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Abstract 

 

Species richness of pelagic deep-sea fishes was analysed for 66 stations. For local and 

regional richness latitudinal gradients were present, asymmetric between North and South 

Atlantic. Lowest values were indicated for the Antarctic stations. The analysis of local-

regional richness relationships indicated that assemblages were saturated. In support of the 

productivity-diversity hypothesis, a strong hump-shaped relationship to primary production 

was indicated. Regional effects on local richness were indicated in that a regionalisation in 

accordance to Merrett's (1987) hypothesis on the effect of seasonal productivity improved the 

model significantly. For regional richness, historical influences by means of the overlap 

between tropical and boreal faunas could not be precluded.   
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Introduction 

According to the Convention on Biological Diversity (CBD) enacted during the 1992 Rio 

Earth Summit, biodiversity is "the variability among living species from all sources … and 

the ecological complexes of which they are part; this includes diversity within species, 

between species and ecosystems". This means all variability in the natural world (Angel 

1993). Currently, changes and trends of biodiversity have become central interest of research 

also including overfishing of marine resources and its subsequent effect on associated 

ecosystem services (Price 2001, Hutchings & Baum 2005, Worm et al. 2006). In this study, 

biodiversity is analysed in terms of numbers of species in a sample, its large-scale patterns 

and underlying causative factors. 

Large-scale patterns of biodiversity and community diversity patterns are complementary “as 

each one loses much of its meaning that both have when taken together” (Margalef 1997, p. 

115). Accordingly, an explicit link between local determinism, regional and historical 

processes for generating diversity has been postulated, embedded within a multi-scale 

framework (Gage 2004, Ricklefs 2004).  

Local determinism predicts that (1) diversity is strongly correlated to environmental aspects, 

(2) local diversity in similar habitats is similar irrespective of regional affiliation, (3) local 

diversity at some level is irrespective of the regional species pool, i.e. saturated (Angel 1997, 

Ricklefs 2004).  

For the Atlantic, regional processes affecting faunal diversity by means of species 

composition and by changes of life history traits were first introduced to deep-sea ecology by 

Merrett (1987), revealing an abrupt change for deep-sea demersal fish assemblages located at 

34-41°N. Northern species were characterized by relatively large bodysize, high fecundity, 

and negative buoyancy and vice versa. He hypothesized that these differences were attributed 

to an increased seasonality in primary production in the North with intensive vernal pulses of 

organic matter to the deep-sea. Angel (1991, 1993, 1997) reinforced this argument with 
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respect to similar changes in the plankton at ca 40°N and emphasized the general importance 

of this feature for ocean diversity.  

The global pattern of biodiversity is that latitudinal species diversity gradients (LSDGs) 

decline towards the poles (Hillebrand 2004). In the oceanic realm, biodiversity gradients have 

been described with respect to latitude and vertically with respect to depth (Angel 1997, Levin 

et al. 2001, Macpherson 2002). Specific analyses for selected ecological groups of fishes 

yielded more complex figures  (Worm et al. 2005). Compared to terrestrial habitats, the 

number of species in the oceanic pelagic environment is low, since extensive mixing through 

the major oceanic current systems provides sufficient gene-flow to hinder speciation (Angel 

1997).  

Among the more than 30 hypotheses to explain LSDGs (Willig et al. 2003), in the marine 

world the species richness-energy hypothesis has prevailed over mechanistic (Smith & Gaines 

2003, Kendall & Haedrich 2006) or purely evolutionary concepts (Roy et al. 1998). On the 

one hand, the species richness-energy hypothesis proposes a link to diversity in terms of a 

productivity-diversity relationship with temperature as a proxy for productivity (e.g. Fraser & 

Currie 1996, Roy et al. 1998). Productivity-diversity relationships for fishes appear to be 

hump-shaped (Mittelbach et al. 2001) or negative (Macpherson 2002). Alternatively, local 

richness-temperature relationships have been attributed to features such as epipelagic water 

column structure (Rutherford et al. 1999), thermal fronts (Worm et al. 2005), developmental 

modes (Roy et al. 2000, Astorga et al. 2003), or to faster metabolic and evolutionary rates 

(Allen et al. 2002). Still, the complexity of the matter leaves broad room for controversy 

(metabolic rate: Huston 2003, Storch 2003, evolutionary time : Briggs 2006). 

From published data, regional diversity for Atlantic pelagic fishes reaches a maximum from 

ca 40 °N to 15 °S with 400 pelagic species per 5°-band (Macpherson 2002). A corresponding 

local diversity maximum of ca 150 species for the upper 2000 m occurs at  18 °N 25 °W 

(Angel 1993).  
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This study comprises hitherto unrecognized data for bathypelagic fishes spanning from the 

Southern Ocean to the Arctic sector of the North Atlantic. Community structure has been 

analysed to some extent (Krefft 1974, 1976, Hulley & Krefft 1985, Fock et al. 2004).  

The extreme habitat is considered almost pristine at the time of sampling and offers unique 

opportunities to the study. First, due to sampling depth this study overcomes sources of error 

encountered for investigations of shallow pelagic fauna, i.e. seasonal incompleteness of 

species inventories especially at high latitudes and mixing of local communities with 

expatriates due to eddy advection (Angel 1997). Bathy- and abyssopelagic fauna has non-

seasonal modes of development  (Mauchline 1991) and eddies at depth are likely bound by 

bottom topography (Bower et al. 2002). Second, many surface bound factors so far employed 

to explain diversity patterns do not apply at bathypelagic depths, providing validation 

opportunities of the different aspects of the species richness-energy hypothesis (Rex et al. 

