 eel per trip (\%)	7.7	14.8	9.1		
4 and more eels (\%)	9.7	4.6	1.6		
Average size of retained eel (cm)	62 ± 8.6	60.4 ± 12	59.8 ± 8.2	0.9	n.s.
Average size (cm) of the largest retained eel per trip	64.4 ± 9	63.1 ± 9.2	60.8 ± 7.1	0.9	n.s.
Relative frequency of length classes of retained eel per trip				11.1	0.05
$45-55 \mathrm{~cm}$ length class (\%)	28.9	54.3	45.2		
$55-65 \mathrm{~cm}$ length class (\%)	37	21.7	22.6		
over 65 cm length class (\%)	33.1	23.9	32.3		

[^0]${ }^{3}$ items was measured on the scale: 1- most important, 2 - second most important, 3 - third most important, 4 one species between other ones
${ }^{4}$ item measured on the scale: 1-most important, 2- second most important, 3 - third most important, 4-one leisure activity among others
${ }^{5}$ income categories were: 1 - under $1000 €, 2-1000$ to $1500 €, 3-1500$ to $2000 €, 4-2000$ to $2500 €, 5-$ 2500 to $3000 €, 6$ - over $3000 €$
${ }^{6}$ education categories were: 1- basic school without apprenticeship, 2 - basic school with apprenticeship, 3 secondary school, 4 - high school, 5 - academic degree, 6 - scholar
${ }^{7}$ diary data for one complete fishing season (Dorow \& Arlinghaus 2008) were available for 74 advanced eel anglers, 49 intermediate eel anglers and 31 casual eel anglers

As expected, advanced eel anglers exhibited the highest centrality to lifestyle. They also showed the highest catch orientation and the highest retain orientation of all angler segments supporting anecdotal evidence about the high consumptive orientation of German eel anglers. Intermediate anglers were quite similar to the advanced anglers in terms of centrality to lifestyle, catch orientation and retain orientation, but differed significantly from advanced and causal anglers in their sensitivity against restrictions. Specifically, intermediate anglers indicated to abandon eel fishing once regulations would become too strict while advanced and casual anglers would not necessarily discontinue fishing (see Tab. 1 for item wording). Causal eel anglers were characterised by a significantly lower centrality to lifestyle of eel angling, a lower catch orientation and a lower retain orientation compared to advanced and intermediate eel anglers.

The different eel angler segments were characterized by similar demographic background (Tab. 3). However, most behavioural variables characterizing commitment to fishing such as self-estimated frequency of fishing, investment into tackle and number of angling friends showed a consistent trend of high values for advanced anglers, intermediate values for intermediate anglers and low values for casual eel anglers. However, most of these differences were not significant due to high inter-segment variability and low power to detect significant differences given the low sample size (Tab. 3). However, further reinforcing the appropriateness of the eel angler segmentation procedure, the variable "importance of eel" was rated significantly different by the three angler groups. As to be expected, advanced anglers attached the highest and casual anglers the lowest, importance to eel as a target species (Tab. 3).

The appropriateness of the eel angler segmentation based on measures of commitment and catch orientation was also confirmed by the observed angling behaviour as revealed by diary reports in the fishing seasons from beginning of September 2006 to the end of August 2007 (Tab. 3). Although not significant in all cases, there was a consistent trend for advanced eel anglers being more active, avid and successful eel anglers compared to intermediate and casual anglers. For example, advanced anglers exhibited a significant higher overall annual fishing activity and tended to fish more often specifically for eel compared to intermediate and causal eel anglers. Significant differences between the eel anglers segments were observed in the distribution of the number of eel harvested per successful eel angling trip. While the majority of eel anglers in each segment captured 1 eel per successful eel angling trip, this situation was much more common more common for casual anglers (70%) than for advanced anglers (53\%) (Tab. 3). Eel angler segments also differed significantly in the relative frequency of length classes of eel retained over the fishing seasons as indicated by casual and intermediate eel angler capturing significantly more fish of the length class 45 - 55 cm compared to advanced eel anglers.

Fit of angler preference models

The explanatory power of the overall conditional logit model of angler preferences for catch variables, regulations and price was high as indicated by a high goodness-of fit measure (pseudo- $\mathrm{R}^{2}=0.27$). For the segment specific models, the pseudo- R^{2} statistic was similarly good varying between 0.26 and 0.32 . The specialised angler segments exhibited different
preferences for eel catch variables, regulations and costs, and differences between angler groups were significant except for the cost variable (Figure 2 and 3). Differences in preferences between angler groups were evident in improvements to the model fit (as measured by the Bayesian Information Criterion, BIC) when a model with angler segmentation was compared with a single class model ($\mathrm{BIC}=2807.8$ for the segmented model versus $\mathrm{BIC}=3360.7$ for the overall model).
Preferences of eel anglers for catch variables
Anglers differing in specialisation level exhibited pronounced differences in their preferences for eel catch variables (Figure 2). Advanced eel anglers were the only angler segment placing strong emphasis on both catch number and size as quality determinants of the fishing experience. In contrast to intermediate and casual anglers, most attribute levels were significant for advanced eel anglers. They preferred eel catches of 3 eels per day the most and significantly disliked a 1 eel per day option. Advanced anglers also strongly preferred an average catch size of 60 cm and were not supportive of an average catch size of only 50 cm . The catch preferences of intermediate eel anglers differed significantly for the number of eel caught but not for the length of eels caught. Intermediate anglers strongly preferred to catch 3 eel per day, but significantly disliked catching either 4 eel per day or 1 eel per day. In contrast, the number of expected eel did not significantly influence casual anglers' trade off decisions. For this angler segment, only the expected size of the eel was of relevance and casual anglers preferred the largest size of eel (65 cm).

Figure 2: Preferences of different specialised eel anglers for eel angling experience aspects; errors bars represent the standard error, * indicate significant preferences for a certain attribute level, model parameters: $\mathrm{LL}=-1264.9 ;$ BIC $(\mathrm{LL})=2807.7$; $\mathrm{AIC}(\mathrm{LL})=2634.9$; pseudo- $\mathrm{R}^{2}=0.27$.

Preferences of eel anglers for eel angling regulations

Significant heterogeneity in preferences for eel angling regulations between the three specialisation segments was observed (Figure 3). The preferences of advanced eel anglers with regards to angling regulations were most pronounced as indicated by the fact that except for the 2 eel bag limit all other coefficients (part worth utilities, PWU) for the different regulatory levels were significant. Advanced eel anglers preferred moderate regulations but strongly opposed the strictest levels of the different regulations. They favoured a moderate increase of the minimum-size limit to either 50 or 55 cm but strongly disliked the current minimum-size limit of 45 cm and an increase of size limits to 60 cm . Daily bag limits of 1 eel per day were not approved and the alternative of 3 eel per day was strongly favoured. Similarly, a temporal closure of 14 days per month was strongly disliked by advanced anglers who favoured no closure or a moderate closure of 7 days per month. Regarding gear regulations, a 1 rod limit was significantly disliked and a 2 or 3 rod limit was preferred.

