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1 Introduction 

The worldwide increase in the number of marine uses and their demand for sea space increase the 

pressure and impact on marine ecosystems (Halpern et al., 2008). This calls for integrated and 

ecosystem based spatial management approaches allowing a sustainable development of marine 

resources while safeguarding marine environmental health (Leslie & McLeod 2007, Ruckelshaus et al. 

2008). In Europe the marine strategy framework directive (MSFD) is a legal framework in which 

member states are obliged to achieve or maintain good environmental status in the marine 

environment by the year 2020. Thus the high level objectives of the MSFD are clean, healthy and 

productive seas while promoting the sustainable use of marine resources. The practical 

implementation of the MSFD comprises a sequence of evaluation processes accounting for an array of 

ecosystem components and pressures. One spatial explicit management approach that aims to 

balance management objectives is marine spatial planning (MSP). MSP is a public process of 

analyzing and allocating the spatial and temporal distribution of human activities in marine areas to 

achieve ecological, economic, and social objectives that usually have been specified through a 

political process (Douvere et al., 2007; Douvere, 2008). In a recent study by Foley et al. (2010) 

ecosystem based MSP is defined as an integrated planning framework that informs the spatial 

distribution of activities in the ocean in order to support current and future uses of ocean ecosystems 

and maintain the delivery of valuable ecosystem services for future generations in a way that meets 

ecological, economic and social objectives.  

Two types of conflicts arise from the spatial management of human activities which are conflicts 

between the activities and the environment and conflicts between activities. The former type of conflict 

should be analysed using a risk based approach that assesses the impacts of human activities which 

vary in their intensities and footprint on ecosystem components that are sensitive to those activities. 

An increasing number of studies presented practical approaches to quantify impacts of specific human 

activities or cumulative impacts of numerous activities on ecosystem components (Ban et al. 2010; 

Halpern et al., 2008; Foden et al., 2010; Stelzenmüller et al., 2010). In the context of marine planning 

the impact of one human activity on other activities is studied to a lesser extent. One example is a 

study by Berkenhagen et al. (2010) were cumulative economic impacts for the fisheries sector are 

analysed due to the development of offshore wind energy in the German exclusive economic zone 

(EEZ). 

As yet studies assessing spatial management options by integrating more than one sector and their 

potential impacts on both each other and ecosystem components are lacking. In general, 

environmental management is a multiple objective problem because there are a number of objectives 

and a range of possible management interventions. In land use management methods used to support 

multiple objective management encompass multi criteria analyses (MCA) or spatial optimization 

techniques such as Pareto optimality (see Kennedy et al., 2008; Polasky et al., 2008 and references 

therein).  
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Ecosystem based marine spatial management approaches such as MSP allocate the spatial and 

temporal allocation of resource use, therefore it is crucial to account for the uncertainty associated with 

the data used, and to visualise the uncertainty associated with the outcomes of possible spatial 

management scenarios. Bayesian Belief Networks (BNs) are models that graphically and 

probabilistically represent correlative and causal relationships among variables and can account for 

uncertainty (McCann et al., 2006). BNs have been successfully applied to natural resource 

management, to address environmental management problems, and to assess the impact of 

alternative management measures (see e.g. Varis et al., 1990; Marcot et al., 2001; Nyberg et al., 

2006). A recent study by Stelzenmüller et al. (2010) combined GIS analysis and BNs to support 

marine planning tasks by assessing what/if scenarios for different planning objectives and related 

management interventions. 

Following this methodological concept we developed here a BN-GIS framework to assess the potential 

consequences of spatial management options in the German EEZ and adjacent coastal waters. The 

maritime spatial plan for the German EEZ is legally binding and contains designated sectoral 

preference areas (BMVBS, 2009). The spatial plan specifies a number of high level objectives such as 

e.g. the promotion of offshore wind energy use (25000 MW by 2030) or protection of natural resources 

by avoiding disruptions to and pollution of marine environment. Moreover, the spatial plan contains a 

number of special areas of conservation (Natura2000 sites) with specific objectives such as the 

achievement and maintenance of a favorable conservation status as described in the EU Birds and 

Habitats directives (EU, 1992). Although the sectoral preference areas have been designated the 

individual wind farm licenses will be subjected to an environmental impact assessment and currently 

fisheries management options are assessed for the Natura 2000 sites (see Pedersen et al., 2009). 

