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Abstract

SeaWiFS satellite measurements of ocean colour, available for the whole globe on a weekly basis, are

routinely converted into estimates of chlorophyll a concentration using calibration algorithms. These

calibration algorithms algorithms are validated using bottle measurements collected in clear, open ocean

waters, where chlorophyll a concentrations are low. The North East Atlantic has large areas of coastal

and polar waters, where these calibration algorithms do not work well. Thus, although the satellite

measurements describe the broad-scale patterns in chlorophyll a concentration, quantitative agreement

between satellite estimates and bottle measurements is poor. The actual relationship between bottle

measurements and satellite estimates is complex and varies with water characteristics, which in turn

vary with depth and time of year. We therefore model bottle measurements as a function of SeaWiFS

estimates, depth and time of year, using three dimensional thin plate regression splines. The resulting

model provides plausible predictions which capture the main features of both the satellite and bottle

data.

1 Introduction

As in the terrestrial environment, the seasonal cycle of vegetation is the most conspicuous feature of the

biota in the ocean. Even though the ocean vegetation is predominantly made up of microscopic unicellular

algae (phytoplankton), these algae are clearly visible even from space by the colour that their photosynthetic

pigments confer on the surface waters. The seasonality of phytoplankton abundance varies most strongly with

latitude, and is governed by the balance between diffusion, grazing by planktonic herbivores and availability

of nutrients and light to support photosynthesis. At high latitudes, appreciable concentrations of algae

occur during a brief bloom in the spring or early summer, which follows the receding edge of the polar

sea-ice (Engelsen et al., 2002). In temperate latitudes the bloom is more protracted but centred around

the spring and autumn, whilst in equatorial waters the seasonal variations are slight (Longhurst, 1998).

The carbon fixed by the blooms of algae supports the pelagic food web in the upper ocean, and ultimately

the fisheries and marine top-predators (Parsons et al., 1984). Surplus algal production and waste from the
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pelagic food web rains down to the seabed which may act as an important sink for carbon (Mann and Lazier,

1991). Changes in climate certainly affect ocean phytoplankton (Reid et al., 1998), with implications for

food web productivity, but phytoplankton may also be important regulators of global carbon dioxide and

hence future climate through their role in the carbon sink. Hence, there is considerable interest in mapping

and monitoring changes in ocean phytoplankton at local, regional, ocean basin and global scales.

Most measurements of phytoplankton abundance are made not in terms of cell numbers or carbon biomass,

which is difficult to discriminate from non-living or non-algal carbon-rich particles in the water, but in terms

of phytosynthetic pigment content — in particular chlorophyll a which is endemic across all taxonomic

groups of algae. For direct measurements, fine particulate material in water bottle samples, including

algal cells, is collected on glass fibre filters and chlorophyll extracted into an organic solvent which is then

analysed chromatographically or spectrophotometrically (Strickland and Parsons, 1972). Such analysis of

water samples collected by ships or buoys provides accurate data but there is little prospect of collecting

sufficient data in space and time to fully characterise the dynamics of algal abundance even on a regional

scale, far less on an ocean or global scale. An alternative is to utilise the fluorescent properties of chlorophyll

to provide a less accurate in situ estimate of concentration without solvent extraction (Yentsch and Phinney,

1985). This allows for continuous monitoring by towed or moored in situ sensors or in pumped flow-lines.

However, this still does not materially improve the scope for matching the sampling to the scale of the

problem.

The spectral properties of light reflected from the sea surface can also be used to estimate the concentration

of algal pigments in the water (Sathyendranath et al., 1994). The advantage of exploiting reflectance is that

data can be collected remotely by airborne or orbiting satellite-borne sensors, providing sampling at scales

and resolutions relevant to the problem, subject to cloud cover. The Coastal Zone Colour Scanner (CZCS,

1978–1986), was the first satellite borne ocean reflectance sensor. More recently, the Sea-viewing Wide

Field-of-view Sensor (SeaWiFS), launched by NASA in 1997 continues to provide global high resolution

data. The algorithms used to derive chlorophyll concentration from reflectance data are calibrated by

careful comparison of simultaneous overhead and ground-truth measurements, the primary data source

being MOBY, a fixed optical mooring off the west coast of Lanai (Hawaii) (Hooker and McClain, 2000). The

radiance measurements received by the satellite are corrected for back-scattering caused by air molecules

and other particles in the atmosphere, and for reflections from glint and foam (atmospheric correction), to

obtain water-leaving radiance, from which chlorophyll a concentration can be estimated using bio-optical

algorithms. Both these calibrations are based on clear open ocean (case I) waters (Hooker and McClain,