2001).  
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Material and methods 

Climatological reference data at 1°-resolution from the World Ocean Atlas 2001 were 

interpolated to station coordinates (WOA,  

http://ferret.pmel.noaa.gov/NVODS/servlets/dataset (Conkright et al. 2002)). Sea temperature 

at 1750 m and the sea temperature difference between 500 m and 1750 m were considered to 

indicate local environmental conditions and water column stability. Surface chlorophyll was 

taken as one proxy for productivity. At higher spatial resolution compared to WOA 

measurements,  VGPM cloudiness-corrected primary production estimates (see Behrenfeld & 

Falkowski 1997) based on SEAWIFS remote sensing were applied as a further productivity 

measure (at http://marine.rutgers.edu/opp/production/html_files/annu_glb_T_cld_inh1.html). 

Satellite derived measures are reliable proxies for productivity and regional biological 

oceanography (Longhurst 1998, Maranón et al. 2000), and indicative of decadal variability in 

ocean primary production (Gregg et al. 2003). Longhurst's biogeographical scheme 

(Longhurst 1998) was further applied to characterize regional oceanography. 

66 bathypelagic stations with a nominal catching depth of 1200 to 2400 m were selected  (Fig. 

1, Table1) representing the same type of habitat (Srivastava 1999, her method 3 , Willig et al. 

2003). Data were retrieved from hand-written cruise diaries archived at the Federal Research 

Center for Fisheries (BfaFi), Germany. Sampling was carried out between 1968 and 1986. 

Sampling and taxonomic analysis followed a standard protocol with great continuity also in 

the personnel involved (Post 1987). Except for three hauls in 1976, when a non-closing 23 m 

x 25 m MT1000 was deployed, a non-closing 20 m x 30 m MT1600 was used. Time-at-depth 

varied between 15 minutes and 2 hours.  

Sampling from the same depth stratum presumably leads to the same degree of background 

contamination from shallower depths for all samples and thus omits confounding 

contamination effects. Diel vertical migration was not considered (Mauchline 1991, but see 

Angel 1997). The fauna comprised micronektonic as well as larger fishes. Taxonomic 
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resolution was harmonized between cruises, i.e. epipelagic taxa were omitted (e.g. Lampridae, 

Exocetidae, Pomacanthidae, genera Macroramphosus, Antigonia, Capros, Zenopsis). Genera 

Cubiceps and Cyclothone were not resolved to species level. Two extraordinary catch 

numbers were considered background contamination and omitted, i.e. 10000 Maurolicus 

muelleri from station 463_86 and 3500 Electrona carlsbergi from station 21_II_76.   

To account for potential mid-domain effects (MDEs), a presence/absence (p/a)-MDS 

ordination was carried out. Prior to analysis, single- and doubletons were omitted from the 

data set (McKelvie 1985), amounting to 435 taxonomic units. The mid-domain effect predicts 

that in bounded environments random mixing of species distribution ranges generates 

diversity peaks near or in the center of the gradient (Colwell et al. 2004). Homogeneous 

ordinations reflecting a gradient ('horseshoe-effect', Digby & Kempton 1987) would indicate 

the possibility of MDEs. Ordinations were carried out with the PRIMER software package 

(Clarke & Gorley 2001). 

For diversity analysis, 685 taxonomic units were analyzed, including single- and doubletons. 

Local species richness (SL) was determined as individual-based rarefaction species numbers 

to overcome sample size bias (Gotelli & Colwell 2001), normalized to 100 specimens 

(ES100). Rarefaction sample size range for deep-sea fauna has been between 50 and 200 (Rex 

et al. 1997, Wilson 1998). Rarefaction overestimates richness if species are not distributed 

randomly (e.g. benthos, Gray 2002). This is not assumed in this study considering the large 

nets deployed. Total number of species per sample (S), specimens caught (N), Shannon-

Wiener diversity (H’, base e) and evenness for H' (J') were tabulated for each station.  

Regional species richness (SR) was calculated for 5° to 10°-latitudinal bands (Macpherson 

2002), depending on station coverage. Regional species richness was calculated stepwise for 2 

to 5 ('5p') samples pooled per latitudinal band. These were analysed by means of 

log(samples)-log(SR) accumulation curves by region for scale effects (Srivastava 1999, 
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Willig et al. 2003). In log-log plots, parallel slopes indicate scale invariance of local-regional 

relationships and non-saturation of local communities.  

SL-SR plots for all regions combined corrected for spatial pseudoreplication were analyzed 

for SL saturation effects, i.e. non-linearity (Srivastava 1999). The fit (r²) of a linear and a non-

linear (power) model with the same number of parameters were compared (Cresswell & 

Vidal-Martinez 1995). To account for artificial saturation effects due to an area effect for SR 

(Caley & Schluter 1997), the SR-area correlation was calculated excluding the Antarctic for 

which the size of the province relevant to the fauna analyzed could not be determined (Clarke 

& Johnston 2003). 

SR estimates were calculated as sample-based jackknife2-estimates with EstimateS1  also 

estimating 'unseen' species. To account for sample-size bias, i.e. the range of mean time-at-

depth, SR estimates for the South Atlantic zone '45-55S' with an average of 0.5 hours time-at-

depth were rescaled to 0.8 hours in order to compare with the other SR-values (see Table 2). 