This generates a number of future spatial management scenarios with different economic 

consequences for the sectors involved. Thus within the study area we used a BN-GIS modelling 

approach to assess the potential consequences of example spatial management scenarios due to 

wind farm development for a number of fishing fleets, the commercially important resource plaice and 

the revenues generated in the area of interest. 

 

2 Material and methods 

2.1 Bayesian Belief Network development  

Our study area comprised the German EEZ of the North Sea with the adjacent coastal waters (Fig.1) 

and we used a vector grid with a resolution of 3nm for the subsequent analysis. This grid contained all 

of the attribute information necessary to populate the conditional probability tables (CPTs) of the 

model nodes (Fig. 2). The model nodes and associated data are described in more detail below.  

Average bottom temperature and average bottom salinity–Bottom temperature and bottom salinity are 

environmental predictor variables for plaice. From the oceanographic database of the International 

Council for the Exploration of the Sea (ICES) we extracted sea bottom temperature and salinity data 
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for the years 2000 to 2009 for the third quarter of each year. Within the study area we interpolated the 

temperature and salinity values on a high resolution grid (0.6 nm or 0.01 decimal degrees), using 

ordinary kriging (Cressie, 1991), to represent the average bottom temperature and salinity. In a 

second step we summarized the values on the 3nm vector grid.  

Depth – The average depth is an environmental predictor variable for plaice. For each grid cell we 

derived the average depth (m) from the General Bathymetric Chart of the Oceans (GEBCO) digital 

atlas (www.gebco.net). 

Sediment – We obtained sediment data from the Federal Maritime and Hydrographic Agency and 

assigned each cell to a sediment type (www.bsh.de). In total we allocated 17 sediment categories to 

the grid cells which comprised the four main sediment categories mud (M), fine sand (fs), medium 

sand (ms) and coarse sand (cs) with different sorting categories ranging from very poorly (vps), poorly 

(ps), moderately (ms), well (ws) and very well (vws). 

Plaice total and Plaice 27 cm – For the study area we extracted survey catch data from the third 

quarters of 2000 to 2009 (393 tows) for plaice (Pleuronectes platessa) from annual beam trawl 

surveys deploying a 7 m beam trawl with a towing time of 30 min with the German research vessels 

SOLEA I and SOLEA II. With the help of a length-weight relationship (w [kg]= a lengthb; a = 0.0069 

and b = 3.1084; vTI data ) we computed cpue (kg / 30 min) for total plaice catches and the size class 

≥27 cm, as 27 cm corresponds to the minimum landing size of plaice. To account for the statistically 

significant (p = 0.05) inter-annual variability in plaice catch data (total and ≥ 27 cm) we standardized 

the cpue data with the help of generalized linear models (GLM) using the factor “year” as predictor 

variable. As described in Stelzenmüller et al. (2007) we derived calibration coefficients by back-

transforming the parameter estimates (Quinn II and Deriso, 1999) and transformed cpue data by 

dividing the raw cpue by the appropriate power coefficient.  

Hence, we conducted the subsequent spatial prediction of the average plaice distribution pattern with 

standardized and aggregated cpue data. We used regression kriging, a hybrid technique which 

combines regression techniques with kriging of the regression residuals (see details to the method in 

Hengl et al., 2007). Some recent studies used this modelling technique to estimate spatial distribution 

pattern of commercially relevant species such as plaice, sole (Solea solea) and thornback ray (Raja 

clavata) (Maxwell et al., 2009) or fishing effort density around marine protected areas (Stelzenmüller et 

al., 2008).  

In a first step we assessed the relationships between cpue data of plaice (total and ≥ 27 cm) and the 

environmental variables (bottom temperature, bottom salinity, and depth) at the sampling locations 

using Generalized additive models (GAMs) (Hastie and Tibshirani, 1986). We computed Pearson 

product moment correlation between the cpue data and the environmental variables (bottom 

temperature, bottom salinity, and depth) and among the environmental variables to detect co-linearity. 