2000; O’Reilly et al., 2000) and so do not take into account near infrared reflectance from suspended sediment

in turbid coastal (case II) waters or the effect of coloured organic matter dissolved in the water (gelbstoff).
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These particles can have a substantial effect on ocean colour in coastal and polar waters, and the algorithms

do not perform well in these areas (Dierssen and Smith, 2000; Burenkov et al., 2001; Sathyendranath et

al., 2001). There is no explicit methodology for correcting reflectance-derived chlorophyll measurements for

such effects. Alternatives have been to apply region-specific algorithms to the reflectance data based on the

relative optical properties of sediment, chlorophyll and gelbstoff (e.g. Burenkov et al., 2001; Westbrook et

al., 2001; Chen et al., 2002), or employ a statistical method to ‘blend’ together satellite-derived and bottle-

derived data so that the two are consistent over time and space (Gregg et al., 2001; Gregg et al., 2002). Few

alternatives to the ‘blending’ methodology have so far been explored. In this paper we describe the novel

application of thin plate regression splines for this purpose. We model sparsely distributed chlorophyll data

from water sampling conducted over a number of years in the northeast Atlantic (NEA), with multi-annual

composite SeaWiFS chlorophyll data as one of three covariates.

2 Water sampling (bottle) data

Point measurements of chlorophyll a concentration (mg m−3) in the NEA (56◦N–72◦N, 30◦W–20◦E) from

analyses of aqueous acetone or methanol extracted pigments in water bottle samples identified by their

date, latitude, longitude and depth of collection, were gathered from a variety of sources. Anonymous data

collected between 1960 and 1999 were obtained from the ICES Oceanographic Data Centre in Copenhagen

and the British Oceanographic Data Centre. Other data were obtained from databases of the EU-ICOS,

EU-TASC, and EU-ESOP2 projects, and from institutional records at FRS Aberdeen.

The entire data set available to us contained about 65,000 bottle measurements dating back to 1960, sampled

at different depths at about 18,500 space-time locations (stations). We were interested in the average

concentration in the top 5 m, so stations with no samples in the top 5 m were removed, leaving approximately

17,000 stations. Since environmental conditions have changed over the past 40 years, we removed observations

collected before 1986, leaving 13,000 stations. Sampling has increased since the late 1980’s and so these data

retain most of the spatial coverage present in the full data set. We used the trapezium rule to estimate the

concentration in the top 5 m, linearly interpolating between samples (Fig. 1). If there was only one sample

in the top 30 m, and it was between [0,5] m, then this was taken as the average concentration in the top

5 m. If there were samples at 0 m and 5 m, we linearly interpolated between these and any samples in

between, then integrated under the resulting polygon. If there was no sample at 0 m, we extrapolated from

the nearest two samples to estimate the value at 0 m before integrating. If the extrapolation resulted in a

negative concentration, this was set to zero. If there was no sample at 5 m, but one was available at a deeper

depth (up to 30 m), then we interpolated between this sample and the first sample shallower than 5 m before

integrating. If no sample was taken below 5 m, then we extrapolated from the nearest two samples, as for



ICES CM 2003/L:04 4

zero depths.

The water bottle data set included data from several time series studies, in which sampling was carried out

repeatedly at the same location thereby forming a detailed record of the seasonal cycle. The data from two

of these locations, Stonehaven and Ocean Weatherstation (OWS) Mike, are referred to later in more detail.

The sampling site at Stonehaven lies approximately 6 km off the northeast coast of Scotland in the North

Sea (56◦58′N, 02◦06′W), and samples have been collected weekly since January 1997 (Heath et al., 1999).

The vessel MV Polarfront was on station at OWS Mike in the Norwegian Sea (66◦N, 2◦E) throughout 1997,

and daily sampling was carried out by personnel involved in the EU-TASC project for most of the year

(Heath et al., 2000).

3 SeaWiFS Data

Output from the 2002 NASA reprocessing of the SeaWiFS data archive were compiled by staff at Plymouth

Marine Laboratory into a multi-annual (1997-2002) average data set for the northeast Atlantic area. Valid

SeaWiFS data were averaged over approximately 5′ longitude × 5′ latitude cells and successive 8-day intervals

during the year.