Sample size as scaled time-at-depth tb was rescaled after  

log (SL/SR) = log a + b*log (t) + c*|lat|,  

adopted from He et al. (2005, eq. 3). For simplicity, the parameter a representing initial 

immigration and extinction rates in relation to tb and SR was assumed constant. Further 

variability was treated as function of absolute latitude (lat). 

Local determinism, regional processes, and historical events are the three main driving forces 

for diversity to be considered and tested in this study. With expected decadal variability in 

pelagic assemblages (Watanabe & Kawaguchi 2003), diversity relationships were graphically 

analyzed with a LOESS smoother without prejudging the shape and monotonicity of the 

relationships. For local-regional relationships, the hypothesis tested was whether a model of 

locally determined diversity performed better than a regionally partitioned model of local 

                                                 
1 R. K. Colwell (2001) EstimateS: statistical estimation of species richness and species from 
samples. Version 6. http://viceroy.eeb.uconn.edu/estimates 
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diversity according to Merrett's (1987) hypothesis. Partitioning of local assemblages was 

tested with a randomization test based on the sum of squared errors. Inference of historical 

influences was based on comparisons of tabulated palaeo-oceanographic events in particular 

for high latitudes with SL- and SR-distribution patterns. For historical influences, the 

stability-time hypothesis predicts that stable conditions enhance diversity (Willig et al. 2003). 

Further, historical faunal expansions should generate zones of overlap in accordance with 

recent oceanography.  

 

Results 

MDS revealed distinct aggregation of stations indicating a discontinuous and non-random 

community structure (Fig. 2). A compact northern group north off 40°N was evident ('N' in 

Fig. 2), separated from a northern subtropical group and a tropical assemblage. The 

southernmost group ('S', latitudes 51-57) was neighbored by an assemblage at 35-45 °S. The 

distinct geographical pattern proves that diversity gradients are not likely subject to random 

mixtures of species and thus of distribution ranges, which would be expected under the mid-

domain effect.  

Local species richness SL(ES100) was significantly correlated with evenness J' (r = 0.76) and 

Shannon-Wiener diversity H' (r = 0.93) (Table 1 for data). This indicates a relationship 

between local species richness and assemblage structure. Hereafter, only SL and its 

relationship to SR are further considered. Lowest SL values were encountered at the northern- 

and southernmost stations (Fig. 1). The latitudinal SL gradient was asymmetric with a break 

at 35°N and a broad shoulder at mid-latitudes in the South (Fig. 3). At high latitudes, SL was 

comparably higher in the North than in the South. At the equator, data structure is not clear. 

Whereas the smoothed curve slightly declined across the equator, the original SL values 

indicated a V-like depression partly reflecting differences in regional currents (Fig. 3).  
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The transition from local (SL) to regional richness (SR) was scale-dependent and not 

confounded by area size (SR-area correlation r² = 0.02, calculation not shown). The log-log 

slope coefficients from the species accumulation curves were low at high latitudes and had an 

indifferent trend towards low latitudes (Table 2). High-latitude SR increased less with the 

number of samples than SR at other latitudes. As a consequence, latitudinal SR-gradients 

were steeper than SL-gradients. The resulting SR-pattern was more asymmetric than for SL. 

Highest SR was observed at the southern Subtropical Gyre and the northern Equatorial region 

(Fig. 3). Patterns were fairly similar when 3 (3p) and 5 (5p) samples were pooled, so that 

extrapolation had no confounding effect. Even with rescaled values, high latitude SR at 45-

55° was lower in the South (SR(p5) = 166) than in the North (SR(5p) = 190, Table 2).  

Scale dependence for the log-log accumulation curves indicated saturation for local 

communities. Saturation for SL, i.e. non-linearity was also evident in the SL-SR plot for all 

regions combined. The fit for the power function was better (r² = 0.9) as compared to the 

linear function (r² = 0.81). A quadratic function yielded the best fit (r² = 0.92, Fig. 4). Both 

terms of the quadratic function were significant (first order term p = 0.0016, quadratic term p 

= 0.014). 

From the environmental conditions potentially causative for local determinism, only 

productivity showed a robust relationship to SL both for WOA chlorophyll and VGPM 

primary production (Fig's 5 b, c). Due to outliers, the hump-shaped pattern was less 

pronounced for primary production (Fig 5 c) than for chlorophyll (Fig 5 b). Outliers were the 

stations of the Southern Ocean either as single (Fig. 5 b : St 21_II_76) or as a group (Fig 5 c 

shaded area). The coherence between the southernmost stations was also evident with respect 

to environmental temperature (Fig. 5 d) and water column stability (Fig. 5 e). However, for 

the latter two factors no general relationship to SL was evident.  

To analyse regional effects, stations were regrouped according to Merrett's hypothesis with a 

sharp 40° latitude border corresponding to high and low seasonal increases of primary 



10 

production (Table 2). For the North Atlantic, regrouping was justified by the MDS 

community analysis. In the South Atlantic, regrouping splitted up the stations from the 

southern Sub-Tropical Convergence. As a first result, regrouping removed the outlying 

position of the southernmost group of stations in the SL-primary production plot (Fig. 5 c) 

and constitutes similar hump-shaped figures for both groups (Fig. 6 a). The chosen regrouping 

was significant in that SSE was at minimum at 40° in stepwise partitioning (Fig. 7). The 

randomization test for 40° latitude was significant (p<0.01, n = 101 trials). This indicates that 

at low latitudes < 40° maximum SL was reached at lower productivity, that at high latitudes > 

40° maximum SL was reached at higher productivity and that maximum SL at high latitudes 

was smaller than maximum SL at low latitudes. As for SL, regrouping SR values into the 

same scheme resulted in 2 hump-shaped curves (Fig. 6 b).  