Intermediate eel anglers were less clear in their preferences for regulations compared to the advanced eel anglers indicated by the fact that 4 coefficients were insignificant (Figure 4). They were also less supportive of some of the harvest regulations compared to advanced anglers. For example, intermediate eel anglers preferred a minimum-size limit of only 50 cm , while advanced anglers also preferred a size limit of 55 cm . Intermediate anglers preferred a comparatively large bag limit of 3 eel per day, and a lower bag limit of only 1 eel per day was disliked. Similar to advanced eel anglers, intermediate anglers also disliked a temporal closure of 14 days a month and preferred less strict restrictions on access temporally. Two rods was the most acceptable rod limit level for intermediate anglers.

Compared to advanced and intermediate eel anglers, casual eel anglers appeared to be the least affected by overly restrictive eel angling regulations. In other words, they objected less to the strictest regulations in the choice sets (Figure 3). Casual anglers preferred minimum-size limits of 55 cm and strongly disliked the current state of 45 cm . While a very restrictive bag limit of 1 eel per day was disliked, casual eel anglers showed a marked preference for bag limits of 2 or 3 eel per day. In contrast, both advanced and intermediate anglers were most happy with a large bag limit of 3 eel per day. Moreover, casual anglers did not significantly dislike a 14 days per month temporal closure, while advanced and intermediate anglers did. In fact, casual anglers objected to a no closure option and preferred a closure of 7 days per month. In contrast, intermediate and advanced eel anglers preferred the no closure alternative. In contrast to the other two angler groups, casual anglers did not show any pronounced preference for rod limits.

Figure 3: Preferences of different specialised eel anglers for different eel angling regulation options; error bars represent the standard error, * indicate significant preferences for a certain attribute level, model parameters: $\mathrm{LL}=-1264.9$; $\mathrm{BIC}(\mathrm{LL})=2807.7 ; \mathrm{AIC}(\mathrm{LL})=2634.9$; pseudo-R${ }^{2}=0.27$.

For the cost variable, preference results were as expected for all eel specialisation segments. Increasing costs per eel angling day compared to the status quo were significantly disliked by all eel anglers as indicated by a negative coefficient for the cost variable

Policy scenario evaluation

The model results from the forced choice (Figure 2, 3 and cost variable) were used to evaluate the change compared to the current state in probability of choice and in associated consumer surplus changes (Tab. 4) for four different eel conservation policy scenarios (scenarios 2-5) that varied in catch expectation and degree of harvest, gear and effort regulations. Furthermore, the effects of single measures (size limit and bag limit, scenarios 610) were estimated. Policy analysis was performed for each specialisation segment separately (Tab. 4).

The distinct preferences for the choice model attributes exhibited by differentially specialised anglers were reflected in the proportion of respondents predicted to choose the alternative scenario over the current state and the no fishing option, and the marginal WTP change per day for eel angling under these scenarios (Tab. 4). Different policies were desired by each angler segment with winners and losers resulting from the application of a specific eel conservation policy (scenarios 2-5). As indicated by scenarios 2 and 3 in Tab. 4, casual eel anglers would be winners under slightly or moderately stricter eel angling regulations as indicated by the comparatively high proportion of anglers choosing this alternative, which also resulted in a relatively high and positive change in welfare per angling day. In contrast, advanced, and to a lesser extent intermediate, eel anglers would become losers when eel angling regulations would become overly strict and the catch variables deteriorate relative to the status quo (scenario 4 and 5; Tab. 4). The highest marginal welfare change ($-29 €$ per eel angling day) and change in choice probability (almost 100%) in response to the attributes of scenario 5 was estimated for advanced eel anglers. Casual anglers would also experience a marginal welfare loss ($-6 €$ per eel angling day) from scenario 5 , but this decline in the marginal WTP would be much less than experienced by advanced eel anglers. These results reflect the overall higher value attached to eel angling by advanced eel anglers and the pronounced heterogeneity in preferences towards eel angling within the eel angling population in MV. The results also indicate the differential behavioural reaction to new eel conservation policies that can be expected in differently specialised eel anglers.

Increasing the minimum-size limit or implementing a stricter bag limit or (scenarios 610) compared to the current state would lead to divergent marginal welfare changes in the angler segments. Implementing a size limit of 50 or 55 cm would be positively perceived by all segments and would result in positive marginal welfare changes (scenarios 6 and 7, Tab. 4). A further increase of the size limit to 60 cm would reduce the support by intermediate and causal eel anglers but still result in positive welfare change, but for advanced eel anglers such measure would already result in a slight welfare loss (scenario 8, Tab. 4). The implementation of a daily bag limit of 2 eel per day would result in welfare gains only for causal eel anglers, whereas for advanced and intermediate eel anglers the quality of eel angling trip would be reduced as indicated by negative welfare (scenario 9, Tab. 4). Finally, the choice probability for an eel angling day with a daily bag limit of 1 eel and the associated welfare would be negative for all eel angler segments (scenario 10, Tab. 4)

To extrapolate the marginal economic welfare changes to the total eel angler population in MV $(N=72.000)$ it was assumed that the proportion of the eel angler segments (45.6% advanced; 33.2% intermediate, and 21.1% casual anglers, respectively, Tab. 3) observed in this study would reflect the situation in the finite population of eel anglers in MV. Further, it was assumed that the segment-specific average days fished for eel in 2006 from Tab. 3 would be preserved in response to altered regulations and catch qualities (in reality stricter eel angling regulations might lead the decreasing eel angling effort in the segments). The total welfare change is then the sum of the marginal welfare changes per angling day per segment for each scenario multiplied by the population size of the segments and the average eel angling days. By taking these simplifying assumptions, scenario 2 and 3 would result in positive welfare change equivalent to 2.47 and 2.78 million $€$, which could be generated by implementing slightly or moderately stricter eel angling policies (Tab. 5). However, increasing regulatory strictness and further decreasing the catch quality of eel fishing would result in drastic welfare losses of 12.48 million $€$ (scenario 4) or 15.49 million $€$ (scenario 5) at the level of the entire state of MV.

Table 4. Change in support (probability of choice) for management scenarios compared to the current state and the associated change in consumer surplus change (marginal WTP per eel angling day) of proposed eel angling management scenarios relative to the current situation (scenario 1). Scenarios are arranged by increasing degree of regulatory strictness, with scenario 5 also including reduced catch quality in addition to highly restrictive regulations; scenario 6-10 simulate the economic and biological effects of implementing stricter minimums size limits or bag limits; - indicates the base level against which the change in support and WTP is expressed.