Further we allowed for possible non-linear effects of the environmental variables using natural splines 

(Venables and Dichmont, 2004) while controlling the risk of over fitting by limiting the degrees of 
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freedom. From the full set of calculated GAMs, we selected the best models by the lowest value of 

Akaike Information Criterion (Akaike, 1973). Using the selected models we predicted for each year 

total plaice cpue and plaice ≥ 27 cm log (1+cpue) for each grid cell of a high resolution grid (0.6 nm). 

Subsequently, we corrected the GAM estimates by conducting a geostatistical analysis of the GAM 

residuals which is the second step of the regression kriging process. We described the spatial 

structuring of the GAM residuals using semivariograms and fitted parameters of spherical models 

(nugget effect, sill and range) with a weighted least squares fitting procedure (Cressie, 1991). 

Afterwards we predicted for each grid cell of the high resolution grid (0.6 nm) a value of the residuals 

using ordinary point kriging. We then combined the respective trend and autocorrelation maps to 

produce continuous maps of the respective plaice catch data. In final step we transferred the predicted 

cpue of plaice (total and ≥ 27 cm) to the standard vector grid (3 nm). 

Fishing effort, FEBeam, FEOtter, FEShrimper – As an example we used German VMS (vessel 

monitoring system) and logbook data from 2008 to determine high spatial resolution (3 by 3 nm miles) 

fishing effort and total catch (marketable catch). Original VMS data consist of the vessel identification 

number, position, speed and heading. Fishing effort was calculated for the métiers with bottom contact 

and which potentially catch plaice ≥27 cm. Thus we summarized beamtrawls fishing for brown shrimp, 

mesh size 16 to 31mm (referred to as FEShrimper), and beamtrawls (referred to as FEBeam), and 

otterboards fishing for flatfish, mesh size >=80mm (referred to as FEOtter) and the total fishing effort is 

referred to as “Fishing effort”. In a first step, data were filtered for “fishing” and “not fishing” using the 

speed of each vessel individually, i.e., a certain range of low speed was labeled “fishing” whereas 

higher speed and standing still were labeled “not fishing”. The position of the boat was then allocated 

to a 3 times 3 nm miles rectangle (i.e. 100 fine rectangles per ICES rectangle) and the time interval 

between two positions was summed up to the amount of fishing effort spent in a specific 3 times 3 nm 

rectangle (hours fishing). Since the time interval between each position can be up to two hours there is 

a considerable portion of 'unseen' activity by each vessel. The method applied, here, for VMS data 

analysis takes account of this uncertainty by substituting each registration with a discrete set of 

positions with high probability of vessel presence (see details in Fock, 2008). 

Total catch and Euro – We derived the total catch from landings of plaice indicated in the logbook 

data. We aggregated landings according the VMS data and calculated the total catch (kg) for 2008. 

The total  catch was distributed proportionally to the effort to the specific 3 times 3 nm rectangles. In a 

final step the catch was multiplied by the mean price (1.89 €) of plaice of German landings in 2008 to 

calculate the revenue (referred to as Euro) gained in 3nm grid cell. 

Vulnerability – The vulnerability of plaice ≥ 27 cm to fishing is defined as:  

 �at乒f∑ �at乒叁f腔前  / ΒŖȖ̜Ϝ �̜Ȗ�萍f∑ ΒŖȖ̜Ϝ �̜Ȗ�萍叁f腔前 ,   

with the first term reflecting the modeled relative proportion of plaice ≥ 27 cm (log 1+cpue) within a grid 

cell (i) and the second term showing the relative proportion of the total catch within a grid cell. The 
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lower the calculated value, the higher is the degree of vulnerability for plaice ≥ 27 cm. We then 

transformed the vulnerability values ranging from 0 to 1680 to six vulnerability states using quantiles 

(state1 (0) = no ; state 1 (60 - 1680) = very low; state 2 (22 - 60) = low; state 3 (5 - 22) = intermediate; 

state 4 (0.4 – 5) = high; state 5 (0.04 - 0.4) = very high). 