Geological history of the Atlantic Ocean is unlikely to explain observed patterns for SL 

(Table 3). The Southern Ocean and the South Atlantic have been relatively more connected to 

adjacent oceans than the North Atlantic. During the most recent 4 My, conditions have been 

more stable in the Southern Ocean than in the Arctic North Atlantic. Despite the very 

different histories, the poleward decline of SL is qualitatively similar in the North and the 

South Atlantic. Moreover, opposite to the pattern expected from the stability-time hypothesis, 

relatively stable long-term conditions in the Antarctic did not increase the number of pelagic 

fish species as compared to the North Atlantic with higher SL numbers by latitude. 

However, for SR the expansion of boreal faunas towards low latitudes during the last 60 My 

BP (Table 3) presumably created an overlap between tropical and boreal faunas with higher 

diversity in the zone of overlap. The three latitudinal peaks of SR with maximum values at 

30°S, 10°N in the eastern central Atlantic and 35 °N in the Mid-Atlantic (Fig. 3) coincided 

with the modern tropical-boreal border, which is asymmetric across the North Atlantic, and 

the borders of subtropical provinces (Fig.1).  
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Discussion 

The analysis revealed a clear LSDG for local (SL) and regional (SR) species richness of deep-

sea Atlantic pelagic fishes, related to productivity in support of the productivity-diversity 

hypothesis. The productivity-diversity relationship was significantly improved when  nested 

within a regional framework with regard to  seasonality of production (see Merrett 1987, 

Angel 1997). The productivity-SL relationship was robust despite expected decadal 

variability. For SR, further historical effects, i.e. overlap between boreal and tropical faunas 

could not be precluded. No evidence for the stability-time hypothesis was inferred. As for 

MDE, the mechanistic explanation of the LSDG was rejected. MDEs failed to explain ocean 

diversity gradients (Smith & Brown 2002, Kendall & Haedrich 2006), albeit supporting 

evidence in other habitats (Colwell et al. 2004). Rapoport's rule linking diversity reciprocally 

to distributional range size, was ineffective to explain marine LSDGs (Rohde et al. 1993, 

Smith & Gaines 2003, Kendall & Haedrich 2006) and was not investigated in this study.  

The resulting SL- and SR-patterns are congruent with other LSDGs in that there is a 

depression of SL at the equator (foraminiferans, Rutherford et al. 1999, tintinnids, Dolan et al. 

2006), in that there is a North-South asymmetry in species richness (Chown et al. 2004), with 

greater diversity in the subtropical South Atlantic than in the corresponding part of the North 

Atlantic (deep-sea gastropods and isopods, Rex et al. 1997,  foraminiferans, Culver & Buzas 

2000, tintinnids, Dolan et al. 2006), and in that species richness by latitude is lower in the 

Antarctic than in the North Atlantic (fishes, Macpherson 2002). Generally, the Antarctic fish 

fauna is low in diversity (Clarke & Johnston 2003).  

The asymmetry in species richness between the North and South Atlantic could not be 

explained. However, palaeo-ecological redistribution pathways during the last 50 My give a 

possible cue to the understanding of this phenomenon in that the major deep-water pathways 
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originated in the West Pacific and led into the South Atlantic before entering the North 

Atlantic (Miranov 2006). 

From the causative factors, no effect of geological history on the SL-gradient was inferred, 

contrary to the stability-time hypothesis. For Pacific and Atlantic gastropods respective results 

were obtained (Roy et al. 1998).  

In turn, for the SR-gradient the Eocene expansion of boreal faunas would lead to overlap 

patterns likely to resemble the SR-gradient for the South and the North Atlantic presented 

here. Three findings augment this interpretation.  

First, peaks appeared for both hemispheres corresponding to the boreal expansions from both 

poles, but not for other zones.  

Second, due to the strong asymmetry of the northern tropical-boreal boundary, i.e. reaching 

about 10°N in the eastern central Atlantic and 30°N in the Mid-Atlantic (Briggs 1970), both 

peaks or breaks in the North Atlantic SR-gradient can be explained by the same underlying 

process. The proposed overlap of faunas along the asymmetric tropical-boreal boundary 

implies a longitudinal gradient for SR, which was shown for Atlantic foraminiferans 

(Rutherford et al. 1999) and in a meta-analysis (Hillebrand 2004). The asymmetry is 

evidenced e.g. through the occurrence of the subpolar-temperate myctophid Benthosema 

glaciale off Africa (Badcock 1981). The SR peak in the eastern central Atlantic coincided 

with the peak found by Angel (1993) at 18°N 25°W. Corresponding to the break at 32.5°N for 

SR and at 35°N for SL for the Mid-Atlantic, a broad zone of overlap of distribution ranges for 

West Atlantic gastropods was indicated from 25°N to 42°N with a peak at 35°N (Roy et al. 