	Expectations	Regulations	Advanced eel anglers		Intermediate eel anglers		Casual eel anglers	
	Number of eel per day; average length	Minimum-size limit, Daily bag limit, Rod limit, Temporal closure	Change in support	Marginal WTP (€/eel angling day)	Change in support	Marginal WTP (€/eel angling day)	Change in support	Marginal WTP ($€ /$ eel angling day)
Scenario 1 (base, status quo)	$\begin{aligned} & 1 \mathrm{eel}, \\ & 60 \mathrm{~cm} \end{aligned}$	$45 \mathrm{~cm}, 3$ eel/day, 3 rods, no closure	-		-		-	
Management scenarios								
Scenario 2 (slightly stricter)	$\begin{aligned} & 1 \mathrm{eel}, \\ & 60 \mathrm{~cm} \end{aligned}$	$50 \mathrm{~cm}, 2 \mathrm{eel} /$ day; 2 rods, no closure	1.2\%	$0.31 €$	26.6\%	$5.56 €$	24.4\%	$4.52 €$
Scenario 3	1 eel,	$55 \mathrm{~cm}, 2 \mathrm{eel} / \mathrm{day}$,	4.4\%	$1.11 €$	11.7\%	$2.25 €$	41\%	$9.84 €$
(moderately stricter)	60 cm	2 rods, 7 days / month closure						
Scenario 4	1 eel,	$60 \mathrm{~cm}, 1 \mathrm{eel} /$ day,	-47.7\%	$-23.68 €$	-35.7\%	-8.40 €	-18\%	$-3.20 €$
(as strict as possible)	60 cm	1 rod, 14 days / month closure						
Scenario 5	1 eel,	$60 \mathrm{~cm}, 1 \mathrm{eel} /$ day,	-49\%	-29.07€	-38.4\%	$-9.53 €$	-31\%	-6.17 €
(as strict as possible + reduced catch experience)	50 cm	1 rod, 14 day / month closure						
Change in individual harvest regulations								
Scenario 6	1 eel,	$50 \mathrm{~cm}, 3 \mathrm{eel} /$ day,	13.2\%	$3.41 €$	26.7\%	$5.58 €$	20.5\%	$3.71 €$
(50 cm)	60 cm	3 rods, no closure						
Scenario 7	1 eel,	$55 \mathrm{~cm}, 3 \mathrm{eel} /$ day,	12.1\%	3.11 €	15.9\%	$3.09 €$	26.4\%	4.98 €
(55 cm)	60 cm	3 rods, no closure						
Scenario 8	1 eel,	$60 \mathrm{~cm}, 3 \mathrm{eel} / \mathrm{day}$,	-2.5\%	-0,63 €	12.7\%	$2.43 €$	12\%	$2.08 €$
(60 cm)	60 cm	3 rods, no closure						
Scenario 9	1 eel,	$45 \mathrm{~cm}, 2 \mathrm{eel} / \mathrm{day}$,	-13\%	-3.35 €	-10\%	-1.9€	1.1\%	0.18 €
(2 eel/day)	60 cm	3 rods, no closure						
Scenario 10 (1 eel/day)	1 eel, 60 cm	$60 \mathrm{~cm}, 1$ eel/day, 3 rods, no closure	-29.2\%	-8.58 €	-15.8\%	-3.08 €	-32.6\%	-6.6€

Regarding the effects of changing individual harvest regulations the increase of the minimum-size limit to 50 cm or 55 cm would produce an positive total economic welfare change of 3.59 or 2.99 million $€$ respectively (scenario 6 and 7, Tab. 5). Such measures would also be effective in biological terms by reducing the total number of retained eels by 10.1% and 30.2% respectively. A further increase of the size limit (60 cm) would be more effective at reducing the total eel harvest to about 50% of current levels but the resulting positive welfare change is substantially lower compared to welfare associated with size limits of 50 or 55 cm . By implementing a daily bag limit of 2 eel the total harvest of eel by anglers could be reduced by 18.2% of current levels but the associated welfare loss would amount to 1.86 million $€$ annually. A much higher welfare loss would be the consequence of a daily bag limit of 1 eel per day, which would reduce the total harvest nearly by 44%.

Table 5. The predicted total welfare changes (in million $€$ per year) of different policy scenarios for different eel anglers segments and aggregated for the total eel angler population in MV, northern Germany. N refers to the assumed finite population size. Scenarios are from Table 5. For scenario 6-10 the change in eel harvest was estimated based on the distribution of eel angler harvest in the fishing season 2006/2007 (- = cannot be estimated since multiple regulations were changed simultaneously).

Welfare change in the segments (in million $€$ per year)					
	Advanced eel anglers $(N=32,832)$	Intermediate eel anglers $(N=23,904)$	Casual eel anglers $(N=15,264)$	Total economic welfare change	Change of the total eel angling harvest relative to current harvest levels (in \%)
Management scenarios					
Scenario 2	0.12	1.57	0.78	2.47	-
Scenario 3	0.45	0.63	1.70	2.78	-
Scenario 4	-9.56	-2.37	-0.55	-12.48	-
Scenario 5	-11.74	-2.69	-1.06	-15.49	-
Change in individual					
harvest regulations					
Scenario 6	1.38	1.58	0.64	3.59	-10.1
Scenario 7	1.26	0.87	0.86	2.97	-30.2
Scenario 8	-0.25	0.69	0.36	0.79	-49.7
Scenario 9	-1.35	-0.54	0.03	-1.86	-18.2
Scenario 10	-3.47	-0.87	-1.14	-5.47	-43.7

Effects on the behavioural intention

Based on the forced choice model (Figure 2, 3) the utility change compared to the status quo were calculated for the different management scenarios (Tab. 6), whereas the results of the allocation task were used to predict the percentage of change for the intended eel angling effort. Under the status quo condition advanced anglers would spend 22.3% of their angling time for eel fishing. Under current condition intermediate eel anglers would allocate 21.7% and casual eel anglers 18.8% of their angling time to target eel (Tab. 6). In contrast to the clear probability of choice results in forced choice (Tab. 4) indicating that advanced and to lesser extent intermediate eel anglers would totally reject eel angling scenario with highly restrictive eel angling regulations (scenario 4 and 5) the allocation task revealed a different picture. For all presented complex management scenarios the percentage change of the intended eel angling frequency is not equivalent to the perceived utility change by the different eel angler segments. As indicated by elasticity value $E_{x, y}<1$ eel anglers react inelastic in their behavioural response to stricter eel angling regulations. The same pattern was
detectable for changes of single harvest regulations (scenario 6-10) in all angler segments, where the percentage change of the intended eel angling frequency was also not equivalent to the utility change (compare Tab. 4). Consequently, regardless complex management scenarios or single regulations all eel angler groups seemed to be highly inelastic in their behavioural response to new stricter eel angling regulation. Therefore, the overall demand of eel angling can only slightly controlled or reduced by the implementation of stricter eel angling regulations (Tab. 6).

