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ABSTRACT

Recently it was stated a strong dependence of European hake abundance with climate
variability in NW Africa. This relationship was explained by the North Atlantic Oscillation
(NAO) driving the upwelling temporality and its geographic coverage, which could be
responsible of changes in survival rate during early life stages of this species. Following this
hypothesis, this work focuses on the relative importance of climate variability on recruitment
dynamics of European hake. Interannual variability of recruitment success were anayzed
through two types of time series: (i) from monthly and annual length distribution fishery data
(1982-1999) of Spanish trawling fleet that worked under Spanish or European-Moroccan
fishery agreements and (ii) recruits annual abundance from scientific Moroccan surveys
(1982-2004). The time series were compared with the annual smoothed NAO index to
evaluate the type of relationship, persistence and their relative contribution as a variation
source of recruitment success. The recruitment to the fishery took place during all year with
peaks in spring and summer, but the seasonal component was weak. The time series were in
synchrony with NAO index of the previous year and showed strong positive correlation. The
variation of recruitment success explained by NAO was 25 to 82 % depending on time series
size. The main NAO effect in recruitment dynamics was the widening-contraction of
Recruitment Window. During NAO+ phase several success cohorts were recruited by year,
while in NAO- the success cohorts were scarce and weak. The climate signal in recruitment
dynamics of European hake was robust, recurrent and persistent independently of fishing
effort.
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I ntroduction

In recent times several authors had been focused in the probable relationship between climate
variability and ecological changes of marine populations at different time scales. However the

climate impacts over ecological processes such as recruitment, distribution, inter- and intra-

specific relationships, etc. are difficult to elucidate because climate do not affect through a
single factor, whether a set of several factors of local conditions (Stenseth et al., 2003).

Recruitment is a complex and noisy biophysical process determined by the interaction of
biological and environmental factors influencing reproductive output and survival of eggs,
larvae and juveniles (Cushing, 1996; Bailey et al., 2003). The recruitment variability is the
principal cause of abundance fluctuations in fish stocks and, hence, catches (Cushing, 1996).
However the sources of recruitment variability and the relative importance of involved factors
remains uncertain (Wooster and Bailey, 1989: Myers et al., 1997).

In genera terms, the fishery production is linked to underlying stock-recruitment relationship,
but survival processes during recruitment are highly influenced by physica and biological
environment experienced during the early life stages (Bakun, 1996; Cushing, 1996). Thus the
strength of recruitment could depend on oceanographic conditions that are in turn governed by
climate (Brunel & Boucher submitted) and consequently the relationship between the
abundance of the spawning stock and subsequent annual recruitment weaken.

As they give a smplified approach view, reducing temporal and spatia variability of local
environmental factors that influence population dynamics, large-scale climatic indices, such as
NAO index, often predict ecological processes better than local environmental variables
(Hallett et al., 2004).

The North Atlantic Oscillation (NAQO) describes the atmospheric mass oscillation between the
pressure centers of Iceland (low) and the Azores (high) (Walker & Bliss, 1932), and is the
most robust pattern of recurrent atmospheric behavior in the North Atlantic region (Barnston
& Livezey 1987). NAO fluctuations occur throughout the year; however, they are widest
during the colder months (November-April) when the atmosphere is most dynamically active
(Barnston & Livezey, 1987; Rogers, 1990; Hurrell et al., 2003; Stenseth et al., 2003).

The NAO index quantifies the amplitude of this oscillation. The positive NAO phase (NAO+)
corresponds to enhanced sea level pressure (SLP) differences between the pressure centers
which produce intensification of the westerlies at mid-latitudes and the easterly trade winds
over the subtropical North Atlantic. During the negative NAO phase (NAO-), both the
Icelandic low- and Azores high-pressure centers are weaker than normal, which produces
weakening of the mid-latitude westerlies and subtropical trade winds (Hurrell, 1995; Hurrell &
Dickson, 2003; Stenseth et al., 2003).