The BN was developed using the Netica software system (www.norsys.com) (see details on the 

inference algorithm implemented in Netica in Spiegelhalter and Dawid, 1993). The BN model (Fig. 2) 

represents the vulnerability of plaice ≥ 27 cm to fishing and the revenues generated from plaice 

catches within the study area as a function of fishing effort and the average distribution pattern of the 

resource, which is in turn influenced by the environmental variables bottom temperature, bottom 

salinity and depth. Fishing effort and the environmental variables are parent nodes and are considered 

to be independent from each other. Each parent node has different discrete states (e.g. temperature 

or depth categories) with an associated probability of occurrence. The FEBeam, FEOtter, FEShrimper 

nodes, reflecting the fishing effort (hours fished) of the different métiers, are child nodes of the fishing 

effort node. Further the vulnerability node is defined as a child node of the total catch node and the 

resource node (plaice ≥ 27 cm). The revenue node is a child node of the total catch node. The child 

node total plaice is influenced by the total catch node and the plaice ≥ 27 cm node, while the sediment 

node showing the sediment categories affected by fishing is a child node of the fishing effort node.  

One of the advantages of using BNs is that empirical data, as well as expert opinion, can be used to 

define the prior probabilities. For this study, however, we built the prior probabilities for each node in 

our model based on GIS data and not on expert opinion, thus the model reflects the current level of 

‘evidence’ for relationships and the data were used to populate the conditional probability tables 

(CPTs).  

 

2.2 Marine management scenarios 

The aim of this study was to assess the potential consequences of spatial management scenarios on 

the vulnerability of the resource to fishing and the revenues generated from plaice catches using the 

BN-GIS framework. Thus after building and testing the BN as described above, we used it to infer the 

behaviour and response of the variables to different management scenarios. We defined two marine 

management scenarios which included the setting of objectives and predicted the consequences of 

those objectives. We defined the current state as the baseline or ‘do-nothing’ scenario. 

Scenario 1 – What management targets for fisheries are required to maintain the current vulnerability 

of plaice in the case of environmental change? We defined as management objective to maintain the 

current vulnerability of plaice to fishing. We simulated an increase in the relative average bottom 

temperature in our study area (state 1: 10.6 %, state 2: 10.6%, state 3: 15 %, state 4: 32%, and state 

5: 32%) and predicted the potential consequences for vulnerability. We then predicted a possible 

management intervention for the total fishing effort to maintain the current measure of vulnerability of 

plaice. 
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Scenario 2 - How does the vulnerability of plaice change after the development of offshore wind farms 

and a related displacement of fishing effort? One of the high level objectives for the German marine 

spatial management is an installed capacity of offshore wind energy of 25000 MW by 2030. We used 

the current application areas for wind farms (provided by BSH) to construct a fishing effort 

displacement scenario (see Fig.3). We reset the fishing effort for grid cells within the application areas 

to zero and redistributed the same amount of fishing effort. For the displacement scenario  we 

constructed in the GIS three buffer rings (3, 10 and 15 km) around the application areas and 

redistributed the fishing effort of the respective fleets with 70 % of the effort to the 3 km buffer area, 20 

% to the 10 km buffer area, and 10% to the 15 km buffer area. This displacement scenario should 

account for the fact that fisher men tend to fish very close to closed areas such as marine protected 

areas or fishing closures (e.g. Murawski et al., 2005; Stelzenmüller et al., 2008). 

 

3 Results 

3.1 Baseline scenario 

The complete model derived describing the relationships between fishing effort, total catch of plaice, 

environmental parameters and the distribution of the resource is presented in Figure 4. Under the 

current fisheries management and the predicted spatial distribution of the resource we computed that 

18.6 % of the area experienced a vulnerability of 0 (state 1) and 32.6 % of the area are in vulnerability 

state 4 (high). The revenue node (Euro) showed that 18.8 % of the area generates between 37 and 

210 € from German plaice landings in 2008. The fishing effort of the fleets revealed that their main 

activity took place on roughly 50 % of the study area. The baseline scenario also revealed that only 

13% of the area generated German plaice catches between 600 and 9600 kg. 

 

3.2 Scenario 1 

The consequences of the simulated increase in average bottom temperature from 13.9 °C to 14.4 °C 

are displayed in Figure 5a. The average vulnerability of plaice increased from 2.34 to 2.43 caused by a 

marginal increase of surface area being in vulnerability state4 and a slight reduction in surface area 

with vulnerability state 0 and 1. This increase in the average vulnerability is not significant as it is still in 

the confidence limit of the standard deviation. However to maintain the current average value of 

vulnerability one possible management option would be to increase the number of cells in fishing effort 

states 1,2 and 3 by 10% and reduce the cells in fishing effort state 4 and 5 by 14 % (see Figure 5b). 

