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An integrated modelling approach to support an ecosystem based management of multiple

uses in the German EEZ of the North Sea

Stelzenmiller, V*; Schulze, T; Fock, H; Sell, A; Kloppmann, M.; Berkenhagen, J.; Déring, R; Kraus, G.

Marine spatial planning in the German EEZ of the North Sea was previously driven by offshore wind
farm development and the designation of conservation areas. Just recently the more comprehensive
marine spatial plan has been accepted and the designated sectoral preference areas are now legally
binding. Although the preference areas for wind resource development have been designated,
concrete wind farm constructions plans within those areas have to be approved on an individual basis.
For the German EEZ and adjacent coastal waters we developed a spatial explicit integrated modelling
approach accounting for the distribution patterns of the commercially important resource plaice, the
activity pattern of the fishing fleet targeting plaice, the revenues generated in the areas of interest, and
the spatial extent of renewable energy development such as wind farms. We developed a Bayesian
Belief Network — GIS framework to assess potential consequences of different spatial management
scenarios which describe different options for the level of offshore wind resource development,
designation of conservation areas and the related fishing effort displacements. With the help of the
BN-GIS framework we explored in particular the risks for an increased vulnerability of plaice to fishing

pressure and the consequences for the fishing revenues.
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1 Introduction

The worldwide increase in the number of marine uses and their demand for sea space increase the
pressure and impact on marine ecosystems (Halpern et al., 2008). This calls for integrated and
ecosystem based spatial management approaches allowing a sustainable development of marine
resources while safeguarding marine environmental health (Leslie & McLeod 2007, Ruckelshaus et al.
2008). In Europe the marine strategy framework directive (MSFD) is a legal framework in which
member states are obliged to achieve or maintain good environmental status in the marine
environment by the year 2020. Thus the high level objectives of the MSFD are clean, healthy and
productive seas while promoting the sustainable use of marine resources. The practical
implementation of the MSFD comprises a sequence of evaluation processes accounting for an array of
ecosystem components and pressures. One spatial explicit management approach that aims to
balance management objectives is marine spatial planning (MSP). MSP is a public process of
analyzing and allocating the spatial and temporal distribution of human activities in marine areas to
achieve ecological, economic, and social objectives that usually have been specified through a
political process (Douvere et al.,, 2007; Douvere, 2008). In a recent study by Foley et al. (2010)
ecosystem based MSP is defined as an integrated planning framework that informs the spatial
distribution of activities in the ocean in order to support current and future uses of ocean ecosystems
and maintain the delivery of valuable ecosystem services for future generations in a way that meets

ecological, economic and social objectives.

Two types of conflicts arise from the spatial management of human activities which are conflicts
between the activities and the environment and conflicts between activities. The former type of conflict
should be analysed using a risk based approach that assesses the impacts of human activities which
vary in their intensities and footprint on ecosystem components that are sensitive to those activities.
An increasing number of studies presented practical approaches to quantify impacts of specific human
activities or cumulative impacts of numerous activities on ecosystem components (Ban et al. 2010;
Halpern et al., 2008; Foden et al., 2010; Stelzenmiller et al., 2010). In the context of marine planning
the impact of one human activity on other activities is studied to a lesser extent. One example is a
study by Berkenhagen et al. (2010) were cumulative economic impacts for the fisheries sector are
analysed due to the development of offshore wind energy in the German exclusive economic zone
(EEZ).

As yet studies assessing spatial management options by integrating more than one sector and their
potential impacts on both each other and ecosystem components are lacking. In general,
environmental management is a multiple objective problem because there are a number of objectives
and a range of possible management interventions. In land use management methods used to support
multiple objective management encompass multi criteria analyses (MCA) or spatial optimization
techniques such as Pareto optimality (see Kennedy et al., 2008; Polasky et al., 2008 and references
therein).



Ecosystem based marine spatial management approaches such as MSP allocate the spatial and
temporal allocation of resource use, therefore it is crucial to account for the uncertainty associated with
the data used, and to visualise the uncertainty associated with the outcomes of possible spatial
management scenarios. Bayesian Belief Networks (BNs) are models that graphically and
probabilistically represent correlative and causal relationships among variables and can account for
uncertainty (McCann et al., 2006). BNs have been successfully applied to natural resource
management, to address environmental management problems, and to assess the impact of
alternative management measures (see e.g. Varis et al., 1990; Marcot et al., 2001; Nyberg et al.,
2006). A recent study by Stelzenmiller et al. (2010) combined GIS analysis and BNs to support
marine planning tasks by assessing what/if scenarios for different planning objectives and related

management interventions.