Table 6. The predicted eel angling frequency, the associated frequency change (\%) and elasticity of the eel angler's behavioural response to different eel angling management scenarios, scenarios are the same as in Table 4, a elasticity value $E_{x, y}<1$ indicates a inelastic demand response of anglers to stricter eel angling regulations.

	Advanced eel anglers			Intermediate eel anglers			Casual eel anglers		
	Predicted eel angling frequency (in \%)	Frequency change (in \%) compared to status quo	$E_{x, y}$	Predicted eel angling frequency (in \%)	Frequency change (in \%) compared to status quo	$E_{x, y}$	Predicted eel angling frequency (in \%)	Frequency change (in \%) compared to status quo	$E_{x, y}$
Scenario 1 (status quo)	22.3	-	-	21.7	-	-	18.8	-	-
Management scenarios									
Scenario 2	22.6	1.8	0.4	21.6	0.6	<0.01	20.2	7.4	<0.01
Scenario 3	23.7	6.5	0.4	22.2	2.4	0.01	21.2	12.9	<0.01
Scenario 4	19.2	-13.5	0.04	20.8	-4.2	<0.01	18.5	-1.3	<0.01
Scenario 5	19.3	-13.3	0.03	19.9	-8.3	0.01	18.3	-2.6	<0.01
Change in individual harvest regulations									
Scenario 6	22.3	0.1	<0.01	21.5	-0.6	<0.01	18.3	-2.6	<0.01
Scenario 7	23.8	7.0	0.15	23.1	6.4	0.02	18.2	-3.1	<0.01
Scenario 8	22.6	1.6	0.17	22.6	4.3	0.02	17.8	-5.3	<0.01
Scenario 9	22.6	1.6	0.03	21.0	-3.4	0.01	19.7	4.8	<0.01
Scenario 10	20.8	-7.0	0.05	21.0	-3.3	0.01	17.5	-6.8	<0.01

Discussion

The present study is unique in explaining the trade-offs that differently specialised eel anglers make to maximize their utility from a mix of harvest, gear and effort regulations and catch-related outcomes of the eel fishing experience. Preferences expressed in the present choice experiment are more realistic than traditional assessments of attitudes towards catch attributes or regulations in single-item opinion-type questions can indicate, because the latter approaches do not present context for realistic trade-off decision making (Aas et al. 2000; Oh et al. 2005b). Results of the present study are of immediate practical interest when designing management plans for eel recovery in the study area (northern Germany), and presumably elsewhere, by allowing objective evaluation of the angler's preferences for various eel conservation policies as well as the likely economic welfare consequences and the behavioural changes these will entail. The estimates of the marginal WTPs presented in the present papers are also useful for decision-makers interested in conducting cost-benefit analyses of different eel conservation management scenarios, and results of these exercises together with complementary biological studies on the effectiveness of particular measures
for enhancing the eel population can inform the development of eel management plans at river basin scales.

However, results are also insightful from a basic scientific perspective because eel anglers differing in their degree of specialisation showed important deviations from predictions from recreational specialisation theory (Bryan 1977; Ditton et al. 1992) in both their preferred catch qualities and also their preference for regulations. Angling specialisation theory predicts that as specialisation increases an angler's emphasis on size of fish relative to number of fish increases (Bryan 1977; Chipman \& Helfrich 1988; Fisher 1997; Arlinghaus \& Mehner 2003; Arlinghaus 2007). The present study showed that this prediction does not hold for eel anglers in Germany. In fact, casual (i.e. less specialised) eel anglers exhibited a strong preference for the largest-sized eel (65 cm), while more specialised angler segments (termed advanced and intermediate in the present study) either exhibited no preferences for size of eel (intermediate anglers) or preferred smaller fish of 60 cm total length (advanced anglers). Moreover, advanced and intermediate eel anglers preferred to catch 3 eel per day, while casual anglers had no preference for the number of eel, which is contrary to predictions from specialisation theory (Bryan 1977). It appeared that as specialisation on eel increased catching the current bag limit of 3 intermediately-sized eel per day became more important.

One might be initially inclined to interpret the aversion towards very large eel by advanced eel anglers as a conservation attitude to protect these fish because they are to become migrating silver eels earlier than smaller eels. However, alternative explanations are more likely since preferences of more avid anglers for catching intermediately-sized eel might be related to the disposition of eel catches in Germany and largely reflect the current average size of eel captured by advanced eel anglers in the study area (62 cm , Tab. 3). Eel are typically retained and consumed smoked, and more avid eel anglers might have embraced the idea that as the size of eel increases its culinary value decreases due to increasing fat content and potentially higher levels of pollutants (Bilau et al. 2007; FAO \& ICES 2007; ICES 2008). In contrast, preferences of casual anglers for large eel might be an expression of the fact that relative to more avid eel anglers casual angler less often catch eel such that if occasionally an eel is caught it is preferred to be large. The greater fishing experience of advanced eel anglers might have taught them that catching more than 3 eel per successful eel angling day is a rare event (Tab. 3). The lack of preference for the largest-sized eel in the present study along with a preference for a catch of three eel per day among more specialised eel anglers thus seems to largely reflect current eel angling success patterns and is likely driven by the high degree of consumptiveness of targeted eel angling in Germany. Indeed, retention aspects (as opposed to releasing fish) were rated significantly more highly by specialised eel anglers in the present study, in stark contrast to predictions from angling specialisation theory (Bryan 1977). However, even among trout anglers, for which Bryan (1977) developed his initial proposition of decreasing consumptiveness with increasing specialisation level, Hutt \& Bettoli (2007) reported two groups of specialised anglers: one that is consumptive and one that is nonconsumptive. Similarly, Salz \& Loomis (2005) reported specialised saltwater anglers being more consumptive than less specialised marine anglers in the USA. Among specialised eel anglers in Germany, releasing fish seems out of question, as indicated by the non-significant differences in the retain orientation dimension among advanced and intermediate eel anglers in the present study, which was also supported by a complementary diary study in which voluntary catch-and-release of eel was rarely documented (Dorow \& Arlinghaus 2008).