1998). In the West Atlantic, species richness of flabelliferan isopods, an evolutionary new 

deep-sea group mostly confined to the mid-latitude South Atlantic, collapses at about 35°N 

(in Wilson 1998). The SL break at 35 °N coincided with the frontal system of the Subtropical 

Convergence (Longhurst 1998). Convergence zones are important for the generation of local 

species maxima at the surface (Angel 1993, McClatchie et al. 1997). The associated 
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Subtropical Gyre extends from the surface into the intermediate layer (ca. 1800 m, Schmitz & 

McCartney 1993) likely also to delimit bathypelagic fauna. In the South Atlantic, the SR-

maximum at 30°S coincided at depth with the zone of interleaving for North Atlantic Deep 

water and Antarctic Intermediate water (Colling 2001). As for SR-maxima,  species richness 

maxima for euphausiids in the South Atlantic occurred at 30°-35°S (Gibbons 1997). The 

underlying process of boreal expansion is further reflected in that tropical teleost fishes have 

greater latitudinal ranges than high-latitude species, a likely reminiscence of ancient high-

latitude water temperature conditions (Rohde et al. 1993).  

Third, the overlap for deep-sea fishes in this study is not observed in species collations of fish 

fauna from shallower depths (e.g. Macpherson & Duarte 1994, Macpherson 2002). This is 

presumably related to the increased rate of speciation in shallow tropical habitats during the 

last 7 My due to habitat development of the neritic zone, i.e. uplift of the Central American 

isthmus (Crame 2001, Buzas et al. 2002, Briggs 2006). This should not apply to deep-sea 

habitats. Increased tropical speciation rates were not observed in this study, since the 

increased steepness of LSDGs for SR as compared to SL (Hillebrand 2004) was attributed to 

lower log-log slope values at high latitudes, but not to consistently high log-log slopes at 

lower latitudes. Storch et al. (2005) found a negative relationship between productivity and 

log-log slopes for avifauna, i.e. decreasing steepness with increasing productivity. 

 

From the environmental factors analysed, only productivity was consistently linked to the SL-

gradient both in the over-all (Fig. 5 b, c) and the regionalised analysis (Fig. 6 a). Consistent 

productivity-diversity explanations for LSDGs have been provided for deep-sea foraminferans  

(Thomas & Gooday 1996, but differently in Rutherford et al. 1999) and planktonic tintinnids 

(Dolan et al. 2006). Local deep-sea diversity changes in time series were significantly linked 

to changes in productivity (Cronin & Raymo 1997, Ruhl & Smith 2004). In turn, Danovaro et 

al. (2004) failed to prove the productivity-diversity relationship, however based on indirect 
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data for surface productivity. Sedimentation processes take about 1 month to transport organic 

matter from the surface to the abyssal bottom (Deuser 1986), linking the one surface process 

to the deep-sea environment within a reasonable time frame.  

Margalef (1997, p. 113) and Levin et al. (2001, p. 79) have provided complementary 

successional-functional hypotheses for the hump-shaped productivity-diversity relationship. 

At low resource levels, food supply limits the number of populations in a community. As 

resources increase until optimum supply level, more populations can be maintained. Excess 

and often pulsed supply allows only few opportunistic species to further increase, so that 

competitive exclusion depresses diversity. The increase of diversity has implications for the 

distribution of interaction strengths in communities, leading to an increase of weak interaction 

strengths (McCann 2000). Weak interactions serve to limit energy flow in a potentially strong 

resource-consumer relationship and thus inhibit runaway consumption. Thus, strong seasonal 

pulses of resource input hinder the constitution of weak interactions and thus depress the 

number of species. The community concept emphasizes that patterns of biodiversity emerge 

from how organisms utilize resources (scaling laws, Ritchie & Olff 1999). 

A strong environmental SL-correlate was an indicator for local determinism (Ricklefs 2004). 

Local determinism was also indicated by non-linearity in SL-SR plots (see Fig. 4) and non-

parallel log-log slopes (Table 2). Here, the degree of local determinism is relatively high and 

accounts for 19 % in the SL-SR plot (linear r² = 0.81), since the maximum share for local 

determinism was 30 % in linear SL-SR plots under the constraint of fully competitive 

organization for model communities (linear r² = 0.7) (Hillebrand 2005). Significant quadratic 

terms in SL-SR regressions only appeared when > 60 % of the communities were 

competitively controlled (Hillebrand 2005). For coral reefs, and sampling SR in a similar way 

from own local data instead of applying published collations, a low degree of local 

determinism was indicated (i.e. high linear r² = 0.94-0.99, Karlson et al. 2004). This probably 

points at the importance of different types of communities (sessile vs. mobile) and the effect 
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of vicinity to speciation hotspots as was the case for the coral reef study. The present study 

gives no indication how community type is linked to the diversity gradient. The 

regionalization of SL according to Merret's hypothesis (1987) into two different regimes 

partially reflected changes in community composition as indicated in the MDS-plot, where 

five groups where discerned (Fig. 2). This points at different processes for community 

composition and for community diversity. Species composition of oceanic assemblages is 

related to water mass structure (Jahn & Backus 1976, Fock et al. 2004) and thus 

biogeochemical partitioning of the ocean (see Table 2, after Longhurst 1998). 

At the SL-SR interface, observations (Chase & Leibold 2002) and modeling results (Steiner & 

Leibold 2004) indicate that a hump-shaped productivity-diversity relationship for SL turns 

into a positive linear relationship for SR. This was due to high species turnover or ß-diversity 

at high productivity (Chase & Leibold 2002). In this study, the SR-productivity curve was 

curvilinear, and turnover by means of the log-log slope coefficient was not positively related 

to productivity, e.g. the zone SATL with a high value for productivity had a comparably small 

slope coefficient (Table 2). The linear SR-productivity relationships published for Atlantic 

fishes so far are likely subject to incompletely covered gradients (Fock 2003) or to analysis 

constraints (Macpherson 2002). 
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Figures 

 

Fig. 1 Station locations.  