Following this methodological concept we developed here a BN-GIS framework to assess the potential
consequences of spatial management options in the German EEZ and adjacent coastal waters. The
maritime spatial plan for the German EEZ is legally binding and contains designated sectoral
preference areas (BMVBS, 2009). The spatial plan specifies a number of high level objectives such as
e.g. the promotion of offshore wind energy use (25000 MW by 2030) or protection of natural resources
by avoiding disruptions to and pollution of marine environment. Moreover, the spatial plan contains a
number of special areas of conservation (Natura2000 sites) with specific objectives such as the
achievement and maintenance of a favorable conservation status as described in the EU Birds and
Habitats directives (EU, 1992). Although the sectoral preference areas have been designated the
individual wind farm licenses will be subjected to an environmental impact assessment and currently
fisheries management options are assessed for the Natura 2000 sites (see Pedersen et al., 2009).
This generates a number of future spatial management scenarios with different economic
consequences for the sectors involved. Thus within the study area we used a BN-GIS modelling
approach to assess the potential consequences of example spatial management scenarios due to
wind farm development for a number of fishing fleets, the commercially important resource plaice and

the revenues generated in the area of interest.

2 Material and methods
2.1 Bayesian Belief Network development

Our study area comprised the German EEZ of the North Sea with the adjacent coastal waters (Fig.1)
and we used a vector grid with a resolution of 3nm for the subsequent analysis. This grid contained all
of the attribute information necessary to populate the conditional probability tables (CPTs) of the

model nodes (Fig. 2). The model nodes and associated data are described in more detail below.

Average bottom temperature and average bottom salinity—Bottom temperature and bottom salinity are

environmental predictor variables for plaice. From the oceanographic database of the International

Council for the Exploration of the Sea (ICES) we extracted sea bottom temperature and salinity data
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for the years 2000 to 2009 for the third quarter of each year. Within the study area we interpolated the
temperature and salinity values on a high resolution grid (0.6 nm or 0.01 decimal degrees), using
ordinary kriging (Cressie, 1991), to represent the average bottom temperature and salinity. In a

second step we summarized the values on the 3nm vector grid.

Depth — The average depth is an environmental predictor variable for plaice. For each grid cell we
derived the average depth (m) from the General Bathymetric Chart of the Oceans (GEBCO) digital
atlas (www.gebco.net).

Sediment — We obtained sediment data from the Federal Maritime and Hydrographic Agency and
assigned each cell to a sediment type (www.bsh.de). In total we allocated 17 sediment categories to
the grid cells which comprised the four main sediment categories mud (M), fine sand (fs), medium
sand (ms) and coarse sand (cs) with different sorting categories ranging from very poorly (vps), poorly

(ps), moderately (ms), well (ws) and very well (vws).

Plaice total and Plaice 27 cm — For the study area we extracted survey catch data from the third
quarters of 2000 to 2009 (393 tows) for plaice (Pleuronectes platessa) from annual beam trawl
surveys deploying a 7 m beam trawl with a towing time of 30 min with the German research vessels
SOLEA | and SOLEA II. With the help of a length-weight relationship (w [kg]= a Iengthb; a = 0.0069
and b = 3.1084; vTI data ) we computed cpue (kg / 30 min) for total plaice catches and the size class
227 cm, as 27 cm corresponds to the minimum landing size of plaice. To account for the statistically
significant (p = 0.05) inter-annual variability in plaice catch data (total and = 27 cm) we standardized
the cpue data with the help of generalized linear models (GLM) using the factor “year” as predictor
variable. As described in Stelzenmiiller et al. (2007) we derived calibration coefficients by back-
transforming the parameter estimates (Quinn Il and Deriso, 1999) and transformed cpue data by

dividing the raw cpue by the appropriate power coefficient.