The Northwest African coast is located in the NAO's influence area, is one of the world's four
largest productive marine regions by wind induced upwelling (Freudenthal et al., 2002;
Kearns & Carr, 2003; Carr & Kearns, 2003) and it supports a multinational fishery in which
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Merluccius merluccius is a highly valuable target species. However, our knowledge about the
effects of NAO-induced climate variability over M. merluccius recruitment dynamics in the
area is scarce.

In a previous works it was established that in Cantabric Sea, the upwelling processes are
responsible of small-scale recruitment dynamics variability of M. merluccius. But in longer
periods, the recruitment is in phase with a decadal component of climatic system (Sanchez et
al., 2002), foreseeable by NAO index (Lavin et al., 2000).

In the case of NW African coadt, it was stated a high positive correlation between NAO index
and European hake abundance lagged by size class, suggesting a close dependence of
recruitment process with the upwelling variability induced by large-scale NAO (Menerset al.,
submitted). These authors hypothesized that enhance of fishery recruitment success at year (t)
is produced by high productivity conditions during NAO+ during previous year (t-1) which
increase the survival rate of young hakes. This means that several cohorts are incorporated to
the fishery because the widening of Recruitment Window (RW)

The aim of this study was test this hypothesis and determine the relative importance of climate
variability on recruitment dynamics using the NAO index as a main proxy and at the same
time verify the persistence of climate signal after abrupt change in fishing effort due to the
ceased of European-Moroccan fishing agreements.

M ethods

Data source

Because the scarcity of historical records about recruitment of M. merluccius in NW Africa,
the recruitment time series were calculated from two main sources. (1) Catch data records
obtained in landing harbours by the Information and Sampling Net (RIM in Spanish) of
“Ingtituto Espafiol de Oceanografia’ (IEO). (2) Juveniles abundance estimated in scientific
surveys conducted by the “Institute Nationnal de Recherche Halieutique” of Morocco (INRH).
All these data are available in CECAF working group’s reports for hakes evaluation (FAO,
1997; in press).

The RIM series consists in landings, length distributions and fishing efforts (fishing days) of
M. merluccius caugths by Spanish trawling fleet (40-50 mm mesh size). The fishery was
conducted under fishery agreements between Spain (later UE) and Morocco (1982 — 1999) in
Moroccan and Saharan waters (36°N to 28°N). The Spanish trawling fleet fished over the
younger component of the hake stock (juveniles and preadults).

Two types of time series were derived from Spanish data. The first one was a detailed monthly
time series of length frequency distributions of total landings recorded from January 1991 to
November 1999 in the port of Malaga, which was one of the main base ports of the fleet
during the fishery agreements. The second one consisted of annual length frequency
distributions between 1982 and 1999 that was estimated for the total catch of Spanish trawling



Meinerset al.
Climate variability and recruitment of European hake NW Africa

fleet (ports of Algeciras, Huelva, Malaga and Puerto Santa Maria). Both time series are
expressed in number of hakes per total length (TL) class.

The Moroccan time series of juvenile abundance (kg/h) came from 32 scientific surveys
carried out in different months between 1982 and 2004 (see Table I) from 36°N to 30°N at
depths from 50 to 200 m.

The Moroccan time series was utilized with two main goals. In first term, to verify the
persistence of climatic signal (until 2004) despite of strong decreasing of fishing effort as
consequence of the giving up of Moroccan fishing grounds by European fleets after ceasing
the fishery agreements in 1999. In the other hand, to use data independent of the fishing fleet
dynamics as a measurement comparable with time series from commercial fleet.

Recruitment indices

The length distributions (monthly and annual) were corrected by fishing gear selectivity based
on selection vectors reported in Fiorentino et al. (1998) to emphasize small sizes sub
represented as a consequence of commercial trawling net mesh size: 40 mm (1982-1984) and
50 mm (1985-1999). Once corrected, it was defined the length interval that we consider that
M. merluccius recruits to the fishery (the first length mode) and was utilized as an indicator of
biological recruitment success.

The monthly time series (January 1996 to November 1999) was used to analyze the seasonal
and interannual changes of recruitment and to determine a proper index to amplify the analysis
to annual time series (1982 — 1999).