This option would affect the FE Shrimper fleet most as the number of cells in state 1 (low FE Shrimper 

effort) need to be increased from 50 % to 70 %. The consequences for the revenues would be a 

possible increase of the mean catch by 100 kg to 865 kg with an associated increase in mean revenue 

per grid cell area of 230 €.  
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3.3 Scenario 2 

The model predicted all states of the total catch and vulnerability based on the simulated distribution of 

fishing effort after the closure of the wind farm application areas to fishing. As an example the spatial 

pattern of the current vulnerability states 0, 3 and 4 are compared to the predicted probabilities for a 

grid cell to be in a certain vulnerability state after the displacement of fishing effort given the same 

spatial distribution of the resource (Figure 6). The spatial pattern of the predicted probabilities of 

vulnerability state 0 showed that a distinct smaller area (with values between 0.8 and 1) in the northern 

part of the study area. Overall the number of grid cell with a probabilities ranging from 20 % to 50 % to 

be in vulnerability state 3 increased compared to the actual pattern of cells in vulnerability state 3. The 

pattern of the predicted probabilities of vulnerability state 4 showed distinct deviations from the current 

pattern in the northeastern part of the study area. Thus this indicates a decrease of the vulnerability in 

those cells. 

 

4 Conclusions 

Results showed the great potential of the application of the BN-GIS modelling framework to address a 

range of management objectives and interventions. Moreover this approach allowed us to examine the 

spatial pattern of uncertainty related to marine management scenarios which is very important in a 

marine planning context where conflicts between human activities may need to be resolved. As any 

modelling technique the BN-GIS framework constructed to describe complex relationships between 

human activities and sensitive ecosystem components is constrained by the available geodata at the 

relevant spatial scale. The scenario outcomes reflect options for management targets and 

consequences of spatial management interventions rather than final solutions. For instance the 

assumptions made for the fishing effort displacement scenario have already an impact on the scenario 

outcomes. Thus future applications of our framework should consider international data for fishing 

effort, total catch and revenues to address the cross-boundary consequences of spatial management 

options in German waters. Once the drivers of the fishing effort allocation are understood those 

components may be included in future studies to improve the development of fishing displacement 

scenarios and to derive more realistic estimates of potential consequences. We conclude that the BN-

GIS framework can be a useful tool to support the decision process by helping to provide informed 

decisions, through the assessment of potential outcomes and related uncertainty from management 

measures in a spatial context, and to offer a visualisation tool that facilitates the engagement of 

different stakeholders in such a process.  
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Figure 1 

 

Figure 1: Study area with spatial distribution pattern of the total fishing effort in 2008, the total catch 

(kg), revenue (Euro), plaice ≥ 27 cm and total plaice cpue (predicted with regression kriging) and the 

measure of vulnerability (0 - 5). 

 

 

 

Figure 2 

 

Figure 2: Conceptual model showing the key variables used to predict the overall level of vulnerability 

of plaice to fishing as a function of the total catch and cpue of plaice ≥ 27 cm.  
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Figure 3 

 

Figure 3: Spatial distribution pattern of beam trawl fleet (FE Beam) (left) and respective fishing effort 

displacement scenario for the beam trawl fleet (right). 

 

 

 

Figure 4 

 

 

Figure 4: Results of the baseline scenario. 
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Figure 5a 

 

 

Figure 5b 

 

Figure 5a and 5b: The model results of scenario 1 after simulating the increase in temperature (top) 

and adapting the fishing effort to maintain an average vulnerability measure of 2.34 (bottom). 
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Figure 6 

 

Figure 6: Results for scenario 2 on the assessment of changes in vulnerability states after the closure 

of windfarm application areas to fishing together with a displacement of fishing effort. The current 

distribution of cells in vulnerability states 0, 3 and4 (left) and the predicted probabilities for the 

vulnerabilities states 0, 3 and 4 (right). 
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