Hence, we conducted the subsequent spatial prediction of the average plaice distribution pattern with
standardized and aggregated cpue data. We used regression kriging, a hybrid technique which
combines regression techniques with kriging of the regression residuals (see details to the method in
Hengl et al., 2007). Some recent studies used this modelling technique to estimate spatial distribution
pattern of commercially relevant species such as plaice, sole (Solea solea) and thornback ray (Raja
clavata) (Maxwell et al., 2009) or fishing effort density around marine protected areas (Stelzenmiiller et
al., 2008).

In a first step we assessed the relationships between cpue data of plaice (total and = 27 cm) and the
environmental variables (bottom temperature, bottom salinity, and depth) at the sampling locations
using Generalized additive models (GAMs) (Hastie and Tibshirani, 1986). We computed Pearson
product moment correlation between the cpue data and the environmental variables (bottom
temperature, bottom salinity, and depth) and among the environmental variables to detect co-linearity.
Further we allowed for possible non-linear effects of the environmental variables using natural splines

(Venables and Dichmont, 2004) while controlling the risk of over fitting by limiting the degrees of
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freedom. From the full set of calculated GAMs, we selected the best models by the lowest value of
Akaike Information Criterion (Akaike, 1973). Using the selected models we predicted for each year

total plaice cpue and plaice = 27 cm log (1+cpue) for each grid cell of a high resolution grid (0.6 nm).

Subsequently, we corrected the GAM estimates by conducting a geostatistical analysis of the GAM
residuals which is the second step of the regression kriging process. We described the spatial
structuring of the GAM residuals using semivariograms and fitted parameters of spherical models
(nugget effect, sill and range) with a weighted least squares fitting procedure (Cressie, 1991).
Afterwards we predicted for each grid cell of the high resolution grid (0.6 nm) a value of the residuals
using ordinary point kriging. We then combined the respective trend and autocorrelation maps to
produce continuous maps of the respective plaice catch data. In final step we transferred the predicted

cpue of plaice (total and = 27 cm) to the standard vector grid (3 nm).

Fishing effort, FEBeam, FEOtter, FEShrimper — As an example we used German VMS (vessel
monitoring system) and logbook data from 2008 to determine high spatial resolution (3 by 3 nm miles)
fishing effort and total catch (marketable catch). Original VMS data consist of the vessel identification
number, position, speed and heading. Fishing effort was calculated for the métiers with bottom contact
and which potentially catch plaice 227 cm. Thus we summarized beamtrawls fishing for brown shrimp,
mesh size 16 to 31mm (referred to as FEShrimper), and beamtrawls (referred to as FEBeam), and
otterboards fishing for flatfish, mesh size >=80mm (referred to as FEOtter) and the total fishing effort is
referred to as “Fishing effort”. In a first step, data were filtered for “fishing” and “not fishing” using the
speed of each vessel individually, i.e., a certain range of low speed was labeled “fishing” whereas
higher speed and standing still were labeled “not fishing”. The position of the boat was then allocated
to a 3 times 3 nm miles rectangle (i.e. 100 fine rectangles per ICES rectangle) and the time interval
between two positions was summed up to the amount of fishing effort spent in a specific 3 times 3 nm
rectangle (hours fishing). Since the time interval between each position can be up to two hours there is
a considerable portion of 'unseen' activity by each vessel. The method applied, here, for VMS data
analysis takes account of this uncertainty by substituting each registration with a discrete set of

positions with high probability of vessel presence (see details in Fock, 2008).

Total catch and Euro — We derived the total catch from landings of plaice indicated in the logbook
data. We aggregated landings according the VMS data and calculated the total catch (kg) for 2008.
The total catch was distributed proportionally to the effort to the specific 3 times 3 nm rectangles. In a
final step the catch was multiplied by the mean price (1.89 €) of plaice of German landings in 2008 to

calculate the revenue (referred to as Euro) gained in 3nm grid cell.

Vulnerability — The vulnerability of plaice = 27 cm to fishing is defined as:

cpu / Total catc ;
X

Y cpu Total catc ’

i
with the first term reflecting the modeled relative proportion of plaice = 27 cm (log 1+cpue) within a grid
cell (i) and the second term showing the relative proportion of the total catch within a grid cell. The
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lower the calculated value, the higher is the degree of vulnerability for plaice = 27 cm. We then
transformed the vulnerability values ranging from 0 to 1680 to six vulnerability states using quantiles
(state1 (0) = no ; state 1 (60 - 1680) = very low; state 2 (22 - 60) = low; state 3 (5 - 22) = intermediate;
state 4 (0.4 — 5) = high; state 5 (0.04 - 0.4) = very high).