Station bubbles indicate local species richness SL. Bold full line: Recent border between 

tropical and boreal faunas (Briggs 1970), bold broken lines: border of mesopelagic  

subtropical seas (North: southern Sargasso Sea and southern African Sea, South: South 

Atlantic Subtropical Sea/Transitional zone) (Backus et al. 1977, Herman 1979). Scale bar 

indicates annual primary production (g C m-2 yr-1). 

 

Fig. 2 MDS community ordination 

Ordination for presence/absence data (stress 0.13). Numbers indicate station latitudes. 'N' and 

'S' indicate meridional orientation. 

 

Fig. 3 Latitudinal gradients in local and regional species richness and location of 

oceanographic features. 

Lower panel : SL, upper panel : SR values at different accumulation levels, thin line = 3 

samples pooled (3p), bold line = 5 samples pooled (5p). Squares indicate extrapolated values, 

arrow indicates values rescaled to larger sample size for the southernmost zone. ACC - 

Antarctic Circumpolar Current, EC - Equatorial Counter Current, NEC - North Equatorial 

Current, SEC - South Equatorial Current, SF - Subpolar Front, STC - Subtropical 

Convergence.  

 

Fig. 4 Analysis of local-regional species richness relationship 

SR as 5-sample aggregates for regional richness. Line indicates regression with quadratic fit 

and 95%-CI. For SR, zonal affiliation indicated according to Table 1 and Table 2.  
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Fig. 5 Local species richness relationships 

Species richness SL(ES100) in relation to (a) latitude, (b) surface chlorophyll, (c) primary 

production, (d) sea temperature at 1750 m, (e) temperature difference between 500 and 1750 

m. Non-parametric LOESS smoother fitted. Shaded area indicates southernmost stations.  

 

Fig. 6 Regionalisation of local (SL) and regional richness (SR) 

Open circles – stations > 40° latitude, dots – stations < 40° latitude. Non-parametric LOESS 

smoother fitted. 

 

Fig. 7 Sum of squared errors for LOESS fits for different regionalisations 

x-axis indicates latitudinal partitioning. 'No'-partioning refers to Fig. 5a, partitioning at '40'-

degrres latitude refers to Fig 6.  
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Table 1 : Station data, zonal affiliation, total number of species per sample (S), total number of specimens (N), local species richness SL (ES100), 
eveness (J') and Shannon Wiener diversity (H‘). 
 

STATION_ID 
Zonal 
affiliation Year MONTH DAY lat lon FISHING DEPTH

BOTTOM 
Depth 

SPEED 
(0.1 kn) 

START_TIME
(local time) 

STOP_TIME
(local time) Remarks 

S 
(n) 

N  
(n) 

SL 
(ES100) H' J' 

