
 1

ICES CM 2008/+A  

ICES CM 2008/A:06 for inclusion in the Theme Session on Incorporating microbial dynamics in studies of shelf 

ecosystems (A). 

Water masses, shelf influences and depth distributions of arctic microbial species 

Connie Lovejoy and Karen Scarcella 

Québec Ocean, Québec Océan,  Dept Biologie, Université Laval, 

Abstract  

Small organisms in the ocean include not only phytoplankton and bacteria, but diverse bacterial 

grazers and archaea. Local and global climate processes have a direct effect on the vertical 

stratification and circulation patterns in shelf and off shelf marine waters, which strongly influences 

the timing and magnitude annual phytoplankton production.  Using molecular biology techniques we 

are now able to identify species and ecotypes of not only phytoplankton but the entire community of 

microorganisms and it is becoming practical to match community composition with biomass, oceanic 

processes and biogeochemical pathways.We show from our recent work in Arctic Seas that microbial 

communities change, not only with depth, but with region and that microbial species mostly track 

their water mass of origin. For example below the photic zone some watermasses are richer in 

bacterivores while others are dominated by likely parasites suggesting different fates for fixed carbon 

passing through these depths. We suggest that most changes in microbial community composition can 

be linked to the complex oceanic current patterns and advective processes. These microbial species 

changes may well determine the reproductive success of larger organisms and carrying capacity of an 

ecosystem since many marine fish and invertebrates have multiple free living life stages dependent on 

particular food types. 
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Introduction: 

Diversity and biogeochemical processes- Biological Oceanography texts are still largely devoted to 

the visible and apart from phytoplankton which are characteristic of the euphotic zone; other 

microbes are usually dealt with as part of  the ‘microbial food web’, in contrast to alternative to 

‘classic food chains’.  The upper euphotic zone is well studied since it is within this zone that 

biological activity (photosynthesis and respiration) is most evident and measurable (Del Giorgio and 

Duarte 2002). Surface and near surface phytoplankton are also amenable to global synopsis because 

chlorophyll (Chl a) concentrations can be estimated by satellite.  Chl a values may then be converted 

to productively estimates and even used to detect particular species groups by use of empirically 

derived algorithms (Bouman et al. 2003).  Such synoptic studies have highlighted the importance of 

fronts and upwelling (Sokolov and Rintoul 2007) and inter-annual variability of the onset and 

intensity of phytoplankton blooms (Stramska 2005). While the proximal reason for this variability is 

upwelling and advective input of inorganic nutrients, the physical and biological factors that control 

the source of inorganic nutrients from remineralized organic material to the photic zone has received 

relatively little attention. Under non-bloom conditions the upper water column is dominated by the 

microbial food web, with heterotrophic bacteria, viruses and bacterial grazers recycling carbon and 

other nutrients; limiting the amount of organic material sinking to depth (Anderson and Ducklow 

2001).  This view of microbes emphasizing euphotic zone consortia diverts thinking away from the 

diverse roles of other heterotrophic and chemotrophic microbes below the surface where nutrient 

remineralization and much of global biogeochemical cycling occurs.   

 

Historically, microbial communities were treated as ‘black boxes’, but recent molecular 

environmental surveys have found that all three domains of life, Archaea, Bacteria and Eukaryota, 

form distinct communities with vertical distributions in the ocean.  These distributions suggest 

differences in ecological capacity (Not et al. 2007a; Rodriguez et al. 2005) and novel energy 

pathways (Berg et al. 2007; Delong et al. 2006). The implications for community function and 

linkages between domains of life has received little attention to date (Galand et al. 2008a; Strom 

2008) and there have been few, if any studies of community interactions across vertical zones. 

Studies of biogeochemically important processes are also rare but have identified regions where 

particular remineralization activity occurs such as silica dissolution (Bidle et al. 2003) and 

nitrification (Ward et al. 2007).  The vertical structure of oceanic water columns is largely determined 

by physical oceanic processes (Carmack 2007), which in turn are correlated with the nutrient supply 

to the euphotic zone (Stramska 2005). Nutrient supply rate has been linked to phytoplankton species 
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composition (Archer 1995; Lovejoy et al. 2002).  Other studies have noted that watermasses may 

transport communities across depth zones (Hamilton et al. 2008; Teira et al. 2006) suggesting that the 

changing current patterns driven by global climate systems could influence nutrient flux rates to the 

upper euphotic zone and global primary production in unexpected ways.  