The BN was developed using the Netica software system (www.norsys.com) (see details on the
inference algorithm implemented in Netica in Spiegelhalter and Dawid, 1993). The BN model (Fig. 2)
represents the vulnerability of plaice = 27 cm to fishing and the revenues generated from plaice
catches within the study area as a function of fishing effort and the average distribution pattern of the
resource, which is in turn influenced by the environmental variables bottom temperature, bottom
salinity and depth. Fishing effort and the environmental variables are parent nodes and are considered
to be independent from each other. Each parent node has different discrete states (e.g. temperature
or depth categories) with an associated probability of occurrence. The FEBeam, FEOtter, FEShrimper
nodes, reflecting the fishing effort (hours fished) of the different métiers, are child nodes of the fishing
effort node. Further the vulnerability node is defined as a child node of the total catch node and the
resource node (plaice = 27 cm). The revenue node is a child node of the total catch node. The child
node total plaice is influenced by the total catch node and the plaice = 27 cm node, while the sediment

node showing the sediment categories affected by fishing is a child node of the fishing effort node.

One of the advantages of using BNs is that empirical data, as well as expert opinion, can be used to
define the prior probabilities. For this study, however, we built the prior probabilities for each node in
our model based on GIS data and not on expert opinion, thus the model reflects the current level of
‘evidence’ for relationships and the data were used to populate the conditional probability tables
(CPTs).

2.2 Marine management scenarios

The aim of this study was to assess the potential consequences of spatial management scenarios on
the vulnerability of the resource to fishing and the revenues generated from plaice catches using the
BN-GIS framework. Thus after building and testing the BN as described above, we used it to infer the
behaviour and response of the variables to different management scenarios. We defined two marine
management scenarios which included the setting of objectives and predicted the consequences of

those objectives. We defined the current state as the baseline or ‘do-nothing’ scenario.

Scenario 1 — What management targets for fisheries are required to maintain the current vulnerability
of plaice in the case of environmental change? We defined as management objective to maintain the
current vulnerability of plaice to fishing. We simulated an increase in the relative average bottom
temperature in our study area (state 1: 10.6 %, state 2: 10.6%, state 3: 15 %, state 4: 32%, and state
5: 32%) and predicted the potential consequences for vulnerability. We then predicted a possible
management intervention for the total fishing effort to maintain the current measure of vulnerability of

plaice.



Scenario 2 - How does the vulnerability of plaice change after the development of offshore wind farms
and a related displacement of fishing effort? One of the high level objectives for the German marine
spatial management is an installed capacity of offshore wind energy of 25000 MW by 2030. We used
the current application areas for wind farms (provided by BSH) to construct a fishing effort
displacement scenario (see Fig.3). We reset the fishing effort for grid cells within the application areas
to zero and redistributed the same amount of fishing effort. For the displacement scenario we
constructed in the GIS three buffer rings (3, 10 and 15 km) around the application areas and
redistributed the fishing effort of the respective fleets with 70 % of the effort to the 3 km buffer area, 20
% to the 10 km buffer area, and 10% to the 15 km buffer area. This displacement scenario should
account for the fact that fisher men tend to fish very close to closed areas such as marine protected

areas or fishing closures (e.g. Murawski et al., 2005; Stelzenmdliller et al., 2008).

3 Results

3.1 Baseline scenario

The complete model derived describing the relationships between fishing effort, total catch of plaice,
environmental parameters and the distribution of the resource is presented in Figure 4. Under the
current fisheries management and the predicted spatial distribution of the resource we computed that
18.6 % of the area experienced a vulnerability of O (state 1) and 32.6 % of the area are in vulnerability
state 4 (high). The revenue node (Euro) showed that 18.8 % of the area generates between 37 and
210 € from German plaice landings in 2008. The fishing effort of the fleets revealed that their main
activity took place on roughly 50 % of the study area. The baseline scenario also revealed that only

13% of the area generated German plaice catches between 600 and 9600 kg.