These raw SeaWiFS data were stored as integer values for each pixel, v, on [0,255], which are converted

to SeaWiFS predictions of chlorophyll concentration, z, in mg m−3, by the formula: z = 100.015v−2. The

raw data had been preprocessed on the v scale to fill in missing values and form climatological averages.

However, this still left many missing values in the North in Winter, due to low sun angles. We therefore

interpolated to fill in the missing values using a nearest neighbour method. We first checked for valid pixels

in the four neighbouring pixels. Any valid pixels were averaged. If none were found, the next nearest

neighbours surrounding these pixels were searched, and so on, in increasing circles up to 7 pixels from the

original missing value. If no valid pixels were found, the data for the previous 8-day period were searched in

the same way, and if still none were found then the 8-day period preceding that was searched. If valid pixels

were found, then the data for the 8-day period following the missing pixel were searched, and the period

after that if necessary. If valid pixels were found both before and after the period of the missing pixel, then

a weighted average of the valid pixels was calculated. Otherwise the pixel remained missing. Averages were

rounded to integer values. Pixels interpolated in this way were not used to calculate interpolated values for

other pixels. The interpolated data were then converted to chlorophyll concentrations. Monthly averages of

the SeaWiFS data (Fig. 2) show the broad scale patterns in chlorophyll production in the NEA.

4 Model Formulation

Whilst accurate mapping of phytoplankton is of interest in itself, here we were also concerned with the role
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of phytoplankton as the main food source for the boreal copepod, Calanus finmarchicus, which in turn is

eaten by many harvestable fish resources. Gurney et al. (2001) describe a spatially explicit physiologically

structured model of Calanus finmarchicus in the NEA over an average climatological year. However this

model does not include two key stages in the life cycle of Calanus finmarchicus which are resource dependent:

the onset of egg production (Hind et al., 2000, Richardson et al., 1999) and diapause (Heath and Jónasdóttir,

1999). Incorporating these responses into the model requires accurate predictions of the annual cycle of

chlorophyll a concentration over the entire NEA. Since the spring bloom affects the onset of egg production

and the end of the autumn bloom triggers diapause in Calanus finmarchicus, corect estimation of the

timing of these blooms was particularly important. Calanus finmarchicus feed in the surface waters, and

surface chlorophyll concentration has been found to correlate well with the total chlorophyll a standing stock

(Shiomoto et al., 2002; Engelsen et al., 2002) so we used the average chlorophyll a concentration in the top

5 m of the water column as our response variable.

As explained above, the relationship between satellite and bottle data is complex and thus a simple calibration

between the two was not enough, especially at in polar regions and on the continental shelf. Furthermore,

the satellite data estimate the climatogical average of chlorophyll concentration at the surface over a small

region in time and space, whereas the bottle data estimate average chlorophyll concentration in the top 5 m

in a precise location on a specific date. It is therefore not surprising that the satellite data did not correlate

well with the bottle data available for the NEA (Fig. 3). Comparisons of SeaWiFS data with bottle data for

the timeseries at Stonehaven and OWS Mike show discrepancies between the two which depend on location

and time of year (Fig. 4). The SeaWiFS data for Stonehaven, which is on the shelf, was too high in the

spring and too low in the summer, whereas at OWS Mike, in the ocean, the SeaWiFS data was accurate

in early spring but too high in the autumn. We required an alternative method of predicting chlorophyll

a concentrations, which would capture the broad scale patterns in the satellite data but also correlate well

with the bottle data.

If we modelled the bottle data as a function of SeaWiFS then we could use SeaWiFS to predict chlorophyll

concentrations in areas where bottle data have not been collected. We would expect bottle data to be

smoothly related to SeaWiFS, but this relationship is affected by weather and water characteristics, which

in turn vary with ocean depth and time of year. Since we had good coverage of depth and time of year, we

used these as proxies for the things that are really controlling the relationship but had not been measured.

The Calanus model uses log(chlorophyll) as the index of food abundance, so we modelled the log of the bottle

chlorophyll concentrations. We therefore also took logs of SeaWiFS, which reduced leverage caused by a few

high SeaWiFS values. Depth was square-root transformed to reduce leverage of points with high depth values.
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Both variables were then scaled to have a similar range to time of year (1–365). Thus we modelled observed

log(bottle chlorophyll concentration) as a smooth function g (s, h, t) where s = 10ksscaled{log(SeaWiFS)},

h = 10khscaled(
√

depth), t =time of year, given scaling parameters ks and kh. In order to to minimise

the prediction error in terms of log(chlorophyll), we used penalised least squares to fit the model, using the

smoothing parameter λ to trade off fidelity to the data with wiggliness of the fitted function. That is, we

minimised:

S(g) =
n∑

i=1

{yi − g(si, hi, ti)}2 + λJmd(g) (1)

where yi is log(chlorophyll) for the ith observation, λ, ks and kh are treated as smoothing parameters to

be estimated by GCV and wiggliness is measured by the thin plate spline penalty functional, Jmd(g). λ

and g were estimated using the package mgcv, version 0.8.0 (Wood, 2003) in the R environment (Ihaka and

Gentleman, 1996). We used a grid-search to find smoothing parameters ks and kh, thus fitting an anisotropic

function using the isotropic measure Jmd(g). Further details are given in the Appendix.

5 Practical details

Satellite values were assigned to the bottle data by averaging valid SeaWiFS concentrations within a 15′ by

15′ box surrounding the bottle value, and linearly interpolating between the values for the two 8-day periods

surrounding the bottle value. Some bottle values were considered to be on land by the satellite data, and

these were removed from the data set.

The survey coverage was very uneven in space and time. For example about 6,700 of the stations were in the

Skagerrak, whilst only 540 were above 65◦N. A perfect model would not be affected by this uneven coverage,

however, we did not have a perfect model, even the covariates we were using were only proxies for those that

we really believed were driving the process. Furthermore, the uneven coverage in this data set was rather

extreme, and the model for the open ocean, the major part of the NEA, and the area in which we were

most interested, was likely to be unduly influenced by the data on the shelf. We therefore selected a random

sub-sample of the data with a more even spatial coverage, hereafter referred to as the fitting data.

To achieve a more even spatial coverage, the sample was obtained using inclusion probabilities inversely

proportional to the density of points in a neighbourhood surrounding each observation, the constant of

proportionality depending on location. The neighbourhood of a particular observation was defined by a

three-dimensional bin, centred on the observation, with sides approximately 50 nm by 50 nm by 15 days.

Thus the density of observations in the neighbourhood of observation i, ρi was given by:

ρi =
∑
j 6=i

Lij
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where

Lij =

 1 pi − δp ≤ pj ≤ pi + δp, qi − δq ≤ qj ≤ qi + δq, ti − δt ≤ tj ≤ ti + δt

0 otherwise

where p represents longitude, q latitude, t time of year, and δp, δq and δt represent half the length of the

corresponding sides of the box defining the neighbourhood.

To increase the number of observations selected from the open ocean relative to the shelf, we doubled the

inclusion probabilities of observations in the ocean. The shelf is often defined as the area with depths less

than 400m. We retained that definition, but further defined the southern shelf to include the North Sea and

the shelf around Scotland and Ireland. This region was approximated by an ellipse of sides 10◦ longitude,

7◦ latitude, centered on 56◦N, 10◦E (Fig. 5). To reduce the number of observations in the Skagerrak, we

divided the inclusion probabilities in this region by 5. Finally, inclusion probabilities were set at a maximum

of 0.9. Thus the inclusion probability of observation i, Pi, can be expressed as follows:

Pi =


min

(
1
ρi

, 0.9
)

i ∈ southern shelf

min
(

1
5ρi

, 0.9
)

i ∈ Skagerrak

min
(

2
ρi

, 0.9
)

i ∈ otherwise

Having randomly selected the fitting data set, a further validation data set was selected from the remaining

observations. Setting a maximum inclusion probability of 0.9 improved the chance of having data represen-

tative of all locations in space and time in the validation data set as well as in the fitting data set. This

procedure resulted in a fitting data set of 1,540 observations and a validation data set of 668 observations,

both of which were relatively well-spaced in space and time (Fig. 5). Bottle values were set at a minimum

of 0.003 mg m−3 before taking logs. This affected 18 observations out of the 1,540 (17 of which were zero).

Time of year, seabed depth and SeaWiFS were chosen as covariates because they all had good coverage over

most of their range. Taking transformations of SeaWiFS and depth further improved the coverage and thus

avoided problems caused by high leverage of a few large values. Since the logged bottle data were being

modelled, we took the log of SeaWiFS too, and after experimentation, we took the square-root of depth.