 

Methods 

Samples were collected onboard CCGS Amundsen August 2005 as a part of the  project Marine 

Microbial Biodiversity of the Arctic Seas (MMBOAS) in the North Water, between Greenland and 

Ellesmere Island. For a complete description of all sites and depths sampled see Hamilton et al. 

(2008). Samples were collected using a CTD rosette system equipped with 12 L Niskin bottles and a 

Sea Bird SBE-911 CTD.  

Environmental DNA was collected by sequentially filtering 6 L of seawater through a 50-µm nylon 

mesh and a 3-µm polycarbonate filter to remove the majority of zooplankton, micro- and 

nanoplankton, then through a 0.2 μm Sterivex (Millipore) to collect the picoplankton (0.2-3 μm) size 

fraction.  18S rRNA gene libraries were constructed as in Lovejoy et al. (2006), but using Taq 

polymerase (NE Biolabs) and a BIORAD thermocycler. The clone inserts were verified by 

amplification with the vectors’ M13 primers, positive inserts were identified on 1% agarose gel. 

Thirty positive clones were randomly chosen to be sequenced with 528f primer at Service de 

séquençage et génotypage du Centre Hospitalier de l’Université Laval (CHUL) with ABI 3730xl 

system. Sequences were manually checked and edited using Chromas software version 2.3 

(Technelsium) and submitted to NCBI BLAST (Altschul et al. 1990).  Sequences with their closest 

GenBank match under 97% were checked for chimeras by reblasting multiple fractions of the 

questionable sequence.  

 

Results 

Three libraries were constructed from two stations but represented three separate water masses 

described previously (Galand et al. submitted; Hamilton et al. 2008).  As with many environmental 

clone libraries we also amplified metazoan sequences. For Station 21 these sequences matched the 

gelatinous zooplankton Oikopleura. In contrast we recovered Ctenophore sequences from the bottom 

of the Arctic Halocline (ABH).  Overall, samples were not very diverse and an uncultivated presumed 

photosynthetic group, referred to as either picobiliphytes (Not et al. 2007b) or biliphytes (Cuvelier et 
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al. 2008)  was common in all samples (Figure 1),  but was the clear dominant in the Upper Arctic 

Water Sample (UAW) where a specific clade of Euarchaeota was common (Table 1). We recovered 

presumed bacterivorous marine stramenopiles (MAST) in the wintertime convection water (WCW), 

where a second type of Euarchaeota was previously identified (Galand et al submitted).  In contrast, 

for ABH waters where Crenarchaeota (MGI) were the dominant archaea clade (Table 1), 

dinoflagellates and protist parasites (Alveolate groups One and Two) were recovered.  

 

Discussion   

Using molecular biology techniques we are now able to identify species and ecotypes of not only 

phytoplankton but the entire community of microorganisms. It is becoming practical to match 

community composition with biomass, oceanic processes and biogeochemical pathways. (Hamilton et 

al. 2008. Galand et al submitted). The North water is one of the most productive regions in the Arctic, 

but with persistently low surface nitrogen concentrations following early seasonal stratification (Mei 

et al. 2005).  Tremblay et al. (2002a) attributed this phenomenon to episodic nutrient inputs linked to 

the complex hydrography of the region.  Relatively rapid and shallow nitrification would be 

consistent with this suggestion and would require less frequent and lower mixing energy to be 

effective. 

 

Nitrogen- Nitrogen is the major limiting macro nutrient for most oceanic and near shore marine 

systems (Boyd 2002; Harrison et al. 1996). Ammonia (NH3) and nitrate (NO3) are the two most 

common inorganic nitrogen species in the ocean. Most single celled organisms can take up ammonia 

in seawater, and it can be directly assimilated into cellular proteins. Nitrate uptake requires an active 

uptake system and organisms that are able to use it have a considerable advantage in regions where it 

is abundant but energy is required to reduce it inside the cell. (Armbrust et al. 2004). In the absence 

of other limiting nutrients, nitrate is quickly taken up in the upper euphotic zone where light energy is 

abundant, and for example, in the north Atlantic, spring diatom blooms quickly deplete standing 

nitrate stocks  (Dugdale 1967).  Diatoms are particularly adept at coordinating photosynthesis and 

nitrate metabolism and this may be one of the reasons they dominate photosynthetic production in 

much of the surface ocean (Allen et al. 2006).  These episodic blooms are a response to episodic 

nutrient input; however sustained diatom production fuelled by nitrate requires sustained nitrate input 