Regarding preferences for regulations, recreation specialisation theory predicts that support of management actions designed to prevent overexploitation of the fish stocks should be positively correlated with angler specialisation (Bryan 1977; Ditton et al. 1992). Reasons for this include a greater awareness among specialised angler about anthropogenic factors, including fishing, causing population declines (Salz \& Loomis 2005) as well as an overall greater dependency on the fishery resource to meet psychological needs, in turn stimulating
support for resource-conserving management tools (Ditton et al. 1992; Oh \& Ditton 2006). Assessment of attitudes towards traditional harvest regulations such as minimum-size limits or daily bag limits have generally supported this notion for a number of North American angler populations (Chipman \& Helfrich 1998; Fisher 1997) but some exceptions were also noted in harvest-oriented recreational fisheries (Wilde \& Ditton 1999). Using a comparable choice approach to the one presented here among marine anglers in Texas (USA), Oh \& Ditton (2006) reported that advanced anglers were less supportive of relaxing currently relatively strict harvest regulations, while casual anglers opted for further relaxations. Oh \& Ditton (2006) interpreted these preferences of more specialised anglers as an indication of higher concern for preservation of a currently not threatened resource (red drum, Sciaenops ocellatus) by keeping strict regulations of fish harvest in place.

In the present study on eel anglers, only weak support for the above-mentioned positive relationship between support for restrictive regulations and angler specialisation was found. While advanced eel anglers indeed preferred a slightly higher minimum-size limit (55 cm) than intermediate anglers (50 cm), preferences expressed by casual anglers were generally more supportive of stricter harvest and gear regulations compared to anglers of higher eel specialisation level. Preferences for most regulatory tools to conserve eel thus contradicted previous suggestions that more restrictive regulations would be more highly preferred by more specialised anglers. For example, advanced eel anglers opposed a high minimum-size limit of 60 cm , while intermediate and casual anglers were indifferent. Similarly, casual anglers equally preferred a daily bag limit of 3 or 2 eel per day, while advanced and intermediate exclusively favoured a daily bag limit of 3 eel per day. Casual eel anglers thus exhibited stronger support for slightly more stringent traditional harvest regulations compared to more specialised eel angler segments. In addition, advanced and intermediate anglers preferred rod limits of 3 or 2 rods per day, while casual anglers were indifferent towards rod limits.

The results of the present study concerning temporal closures of eel fishing were particularly insightful, as this regulation is the most drastic form of regulating eel angling mortality. More specialised anglers strongly opposed a 14 days temporal closure per month and preferred the no closure option. In contrast, casual anglers actually opposed the no closure option and were indifferent towards a closure of 14 days per month. These findings support previous research showing that the supposedly higher support for recreational fishing regulations designed to preserve the fishery resource from more specialised anglers does not necessarily hold for effort-related regulations such as closed areas or seasons (Chipman \& Helfrich 1988; Salz \& Loomis 2005). Explanation for these patterns is related to the dependency of fishing as an activity, which typically increases with level of specialisation (Ditton et al. 1992) and is consequently reflected by higher consumer surpluses experienced by high specialisation anglers (this study, Arlinghaus \& Mehner 2004; Oh \& Ditton 2006). To temporally restrict the use of a specific fishery resource such as eel is thus more consequential for advanced anglers (higher resource dependence) than for causal anglers (Salz \& Loomis 2005), which is strongly reflected in the substantial welfare losses experienced by advanced anglers in the strictest eel angling scenarios in Table 4.

A typical finding from earlier specialisation research is that specialised anglers are more aware of the state and vulnerability of resources (Salz \& Loomis 2005) and thus support actions, including regulations of excessive fishing mortality, to conserve the resources (Ditton et al. 1992). Given the poor state of European eel stocks (Dekker 2003, 2008), one could have assumed that the preferences of advanced eel anglers would have critically reflected their own potential to contribute to eel declines through harvest leading to support of more stringent harvest regulations (Salz \& Loomis 2005). While their aversion towards restricted access to eel fishing is understandable, and in fact agrees with literature reports as explained above (Chipman \& Helfrich 1988; Salz \& Loomis 2005), the lower support for traditional harvest
regulations expressed by specialised eel anglers in the present study was initially unexpected, thus requiring further explanation. It is suspected that three important reasons play a role.

First, the great consumptive and retention orientation among advanced and intermediate eel anglers may have offset their generally supportive attitudes towards eel conservation because there are few, if any, substitutes to eel among the species mix in central Europe. Thus, any actions that limit the possibility to keep eel likely contradict the motivations and experience preferences of more specialised (and consumptive) eel anglers. Hence, the assumed positive relationship between support for harvest regulations and angler specialisation seems to be mediated by degree of consumptiveness (Wilde \& Ditton 1999; Salz \& Loomis 2005).

Second, acceptance of stricter harvest regulations assumes that anglers perceive themselves of contributing to stock declines (Salz \& Loomis 2005). While there is no scientific evidence that recreational eel fishing actually contributes significantly to the current eel decline, recent catch statistics of recreational eel catches in some Member States of the European Union (ICES 2008) and a survey in the study area (Dorow \& Arlinghaus 2008, 2009) indicate that recreational angling harvest can exceed the commercial harvest of eel in some river basins. This, of course, does not indicate that recreational fishing is overharvesting eel (Arlinghaus \& Cooke 2005) but nevertheless suggests that eel harvest by recreational fishing can be an important source of mortality for eel during their freshwater life stage (ICES 2008). However, the angling media in Germany have not publicised any concerns about recreational angling contributing to eel populations to anglers in recent years and have instead focused on emphasising other reasons for the eel decline, e.g. glass eel harvest or mortality at hydropower turbines. Although more specialised anglers typically have an increased media use to be informed about current developments (Ditton et al. 1992), in Germany they have likely not been exposed to the potential for angling to impact on eel stocks (compare Arlinghaus 2006b). Thus, if there is no awareness that angling mortality may contribute to eel stock declines, there is also no cognitive need for specialised anglers to accept particularly strict regulations to conserve eels. Yet, it should be noted that all eel anglers in the present study were prepared to accept slightly stricter harvest regulations (e.g. increased minimumsize limit), and this is in close agreement with recent proposals by angler organizations in Germany on future eel conservation measures or recreational fishing (VDSF \& DAV 2008).

Finally, previous predictions for higher support for harvest and gear regulations by specialised anglers were based on abundant resources (Oh \& Ditton 2006), a situation that does not hold for eel, which is negatively affected by multiple factors and in sharp decline for unknown reasons (Dekker 2003; Starkie 2003). Such circumstances may influence attitudes toward personal restrictions because anglers may fear that they will be singled out by eel management plans despite the existence of multiple stakeholders and factors impacting on eel, while perceiving themselves as the user group that is most innocent for the eel decline (compare Arlinghaus 2006b). Thus, eel anglers in MV, and probably elsewhere, may fear that implementation of stricter regulations could be the first step towards a complete ban of recreational eel fishing as has happened in some European countries already (e.g. Sweden, Norway). One may expect that such concern is higher for advanced eel anglers than for casual eel anglers, because of their higher resource dependency and their higher motivation to fish for eel in the future. This might have resulted in greater opposition to overly strict harvest restrictions among more specialised eel anglers in the present study.