21_II_76 45-55S 75 11 28 -56.95 54.97 2200 4200 37 17:10 17:40 MT1000 23 627 14.04 1.54 49 
99_II_76 45-55S 76 1 4 -51.08 39.95 2300 3500 35 16:00 16:30  28 808 17.37 2.5 0.75 
10_II_76 45-55S 75 11 22 -50.78 50.02 2050  35 17:45 18:15 MT1000 34 975 19.09 2.46 0.7 
101_II_76 45-55S 76 1 5 -47.75 40.08 2000 5550 30 15:50 16:20  60 749 29.85 3.15 0.77 
102_II_76 45-55S 76 1 6 -46.45 39.88 2000  35 16:25 16:55  62 789 29.28 3.1 0.75 
104_II_76 - 76 1 7 -42.97 39.88 2350   15:50 16:20  63 453 35.28 3.44 0.83 
4_II_76 35-40S 75 11 19 -40.33 50.03 2350 5000 25 17:50 18:20 MT1000 77 946 33.66 3.16 0.73 
367_71 35-40S 71 3 9 -40.3 35.12 1850 4800 40 21:00 22:00  71 1408 25.67 2.84 0.67 
376_71 35-40S 71 3 11 -39.92 26.03 2000  25 20:15 21:45  95 965 33.56 3.36 0.74 
384_71 35-40S 71 3 13 -39.75 17.67 2000  25 20:45 21:15  47 142 38.63 3.25 0.84 
406_71 35-40S 71 3 19 -39.32 3.25 2000  25 20:00 21:00  69 715 32.72 3.31 0.78 
354_II_71 35-40S 71 3 6 -39.3 48.2 2000 5300 40 22:00 22:30  72 1225 24.97 2.84 0.66 
106_II_76 35-40S 76 1 8 -39.13 39.98 1850   18:10 18:40  82 548 39.32 3.53 0.8 
412_II_71 35-40S 71 3 21 -37.13 -5.2 2200  40 20:00 21:30  77 450 39.34 3.66 0.84 
395_71 35-40S 71 3 17 -36.82 12.28 2000  40 01:45 03:45  69 464 34.65 3.42 0.81 
30_68 35-40S 68 2 16 -36.62 51.53 2000 3000 35 23:40 00:40  69 497 35.87 3.49 0.82 
108_II_76 35-40S 76 1 9 -36.42 40 2400   15:40 16:10  72 414 38.66 3.58 0.84 
28_II_68 25-35S 68 2 14 -34.13 47.57 2000 4000 37.5 00:45 01:15  82 978 28.12 2.87 0.65 
427_71 25-35S 71 3 30 -33 -7.83 2000  33 21:00 22:00  92 572 39.89 3.56 0.79 
435_71 25-35S 71 4 1 -27.23 -2.93 2000  35 21:00 22:00  101 528 42.7 3.75 0.81 
24_II_68 25-35S 68 2 10 -25.9 36.98 2000  35 23:45 00:15  60 233 38.31 3.47 0.85 
443_71 10-20S 71 4 3 -21.58 2 2100 4500 30 20:25 21:25  106 590 43.8 3.88 0.83 
21_68 10-20S 68 2 7 -17.55 28.22 2000 5000  23:05 23:35  39 107 37.53 3.23 0.88 
451_71 10-20S 71 4 5 -15.75 6.1 1900  30 20:50 21:50  111 868 43.1 3.87 0.82 
459_71 10-20S 71 4 7 -10.95 11.33 1900  30 19:52 20:52  86 400 43.01 3.8 0.85 
467_71 5S-5n 71 4 9 -5.5 16.47 1900  25 20:00 21:00  112 912 43.88 3.91 0.83 
17_68 5S-5n 68 2 4 -4.72 26.65 2000   11:55 12:55  81 374 46.08 3.87 0.88 
16_68 5S-5n 68 2 3 -3 26.27 2000   19:15 19:45  96 420 50.22 4.05 0.89 
478_71 5S-5n 71 4 12 1.07 18.37 2100  20 20:20 21:20  128 1264 39.37 3.5 0.72 
53_74 5S-5n 74 7 23 3.53 38 2000 4140 22 21:00 21:15 step-haul 57 226 36.39 3.28 0.81 
39_74 5-15N 74 7 21 7.92 32.68 2000 4840 16 19:40 20:25 step-haul 61 190 39.01 3.22 0.78 
12_II_68 5-15N 68 1 30 12.12 23.13 2000 5000  22:35 23:05  113 890 43.14 3.91 0.83 
494_71 5-15N 71 4 16 14.08 23.2 1900  25 20:30 21:30  127 859 49.32 4.12 0.85 
293_79 25-30N 79 4 22 25.82 54.97 2000 5600 40 15:05:00 16:00:00  55 244 34.29 2.93 0.73 
284_79 25-30N 79 4 21 26.18 58.43 2000 5600 25 15:00:00 16:00:00  41 177 32.86 3 0.81 
301_79 25-30N 79 4 23 27.63 52.37 2000 5400 40 14:55:00 15:45:00  61 199 42.69 3.41 0.83 
276_79 25-30N 79 4 20 28.68 60.9 1800  25 15:10:00 16:00:00  66 385 34.58 3.32 0.79 
7_III_68 25-30N 68 1 22 29.42 18.3 2000  35 00:42 01:12  86 752 32.55 3.31 0.74 
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308_79 25-30N 79 4 24 29.67 49.64 2000 5200  15:35:00 16:30:00  72 304 40.87 3.59 0.84 
256_79 30-35N 79 4 15 30.45 66.13 1800 4800 30 04:45:00 05:45:00  131 1297 39.11 3.65 0.75 
314_I_79 30-35N 79 4 25 30.72 46.27 2000 4270 20 16:37:00 17:35:00  51 270 29.84 2.69 0.69 
268_79 30-35N 79 4 19 31.18 63.45 1650 4760 25 15:10:00 15:55:00  88 435 44.01 3.82 0.85 
321_79 30-35N 79 4 26 31.85 42.92 1950 3450 20 16:30:00 17:25:00  100 463 45.95 3.89 0.84 
329_79 30-35N 79 4 27 32.98 39.68 1950 3900  15:35:00 16:30:00  86 485 40.57 3.63 0.82 
338_79 30-35N 79 4 28 34.35 35.48 1300 2220 13 17:00:00 18:00:00  102 614 41.11 3.73 0.81 
348_79 30-35N 79 4 30 35.33 30.27 1900 2760 20 06:40:00 07:10:00  84 602 38.94 3.62 0.82 
345_79 30-35N 79 4 29 35.4 32.02 1800 2530 20 17:00:00 17:50:00  77 459 36.85 3.41 0.78 
361_79 40-45N 79 5 2 41.03 23.87 2000 3580 15 11:35:00 12:30:00  70 640 31.33 3.15 0.74 
359_82 40-45N 82 6 9 43.36 25.98 1230 3100 30 08:40:00 09:10:00  84 747 37.23 3.58 0.81 
370_82 40-45N 82 6 10 43.7 28.44 1550 2200 40 16:45:00 17:25:00  84 705 36.59 3.56 0.8 
371_79 40-45N 79 5 3 44.9 22.27 2000 3975 20 16:38:00 17:30:00  62 497 28.24 2.91 0.7 
380_79 40-45N 79 5 4 44.92 17.57 1900 4400 20 17:20:00 18:20:00  61 436 32.69 3.16 0.77 
335_82 45-55N 82 6 6 45.15 15.6 2250 3600 30 07:20:00 08:20:00  41 318 21.89 1.8 0.48 
331_82 45-55N 82 6 5 45.21 13.43 1800 4100 30 15:45:00 16:45:00  56 297 31.85 2.81 0.7 
389_79 45-55N 79 5 5 45.68 13.7 2000 4760 20 17:13:00 18:10:00  51 406 31.48 3.17 0.81 
398_79 45-55N 79 5 6 47.7 9.13 2000 3970 20 18:37:00 20:00:00  42 629 20.99 2.66 0.71 
383_82 45-55N 82 6 13 47.87 27.14 1370 2100 30 15:40:00 16:20:00  79 833 31.38 3.21 0.74 
700_73 45-55N 73 9 24 52.58 22.33 1250 3940 30 18:40:00 19:10:00  36 472 23.19 2.55 0.71 
464_86 45-55N 86 7 9 52.94 16.31 2300 3430 30 12:30:00 13:30:00  60 1142 23.84 2.74 0.67 
463_86 45-55N 86 7 9 53.06 16.61 1800 3450 30 08:45:00 09:45:00  52 771 25.3 3 0.76 
321_83 55-65N 83 5 18 56.37 11.91 1500 2600 40 06:45:00 08:00:00  39 772 19.33 2.49 0.68 
291_83 55-65N 83 5 13 57.77 11.09 1500 2100 40 07:00:00 08:00:00  44 1795 16.94 1.91 0.5 
688_73 55-65N 73 9 21 58.05 28.5 2100 2300 30 20:15:00 20:45:00  30 387 20.11 2.6 0.77 
276_83 55-65N 83 5 9 59.46 11.39 1300 1650 40 18:02:00 19:02:00  37 436 20.38 2.71 0.75 
681_73 55-65N 73 9 20 62.65 33.75 2100 2810 30 10:45:00 11:45:00  33 506 20.32 2.51 0.72 
677_73 55-65N 73 9 19 64.6 30.98 2000 2440 25 10:42:00 11:12:00  22 320 17.33 2.38 0.77 
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Table 2 : Zonal environmental statistics and regional diversity and seasonal changes in primary production. 
Zonal statistics calculated as means over all stations in the respective zone except for SR(5p). Seasonal changes indicate the min –max difference 
according to descriptions given by Longhurst (1998). () indicate re-scaled values for 0.8 h sample size. * extrapolated 
 