SeaWiFS values were set at a minimum of exp(−2.5) before being logged, which removed the gap between

the zeros and the next smallest value on the transformed scale. 270 observations had zero SeaWiFS values,

and these were mainly in the winter months. Time of year was measured using julian day and therefore

had a range 1–365, so after transformation,
√

depth and log(SeaWiFS) were scaled so that they had similar

ranges to time of year. These scaled covariates were then each multiplied by 10ks and 10kh respectively,

where ks and kd are scaling parameters which control the relative degree of smoothing in each dimension.
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The maximum degrees of freedom allowed in the model was set to 300, approximately 20% of the sample

size. The grid of scaling parameters was evenly spaced over the range -3 to 1. This allowed a wide range of

relative smoothing, although a priori we would expect that SeaWiFS and depth to be smoothed more than

time of year, i.e. have negative scaling parameters. Preliminary results showed that the GCV score was

relatively smooth over the grid and so we chose an interval of 0.4 between the nodes on the grid. Multiplying

a covariate by 10−3 makes its values very small compared to the other covariates. This means it has little

effect in the wiggly part of the model but since its effect in the polynomial part could be large, it might still

be an important covariate.

The data have poor spatial coverage in the winter months, and so the model predictions could have produced

unrealistic values at the ends of the year. Having used the data described above to find the scaling parameters,

we then added 22 ‘structural zeros’ evenly spaced over the model arena, with zero bottle and satellite values,

at julian day -10 and 375. The model was then refitted to the combined data set using the chosen scaling

parameters. This new model was used to make predictions.

6 Results

The best model had R2 = 66%, measured on the scale of the logged chlorophyll values. Diagnostic plots for

this model are shown in Fig. 6. Scaling parameters were -1.4 for SeaWiFS and -1.0 for depth, indicating

that most of the 188 effective degrees of freedom in the model were used by time of year. If we had just used

logged SeaWiFS values to predict logged bottle values in the fitting data set, we would have obtained an R2

of 37%. Comparing model predictions with observed values for the validation data set resulted in R2 = 65%,

which is almost as good as the R2 for the data we fitted the model to, a remarkably good result. Model

predictions for the time series at Stonehaven and OWS Mike (Fig. 7) wiggled a lot over time, partly because

the model responds to SeaWiFS values, which also vary a lot over time. However, the R2 we obtained for

the validation data set indicates that the model was not overfitted. Comparison of Figs 4 and 7 show that,

for these time series, the model predicted the onset of the spring bloom on the shelf and the magnitude

of the autumn bloom in the ocean better than the satellite data. Comparisons of the monthly midpoint

predictions (Figs 2 and 8) show that the model retained the broad scale patterns in the SeaWiFS plots, but

altered the magnitudes where necessary. For example the satellite data predicted chlorophyll beginning to

appear along the coasts in the North Sea in February (Fig. 2), but the SeaWiFS predictions were too high at

Stonehaven (Fig. 4). The model also predicted chlorophyll appearing around the coasts, but at levels lower

than the satellite (Fig. 8), resulting in a better fit to the data at Stonehaven (Fig. 7). Similarly, the satellite

data predicted high concentrations along the coasts and in shallower waters in September (Fig. 2), but these

predictions were too high at Stonehaven and OWS Mike (Fig. 4). The model predictions retained the same
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spatial patterns as the satellite data, but again with lower levels (Fig. 8), resulting in an improved fit at

the time series locations (Fig. 7). Furthermore, the model provided sensible predictions from November to

January, when valid SeaWiFS data were not available.

To test whether we really needed SeaWiFS data to provide adequate predictions of the phytoplankton

bloom, we fitted another model to the data, the same as that above, except that log(SeaWiFS) was replaced

by latitude as a covariate. Latitude is a natural choice of alternative covariate since the phytoplankton

bloom can be described in terms of latitude, time of year and depth, as in the introduction to this paper.

Transformations of latitude were considered but found to be unnecessary,
√

depth was again considered the

best depth transformation. The model selected had a similar GCV score to the model using SeaWiFS, with

an R2 = 64% and 208 effective degrees of freedom. The scaling parameters were -0.4 for latitude and -0.8

for
√

depth. Predictions for the validation data set had R2 = 61%, and predictions for the two time series at

Stonehaven and OWS Mike were similar to those in Fig. 7. Thus the model with latitude instead of SeaWiFS

appeared to perform almost as well as the model with SeaWiFS as a covariate. However, monthly predictions

over the NEA (Fig. 9) did not reflect the broad scale behaviour of the phytoplankton bloom. They clearly

had artefacts related to latitude, due to the paucity of data at high latitudes. In particular, predictions for

June and August had high bands of chlorophyll at around 60-65◦N, which were not present in the satellite

predictions, whereas predictions for September were too low along the Norwegian coast. Although we can

fit a good model to the available data, we do not have the spatial coverage to be able to predict well in areas

without data unless we use SeaWiFS satellite data in the model.