In agreement with the overall higher benefits experienced by high specialisation anglers and their aversion towards stricter harvest and effort regulations, results of the scenario analysis revealed that overly strict regulations would disproportionally affect high specialisation anglers. In contrast, disproportionate welfare gains are likely to be experienced by casual anglers at moderately stricter regulations of eel angling relative to the current state. These differences can be explained by the higher levels of commitment and psychological
bonding towards eel angling found in highly specialised eel anglers. According to Buchanan (1985), the most committed (i.e. advanced) anglers have higher monetary and psychological investments (such as costs or investments into angling skills, social groups) associated with angling than less committed (i.e. casual) anglers. Due to their higher investments and resource dependency, advanced eel anglers have thus more to lose if stricter regulations were implemented. This bond with eel angling is reflected in the higher relative welfare loss experienced under highly restrictive eel angling regulations by advanced anglers compared to casual anglers. In contrast, being less committed and having lower resource dependency, casual eel anglers experienced relatively low welfare losses even under extreme regulations. Thus, among the entire eel angler population advanced eel anglers may be considered the losers if overly stricter eel angling regulations are implemented, while all angler segments, but particularly casual anglers, would benefit from slightly to moderately more restrictive regulations as indicated by positive welfare changes relative to the status quo (Tab. 4, 5).

The inelastic behavioural response to stricter eel angling regulations (Tab. 6) indicates that eel anglers would only slightly change their eel angling frequency even then the expected catch experience is minimal as well as highly restrictive eel angling regulation are in place (Tab. 6). Compared to the results of the forced choice (Tab. 3, for example clear welfare losses for scenario 4 and 5), this "irrational" indented eel angling behaviour underlines the uniqueness of the eel resource for anglers in the study area. Eel anglers have a hard time finding any substitute for eel (other target fish species or recreational activity, compare Ditton \& Sutton 2004) and would still go eel fishing under very unattractive conditions. Consequently, as long as anglers have access to the eel resource and the right to retain eel they would go eel fishing to satisfy their mainly consumptive orientated eel angling needs.

In the case that recreational eel fishing is to be considered as possible management tool for achieving the target goal of increasing the adult migrating eel stock eel managers might have the intuitive idea that a half monthly ban of recreational eel fishing would lead to a 50% reduction of recreational eel harvest. Our results indicate that this assumption would result in failure of the management goal. Eel anglers would use the other half of the month and intensify their eel angling effort during this time. Therefore, we suggest that a temporary ban of recreational eel fishing should be not applied to reduce the fishing mortality caused by recreational eel fishing because the effectiveness of such a measure is questionable based on the allocation task and further it will cause strong opposition as well as economic welfare losses shown by the forced choice. Instead of a temporal ban simple slightly stricter harvest regulation like minimum size limit of 50 cm or 55 cm are suitable to reduce the total harvest of the recreational eel fishery as well as to generate positive welfare changes (Tab. 5).

Conclusions and implications

Eel conservation managers should be interested in matching future regulations with the preferences of eel anglers taking due notice of the angler heterogeneity within eel anglers as long as this is compatible with biological objectives to preserve the vanishing eel population. The high intensity of activity, purpose and conviction that characterise specialised anglers can have major consequences for resource users, managers and the fishery resources. These anglers often serve as role models for less specialised anglers (Salz \& Loomis 2005). Moreover, highly specialised anglers are likely to voice the strongest opinions in response to future more restrictive management actions to conserve eel, as they have more to lose from such policies. Bringing specialised anglers onboard seems crucial if eel managers decide to implement stricter harvest or effort regulations for recreational eel angling, but it is clear that to avoid conflict and high losses of angler welfare any restriction to eel angling should be justified by scientific studies. Increasingly stringent regulations for eel recreational fishing should be carefully balanced with actions aimed to reduce the impact of other sources of eel mortality (e.g. commercial fishing, hydropower, fish-eating birds, Dorow et al. 2009).

Otherwise, implementation of regulations exclusively directed at recreational eel angling might lead to conflict, resulting in high losses of angler welfare as the present economic welfare analysis indicates. Furthermore, strict regulation of recreational angling without any associated restrictions on other known sources of eel mortality will likely also raise the impression among anglers that their proactive actions, including licence sale-driven investment of funds to conserve the eel population in selected river systems by stocking is not acknowledged by decision makers and society. Consequently, substantially restricting recreational eel fishing could, and likely will, lead to reduction of eel stocking by recreational fishing clubs and angling associations, which might reduce the eel escapement further. However, one should not forget that slightly or moderately restrictive harvest regulations might actually pay off for eel populations. For example, by reducing the daily bag limit from 3 to 2 eel per day and assuming the distribution of eel catches per day in the fishing season from 2006/2007 the total annual angling harvest of eel in the study area could likely be reduced by 18% (Tab. 5). At the same time such restriction would result in an angler welfare loss of 1.86 million $€$. Restricting angler's eel daily harvest limits further to 1 eel per day would reduce the total catch per year by 43% relative to the status quo, but the resulting welfare loss would add up to 5.5 million $€$ for the study area, which is probably unacceptably high. However, by increasing the minimum-size limit from 45 to 50 cm the total eel harvest by anglers could be reduced by 10% and the associated welfare gain is 3.59 million $€$. A further increase of the size limit to 55 cm would reduce the eel harvest by anglers by 30% and would still result in a positive welfare change of 2.99 million $€$ (Tab. 5). Therefore, increasing the minimum-size limit is more preferable than the reduction of the bag limit if managers aim to balance the biological and economic effects of individual harvest regulation measures.

Any type of future regulatory change must be carefully communicated before their implementation to prepare anglers to the typical unusual regulations. Communication efforts should include the purpose of new regulations and their expected outcomes as well as the legal need to allow escapement rates to increase. While reductions in eel mortality from recreational fishing will likely contribute to increased escapement rates, overly strict eel angling regulations, including temporal closures, would lead to considerable consequences for angler welfare in excess of several millions $€$ if aggregated to the entire eel angler population in Germany. These consequences for angler welfare must be reflected in the development of future eel management plans against potential gains in terms of increased escapement.

To conclude based on the results presented in this paper; minimal opposition by anglers to slightly more stringent harvest regulations (e.g. increased minimum-size limit from the current state of 45 cm to 50 or 55 cm) can be expected. This can also increase the eel population by a sizable reduction of the eel harvest by anglers (Tab. 5). Any effort restrictions, however, are unlikely to be well received and may result in conflicts. Based on the inelastic behavioural response of eel anglers to stricter regulations a temporal ban of eel angling would not lead to the expected reduction of the total eel angling effort (Tab. 6).

Acknowledgments

The project was funded by the European FIFG (Financial Instrument for Fisheries Guidance, 2000-2006) and the State of Mecklenburg-Vorpommern. Further funding was also provided by the Adaptfish-Project to RA through a grant within the Pact for Innovation and Research by the Leibniz-Community (www.adaptfish.igb-berlin.de). We thank the anglers participating in this survey and those providing helpful insights during the pre-tests. We would also thank USUMA GmbH (Berlin, Germany) for execution of the field work.