The monthly recruitment index between 1991 and 1999 was defined as recruits caught per
fishing day (R)). To determine the seasonality and trend of recruitment, R, was standardized
(mean=0and SD = 1) to obtain R’; as follows:

R -R
R, = —
SD,
Where R, is the recruitment index at month i, R and SDr are the mean and standard deviation

of monthly recruitment time series from 1991 to 1999.

The annual recruitment index (R;) (1982 — 1999) was calculated in the same way that monthly
one (recruits per fishing day). But it was corrected to minimize the effect of strong decreasing
of hake individuals every year t, it was made through removing trend of total annual
individuals (I;) respect to the total individuals caught in the entire series.

NAO Index

The annua winter NAO index was taken from the webpage of the Climate and Global
Dynamics Divison of the Nationa Center for Atmospheric Research (NCAR)
(http://www.cdg.ucar.edu/cas/climind/nao/). The index is based on the SLP difference between
Lisbon (Portugal) and Stykkisholmur/Reykjavik (Iceland) (Hurrell, 1995). These NAO data
were smoothed by running average of 3 years to reduce time series noise.
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Analysis

In order to describe the temporal characteristics of recruitment monthly time series, it was
caculated the trend and seasonal component by running of X-12-ARIMA routine
(autoregressive-integrated-moving-averages) through DEMETRA 2.0 Software (Eurostats,
2002).

To test the hypothesis about widening-contraction of RW, the number of new cohorts into the
fishery based on monthly length distributions between 1991 and 1999 was determined. If RW
is wide we will expect severa new cohorts recruited to the fishery along the year. In the
opposite situation, a contracted RW would result in less new cohorts into the fishery aong the
year.

Correlation techniques were used to analyze and to quantify the relationships between climate
variability (NAO index), the annual recruitment time series and the widening-contraction of
RW and, of course, to verify the synchrony and persistence between climate signal and
abundance of M. merluccius juveniles recorded during Moroccan scientific surveys until 2004.

Reaults

The selectivity correction curves applied to length distributions increased at least at 50% the
number of hakes minot than 13 and 18 cm TL caught with 40 and 50 mm mesh size,
respectively (Fig. 1). The corrected length distributions remark the first length mode and made
it proportionally more important respect to the total distribution (Fig. 2).

The length interval covered from 10 to 50 cm LT. The first length mode was 14 -18 cm LT.
According to the monthly detailed length distributions, the upper limit of recruits size was
fixed in 20 cm, independently of number of length modes found in every year (Fig. 3). In the
same way the Moroccan scientific surveys supports this consideration because the first mode
of length distributions grouped by season ranged between 14 and 18 cm and the upper limit
was 20 — 22 cm (Fig. 4).

There were found recruits of M. merlucciusall-year, but the highest abundant peaks took place
during spring-summer time (Fig. 53). However the recruitment seasonal component was weak
(less than 100 % of R’; annual mean). The trend of recruitment time series showed a clear
decrease since the middle of 1996 (Fig. 5b).

The monthly recruitment index (R) grouped by year showed the same decreasing after 1996
and the number of new length modes (cohorts . year ) followed the same way (Fig. 6a).

Both of them were in synchrony with NAO index from previous year (t-1) and showed high
positive correlation (r = 0.91; p = 0.0005 and r = 0.87; p = 0.0045 respectively) (Fig. 6b). The
recruitment variability between 1991 and 1999 was explained in 82% by NAO index of
previous year. In the case of cohorts number by year the explained variation was 75%.
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Because the proportional behavior and synchrony with NAO index of R; grouped by year and
the number of cohorts . year*, we consider adequate amplify the analysis to whole annual time
series (Ry) (1982 — 1999) as genera approximation of recruitment success to test the
relationship previoudy found.

In the Figure 7a is showed the original R; and the trend of I; which was removed from R; to
obtain R; detrended. This criteria was adopted to reduce the associated error to abrupt
decreasing of the annual number of hakes from the fishery.

Such as it happened with monthly recruitment time series and cohorts . year?, R; detrended
showed interannual variations in phase with NAO(t-1) (Fig. 7b) with a positive correlation of
their regression residuas (r = 0.59; p = 0.0095), which means that NAO(t-1) explained 35 %
of recruitment variability between 1982 and 1999 (Fig 8).