7 Discussion

Satellite estimates of chlorophyll a concentration are available for the whole world and are routinely used to

quantify primary production. We have shown that the SeaWiFS data do not correlate well with field mea-

surements of chlorophyll concentration for the North East Atlantic. This is because the conversion algorithms

are applied on a global scale and do not take different water characteristics into account. Furthermore, the

satellites measure the reflection off the surface of the ocean whereas interest usually lies in the chlorophyll

concentration in the water column, which we approximate with that in the top 5 m. Many attempts have

been made to improve the algorithms converting satellite radiance measurements into chlorophyll concen-

tration (e.g. Land and Haigh, 1996; Hu et al., 2000; Ruddick et al., 2000; Burenkov et al., 2001; Westbrook

et al., 2001; Chen et al., 2002), but these rely on assumptions of the state of the sea when the measure-

ments were taken. Although satellite estimates are frequently compared to data collected in situ (Kahru

and Mitchell, 1999; Moore et al., 1999; Dierssen and Smith, 2000; Burenkov et al., 2001; Sathyendranath et

al., 2001), the two estimates are rarely combined. The only method we are aware of is Gregg et al. (2001),
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in which satellite and in situ measurements are ‘blended’, using a method previously applied to sea surface

temperature (Reynolds, 1988), in which the in situ (bottle) estimates are unadajusted in the final product.

Here, however, we also removed the sampling and inter-annual variability of the bottle estimates to obtain

a climatological average.

We modelled bottle data as a smooth function of SeaWiFS, depth and time of year, using anisotropic thin

plate regression splines. The model predictions were a vast improvement on the satellite data, R2 increasing

from 37% to 66%. A similar R2 was obtained for a validation data set, indicating that the model is not

overfitting, despite the wiggliness of the predictions over time. The model did not predict the magnitude

of the peak of the spring bloom very well. This is because we fitted the model on the log-scale, so the

difference between the model and the data was not as important as it appears in Fig. 7. The model has the

advantage that we now have sensible predictions for the winter months, when SeaWiFS data are not available.

Where data were available for comparison, the model tended to reduce predictions round the coasts, where

SeaWiFS predictions were too high, particularly in the Skagerrak, for which the SeaWiFS data predicts very

high concentrations from March to October, probably because the use of standard conversion algorithms

is inappropriate for this region and time of year. The model also increased predictions in the open water,

particularly in the spring bloom, when SeaWiFS data were too low. A comparison with a similar model using

latitude instead of SeaWiFS showed that although superficially similar fits to the data could be obtained, the

predictions were not sensible in areas where little data had been collected. Thus we conclude that satellite

data are necessary to successfully predict chlorophyll a concentrations in the absence of bottle data.

The statistical innovation in this paper is the use of thin plate regression splines for anisotropic smoothing.

This was achieved by scaling the covariates relative to each other, choosing these scaling parameters objec-

tively by GCV. Although the models use different basis functions and so are no longer nested, it appears

that this approximation works well. The use of a simple grid-search for scaling parameter estimation is

computationally expensive but simple to program as the individual models can be fitted using the mgcv

package in R. This is therefore a simple objective method of fitting anisotropic smooths.
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Appendix: Estimation

The general form of the model is:

yi = f(xi) + εi

where yi is the response for the ith observation, f is a smooth function of d covariates, whose values for the

ith observation are contained in the vector xi, and the εis are independent random errors with zero mean

and equal variance. Here xi = (si, hi, ti)T .

In principle we could use thin plate splines to estimate f by finding the function g which minimises

S(g) =
n∑

i=1

{yi − g(xi)}2 + λJmd(g) (2)

where

Jmd(g) =
∫

. . .

∫
<d

∑
v1+...+vd=m

m!
v1! . . . vd!