Zone Lat. midpoint (S-N)

Average 
annual primary 

production  
(g C m-2y-1) 

Av. Temperature 
difference 500-

1750 m 

Average 
Temperature at 

1750 m 

Species 
accumulation 

curves:  
Log-log slope 

Average 
time-at-depth (h) 

Average 
local richness (SL) 

Regional richness 
SR(5p) 

Seasonal change 
in primary 
production 

          
45-55S -50 91.36 0.72 3.84 0.365 0.5 23.9 123.8* (166) 5x (SANT) 
40-45S         4x (SSTC) 
35-40S -37.5 170.80 3.72 3.86 0.494 0.95 33.8 272.6 1.5 x (SATL) 
25-35S -30 119.54 6.48 4.22 0.6744 0.75 37.3 428.0*  
10-20S -15 86.06 3.93 4.32 0.4931 0.88 41.9 331.3*  
5S-5N 0 94.24 3.37 2.73 0.6075 0.75 43.2 369.5 1.2 x (WTRA) 
5-15N 10 144.92 5.07 3.50 0.8203 0.75 43.8 453.6* 1.2 x (NATR) 
25-30N 27.5 70.68 10.66 3.12 0.6026 0.82 36.3 247.0  
30-35N 32.5 102.74 9.87 2.76 0.5774 0.86 39.5 324.4 2.5 x (NAST) 
40-45N 42.5 182.54 7.18 3.91 0.5495 0.76 33.2 247.4 5.5 x (NADR) 
45-55N 50 235.84 6.12 2.00 0.6066 0.95 26.2 190.6 8 x ( ARCT) 
55-65N 60 307.28 3.64 3.83 0.477 0.88 19.1 107.0  

 
Biogeographical provinces: SANT - Subantarctic Water Ring, SSTC - Southern Subtropical Convergence, SATL - South Atlantic, WTRA - 
Western tropical Atlantic, NATR - North Atlantic Trade Winds, NAST - North Atlantic Subtropical Gyre, NADR - North Atlantic Drift, ARCT - 
Atlantic Arctic. Coastal provinces not considered for primary production calculations.  
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Table 3 : Evolutionary effective changes in the Atlantic Ocean and adjacent polar seas (after Briggs 1970, Wilson 1998, Clarke 2003, Clarke et al. 
2004, Gage 2004, Haug et al. 2005) 
My BP – million years before present, ACC – Antarctic Circumpolar Current 

Time period Antarctica Arctica 

60 My BP 
 

Climatic deterioration : start of cooling period for entire Atlantic Ocean, mid-latitudinal expansion of boreal faunas towards equator 

40-50 My BP  Formation of Bering land-bridge impedes exchange with Pacific fauna and 
leads to species impoverishment of Atlantic boreal fauna 

33-34 My BP Formation of ice-sheets  

25-30 My BP Opening of Drake passage establishes ACC and starts Antarctic isolation; 
before this, Antarctic confluence with Indian, Pacific and Atlantic Ocean 
should have increased 'effective area' for speciation and exchange and 
thus lead to enhanced diversity. 

 

14-16 My BP Evolution of anti-freeze capacities, radiation of the teleost family 
Notothenoidea  

 

3-4 My BP  Relatively stable glaciation, Milankovitch variability of environmental 
conditions (period length 19000 – 400000 y) 

Breakdown of land-bridge, immigration of northern Pacific species; 
rapid shifts in oceanic conditions due to warm-cold oscillations.  
Fluctuations of iceberg production (Heinrich-events, period length 10000 y) 

2-3 My BP to 
present 

 Formation of ice-sheets 
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