(Lovejoy et al. 2002; Rixen et al. 2005; Tremblay et al. 2002b).   
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Nitrogen is not only a nutrient source, required in abundance by living cells, but because of its 

multiple oxidation states is a useful terminal electron acceptor, transformations that are catalyzed by 

microorganisms. The basic transformations of nitrogen by living organisms are well studied in the lab 

and the biochemical pathways were thought to be understood (Zehr & Ward 2002). However 

environmental genomic and metagenomics surveys have resulted in the discovery of  new pathways 

and organisms involved in nitrogen transformations (Church et al. 2005; Delong et al. 2006; Francis 

et al. 2007; Klotz and Stein 2008; Mincer et al. 2007; Zehr et al. 2007).  

 

Sources of NH3- Zooplankton and protists graze on photosynthetic organisms to obtain energy from 

fixed carbon and excrete excess nitrogen as ammonia (Dolan 1997). In addition viral lysis may lead 

to release of dissolved organic material and ammonia (Suttle 2005). This ammonia may then be 

recycled as ammonia and used by small photosynthetic phytoplankton (Cole 1999) resulting in a 

microbial food web. Alternatively it may be oxidized, releasing nitrite and nitrate into the 

surrounding waters (Clark et al. 2008; Klotz and Stein 2008).  Nitrification rates in the ocean are not 

routinely measured and evidence is often circumstantial and difficult to determine directly (Lomas 

and Lipschultz 2006). We suggest the fate of excreted ammonia may be inferred by examining the 

associated microbial community and expression of key genes in biochemical pathways involved. 

 

Crenarchaeota- One of the early major revelations from environmental 16S rRNA gene surveys was 

that Archaea were common throughout the world ocean, (Delong 1998) with two major branches, 

Crenarchaeota and Euarchaeota, often dominating in at different depths down the water column 

(Massana et al. 1997; Varela et al. 2008). The ‘role’ of Archaea in these non-extreme well 

oxygenated waters was unknown but in now seems that the diverse groups have diverse metabolisms 

(Hallam et al. 2006; Herfort et al. 2007; Herndl et al. 2005; Ouverney and Fuhrman 2000). The recent 

discovery that the gene ammonia monooxygenase (amoA), which codes for the first step in 

nitrification of Ammonia to Nitrate, is apparently common in the Crenarchaeota (MGI) (Francis et al. 

2005) has proven to be a major incentive to re-examine the role and spatial distribution of 

nitrification in the ocean and other environments (Clark et al. 2008; Francis et al. 2005; Herfort et al. 

2007; Mincer et al. 2007; Wuchter et al. 2006). A consensus has began to emerge that MGI and the 

archaeal amoA gene are common in the mesopelagic and deep waters (Varela et al. 2008) and in the 

euphotic zone in the Arctic and Antarctic (Church et al. 2003; Galand et al. 2008b; Galand et al. 

2006).  The existence of chemoautotrophic archaea fixing inorganic carbon exploiting ammonia as an 

energy source in the upper water column(Delong et al. 2006) adds complexity to global carbon flux 
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models based on the new versus regenerated production paradigm (Dugdale 1967) and carbon export 

models need to be re-examined (Clark et al. 2008).   

 

Single celled eukaryota 

Since the seminal publication by (Woese et al. 1990), describing the three domains of life based on 

differences in the gene coding for ribosomal RNA, there is an emerging consensus is that there are 5 

to 8 major sub-domains (ca. the level of phyla and super phyla) among eukaryotes (Adl et al. 2005; 

Baldauf 2003). The biological oceanographers’ two functional groups, phytoplankton and 

microzooplankton, are distributed among nearly all of these sub-domains (Vaulot et al. 2008). Similar 

to surveys targeting  bacteria and archaea,  environmental 18S rRNA gene surveys targeting 

Eukaryota have also revealed that there are novel organisms in the sea representing all taxonomic 

levels from cryptic new species (Montresor et al. 2003) to new phyla (Not et al. 2007b; Shalchian-