References

Aas \emptyset. \& Ditton R.B. 1998. Human dimensions perspective on recreational fisheries management: implications for Europe In: P. Hickley \& H. Tompkins (eds.) Recreational fisheries: social, economic, and management aspects. Oxford: Blackwell Science, pp. 153-164.
Aas \emptyset. \& Vitters \varnothing J. (2000) Re-examining the consumptiveness concept: some suggestions from confimatory factor analysis. Human Dimension of Wildlife 5, 1-18.
Aas Ø., Haider W. \& Hunt L. (2000) Angler responses to potential harvest regulations in a Norwegian sport fishery: a conjoint-based choice modeling approach. North American Journal of Fisheries Management 20, 940-950.
Anderson D.K., Ditton R.B. \& Hunt K.M. (2007) Measuring angler attitudes toward catchrelated aspects of fishing. Human Dimensions of Wildlife 12, 181-191.
Arlinghaus R. (2004) Recreational fishing in Germany - a socio-economic analysis. Berichte des IGB 18, 1-160. (in German)
Arlinghaus R. (2005) A conceptual framework to identify and understand conflicts in recreational fisheries systems, with implications for sustainable management. Aquatic Resources, Culture and Development 1, 145-174.
Arlinghaus R. (2006a) On the apparently striking disconnect between motivation and satisfaction in recreational fishing: the case of catch orientation of German anglers. North American Journal of Fisheries Management 26, 592-605.
Arlinghaus R. (2006b) Overcoming human obstacles to conservation of recreational fishery resources, with emphasis on central Europe. Environmental Conservation 33, 46-59.
Arlinghaus R. (2007) Voluntary catch-and-release can generate conflict within the recreational angling community: a qualitative case study of specialised carp, Cyprinus carpio, angling in Germany. Fisheries Management and Ecology 14, 161-171.
Arlinghaus R. \& Mehner T. (2003) Socio-economic characterisation of specialised common carp (Cyprinus carpio L.) anglers in Germany, and implications for inland fisheries management and eutrophication control. Fisheries Research 61, 19-33.
Arlinghaus R. \& Mehner T. (2004) Testing the reliability and construct validity of a simple and inexpensive procedure to measure the use value of recreational fishing. Fisheries Management and Ecology 11, 61-64.
Arlinghaus R. \& Cooke S.J. (2005) Global impact of recreational fisheries. Science 307, 1561-1562.
Arlinghaus R. \& Mehner T. (2005) Determinants of management preferences of recreational anglers in Germany: Habitat management versus fish stocking. Limnologica 35, 2-17.
Arlinghaus R., Mehner T. \& Cowx I.G. (2002) Reconciling traditional inland fisheries management and sustainability in industrialized countries, with emphasis on Europe. Fish and Fisheries 3, 261-316.
Arlinghaus R., Bork M. \& Fladung E. (2008) Understanding the heterogeneity of recreational anglers across an urban-rural gradient in a metropolitan area (Berlin, Germany), with implications for fisheries management. Fisheries Research 92, 53-62.
Arlinghaus R., Cooke S.J., Lyman J., Policansky D., Schwab A., Suski C., Sutton S.G. \& Thorstad E.B. (2007) Understanding the complexity of catch-and-release in recreational fishing: an integrative synthesis of global knowledge from historical, ethical, social, and biological perspectives. Reviews in Fisheries Science 15, 75-167.
Beard T.D., Cox S.P. \& Carpenter S.R. (2003) Impacts of daily bag limit reductions on angler effort in Wisconsin Walleye lakes. North American Journal of Fisheries Management 23, 1283-1293.
Ben-Akiva M. \& Lerman S.R. (1985) Discrete choice analysis: theory and application to travel demand. Cambridge, Massachusetts: MIT Press, 384 pp.

Bilau M., Sioen I., Matthys C., De Vocht A., Goemans G., Belpaire C., Willems J.L. \& De Henauw S. (2007) Probabilistic approach to polychlorinated biphenyl (PCB) exposure through eel consumption in recreational fishermen vs. the general population. Food Additives \& Contaminants 24, 1386-1393.
Brämick U. \& Fladung E. (2006) Quantifizierung der Auswirkungen des Kormorans auf die Seen- und Flussfischerei Brandenburg am Beispiel des Aals. Fischer und Teichwirt 57, 8-11. (in German)
Bryan H. (1977) Leisure value system and recreational specialization: the case of trout fisherman. Journal of Leisure Research 9, 174-187.
Buchanan T. (1985) Commitment and leisure behavior: a theoretical perspective. Leisure Sciences 7, 401-420.
Chipman B.D. \& Helfrich L.A. (1988) Recreational specializations and motivations of Virginia River anglers. North American Journal of Fisheries Management 8, 380-398.
Cortina J.M. (1993) What is coefficient alpha? An examination of theory and applications. Journal of Applied Psychology 78, 98-104.
Dannewitz J., Maes G.E., Johansson L., Wickström H., Volckaert F.A.M. \& Jarvi T. (2005) Panmixia in the European eel: a matter of time ... Proceedings of the Royal Society B 272, 1129-1137.
Dekker W. (2003) Did lack of spawners cause the collapse of the European eel, Anguilla anguilla? Fisheries Management and Ecology 10, 365-376.
Dekker W. (2008) Coming to grips with the eel stock slip-sliding away In: M.G. Schechter \& N.J. Leonard (eds) International Governance of Fisheries Ecosystems: Learning from the Past, Finding Solutions for the Future Bethesda, USA: American Fishery Society, pp. 335-355.
Dekker W., Pawson M. \& Wickström H. (2007) Is there more to eels than slime? An introduction to papers presented at the ICES Theme Session in September 2006. ICES Journal of Marine Science 64, 1366-1367.
Ditton R.B. \& Sutton S.G. (2004) Substitutability in recreational fishing. Human Dimension of Wildlife 9, 87-102.
Ditton R.B., Loomis D.K. \& Choi S. (1992) Recreation specialization: re-conceptualization from a social worlds perspective. Journal of Leisure Research 24, 33-51.
Dorow M. \& Arlinghaus R. (2007) Die Bedeutung der Angelfischerei in MecklenburgVorpommern unter besonderer Berücksichtigung der zurückgehenden Ressource Aal Kurzüberblick über eine laufende Studie. Fischerei und Fischmarkt in MecklenburgVorpommern 7(2), 21-26. (in German)
Dorow M. \& Arlinghaus R. (2008) Ermittlung der Aalentnahme durch die Angelfischerei in Binnen- und Küstengewässern Mecklenburg-Vorpommerns. Final Report Leibniz Institute for Freshwater Ecology and Inland Fisheries. 150 pp. (available at http://lfamv.de/index.php?/content/view/full/6392)
Dorow M. \& Arlinghaus R. (2009) Angelbegeisterung und anglerische Fischerträge in Binnen- und Küstengewässern Mecklenburg-Vorpommerns unter besonderer Berücksichtigung des Aals (Anguilla anguilla). Fischerei und Fischmarkt in Mecklenburg-Vorpommern 9(2), 36-46. (in German)
Dorow M., Beardmore B., Haider W. \& Arlinghaus R. (2009) Using a novel survey technique to predict fisheries stakeholders' support for European eel (Anguilla anguilla L.) conservation programs. Biologicial Conservation (in press)
EC (European Commission) (2007) Council Regulation (EC) No 1100/2007 of 18 September 2007 establishing measures for the recovery of the stock of European eel. Official Journal of the European Union L 248.
Edwards S.F. (1991) A critique of three "economics" arguments commonly used to influence fishery allocations. North American Journal of Fisheries Management 11, 121-130.