Finally, the abundance of European hake juveniles recorded in Moroccan Scientific surveys
varied in phase with NAO (t-1) (Fig. 9) still after 1999 (ceased fishery agreements). However
the magnitude of correspondence between NAO variations and hake abundance (log
transform) varied depends the long of the time series. It was weaker for the whole time series
(1982 — 2004: r = 0.49; p = 0.0153) than the last part of time series (1992 to 2004 r = 0.63; p
= 0.0116), explaining the 24 and 40 % of recruitment variability by NAO(t-1).

Discussion

The considering and use of climate hypothesis as main source of variation in fish stocks is the
simplest one and at the same time the most attractive. Simple, because it is assumed that
marine population respond to environmental changes, especially during their early life stages
(i.e. recruitment) and that this response it is proportional to these environmental changes.
Attractive, because it could be tested with historical data and it supplies methodological tools
to understand the low-frequency stock variations after quantifying the relationships with
environment.

Thisis the case of interannual variability of European hake recruitment success in NW Africa.
Two relevant and complementary results that support the climatic hypothesis are presented
here. In one hand, the recruitment time series derived from fishery data were in synchrony and
positively correlated with NAO(t-1). In the other hand, the synchrony and correlation were
determined aso with juvenile abundance estimated from non-dependent fishing fleet dynamics
and the climate signal was traced until 2004.

Beyond the differences of NAO explained variability, the convergence of both results suggest
that climate signal into recruitment success of European hake is robust, recurrent and more
over is persistent, even in spite of that large changes in fishing effort occurs.

The correlation differences into the same recruitment time series it has been reported in other
demersal species (Gadus morhua and Melanogrammus aeglefinus: Solow, 2002; Limanda
ferruguinea: Sullivan et al., 2005) and they can be the result of interactions that were not taken
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into account. In our case, part of the difference could be relates with the origin, precision and
temporal cover of data, as well as numeric procedures utilized to isolate the climatic signal.

The weak recruitment seasonality of M. merluccius, reported also for Western Mediterranean
Sea (Loret & Lleonart, 2002), could be a plasticity feature and an adaptation capacity that
could alow to M. merluccius to take advantage of any widening of RW. This offers more
possihilities to survival enhancement during early life stages, which means the increasing of
annual recruitment signal by the incorporation of several cohorts at the same year. During
NAO+(t-1) phase (1991-1995) at least 18 cohorts (~4.5 cohorts by year) were detected and
during marked NAO-(t-1) (1997-1998) only just 4 cohorts (2 cohorts by year).

The key processes that links the climate variability induced by NAO with their relative
contributions and their effects in M. merluccius recruitment are different depending the
geographic region. In Western Mediterranean the recruitment variability is associated with
changesin flux of Ebro and Rhone rivers (Loret et al., 2001), inversely related with NAO. In
Cantabric Sea, the recruitment dynamics of M. merluccius is controlled by the upwelling
variability and oceanographic mesoscale structures and at the same time by long time climatic
decadal component (Sanchez & Gil, 2000; Sanchez et al., 2002).

However, whether in Western Mediterranean, the Cantabric Sea or NW African coast, these
processes are local and regional mechanisms that control the marine productivity scenarios.
This supports the idea that M. merluccius could broaden its RW through the survival
maximizing during favourable production conditions.

In NW African coast, the wind induced upwellings are the main oceanographic and persistent
feature (Schemainda et al., 1975; Wooster et al., 1976; Speth et al., 1978; Belveze, 1983; van
Camp et al., 1991). They are responsible of marine productivity and system carrying capacity
(Davenpport et al., 1999; Basterretxea & Aristegui, 2000; Fung et al., 2000; Freudenthal et al.,
2001; Nave et al., 2001; Neuer et al., 2002; Abrantes et al., 2002) and their intensity and
temporality are affected by wind condition changes induced by NAO (Aristegui et al., 2001;
Meiners et al., submitted)

Hence, in NW African coast the widening of RW of European hake is positively and
proportionally related with NAO amplitude through the modifying of upwelling temporality
induced by the wind.