(
∂mg

∂xv1
1 . . . ∂xvd

d

)2

dx1 . . . dxd

and 2m > d. Jmd(g) is isotropic and invariant under translations and rotations of the coordinate system. A

good introduction to thin plate splines can be found in Green and Silverman (1994), and we briefly review

them here. A function g(x) is a thin plate spline on the data set x1,x2, ...,xn if it is of the form:

g(x) =
n∑

i=1

δiηmd(‖x− xi‖) +
M∑

j=1

αjφj(x).

where

ηmd(r) =


(−1)m+1+d/2

22m−1πd/2(m−1)!(m−d/2)!
r2m−d log(r) d even

Γ(d/2−m)
22mπd/2(m−1)!

r2m−d d odd
,

M =
(
m+d−1

d

)
and the φj are M linearly independent polynomials spanning the M -dimensional space of

polynomials in <d of total degree less than m. Thus g is linear in its parameters and is made up of a

wiggly part
∑n

i=1 δiηmd(‖x−xi‖) and a polynomial part
∑M

j=1 αjφj(x). A natural thin plate spline has the

constraint that TT δ = 0, where δ = (δ1, ..., δn)T and the n×M matrix T is defined by Tij = φj(xi). This

constraint ensures that Jmd(g) is finite. Since the φjs have maximum degree m − 1, Jmd(g) only contains

terms resulting from differentiating the wiggly part of g, and for a natural thin plate spline,

Jmd(g) = δT Eδ (3)

where the n× n matrix E is given by Eij = ηmd(‖xi − xj‖).

For a visibly smooth function without discontinuities at the knots, we require 2m > d + 1. Thus for a three

dimensional thin plate spline, d = 3, x = (x1, x2, x3)T and a natural choice for m is m = 3. Then

ηmd(‖x− xi‖) =
1

96π
‖x− xi‖3
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and

M∑
j=1

αjφj(x) = α1 + α2x1 + α3x2 + α4x3 + α5x
2
1 + α6x

2
2 + α7x

2
3

+α8x1x2 + α9x2x3 + α10x3x1.

To fit the model, we need to evaluate g at each observation. The vector

g = (g(x1), g(x2), . . . , g(xn))T

is given by:

g = Eδ + Tα (4)

where α = (α1, . . . , αM )T . Now substituting in (2) using (3) and (4), we can write:

S(g) = ‖y −Eδ −Tα‖2 + λδT Eδ, (5)

where y = (y1, . . . , yn)T . Thus, to estimate f , we find the vectors of parameters δ and α that minimise (5),

subject to TT δ = 0. The constraint gives us n parameters in total, n−M in the wiggly part and M in the

polynomial part.

Fitting this model is computationally intensive since we have a parameter for every data point, and the

number of calculations is O(n3). However, by penalising the sum of squares with a wiggliness penalty we

are a priori expecting some of these n parameters to be redundant. It would be convenient if we could find

a wiggly basis, which uses fewer parameters, k say, and gives similar results to the standard basis with n

parameters. One approach is to find a basis of rank k which simultaneously minimises the maximum change

in fitted values and the maximum change in the penalty term (Wood, 2003). Set E = UDUT , where D

is a diagonal matrix of eigenvalues of E arranged in decreasing order, and U is a matrix containing the

eigenvectors of E in the corresponding order. Then the best basis of rank k subject to the criteria above is

given by Uk which contains the first k columns of U (Wood, 2003). Uk forms a k-dimensional orthonormal

basis for the δ parameter space, so that δ = Ukδk, where δk is a k-vector. A convenient way to include

the constraints is to set δ = UkZkδ̃, where Zk is an orthogonal column basis such that TT UkZk = 0. This

ensures that TT δ = 0, and S(g) becomes:

S(g) = ‖y −UkDkZkδ̃ −Tα‖2 + λδ̃T ZT
k DkZkδ̃,

where Dk is the diagonal matrix containing the biggest k eigenvalues of E arranged in decreasing order.

We now minimise S(g) with respect to the k + M parameters δ̃ and α to find what we term a thin plate

regression spline (Wood, 2003).



ICES CM 2003/L:04 16

The smoothing parameter λ, which governs the wiggliness of the model, is selected by minimising the

generalized cross-validation (GCV) score, using a method developed by Wood (2000) based on the method

of Gu and Wahba (1991). GCV is a measure of prediction error and can be calculated with the following

formula:

V (λ) =
‖y −Ay‖2

[tr(I−A)]2

where A is the hat matrix (see Green and Silverman (1994)). tr(A) is the effective degrees of freedom in

the model, and so we are simply dividing the residual sum of squares by the square of the residual degrees

of freedom.