FAO \& ICES (2006) Report of the 2006 session of the Joint EIFAC/ICES Working Group on Eels. EIFAC Occasional Paper 38.
FAO \& ICES (2007). Report of the 2007 Session of the Joint EIFAC/ICES Working Group on Eels, Bordeaux, 3-7 September 2007. Rep. No. ICES CM 2007/ACFM:23
ICES (2008) Report of the Joint EIFAC/ICES Working Group on Eels (WGEEL), 3-9 September 2008, Leuven, Belgium. Rep. No. ICES CM 2008/ACOM:15.
Fedler A.J. \& Ditton R.B. (1986) A framework for understanding the consumptive orientation of recreational fishermen. Environmental Management 10, 221-227.
Fisher M.R. (1997) Segmentation of the angler population by catch preference, participation, and experience: a management-oriented application of recreation specialization. North American Journal of Fisheries Management 17, 1-10.
Freeman III A.M. (2003) The measurement of environmental and resource value: theory and methods. Washington, DC: RFF Press, 420 pp .
Hanemann W.M. (1984) Welfare evaluation in contingent valuation experiments with discrete responses. American Journal of Agricultural Economics 66, 332-341.
Hensher D.A., Rose J.M. \& Greene W.H. (2005) Applied choice analysis - a primer. New York: Cambridge University Press, 742 pp.
Hutt C.P. \& Bettoli P.W. (2007) Preferences, specialization, and management attitudes of trout anglers fishing in Tennessee tailwaters. North American Journal of Fisheries Management 27, 1257-1267.
Kaoru Y., Smith V.K. \& Liu J.L. (1995) Using random utility models to estimate the recreational value of estuarine resources. American Journal of Agricultural Economics 77, 141-151.
Kim S., Scott D. \& Crompton J.L. (1997) An exploration of the relationships among social psychological involvement, behavioral involvement and future intentions in the context of birdwatching. Journal of Leisure Research 29, 320-341.
Kirk R. (2003) The impact of Anguillicola crassus on European eels. Fisheries Management and Ecology 10, 385-394.
Knights B. (2003) A review of the possible impacts of long-term oceanic and climate changes and fishing mortality on recruitment of anguillid eels of the northern hemisphere. The Science of The Total Environment 310, 237-244.
Lawrence K.S. (2005) Assessing the value of recreational sea angling in South West England. Fisheries Management and Ecology 12, 369-375.
Lemcke R. (2003) Etablierung eines langfristigen Glas- und Jungaalmonitorings in
Mecklenburg-Vorpommern und erste Ergebnisse. Fischerei und Fischmarkt in
Mecklenburg-Vorpommern 3(1), 14-23.
Louviere J, Hensher D \& Swait J. (2000) Stated choice methods: analysis and applications. Cambridge: Cambridge University Press, 418 pp.
McFadden D. 1974. Conditional logit analysis of qualitative choice behavior In: P.Zarembka (ed) Frontiers in Econometrics New York: Academic Press, pp. 105-142.
Oh C. \& Ditton R.B. (2006) Using recreation specialization to understand multi-attribute management preferences. Leisure Sciences 28, 369-384.
Oh C., Ditton R.B. \& Riechers R. (2007) Understanding anglers' preferences for fishing tournament characteristics and policies. Environmental Management 40, 123-133.
Oh C., Ditton R.B., Gentner B. \& Riechers R. (2005a) A stated preference choice approach to understanding angler preferences for management options. Human Dimensions of Wildlife 10, 173-186.
Oh C., Ditton R.B., Anderson D.K., Scott D. \& Stoll J.R. (2005b) Understanding differences in nonmarket valuation by angler specialization level. Leisure Sciences 27, 263-277.
Paulrud A. \& Laitila T. (2004) Valuation of management policies for sport-fishing on

Sweden`s Kaitum River. Journal of Environmental Planning and Management 47, 863-879. Raktoe B.L., Hedayat A. \& Federer W.T. (1981) Factorial designs. New York: John Wiley and Sons, 224 pp. Salz R.J. \& Loomis D.K. (2005) Recreation specialization and anglers` attitudes towards restricted fishing areas. Human Dimension of Wildlife 10, 187-199.
Salz R.J., Loomis D.K. \& Finn K.L. (2001) Development and validation of a specialization index and testing of specialization theory. Human Dimensions of Wildlife 6, 239-258.
Starkie A. (2003) Management issues relating to the European eel, Anguilla anguilla. Fisheries Management and Ecology 10, 361-364.
Sutton S.G. (2003) Personal and situational determinants of catch-and- release choice of freshwater anglers. Human Dimension of Wildlife 8, 109-126.
Tesch F.-W. (2003) The eel. Oxford: Blackwell Publishing, 416 pp.
Tietze J. (2008) Einführung in die angewandte Wirtschaftsmathematik. Braunschweig/Wiesbaden: Vieweg \& Sohn, 566 pp.
VDSF \& DAV (2008) Standpunkte des Verbandes Deutscher Sportfischer e.V. (VDSF) und des Deutschen Anglerverbandes (DAV) zu Maßnahmen zur Wiederauffüllung des Bestandes des Europäischen Aals (Anguilla anguilla (L.)). Fischwaid 6, 16.
Winter H.V., Jansen H.M. \& Breukelaar A. (2007) Silver eel mortality during downstream migration in the River Meuse, from a population perspective. ICES Journal of Marine Science 64, 1444-1449.
Wilde G.R. \& Ditton R.B. (1999) Differences in attitudes and fishing motives among Texas catfish anglers. American Fisheries Society Symposium 24, 395-405.

[^0]: ${ }^{1}$ the lower the value, the higher the centrality to lifestyle, catch orientation and retain orientation
 ${ }^{2}$ the lower the value, the higher the sensitivity to regulations