Tabrizi et al. 2006).  Several of the novel groups found in the first published surveys (Lopez-Garcia et 

al. 2001; Moon-Van Der Staay et al. 2001) had no known function.  Among these, two groups of 

marine alveolates distantly related to dinoflagellates have since been found to have affinities with 

known parasites previously classified within the marine dinoflagellate order Syndiniales (Groisillier 

et al. 2006; Harada et al. 2007; Skovgaard et al. 2005). Alveolate Group II  (AG Two) groups with 

Amoebophyra a  parasite of dinoflagellates and other parasites such as Syndinium that infect 

crustacean zooplankton, while Alveolate Group I (AG One) is a distinct clade  parasitic or symbiotic 

with a variety of organisms (Dolven et al. 2007; Harada et al. 2007).  These 18S rRNA gene surveys 

also unveiled several novel clades of Heterokonta, or marine stramenopiles  (MASTs) which are 

likely responsible for the majority of bacterivory in the upper ocean (Massana et al. 2004). More 

recent genomic surveys have revealed that diverse  eukaryotic plankton are abundant even in deep 

water and have distinct vertical distributions (Countway et al. 2007; Not et al. 2007a). Using finer 

sampling scales, we find distinct communities in different watermasses independent of depth in the 

Arctic (Figure 1, Table 1).  

 

Sharing the same space-The archaeal communities were different in the three samples (Galand et al. 

submitted), with MG1 Archaea as well as high amoA gene copy numbers in the ABH. This 

community would be adapted to rapid nitrification (RN) fuelled by ammonia released via 

dinoflagellate grazing of, for example, sinking diatoms; the ammonia would be converted to nitrate 

by Crenarchaeota and other organisms, and diffuse upwards to the photosynthetic community. Other 

marine regions are likely to contain RN communities; these would be predicted to occur in areas with 
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advective currents within or just below the photic zone such as zones of upwelling, which are often 

marked by prolonged high productivity and vertical complexity along a horizontal gradient. Earlier 

studies suggested that nitrification could be responsible for high rates of dark carbon fixation  along 

such zones, for example Viner (1990) found that nitrification likely accounted  for 8 to over 70% of 

total carbon fixation off the coast of New Zealand. We would hypothesize that these are also zones 

with RN protist and archaeal communities.  

 

The balance between export and recycled production has not only been applied to predicting carbon 

flux to the deep ocean but is a useful concept for estimating energy available to pelagic fish versus 

benthic invertebrates and fish.  Climate has a direct effect on the oceanic vertical stratification and 

circulation patterns, which strongly influences the timing and magnitude annual phytoplankton 

production and the distributions of  larger organisms (Greene and Pershing 2007) and for example 

local production patterns may influence the distribution of species assemblages of bottom fish 

(Jorgensen et al. 2005). Poor recruitment of fish stocks has been linked to current changes, and 

phytoplankton species differences. In terms of life histories, global circulation is further implicated in 

advective transport of plankton and is a powerful mechanism for transporting and isolating 

populations with planktonic life stages including economically important pelagic species such as 

halibut (Knutsen et al. 2007). The success of these populations depends on coincidence of early life 

stages arriving in zones of high productivity (Hinckley et al. 2001), where we would predict RN 

zones. 

 

While this work is extremely preliminary it suggests that microbial communities persist within water 

masses and differences in hydrography could determine whether a region is dominated over time by a 

microbial food web or by prolonged production by diatoms. We suggest that most changes in 

microbial community composition can be linked to the complex oceanic current patterns and 

advective processes.  
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Water Mass  STN  Depth Archaeal group Eukaryote Community 

ABH 11 62 MG1 Dinoflagellate-Ctenophore 

UAW 21 90 IIa2 Biliphyte-Ciliate 

WCW 21 180 IIa1 MAST-biliphyte-Oikopleura 
 
 
 
Table 1:  Stations (STN)  Comparison of eukaryotic community with Archaeal community described 

for the same samples in Galand et al submitted. Arctic bottom halocline (ABH); Upper Arctic 
Water (UAW): and Wintertime convection waters (WCW).   Marine group I (MGI). 
Euarchaota groups are sub clusters of MGIIa (Galand et al. submitted). 
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Figure 1:  Proportion of different major clades of eukaryotes in different water masses in the North 

Water. ABH- Arctic bottom halocline, UAW- Upper Arctic Water, WCW- wintertime 
convection water.  Abbreviations used for eukaryote groups are described in the text.  
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