Thin plate regression splines are isotropic smoothers and the relative amount of smoothing of the covariates

is related to their numerical ranges, regardless of the units they are measured in. The covariates therefore

need to be scaled so that their relative ranges reflect the relative amount of smoothing they require in each

direction. Thus if we have d covariates, we need to estimate d − 1 scaling parameters (ks and kh in this

case). The estimation of the overall smoothing parameter, λ, is performed using GCV. We therefore also

used GCV to estimate the scaling parameters. We used a simple grid search as follows. We chose a set

of scaling parameters and scaled the covariates accordingly. The model was then fitted using these scaled

covariates and the GCV score recorded. This was performed for each set of scaling parameters on the grid,

and the set of scaling parameters which resulted in the smallest GCV score is chosen. This is a simple but

computationally intensive method of finding the scaling parameters.
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Figure 1: Diagrams showing the depth integration scheme used to obtain average chlorophyll concentration

in the top 5 m of the water column from the bottle sample data. (a) Where there is a single measurement

within at a particular location which is within the range [0,5] m, we use this as the average over the range [0,5]

m. (b) Where there are measurements at zero and 5 m we interpolate between them and any measurements

in between, then integrate beneath the resulting polygon. (c) Where there is no measurement at zero, we

extrapolate back to obtain an estimate for zero. Where there is no measurement at 5 m but at least one

measurement within the range [0,5) m and a measurement beyond 5 m, we interpolate to obtain an estimate

at 5 m. (If there is no measurement beyond 5 m, we extrapolate.) (d) If any extrapolation results in a

negative value, we set the estimate to zero.
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Figure 2: Estimates of log(chlorophyll a concentration), measured in log (mg m−3) over the North East

Atlantic (56◦N–75◦N, 30◦W–20◦E) for selected monthly midpoints throughout the year. These estimates

have been obtained from SeaWiFS data and are plotted on a log-scale to show small changes at low levels

more clearly.
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Figure 3: Chlorophyll a concentrations for a subset of the bottle data (the fitting data: see Fig. 5) plot-

ted against the corresponding satellite predictions, with a regression line superimposed. R2 is only 10%,

indicating a poor correlation between SeaWiFS and bottle data.
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Figure 4: Time series of bottle data (circles) with SeaWiFS predictions superimposed as a line for the two

locations marked in Fig 5(a).
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Figure 5: (a) Contour plot of the bathymetry (measured in metres) of the northeast Atlantic, with the

boundary between southern shelf and ocean indicated by the thick line. The positions of the TASC moni-

toring stations at Stonehaven (circle) and Ocean Weather Ship Mike (triangle) are also indicated. (b) The

locations of all the available bottle data. (c) The locations of the fitting data. (d) The locations of the

validation data. (e) Latitude against time of year (julian days) for the fitting data. (f) Time of year (julian

days) against longitude for the fitting data.



ICES CM 2003/L:04 22

−2.0 −1.5 −1.0 −0.5 0.0

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

ks

k h

a

−6 −4 −2 0 2

−
6

−
4

−
2

0
2

fitted values

re
si

du
al

s

b

−2 −1 0 1 2

−
6

−
4

−
2

0
2

log(SeaWiFS)

lo
g(

bo
ttl

e)

R2 = 0.38

c

−6 −4 −2 0 2

−
6

−
4

−
2

0
2

predicted log chlorophyll

lo
g(

bo
ttl

e)

R2 = 0.66

d

−2 −1 0 1 2 3

−
6

−
4

−
2

0
2

log(SeaWiFS)

lo
g(

bo
ttl

e)

R2 = 0.37

e

−4 −3 −2 −1 0 1 2 3

−
6

−
4

−
2

0
2

predicted log chlorophyll

lo
g(

bo
ttl

e)

R2 = 0.65

f

Figure 6: The fitted model: (a) Contour plot of the GCV score as it changes with scaling parameters for

SeaWiFS and depth (ks and kh, respectively). The minimum GCV score is indicated by a solid circle. (b)

Residual plot of the chosen model. (c) Observed vs SeaWiFS, both measured in log(mg m−3), for the fitting

data. (d) Observed vs fitted values, both measured in log(mg m−3), for the fitting data. (e) Observed

vs SeaWiFS, both measured in log(mg m−3), for the validation data. (f) Observed vs fitted values, both

measured in log(mg m−3), for the validation data.
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Figure 7: Time series of bottle data (circles), with model predictions overlaid as lines, for the locations

marked in Fig 5(a).
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Figure 8: Monthly midpoint predictions of log(chlorophyll concentration), measured in log(mg m−3), for the

best model with SeaWiFS, depth and time of year as covariates.
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Figure 9: Monthly midpoint predictions of log(chlorophyll concentration), measured in log(mg m−3), for the

best model with latitude, depth and time of year as covariates.
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