3.2 Scenario 1

The consequences of the simulated increase in average bottom temperature from 13.9 °C to 14.4 °C
are displayed in Figure 5a. The average vulnerability of plaice increased from 2.34 to 2.43 caused by a
marginal increase of surface area being in vulnerability state4 and a slight reduction in surface area
with vulnerability state 0 and 1. This increase in the average vulnerability is not significant as it is still in
the confidence limit of the standard deviation. However to maintain the current average value of
vulnerability one possible management option would be to increase the number of cells in fishing effort
states 1,2 and 3 by 10% and reduce the cells in fishing effort state 4 and 5 by 14 % (see Figure 5b).
This option would affect the FE Shrimper fleet most as the number of cells in state 1 (low FE Shrimper
effort) need to be increased from 50 % to 70 %. The consequences for the revenues would be a
possible increase of the mean catch by 100 kg to 865 kg with an associated increase in mean revenue

per grid cell area of 230 €.



3.3 Scenario 2

The model predicted all states of the total catch and vulnerability based on the simulated distribution of
fishing effort after the closure of the wind farm application areas to fishing. As an example the spatial
pattern of the current vulnerability states 0, 3 and 4 are compared to the predicted probabilities for a
grid cell to be in a certain vulnerability state after the displacement of fishing effort given the same
spatial distribution of the resource (Figure 6). The spatial pattern of the predicted probabilities of
vulnerability state 0 showed that a distinct smaller area (with values between 0.8 and 1) in the northern
part of the study area. Overall the number of grid cell with a probabilities ranging from 20 % to 50 % to
be in vulnerability state 3 increased compared to the actual pattern of cells in vulnerability state 3. The
pattern of the predicted probabilities of vulnerability state 4 showed distinct deviations from the current
pattern in the northeastern part of the study area. Thus this indicates a decrease of the vulnerability in

those cells.

4 Conclusions

Results showed the great potential of the application of the BN-GIS modelling framework to address a
range of management objectives and interventions. Moreover this approach allowed us to examine the
spatial pattern of uncertainty related to marine management scenarios which is very important in a
marine planning context where conflicts between human activities may need to be resolved. As any
modelling technique the BN-GIS framework constructed to describe complex relationships between
human activities and sensitive ecosystem components is constrained by the available geodata at the
relevant spatial scale. The scenario outcomes reflect options for management targets and
consequences of spatial management interventions rather than final solutions. For instance the
assumptions made for the fishing effort displacement scenario have already an impact on the scenario
outcomes. Thus future applications of our framework should consider international data for fishing
effort, total catch and revenues to address the cross-boundary consequences of spatial management
options in German waters. Once the drivers of the fishing effort allocation are understood those
components may be included in future studies to improve the development of fishing displacement
scenarios and to derive more realistic estimates of potential consequences. We conclude that the BN-
GIS framework can be a useful tool to support the decision process by helping to provide informed
decisions, through the assessment of potential outcomes and related uncertainty from management
measures in a spatial context, and to offer a visualisation tool that facilitates the engagement of

different stakeholders in such a process.
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Figure 1: Study area with spatial distribution pattern of the total fishing effort in 2008, the total catch

(kg), revenue (Euro), plaice = 27 cm and total plaice cpue (predicted with regression kriging) and the

measure of vulnerability (O - 5).
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Figure 2: Conceptual model showing the key variables used to predict the overall level of vulnerability

of plaice to fishing as a function of the total catch and cpue of plaice = 27 cm.
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Figure 3
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Figure 3: Spatial distribution pattern of beam trawl fleet (FE Beam) (left) and respective fishing effort

displacement scenario for the beam trawl fleet (right).
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Figure 4: Results of the baseline scenario.
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Figure 5a and 5b: The model results of scenario 1 after simulating the increase in temperature (top)

and adapting the fishing effort to maintain an average vulnerability measure of 2.34 (bottom).
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Figure 6

Vulnerability state O

Vulnerability state 4

Figure 6: Results for scenario 2 on the assessment of changes in vulnerability states after the closure
of windfarm application areas to fishing together with a displacement of fishing effort. The current
distribution of cells in vulnerability states 0, 3 and4 (left) and the predicted probabilities for the

vulnerabilities states 0, 3 and 4 (right).
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