These results emphasize the importance of NAO index as an indicator and prediction tool
gpatial and temporal simplified, not only about the climate, but the sense and magnitude of
ecological impact in European hake stock through recruitment.

The NAO property as smplified proxy is very important in ecological terms, because in
absence of information about distribution and abundance of eggs and larvae of M. merluccius
in NW Africa (Ramos & Fernandez, 1995), through the NAO index it is possible to approach
the sum of processes, do not evaluated till now, from the spawning time to the recruitment to
the fishery an year after.
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The recruits abundance at certain year (t), will be strongly determined by the NAO of previous
year (t-1) but after recruited the hakes will be under influence of actual NAO (t), that could
affect the growth dynamics and the factor condition, that eventually determines the quality and
guantity of future spawners during the next years (t+n).

That's why it is important to emphasize in other possible effects and interactions of population
dynamics with NAO, to build an integrated and adequate numeric prediction tool in terms of
fishery management.
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Table I. Juvenile yields of M. merluccius (kg . K'") from Moroccan scientific surveys
carried out between 1982 and 2004 (FAO, 2004)

Y ear Spring Summer Autumn Winter
1982 14.58

1983 13.91 13.77 16.86
1984 25.73 10.58
1985 19.56

1986 15.80 20.40

1987 12.29

1988 15.40

1989 17.16

1990

1991

1992 12.81

1993 11.89

1994 17.37 11.50

1995 11.42 13.34 12.15
1996 8.69

1997 6.64 6.53
1998 1.82 5.04
1999 9.00 9.21

2000 18.57

2001 15.68 15.53

2002 13.99

2003 14.89

2004 10.93
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Figure 1. Sdlectivity curves for 40 and 50 mm mesh size trawling net applied to correct the length
distributions of European hake (Fiorentino et al., 1998).
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Figure 2. Monthly landings (solid line) and corrected length distributions by gear selectivity (thin
line) of total M. merluccius catch from the Port of Maaga (1991 to 1999).
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Figure 3. Corrected length distribution (%) of 1991 (left side) and 1997 (right side) as examples of how
it was established the cut length to consider recruits (<20 cm LT) and identified de number of new
length modes (cohorts) incorporated to the fishery.
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Figure 4. Length distributions (%) grouped by season of European hake recorded during
scientific surveys carried out by INRH — Morocco aong the continental shelf of

between 36°N and 30°N.
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Figure 5. (8) Monthly recruitment index (recruits . fishing day™: line) and standardized index (mean =
0; SD = 1: bars) of M. memrluccius derived from tota landings of Port of Mélaga between January
1991 and November 1999. (b) Seasondity (% above or below of annua mean) and trend of
standardized monthly recruitment index (R)).
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Figure 6. (@) Annua recruitment index (log transform) from 1991 to 1999 grouped from monthly
recruitment (R;) and number of cohorts . year incorporated to the fishery. The case of 1995 is
marked (filled in black) because during that year there were only three months of fishing due to
problems with fishing agreement. (b) Scatter plot and adjust between NAO(t-1) and log R, and
cohorts . year™ (1995 was excepted for adjust).
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Figure 7. (&) Annual recruitment time series (R;: line with circle) for whole Spanish trawling and the
trend of annual percentage of hakes (1. line with square) caught respect to the grate total between 1982
and 1999. (b) Detrended annual recruitment time series (R, detrended) through removing I, time series.
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Figure 8. Scatter plot and lineal adjust between regression residuals of annua recruitment (R;) time
seriesand NAO(t-1)

47 ——NAO(t-1) —e— Abundance T 25
3 120
2 -

g + 15
Z 5. + 10
-1 4 T

-2 T T T T T T T T T T T T T T T T T T T T T T O

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04

Figure 9. Coincidence between juvenile mean abundance (kg . h* + SD) of M. merluccius and NAO(t-
1). Abundance data were obtained from Moroccan scientific surveys between 1982 and 2004. There
were no surveysin 1990 and 1991).
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